| /****************************************************************************** |
| * |
| * Copyright(c) 2009-2012 Realtek Corporation. |
| * |
| * Tmis program is free software; you can redistribute it and/or modify it |
| * under the terms of version 2 of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * Tmis program is distributed in the hope that it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * Tme full GNU General Public License is included in this distribution in the |
| * file called LICENSE. |
| * |
| * Contact Information: |
| * wlanfae <wlanfae@realtek.com> |
| * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park, |
| * Hsinchu 300, Taiwan. |
| * |
| * Larry Finger <Larry.Finger@lwfinger.net> |
| * |
| *****************************************************************************/ |
| #include "wifi.h" |
| #include "efuse.h" |
| #include "pci.h" |
| #include <linux/export.h> |
| |
| static const u8 MAX_PGPKT_SIZE = 9; |
| static const u8 PGPKT_DATA_SIZE = 8; |
| static const int EFUSE_MAX_SIZE = 512; |
| |
| static const struct efuse_map RTL8712_SDIO_EFUSE_TABLE[] = { |
| {0, 0, 0, 2}, |
| {0, 1, 0, 2}, |
| {0, 2, 0, 2}, |
| {1, 0, 0, 1}, |
| {1, 0, 1, 1}, |
| {1, 1, 0, 1}, |
| {1, 1, 1, 3}, |
| {1, 3, 0, 17}, |
| {3, 3, 1, 48}, |
| {10, 0, 0, 6}, |
| {10, 3, 0, 1}, |
| {10, 3, 1, 1}, |
| {11, 0, 0, 28} |
| }; |
| |
| static void efuse_shadow_read_1byte(struct ieee80211_hw *hw, u16 offset, |
| u8 *value); |
| static void efuse_shadow_read_2byte(struct ieee80211_hw *hw, u16 offset, |
| u16 *value); |
| static void efuse_shadow_read_4byte(struct ieee80211_hw *hw, u16 offset, |
| u32 *value); |
| static void efuse_shadow_write_1byte(struct ieee80211_hw *hw, u16 offset, |
| u8 value); |
| static void efuse_shadow_write_2byte(struct ieee80211_hw *hw, u16 offset, |
| u16 value); |
| static void efuse_shadow_write_4byte(struct ieee80211_hw *hw, u16 offset, |
| u32 value); |
| static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr, |
| u8 data); |
| static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse); |
| static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset, |
| u8 *data); |
| static int efuse_pg_packet_write(struct ieee80211_hw *hw, u8 offset, |
| u8 word_en, u8 *data); |
| static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata, |
| u8 *targetdata); |
| static u8 enable_efuse_data_write(struct ieee80211_hw *hw, |
| u16 efuse_addr, u8 word_en, u8 *data); |
| static void efuse_power_switch(struct ieee80211_hw *hw, u8 write, |
| u8 pwrstate); |
| static u16 efuse_get_current_size(struct ieee80211_hw *hw); |
| static u8 efuse_calculate_word_cnts(u8 word_en); |
| |
| void efuse_initialize(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| u8 bytetemp; |
| u8 temp; |
| |
| bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1); |
| temp = bytetemp | 0x20; |
| rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1, temp); |
| |
| bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1); |
| temp = bytetemp & 0xFE; |
| rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1, temp); |
| |
| bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3); |
| temp = bytetemp | 0x80; |
| rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3, temp); |
| |
| rtl_write_byte(rtlpriv, 0x2F8, 0x3); |
| |
| rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72); |
| |
| } |
| |
| u8 efuse_read_1byte(struct ieee80211_hw *hw, u16 address) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| u8 data; |
| u8 bytetemp; |
| u8 temp; |
| u32 k = 0; |
| const u32 efuse_len = |
| rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE]; |
| |
| if (address < efuse_len) { |
| temp = address & 0xFF; |
| rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1, |
| temp); |
| bytetemp = rtl_read_byte(rtlpriv, |
| rtlpriv->cfg->maps[EFUSE_CTRL] + 2); |
| temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC); |
| rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2, |
| temp); |
| |
| bytetemp = rtl_read_byte(rtlpriv, |
| rtlpriv->cfg->maps[EFUSE_CTRL] + 3); |
| temp = bytetemp & 0x7F; |
| rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, |
| temp); |
| |
| bytetemp = rtl_read_byte(rtlpriv, |
| rtlpriv->cfg->maps[EFUSE_CTRL] + 3); |
| while (!(bytetemp & 0x80)) { |
| bytetemp = rtl_read_byte(rtlpriv, |
| rtlpriv->cfg-> |
| maps[EFUSE_CTRL] + 3); |
| k++; |
| if (k == 1000) { |
| k = 0; |
| break; |
| } |
| } |
| data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]); |
| return data; |
| } else |
| return 0xFF; |
| |
| } |
| EXPORT_SYMBOL(efuse_read_1byte); |
| |
| void efuse_write_1byte(struct ieee80211_hw *hw, u16 address, u8 value) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| u8 bytetemp; |
| u8 temp; |
| u32 k = 0; |
| const u32 efuse_len = |
| rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE]; |
