| /* |
| * linux/arch/cris/arch-v32/kernel/time.c |
| * |
| * Copyright (C) 2003-2010 Axis Communications AB |
| * |
| */ |
| |
| #include <linux/timex.h> |
| #include <linux/time.h> |
| #include <linux/clocksource.h> |
| #include <linux/clockchips.h> |
| #include <linux/interrupt.h> |
| #include <linux/swap.h> |
| #include <linux/sched.h> |
| #include <linux/init.h> |
| #include <linux/threads.h> |
| #include <linux/cpufreq.h> |
| #include <linux/sched_clock.h> |
| #include <linux/mm.h> |
| #include <asm/types.h> |
| #include <asm/signal.h> |
| #include <asm/io.h> |
| #include <asm/delay.h> |
| #include <asm/irq.h> |
| #include <asm/irq_regs.h> |
| |
| #include <hwregs/reg_map.h> |
| #include <hwregs/reg_rdwr.h> |
| #include <hwregs/timer_defs.h> |
| #include <hwregs/intr_vect_defs.h> |
| #ifdef CONFIG_CRIS_MACH_ARTPEC3 |
| #include <hwregs/clkgen_defs.h> |
| #endif |
| |
| /* Watchdog defines */ |
| #define ETRAX_WD_KEY_MASK 0x7F /* key is 7 bit */ |
| #define ETRAX_WD_HZ 763 /* watchdog counts at 763 Hz */ |
| /* Number of 763 counts before watchdog bites */ |
| #define ETRAX_WD_CNT ((2*ETRAX_WD_HZ)/HZ + 1) |
| |
| #define CRISV32_TIMER_FREQ (100000000lu) |
| |
| unsigned long timer_regs[NR_CPUS] = |
| { |
| regi_timer0, |
| }; |
| |
| extern int set_rtc_mmss(unsigned long nowtime); |
| |
| #ifdef CONFIG_CPU_FREQ |
| static int cris_time_freq_notifier(struct notifier_block *nb, |
| unsigned long val, void *data); |
| |
| static struct notifier_block cris_time_freq_notifier_block = { |
| .notifier_call = cris_time_freq_notifier, |
| }; |
| #endif |
| |
| unsigned long get_ns_in_jiffie(void) |
| { |
| reg_timer_r_tmr0_data data; |
| unsigned long ns; |
| |
| data = REG_RD(timer, regi_timer0, r_tmr0_data); |
| ns = (TIMER0_DIV - data) * 10; |
| return ns; |
| } |
| |
| /* From timer MDS describing the hardware watchdog: |
| * 4.3.1 Watchdog Operation |
| * The watchdog timer is an 8-bit timer with a configurable start value. |
| * Once started the watchdog counts downwards with a frequency of 763 Hz |
| * (100/131072 MHz). When the watchdog counts down to 1, it generates an |
| * NMI (Non Maskable Interrupt), and when it counts down to 0, it resets the |
| * chip. |
| */ |
| /* This gives us 1.3 ms to do something useful when the NMI comes */ |
| |
| /* Right now, starting the watchdog is the same as resetting it */ |
| #define start_watchdog reset_watchdog |
| |
| #if defined(CONFIG_ETRAX_WATCHDOG) |
| static short int watchdog_key = 42; /* arbitrary 7 bit number */ |
| #endif |
| |
| /* Number of pages to consider "out of memory". It is normal that the memory |
| * is used though, so set this really low. */ |
| #define WATCHDOG_MIN_FREE_PAGES 8 |
| |
| #if defined(CONFIG_ETRAX_WATCHDOG_NICE_DOGGY) |
| /* for reliable NICE_DOGGY behaviour */ |
| static int bite_in_progress; |
| #endif |
| |
| void reset_watchdog(void) |
| { |
| #if defined(CONFIG_ETRAX_WATCHDOG) |
| reg_timer_rw_wd_ctrl wd_ctrl = { 0 }; |
| |
| #if defined(CONFIG_ETRAX_WATCHDOG_NICE_DOGGY) |
| if (unlikely(bite_in_progress)) |
| return; |
| #endif |
| /* Only keep watchdog happy as long as we have memory left! */ |
| if(nr_free_pages() > WATCHDOG_MIN_FREE_PAGES) { |
| /* Reset the watchdog with the inverse of the old key */ |
| /* Invert key, which is 7 bits */ |
| watchdog_key ^= ETRAX_WD_KEY_MASK; |