| |
| RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "Addr=%x Data =%x\n", |
| address, value); |
| |
| if (address < efuse_len) { |
| rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], value); |
| |
| temp = address & 0xFF; |
| rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1, |
| temp); |
| bytetemp = rtl_read_byte(rtlpriv, |
| rtlpriv->cfg->maps[EFUSE_CTRL] + 2); |
| |
| temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC); |
| rtl_write_byte(rtlpriv, |
| rtlpriv->cfg->maps[EFUSE_CTRL] + 2, temp); |
| |
| bytetemp = rtl_read_byte(rtlpriv, |
| rtlpriv->cfg->maps[EFUSE_CTRL] + 3); |
| temp = bytetemp | 0x80; |
| rtl_write_byte(rtlpriv, |
| rtlpriv->cfg->maps[EFUSE_CTRL] + 3, temp); |
| |
| bytetemp = rtl_read_byte(rtlpriv, |
| rtlpriv->cfg->maps[EFUSE_CTRL] + 3); |
| |
| while (bytetemp & 0x80) { |
| bytetemp = rtl_read_byte(rtlpriv, |
| rtlpriv->cfg-> |
| maps[EFUSE_CTRL] + 3); |
| k++; |
| if (k == 100) { |
| k = 0; |
| break; |
| } |
| } |
| } |
| |
| } |
| |
| void read_efuse_byte(struct ieee80211_hw *hw, u16 _offset, u8 *pbuf) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| u32 value32; |
| u8 readbyte; |
| u16 retry; |
| |
| rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1, |
| (_offset & 0xff)); |
| readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2); |
| rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2, |
| ((_offset >> 8) & 0x03) | (readbyte & 0xfc)); |
| |
| readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3); |
| rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, |
| (readbyte & 0x7f)); |
| |
| retry = 0; |
| value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]); |
| while (!(((value32 >> 24) & 0xff) & 0x80) && (retry < 10000)) { |
| value32 = rtl_read_dword(rtlpriv, |
| rtlpriv->cfg->maps[EFUSE_CTRL]); |
| retry++; |
| } |
| |
| udelay(50); |
| value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]); |
| |
| *pbuf = (u8) (value32 & 0xff); |
| } |
| EXPORT_SYMBOL_GPL(read_efuse_byte); |
| |
| void read_efuse(struct ieee80211_hw *hw, u16 _offset, u16 _size_byte, u8 *pbuf) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); |
| u8 *efuse_tbl; |
| u8 rtemp8[1]; |
| u16 efuse_addr = 0; |
| u8 offset, wren; |
| u8 u1temp = 0; |
| u16 i; |
| u16 j; |
| const u16 efuse_max_section = |
| rtlpriv->cfg->maps[EFUSE_MAX_SECTION_MAP]; |
| const u32 efuse_len = |
| rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE]; |
| u16 **efuse_word; |
| u16 efuse_utilized = 0; |
| u8 efuse_usage; |
| |
| if ((_offset + _size_byte) > rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]) { |
| RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, |
| "read_efuse(): Invalid offset(%#x) with read bytes(%#x)!!\n", |
| _offset, _size_byte); |
| return; |
| } |
| |
| /* allocate memory for efuse_tbl and efuse_word */ |
| efuse_tbl = kzalloc(rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE] * |
| sizeof(u8), GFP_ATOMIC); |
| if (!efuse_tbl) |
| return; |
| efuse_word = kzalloc(EFUSE_MAX_WORD_UNIT * sizeof(u16 *), GFP_ATOMIC); |
| if (!efuse_word) |
| goto out; |
| for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) { |
| efuse_word[i] = kzalloc(efuse_max_section * sizeof(u16), |
| GFP_ATOMIC); |
| if (!efuse_word[i]) |
| goto done; |
| } |
| |
| for (i = 0; i < efuse_max_section; i++) |
| for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) |
| efuse_word[j][i] = 0xFFFF; |
| |
| read_efuse_byte(hw, efuse_addr, rtemp8); |
| if (*rtemp8 != 0xFF) { |
| efuse_utilized++; |
| RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL, |
| "Addr=%d\n", efuse_addr); |
| efuse_addr++; |
| } |
| |
| while ((*rtemp8 != 0xFF) && (efuse_addr < efuse_len)) { |
| /* Check PG header for section num. */ |
| if ((*rtemp8 & 0x1F) == 0x0F) {/* extended header */ |
| u1temp = ((*rtemp8 & 0xE0) >> 5); |
| read_efuse_byte(hw, efuse_addr, rtemp8); |
| |
| if ((*rtemp8 & 0x0F) == 0x0F) { |
| efuse_addr++; |
| read_efuse_byte(hw, efuse_addr, rtemp8); |
| |
| if (*rtemp8 != 0xFF && |
| (efuse_addr < efuse_len)) { |
| efuse_addr++; |
| } |
| continue; |
| } else { |
| offset = ((*rtemp8 & 0xF0) >> 1) | u1temp; |
| wren = (*rtemp8 & 0x0F); |
| efuse_addr++; |
| } |
| } else { |
| offset = ((*rtemp8 >> 4) & 0x0f); |
| wren = (*rtemp8 & 0x0f); |
| } |
| |
| if (offset < efuse_max_section) { |
| RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL, |
| "offset-%d Worden=%x\n", offset, wren); |
| |
| for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) { |
| if (!(wren & 0x01)) { |
| RTPRINT(rtlpriv, FEEPROM, |
| EFUSE_READ_ALL, |
| "Addr=%d\n", efuse_addr); |
| |
| read_efuse_byte(hw, efuse_addr, rtemp8); |
| efuse_addr++; |
| efuse_utilized++; |
| efuse_word[i][offset] = |
| (*rtemp8 & 0xff); |
| |
| if (efuse_addr >= efuse_len) |
| break; |
| |
| RTPRINT(rtlpriv, FEEPROM, |
| EFUSE_READ_ALL, |
| "Addr=%d\n", efuse_addr); |
| |
| read_efuse_byte(hw, efuse_addr, rtemp8); |
| efuse_addr++; |
| efuse_utilized++; |
| efuse_word[i][offset] |= |
| (((u16)*rtemp8 << 8) & 0xff00); |
| |
| if (efuse_addr >= efuse_len) |
| break; |
| } |
| |
| wren >>= 1; |
| } |
| } |
| |
| RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL, |
| "Addr=%d\n", efuse_addr); |
| read_efuse_byte(hw, efuse_addr, rtemp8); |
| if (*rtemp8 != 0xFF && (efuse_addr < efuse_len)) { |
| efuse_utilized++; |
| efuse_addr++; |
| } |
| } |
| |
| for (i = 0; i < efuse_max_section; i++) { |
| for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) { |
| efuse_tbl[(i * 8) + (j * 2)] = |
| (efuse_word[j][i] & 0xff); |
| efuse_tbl[(i * 8) + ((j * 2) + 1)] = |
| ((efuse_word[j][i] >> 8) & 0xff); |
| } |
| } |
| |
| for (i = 0; i < _size_byte; i++) |
| pbuf[i] = efuse_tbl[_offset + i]; |
| |
| rtlefuse->efuse_usedbytes = efuse_utilized; |
| efuse_usage = (u8) ((efuse_utilized * 100) / efuse_len); |
| rtlefuse->efuse_usedpercentage = efuse_usage; |
| rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_BYTES, |
| (u8 *)&efuse_utilized); |
| rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_USAGE, |
| &efuse_usage); |
| done: |
| for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) |
| kfree(efuse_word[i]); |
| kfree(efuse_word); |
| out: |
| kfree(efuse_tbl); |
| } |
| |
| bool efuse_shadow_update_chk(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); |
| u8 section_idx, i, Base; |
| u16 words_need = 0, hdr_num = 0, totalbytes, efuse_used; |
| bool wordchanged, result = true; |
| |
| for (section_idx = 0; section_idx < 16; section_idx++) { |
| Base = section_idx * 8; |
| wordchanged = false; |
| |
| for (i = 0; i < 8; i = i + 2) { |
| if ((rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i] != |
| rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i]) || |
| (rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i + 1] != |
| rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i + |
| 1])) { |
| words_need++; |
| wordchanged = true; |
| } |
| } |
| |
| if (wordchanged) |
| hdr_num++; |
| } |
| |
| totalbytes = hdr_num + words_need * 2; |
| efuse_used = rtlefuse->efuse_usedbytes; |
| |
| if ((totalbytes + efuse_used) >= |
| (EFUSE_MAX_SIZE - rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN])) |
| result = false; |
| |
| RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, |
| "efuse_shadow_update_chk(): totalbytes(%#x), hdr_num(%#x), words_need(%#x), efuse_used(%d)\n", |
| totalbytes, hdr_num, words_need, efuse_used); |
| |
| return result; |
| } |
| |
| void efuse_shadow_read(struct ieee80211_hw *hw, u8 type, |
| u16 offset, u32 *value) |
| { |
| if (type == 1) |
| efuse_shadow_read_1byte(hw, offset, (u8 *)value); |
| else if (type == 2) |
| efuse_shadow_read_2byte(hw, offset, (u16 *)value); |
| else if (type == 4) |
| efuse_shadow_read_4byte(hw, offset, value); |
| |
| } |
| EXPORT_SYMBOL(efuse_shadow_read); |
| |
| void efuse_shadow_write(struct ieee80211_hw *hw, u8 type, u16 offset, |
| u32 value) |
| { |
| if (type == 1) |
| efuse_shadow_write_1byte(hw, offset, (u8) value); |
| else if (type == 2) |
| efuse_shadow_write_2byte(hw, offset, (u16) value); |
| else if (type == 4) |
| efuse_shadow_write_4byte(hw, offset, value); |
| |
| } |
| |
| bool efuse_shadow_update(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); |
| u16 i, offset, base; |
| u8 word_en = 0x0F; |
| u8 first_pg = false; |
| |
| RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "\n"); |
| |
| if (!efuse_shadow_update_chk(hw)) { |
| efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]); |
| memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0], |
| &rtlefuse->efuse_map[EFUSE_INIT_MAP][0], |
| rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]); |
| |
| RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, |
| "efuse out of capacity!!\n"); |
| return false; |
| } |
| efuse_power_switch(hw, true, true); |
| |
| for (offset = 0; offset < 16; offset++) { |
| |
| word_en = 0x0F; |
| base = offset * 8; |
| |
| for (i = 0; i < 8; i++) { |
| if (first_pg) { |
| word_en &= ~(BIT(i / 2)); |
| |
| rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] = |
| rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i]; |
| } else { |
| |
| if (rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] != |
| rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i]) { |
| word_en &= ~(BIT(i / 2)); |
| |
| rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] = |
| rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i]; |
| } |
| } |
| } |
| |
| if (word_en != 0x0F) { |
| u8 tmpdata[8]; |
| memcpy(tmpdata, |
| &rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base], |
| 8); |
| RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_LOUD, |
| "U-efuse\n", tmpdata, 8); |
| |