| wd_ctrl.cnt = ETRAX_WD_CNT; |
| wd_ctrl.cmd = regk_timer_start; |
| wd_ctrl.key = watchdog_key; |
| REG_WR(timer, regi_timer0, rw_wd_ctrl, wd_ctrl); |
| } |
| #endif |
| } |
| |
| /* stop the watchdog - we still need the correct key */ |
| |
| void stop_watchdog(void) |
| { |
| #if defined(CONFIG_ETRAX_WATCHDOG) |
| reg_timer_rw_wd_ctrl wd_ctrl = { 0 }; |
| watchdog_key ^= ETRAX_WD_KEY_MASK; /* invert key, which is 7 bits */ |
| wd_ctrl.cnt = ETRAX_WD_CNT; |
| wd_ctrl.cmd = regk_timer_stop; |
| wd_ctrl.key = watchdog_key; |
| REG_WR(timer, regi_timer0, rw_wd_ctrl, wd_ctrl); |
| #endif |
| } |
| |
| extern void show_registers(struct pt_regs *regs); |
| |
| void handle_watchdog_bite(struct pt_regs *regs) |
| { |
| #if defined(CONFIG_ETRAX_WATCHDOG) |
| extern int cause_of_death; |
| |
| nmi_enter(); |
| oops_in_progress = 1; |
| #if defined(CONFIG_ETRAX_WATCHDOG_NICE_DOGGY) |
| bite_in_progress = 1; |
| #endif |
| printk(KERN_WARNING "Watchdog bite\n"); |
| |
| /* Check if forced restart or unexpected watchdog */ |
| if (cause_of_death == 0xbedead) { |
| #ifdef CONFIG_CRIS_MACH_ARTPEC3 |
| /* There is a bug in Artpec-3 (voodoo TR 78) that requires |
| * us to go to lower frequency for the reset to be reliable |
| */ |
| reg_clkgen_rw_clk_ctrl ctrl = |
| REG_RD(clkgen, regi_clkgen, rw_clk_ctrl); |
| ctrl.pll = 0; |
| REG_WR(clkgen, regi_clkgen, rw_clk_ctrl, ctrl); |
| #endif |
| while(1); |
| } |
| |
| /* Unexpected watchdog, stop the watchdog and dump registers. */ |
| stop_watchdog(); |
| printk(KERN_WARNING "Oops: bitten by watchdog\n"); |
| show_registers(regs); |
| oops_in_progress = 0; |
| printk("\n"); /* Flush mtdoops. */ |
| #ifndef CONFIG_ETRAX_WATCHDOG_NICE_DOGGY |
| reset_watchdog(); |
| #endif |
| while(1) /* nothing */; |
| #endif |
| } |
| |
| extern void cris_profile_sample(struct pt_regs *regs); |
| static void __iomem *timer_base; |
| |
| static int crisv32_clkevt_switch_state(struct clock_event_device *dev) |
| { |
| reg_timer_rw_tmr0_ctrl ctrl = { |
| .op = regk_timer_hold, |
| .freq = regk_timer_f100, |
| }; |
| |
| REG_WR(timer, timer_base, rw_tmr0_ctrl, ctrl); |
| return 0; |
| } |
| |
| static int crisv32_clkevt_next_event(unsigned long evt, |
| struct clock_event_device *dev) |
| { |
| reg_timer_rw_tmr0_ctrl ctrl = { |
| .op = regk_timer_ld, |
| .freq = regk_timer_f100, |
| }; |
| |
| REG_WR(timer, timer_base, rw_tmr0_div, evt); |
| REG_WR(timer, timer_base, rw_tmr0_ctrl, ctrl); |
| |
| ctrl.op = regk_timer_run; |
| REG_WR(timer, timer_base, rw_tmr0_ctrl, ctrl); |
| |
| return 0; |
| } |
| |
| static irqreturn_t crisv32_timer_interrupt(int irq, void *dev_id) |
| { |
| struct clock_event_device *evt = dev_id; |
| reg_timer_rw_tmr0_ctrl ctrl = { |
| .op = regk_timer_hold, |
| .freq = regk_timer_f100, |
| }; |
| reg_timer_rw_ack_intr ack = { .tmr0 = 1 }; |
| reg_timer_r_masked_intr intr; |
| |
| intr = REG_RD(timer, timer_base, r_masked_intr); |
| if (!intr.tmr0) |
| return IRQ_NONE; |
| |
| REG_WR(timer, timer_base, rw_tmr0_ctrl, ctrl); |
| REG_WR(timer, timer_base, rw_ack_intr, ack); |
| |
| reset_watchdog(); |
| #ifdef CONFIG_SYSTEM_PROFILER |
| cris_profile_sample(get_irq_regs()); |
| #endif |
| |
| evt->event_handler(evt); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static struct clock_event_device crisv32_clockevent = { |
| .name = "crisv32-timer", |