| if (!efuse_pg_packet_write(hw, (u8) offset, word_en, |
| tmpdata)) { |
| RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, |
| "PG section(%#x) fail!!\n", offset); |
| break; |
| } |
| } |
| |
| } |
| |
| efuse_power_switch(hw, true, false); |
| efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]); |
| |
| memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0], |
| &rtlefuse->efuse_map[EFUSE_INIT_MAP][0], |
| rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]); |
| |
| RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "\n"); |
| return true; |
| } |
| |
| void rtl_efuse_shadow_map_update(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); |
| |
| if (rtlefuse->autoload_failflag) |
| memset((&rtlefuse->efuse_map[EFUSE_INIT_MAP][0]), |
| 0xFF, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]); |
| else |
| efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]); |
| |
| memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0], |
| &rtlefuse->efuse_map[EFUSE_INIT_MAP][0], |
| rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]); |
| |
| } |
| EXPORT_SYMBOL(rtl_efuse_shadow_map_update); |
| |
| void efuse_force_write_vendor_Id(struct ieee80211_hw *hw) |
| { |
| u8 tmpdata[8] = { 0xFF, 0xFF, 0xEC, 0x10, 0xFF, 0xFF, 0xFF, 0xFF }; |
| |
| efuse_power_switch(hw, true, true); |
| |
| efuse_pg_packet_write(hw, 1, 0xD, tmpdata); |
| |
| efuse_power_switch(hw, true, false); |
| |
| } |
| |
| void efuse_re_pg_section(struct ieee80211_hw *hw, u8 section_idx) |
| { |
| } |
| |
| static void efuse_shadow_read_1byte(struct ieee80211_hw *hw, |
| u16 offset, u8 *value) |
| { |
| struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); |
| *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset]; |
| } |
| |
| static void efuse_shadow_read_2byte(struct ieee80211_hw *hw, |
| u16 offset, u16 *value) |
| { |
| struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); |
| |
| *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset]; |
| *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8; |
| |
| } |
| |
| static void efuse_shadow_read_4byte(struct ieee80211_hw *hw, |
| u16 offset, u32 *value) |
| { |
| struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); |
| |
| *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset]; |
| *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8; |
| *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] << 16; |
| *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] << 24; |
| } |
| |
| static void efuse_shadow_write_1byte(struct ieee80211_hw *hw, |
| u16 offset, u8 value) |
| { |
| struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); |
| |
| rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value; |
| } |
| |
| static void efuse_shadow_write_2byte(struct ieee80211_hw *hw, |
| u16 offset, u16 value) |
| { |
| struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); |
| |
| rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value & 0x00FF; |
| rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] = value >> 8; |
| |
| } |
| |
| static void efuse_shadow_write_4byte(struct ieee80211_hw *hw, |
| u16 offset, u32 value) |
| { |
| struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); |
| |
| rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = |
| (u8) (value & 0x000000FF); |
| rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] = |
| (u8) ((value >> 8) & 0x0000FF); |
| rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] = |
| (u8) ((value >> 16) & 0x00FF); |
| rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] = |
| (u8) ((value >> 24) & 0xFF); |
| |
| } |
| |
| int efuse_one_byte_read(struct ieee80211_hw *hw, u16 addr, u8 *data) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| u8 tmpidx = 0; |
| int result; |
| |
| rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1, |
| (u8) (addr & 0xff)); |
| rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2, |
| ((u8) ((addr >> 8) & 0x03)) | |
| (rtl_read_byte(rtlpriv, |
| rtlpriv->cfg->maps[EFUSE_CTRL] + 2) & |
| 0xFC)); |
| |
| rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72); |
| |
| while (!(0x80 & rtl_read_byte(rtlpriv, |
| rtlpriv->cfg->maps[EFUSE_CTRL] + 3)) |
| && (tmpidx < 100)) { |
| tmpidx++; |
| } |
| |
| if (tmpidx < 100) { |
| *data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]); |
| result = true; |
| } else { |
| *data = 0xff; |
| result = false; |
| } |
| return result; |
| } |
| EXPORT_SYMBOL(efuse_one_byte_read); |
| |
| static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr, u8 data) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| u8 tmpidx = 0; |
| |
| RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, |
| "Addr = %x Data=%x\n", addr, data); |
| |
| rtl_write_byte(rtlpriv, |
| rtlpriv->cfg->maps[EFUSE_CTRL] + 1, (u8) (addr & 0xff)); |
| rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2, |
| (rtl_read_byte(rtlpriv, |
| rtlpriv->cfg->maps[EFUSE_CTRL] + |
| 2) & 0xFC) | (u8) ((addr >> 8) & 0x03)); |
| |
| rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], data); |
| rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0xF2); |
| |
| while ((0x80 & rtl_read_byte(rtlpriv, |
| rtlpriv->cfg->maps[EFUSE_CTRL] + 3)) |
| && (tmpidx < 100)) { |
| tmpidx++; |
| } |
| |
| if (tmpidx < 100) |
| return true; |
| return false; |
| } |
| |
| static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| efuse_power_switch(hw, false, true); |
| read_efuse(hw, 0, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE], efuse); |
| efuse_power_switch(hw, false, false); |
| } |
| |
| static void efuse_read_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr, |
| u8 efuse_data, u8 offset, u8 *tmpdata, |
| u8 *readstate) |
| { |
| bool dataempty = true; |
| u8 hoffset; |
| u8 tmpidx; |
| u8 hworden; |
| u8 word_cnts; |
| |
| hoffset = (efuse_data >> 4) & 0x0F; |
| hworden = efuse_data & 0x0F; |
| word_cnts = efuse_calculate_word_cnts(hworden); |
| |
| if (hoffset == offset) { |
| for (tmpidx = 0; tmpidx < word_cnts * 2; tmpidx++) { |
| if (efuse_one_byte_read(hw, *efuse_addr + 1 + tmpidx, |
| &efuse_data)) { |
| tmpdata[tmpidx] = efuse_data; |
| if (efuse_data != 0xff) |
| dataempty = false; |
| } |
| } |
| |
| if (!dataempty) { |
| *readstate = PG_STATE_DATA; |
| } else { |
| *efuse_addr = *efuse_addr + (word_cnts * 2) + 1; |
| *readstate = PG_STATE_HEADER; |
| } |
| |
| } else { |
| *efuse_addr = *efuse_addr + (word_cnts * 2) + 1; |
| *readstate = PG_STATE_HEADER; |
| } |
| } |
| |
| static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset, u8 *data) |
| { |
| u8 readstate = PG_STATE_HEADER; |
| |
| bool continual = true; |
| |
| u8 efuse_data, word_cnts = 0; |
| u16 efuse_addr = 0; |
| u8 tmpdata[8]; |
| |
| if (data == NULL) |
| return false; |
| if (offset > 15) |
| return false; |
| |
| memset(data, 0xff, PGPKT_DATA_SIZE * sizeof(u8)); |
| memset(tmpdata, 0xff, PGPKT_DATA_SIZE * sizeof(u8)); |
| |
| while (continual && (efuse_addr < EFUSE_MAX_SIZE)) { |
| if (readstate & PG_STATE_HEADER) { |
| if (efuse_one_byte_read(hw, efuse_addr, &efuse_data) |
| && (efuse_data != 0xFF)) |
| efuse_read_data_case1(hw, &efuse_addr, |
| efuse_data, offset, |
| tmpdata, &readstate); |
| else |
| continual = false; |
| } else if (readstate & PG_STATE_DATA) { |
| efuse_word_enable_data_read(0, tmpdata, data); |
| efuse_addr = efuse_addr + (word_cnts * 2) + 1; |
| readstate = PG_STATE_HEADER; |
| } |
| |
| } |
| |
| if ((data[0] == 0xff) && (data[1] == 0xff) && |
| (data[2] == 0xff) && (data[3] == 0xff) && |
| (data[4] == 0xff) && (data[5] == 0xff) && |
| (data[6] == 0xff) && (data[7] == 0xff)) |
| return false; |
| else |
| return true; |
| |
| } |
| |
| static void efuse_write_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr, |
| u8 efuse_data, u8 offset, |
| int *continual, u8 *write_state, |
| struct pgpkt_struct *target_pkt, |
| int *repeat_times, int *result, u8 word_en) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct pgpkt_struct tmp_pkt; |
| int dataempty = true; |
| u8 originaldata[8 * sizeof(u8)]; |
| u8 badworden = 0x0F; |
| u8 match_word_en, tmp_word_en; |
| u8 tmpindex; |
| u8 tmp_header = efuse_data; |
| u8 tmp_word_cnts; |
| |
| tmp_pkt.offset = (tmp_header >> 4) & 0x0F; |
| tmp_pkt.word_en = tmp_header & 0x0F; |
| tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en); |
| |
| if (tmp_pkt.offset != target_pkt->offset) { |
| *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1; |
| *write_state = PG_STATE_HEADER; |
| } else { |
| for (tmpindex = 0; tmpindex < (tmp_word_cnts * 2); tmpindex++) { |
| if (efuse_one_byte_read(hw, |
| (*efuse_addr + 1 + tmpindex), |
| &efuse_data) && |
| (efuse_data != 0xFF)) |
| dataempty = false; |
| } |
| |
| if (!dataempty) { |
| *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1; |
| *write_state = PG_STATE_HEADER; |
| } else { |
| match_word_en = 0x0F; |
| if (!((target_pkt->word_en & BIT(0)) | |
| (tmp_pkt.word_en & BIT(0)))) |
| match_word_en &= (~BIT(0)); |
| |
| if (!((target_pkt->word_en & BIT(1)) | |
| (tmp_pkt.word_en & BIT(1)))) |
| match_word_en &= (~BIT(1)); |
| |
| if (!((target_pkt->word_en & BIT(2)) | |
| (tmp_pkt.word_en & BIT(2)))) |
| match_word_en &= (~BIT(2)); |
| |
| if (!((target_pkt->word_en & BIT(3)) | |
| (tmp_pkt.word_en & BIT(3)))) |
| match_word_en &= (~BIT(3)); |
| |
| if ((match_word_en & 0x0F) != 0x0F) { |
| badworden = |
| enable_efuse_data_write(hw, |
| *efuse_addr + 1, |
| tmp_pkt.word_en, |
| target_pkt->data); |
| |
| if (0x0F != (badworden & 0x0F)) { |
| u8 reorg_offset = offset; |
| u8 reorg_worden = badworden; |
| efuse_pg_packet_write(hw, reorg_offset, |
| reorg_worden, |
| originaldata); |
| } |
| |
| tmp_word_en = 0x0F; |