| .rating = 300, |
| .features = CLOCK_EVT_FEAT_ONESHOT, |
| .set_state_oneshot = crisv32_clkevt_switch_state, |
| .set_state_shutdown = crisv32_clkevt_switch_state, |
| .tick_resume = crisv32_clkevt_switch_state, |
| .set_next_event = crisv32_clkevt_next_event, |
| }; |
| |
| /* Timer is IRQF_SHARED so drivers can add stuff to the timer irq chain. */ |
| static struct irqaction irq_timer = { |
| .handler = crisv32_timer_interrupt, |
| .flags = IRQF_TIMER | IRQF_SHARED, |
| .name = "crisv32-timer", |
| .dev_id = &crisv32_clockevent, |
| }; |
| |
| static u64 notrace crisv32_timer_sched_clock(void) |
| { |
| return REG_RD(timer, timer_base, r_time); |
| } |
| |
| static void __init crisv32_timer_init(void) |
| { |
| reg_timer_rw_intr_mask timer_intr_mask; |
| reg_timer_rw_tmr0_ctrl ctrl = { |
| .op = regk_timer_hold, |
| .freq = regk_timer_f100, |
| }; |
| |
| REG_WR(timer, timer_base, rw_tmr0_ctrl, ctrl); |
| |
| timer_intr_mask = REG_RD(timer, timer_base, rw_intr_mask); |
| timer_intr_mask.tmr0 = 1; |
| REG_WR(timer, timer_base, rw_intr_mask, timer_intr_mask); |
| } |
| |
| void __init time_init(void) |
| { |
| int irq; |
| int ret; |
| |
| /* Probe for the RTC and read it if it exists. |
| * Before the RTC can be probed the loops_per_usec variable needs |
| * to be initialized to make usleep work. A better value for |
| * loops_per_usec is calculated by the kernel later once the |
| * clock has started. |
| */ |
| loops_per_usec = 50; |
| |
| irq = TIMER0_INTR_VECT; |
| timer_base = (void __iomem *) regi_timer0; |
| |
| crisv32_timer_init(); |
| |
| sched_clock_register(crisv32_timer_sched_clock, 32, |
| CRISV32_TIMER_FREQ); |
| |
| clocksource_mmio_init(timer_base + REG_RD_ADDR_timer_r_time, |
| "crisv32-timer", CRISV32_TIMER_FREQ, |
| 300, 32, clocksource_mmio_readl_up); |
| |
| crisv32_clockevent.cpumask = cpu_possible_mask; |
| crisv32_clockevent.irq = irq; |
| |
| ret = setup_irq(irq, &irq_timer); |
| if (ret) |
| pr_warn("failed to setup irq %d\n", irq); |
| |
| clockevents_config_and_register(&crisv32_clockevent, |
| CRISV32_TIMER_FREQ, |
| 2, 0xffffffff); |
| |
| /* Enable watchdog if we should use one. */ |
| |
| #if defined(CONFIG_ETRAX_WATCHDOG) |
| printk(KERN_INFO "Enabling watchdog...\n"); |
| start_watchdog(); |
| |
| /* If we use the hardware watchdog, we want to trap it as an NMI |
| * and dump registers before it resets us. For this to happen, we |
| * must set the "m" NMI enable flag (which once set, is unset only |
| * when an NMI is taken). */ |
| { |
| unsigned long flags; |
| local_save_flags(flags); |
| flags |= (1<<30); /* NMI M flag is at bit 30 */ |
| local_irq_restore(flags); |
| } |
| #endif |
| |
| #ifdef CONFIG_CPU_FREQ |
| cpufreq_register_notifier(&cris_time_freq_notifier_block, |
| CPUFREQ_TRANSITION_NOTIFIER); |
| #endif |
| } |
| |
| #ifdef CONFIG_CPU_FREQ |
| static int cris_time_freq_notifier(struct notifier_block *nb, |
| unsigned long val, void *data) |
| { |
| struct cpufreq_freqs *freqs = data; |
| if (val == CPUFREQ_POSTCHANGE) { |
| reg_timer_r_tmr0_data data; |
| reg_timer_rw_tmr0_div div = (freqs->new * 500) / HZ; |
| do { |
| data = REG_RD(timer, timer_regs[freqs->cpu], |
| r_tmr0_data); |
| } while (data > 20); |
| REG_WR(timer, timer_regs[freqs->cpu], rw_tmr0_div, div); |
| } |
| return 0; |
| } |
| #endif |