| if ((target_pkt->word_en & BIT(0)) ^ |
| (match_word_en & BIT(0))) |
| tmp_word_en &= (~BIT(0)); |
| |
| if ((target_pkt->word_en & BIT(1)) ^ |
| (match_word_en & BIT(1))) |
| tmp_word_en &= (~BIT(1)); |
| |
| if ((target_pkt->word_en & BIT(2)) ^ |
| (match_word_en & BIT(2))) |
| tmp_word_en &= (~BIT(2)); |
| |
| if ((target_pkt->word_en & BIT(3)) ^ |
| (match_word_en & BIT(3))) |
| tmp_word_en &= (~BIT(3)); |
| |
| if ((tmp_word_en & 0x0F) != 0x0F) { |
| *efuse_addr = efuse_get_current_size(hw); |
| target_pkt->offset = offset; |
| target_pkt->word_en = tmp_word_en; |
| } else { |
| *continual = false; |
| } |
| *write_state = PG_STATE_HEADER; |
| *repeat_times += 1; |
| if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) { |
| *continual = false; |
| *result = false; |
| } |
| } else { |
| *efuse_addr += (2 * tmp_word_cnts) + 1; |
| target_pkt->offset = offset; |
| target_pkt->word_en = word_en; |
| *write_state = PG_STATE_HEADER; |
| } |
| } |
| } |
| RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, "efuse PG_STATE_HEADER-1\n"); |
| } |
| |
| static void efuse_write_data_case2(struct ieee80211_hw *hw, u16 *efuse_addr, |
| int *continual, u8 *write_state, |
| struct pgpkt_struct target_pkt, |
| int *repeat_times, int *result) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct pgpkt_struct tmp_pkt; |
| u8 pg_header; |
| u8 tmp_header; |
| u8 originaldata[8 * sizeof(u8)]; |
| u8 tmp_word_cnts; |
| u8 badworden = 0x0F; |
| |
| pg_header = ((target_pkt.offset << 4) & 0xf0) | target_pkt.word_en; |
| efuse_one_byte_write(hw, *efuse_addr, pg_header); |
| efuse_one_byte_read(hw, *efuse_addr, &tmp_header); |
| |
| if (tmp_header == pg_header) { |
| *write_state = PG_STATE_DATA; |
| } else if (tmp_header == 0xFF) { |
| *write_state = PG_STATE_HEADER; |
| *repeat_times += 1; |
| if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) { |
| *continual = false; |
| *result = false; |
| } |
| } else { |
| tmp_pkt.offset = (tmp_header >> 4) & 0x0F; |
| tmp_pkt.word_en = tmp_header & 0x0F; |
| |
| tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en); |
| |
| memset(originaldata, 0xff, 8 * sizeof(u8)); |
| |
| if (efuse_pg_packet_read(hw, tmp_pkt.offset, originaldata)) { |
| badworden = enable_efuse_data_write(hw, |
| *efuse_addr + 1, |
| tmp_pkt.word_en, |
| originaldata); |
| |
| if (0x0F != (badworden & 0x0F)) { |
| u8 reorg_offset = tmp_pkt.offset; |
| u8 reorg_worden = badworden; |
| efuse_pg_packet_write(hw, reorg_offset, |
| reorg_worden, |
| originaldata); |
| *efuse_addr = efuse_get_current_size(hw); |
| } else { |
| *efuse_addr = *efuse_addr + |
| (tmp_word_cnts * 2) + 1; |
| } |
| } else { |
| *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1; |
| } |
| |
| *write_state = PG_STATE_HEADER; |
| *repeat_times += 1; |
| if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) { |
| *continual = false; |
| *result = false; |
| } |
| |
| RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, |
| "efuse PG_STATE_HEADER-2\n"); |
| } |
| } |
| |
| static int efuse_pg_packet_write(struct ieee80211_hw *hw, |
| u8 offset, u8 word_en, u8 *data) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct pgpkt_struct target_pkt; |
| u8 write_state = PG_STATE_HEADER; |
| int continual = true, dataempty = true, result = true; |
| u16 efuse_addr = 0; |
| u8 efuse_data; |
| u8 target_word_cnts = 0; |
| u8 badworden = 0x0F; |
| static int repeat_times; |
| |
| if (efuse_get_current_size(hw) >= (EFUSE_MAX_SIZE - |
| rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN])) { |
| RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, |
| "efuse_pg_packet_write error\n"); |
| return false; |
| } |
| |
| target_pkt.offset = offset; |
| target_pkt.word_en = word_en; |
| |
| memset(target_pkt.data, 0xFF, 8 * sizeof(u8)); |
| |
| efuse_word_enable_data_read(word_en, data, target_pkt.data); |
| target_word_cnts = efuse_calculate_word_cnts(target_pkt.word_en); |
| |
| RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, "efuse Power ON\n"); |
| |
| while (continual && (efuse_addr < (EFUSE_MAX_SIZE - |
| rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN]))) { |
| |
| if (write_state == PG_STATE_HEADER) { |
| dataempty = true; |
| badworden = 0x0F; |
| RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, |
| "efuse PG_STATE_HEADER\n"); |
| |
| if (efuse_one_byte_read(hw, efuse_addr, &efuse_data) && |
| (efuse_data != 0xFF)) |
| efuse_write_data_case1(hw, &efuse_addr, |
| efuse_data, offset, |
| &continual, |
| &write_state, |
| &target_pkt, |
| &repeat_times, &result, |
| word_en); |
| else |
| efuse_write_data_case2(hw, &efuse_addr, |
| &continual, |
| &write_state, |
| target_pkt, |
| &repeat_times, |
| &result); |
| |
| } else if (write_state == PG_STATE_DATA) { |
| RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, |
| "efuse PG_STATE_DATA\n"); |
| badworden = 0x0f; |
| badworden = |
| enable_efuse_data_write(hw, efuse_addr + 1, |
| target_pkt.word_en, |
| target_pkt.data); |
| |
| if ((badworden & 0x0F) == 0x0F) { |
| continual = false; |
| } else { |
| efuse_addr = |
| efuse_addr + (2 * target_word_cnts) + 1; |
| |
| target_pkt.offset = offset; |
| target_pkt.word_en = badworden; |
| target_word_cnts = |
| efuse_calculate_word_cnts(target_pkt. |
| word_en); |
| write_state = PG_STATE_HEADER; |
| repeat_times++; |
| if (repeat_times > EFUSE_REPEAT_THRESHOLD_) { |
| continual = false; |
| result = false; |
| } |
| RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, |
| "efuse PG_STATE_HEADER-3\n"); |
| } |
| } |
| } |
| |
| if (efuse_addr >= (EFUSE_MAX_SIZE - |
| rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN])) { |
| RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, |
| "efuse_addr(%#x) Out of size!!\n", efuse_addr); |
| } |
| |
| return true; |
| } |
| |
| static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata, |
| u8 *targetdata) |
| { |
| if (!(word_en & BIT(0))) { |
| targetdata[0] = sourdata[0]; |
| targetdata[1] = sourdata[1]; |
| } |
| |
| if (!(word_en & BIT(1))) { |
| targetdata[2] = sourdata[2]; |
| targetdata[3] = sourdata[3]; |
| } |
| |
| if (!(word_en & BIT(2))) { |
| targetdata[4] = sourdata[4]; |
| targetdata[5] = sourdata[5]; |
| } |
| |
| if (!(word_en & BIT(3))) { |
| targetdata[6] = sourdata[6]; |
| targetdata[7] = sourdata[7]; |
| } |
| } |
| |
| static u8 enable_efuse_data_write(struct ieee80211_hw *hw, |
| u16 efuse_addr, u8 word_en, u8 *data) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| u16 tmpaddr; |
| u16 start_addr = efuse_addr; |
| u8 badworden = 0x0F; |
| u8 tmpdata[8]; |
| |
| memset(tmpdata, 0xff, PGPKT_DATA_SIZE); |
| RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, |
| "word_en = %x efuse_addr=%x\n", word_en, efuse_addr); |
| |
| if (!(word_en & BIT(0))) { |
| tmpaddr = start_addr; |
| efuse_one_byte_write(hw, start_addr++, data[0]); |
| efuse_one_byte_write(hw, start_addr++, data[1]); |
| |
| efuse_one_byte_read(hw, tmpaddr, &tmpdata[0]); |
| efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[1]); |
| if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1])) |
| badworden &= (~BIT(0)); |
| } |
| |
| if (!(word_en & BIT(1))) { |
| tmpaddr = start_addr; |
| efuse_one_byte_write(hw, start_addr++, data[2]); |
| efuse_one_byte_write(hw, start_addr++, data[3]); |
| |
| efuse_one_byte_read(hw, tmpaddr, &tmpdata[2]); |
| efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[3]); |
| if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3])) |
| badworden &= (~BIT(1)); |
| } |
| |
| if (!(word_en & BIT(2))) { |
| tmpaddr = start_addr; |
| efuse_one_byte_write(hw, start_addr++, data[4]); |
| efuse_one_byte_write(hw, start_addr++, data[5]); |
| |
| efuse_one_byte_read(hw, tmpaddr, &tmpdata[4]); |
| efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[5]); |
| if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5])) |
| badworden &= (~BIT(2)); |
| } |
| |
| if (!(word_en & BIT(3))) { |
| tmpaddr = start_addr; |
| efuse_one_byte_write(hw, start_addr++, data[6]); |
| efuse_one_byte_write(hw, start_addr++, data[7]); |
| |
| efuse_one_byte_read(hw, tmpaddr, &tmpdata[6]); |
| efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[7]); |
| if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7])) |
| badworden &= (~BIT(3)); |
| } |
| |
| return badworden; |
| } |
| |
| static void efuse_power_switch(struct ieee80211_hw *hw, u8 write, u8 pwrstate) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); |
| u8 tempval; |
| u16 tmpV16; |
| |
| if (pwrstate && (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE)) { |
| |
| if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192CE && |
| rtlhal->hw_type != HARDWARE_TYPE_RTL8192DE) { |
| rtl_write_byte(rtlpriv, |
| rtlpriv->cfg->maps[EFUSE_ACCESS], 0x69); |
| } else { |
| tmpV16 = |
| rtl_read_word(rtlpriv, |
| rtlpriv->cfg->maps[SYS_ISO_CTRL]); |
| if (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_PWC_EV12V])) { |
| tmpV16 |= rtlpriv->cfg->maps[EFUSE_PWC_EV12V]; |
| rtl_write_word(rtlpriv, |
| rtlpriv->cfg->maps[SYS_ISO_CTRL], |
| tmpV16); |
| } |
| } |
| tmpV16 = rtl_read_word(rtlpriv, |
| rtlpriv->cfg->maps[SYS_FUNC_EN]); |
| if (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_FEN_ELDR])) { |
| tmpV16 |= rtlpriv->cfg->maps[EFUSE_FEN_ELDR]; |
| rtl_write_word(rtlpriv, |
| rtlpriv->cfg->maps[SYS_FUNC_EN], tmpV16); |
| } |
| |
| tmpV16 = rtl_read_word(rtlpriv, rtlpriv->cfg->maps[SYS_CLK]); |
| if ((!(tmpV16 & rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN])) || |
| (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_ANA8M]))) { |
| tmpV16 |= (rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN] | |
| rtlpriv->cfg->maps[EFUSE_ANA8M]); |
| rtl_write_word(rtlpriv, |
| rtlpriv->cfg->maps[SYS_CLK], tmpV16); |
| } |
| } |
| |
| if (pwrstate) { |
| if (write) { |
| tempval = rtl_read_byte(rtlpriv, |
| rtlpriv->cfg->maps[EFUSE_TEST] + |
| 3); |
| |
| if (rtlhal->hw_type == HARDWARE_TYPE_RTL8812AE) { |
| tempval &= ~(BIT(3) | BIT(4) | BIT(5) | BIT(6)); |
| tempval |= (VOLTAGE_V25 << 3); |
| } else if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE) { |
| tempval &= 0x0F; |
| tempval |= (VOLTAGE_V25 << 4); |
| } |
| |
| rtl_write_byte(rtlpriv, |
| rtlpriv->cfg->maps[EFUSE_TEST] + 3, |
| (tempval | 0x80)); |
| } |
| |
| if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) { |
| rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK], |
| 0x03); |
| } |
| } else { |
| if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192CE && |
| rtlhal->hw_type != HARDWARE_TYPE_RTL8192DE) |
| rtl_write_byte(rtlpriv, |
| rtlpriv->cfg->maps[EFUSE_ACCESS], 0); |
| |
| if (write) { |
| tempval = rtl_read_byte(rtlpriv, |
| rtlpriv->cfg->maps[EFUSE_TEST] + |
| 3); |
| rtl_write_byte(rtlpriv, |
| rtlpriv->cfg->maps[EFUSE_TEST] + 3, |
| (tempval & 0x7F)); |
| } |
| |
| if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) { |
| rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK], |
| 0x02); |
| } |
| } |
| } |
| |
| static u16 efuse_get_current_size(struct ieee80211_hw *hw) |
| { |
| int continual = true; |
| u16 efuse_addr = 0; |
| u8 hoffset, hworden; |
| u8 efuse_data, word_cnts; |
| |
| while (continual && efuse_one_byte_read(hw, efuse_addr, &efuse_data) && |
| (efuse_addr < EFUSE_MAX_SIZE)) { |
| if (efuse_data != 0xFF) { |
| hoffset = (efuse_data >> 4) & 0x0F; |
| hworden = efuse_data & 0x0F; |
| word_cnts = efuse_calculate_word_cnts(hworden); |
| efuse_addr = efuse_addr + (word_cnts * 2) + 1; |
| } else { |
| continual = false; |
| } |
| } |
| |
| return efuse_addr; |
| } |
| |
| static u8 efuse_calculate_word_cnts(u8 word_en) |
| { |
| u8 word_cnts = 0; |
| if (!(word_en & BIT(0))) |
| word_cnts++; |
| if (!(word_en & BIT(1))) |
| word_cnts++; |
| if (!(word_en & BIT(2))) |
| word_cnts++; |
| if (!(word_en & BIT(3))) |
| word_cnts++; |
| return word_cnts; |
| } |
| |
| int rtl_get_hwinfo(struct ieee80211_hw *hw, struct rtl_priv *rtlpriv, |
| int max_size, u8 *hwinfo, int *params) |
| { |
| struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); |
| struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw); |
| struct device *dev = &rtlpcipriv->dev.pdev->dev; |
| u16 eeprom_id; |
| u16 i, usvalue; |
| |
| switch (rtlefuse->epromtype) { |
| case EEPROM_BOOT_EFUSE: |
| rtl_efuse_shadow_map_update(hw); |
| break; |
| |
| case EEPROM_93C46: |
| pr_err("RTL8XXX did not boot from eeprom, check it !!\n"); |
| return 1; |
| |
| default: |
| dev_warn(dev, "no efuse data\n"); |
| return 1; |
| } |
| |
| memcpy(hwinfo, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0], max_size); |
| |
| RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, "MAP", |
| hwinfo, max_size); |
| |
| eeprom_id = *((u16 *)&hwinfo[0]); |
| if (eeprom_id != params[0]) { |
| RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, |
| "EEPROM ID(%#x) is invalid!!\n", eeprom_id); |
| rtlefuse->autoload_failflag = true; |
| } else { |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n"); |
| rtlefuse->autoload_failflag = false; |
| } |
| |
| if (rtlefuse->autoload_failflag) |
| return 1; |
| |
| rtlefuse->eeprom_vid = *(u16 *)&hwinfo[params[1]]; |
| rtlefuse->eeprom_did = *(u16 *)&hwinfo[params[2]]; |
| rtlefuse->eeprom_svid = *(u16 *)&hwinfo[params[3]]; |
| rtlefuse->eeprom_smid = *(u16 *)&hwinfo[params[4]]; |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, |
| "EEPROMId = 0x%4x\n", eeprom_id); |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, |
| "EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid); |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, |
| "EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did); |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, |
| "EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid); |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, |
| "EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid); |
| |
| for (i = 0; i < 6; i += 2) { |
| usvalue = *(u16 *)&hwinfo[params[5] + i]; |
| *((u16 *)(&rtlefuse->dev_addr[i])) = usvalue; |
| } |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr); |
| |
| rtlefuse->eeprom_channelplan = *&hwinfo[params[6]]; |
| rtlefuse->eeprom_version = *(u16 *)&hwinfo[params[7]]; |
| rtlefuse->txpwr_fromeprom = true; |
| rtlefuse->eeprom_oemid = *&hwinfo[params[8]]; |
| |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, |
| "EEPROM Customer ID: 0x%2x\n", rtlefuse->eeprom_oemid); |
| |
| /* set channel plan to world wide 13 */ |
| rtlefuse->channel_plan = params[9]; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(rtl_get_hwinfo); |