| #ifndef _M68K_BITOPS_H |
| #define _M68K_BITOPS_H |
| /* |
| * Copyright 1992, Linus Torvalds. |
| * |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file COPYING in the main directory of this archive |
| * for more details. |
| */ |
| |
| #ifndef _LINUX_BITOPS_H |
| #error only <linux/bitops.h> can be included directly |
| #endif |
| |
| #include <linux/compiler.h> |
| #include <asm/barrier.h> |
| |
| /* |
| * Bit access functions vary across the ColdFire and 68k families. |
| * So we will break them out here, and then macro in the ones we want. |
| * |
| * ColdFire - supports standard bset/bclr/bchg with register operand only |
| * 68000 - supports standard bset/bclr/bchg with memory operand |
| * >= 68020 - also supports the bfset/bfclr/bfchg instructions |
| * |
| * Although it is possible to use only the bset/bclr/bchg with register |
| * operands on all platforms you end up with larger generated code. |
| * So we use the best form possible on a given platform. |
| */ |
| |
| static inline void bset_reg_set_bit(int nr, volatile unsigned long *vaddr) |
| { |
| char *p = (char *)vaddr + (nr ^ 31) / 8; |
| |
| __asm__ __volatile__ ("bset %1,(%0)" |
| : |
| : "a" (p), "di" (nr & 7) |
| : "memory"); |
| } |
| |
| static inline void bset_mem_set_bit(int nr, volatile unsigned long *vaddr) |
| { |
| char *p = (char *)vaddr + (nr ^ 31) / 8; |
| |
| __asm__ __volatile__ ("bset %1,%0" |
| : "+m" (*p) |
| : "di" (nr & 7)); |
| } |
| |
| static inline void bfset_mem_set_bit(int nr, volatile unsigned long *vaddr) |
| { |
| __asm__ __volatile__ ("bfset %1{%0:#1}" |
| : |
| : "d" (nr ^ 31), "o" (*vaddr) |
| : "memory"); |
| } |
| |
| #if defined(CONFIG_COLDFIRE) |
| #define set_bit(nr, vaddr) bset_reg_set_bit(nr, vaddr) |
| #elif defined(CONFIG_CPU_HAS_NO_BITFIELDS) |
| #define set_bit(nr, vaddr) bset_mem_set_bit(nr, vaddr) |
| #else |
| #define set_bit(nr, vaddr) (__builtin_constant_p(nr) ? \ |
| bset_mem_set_bit(nr, vaddr) : \ |
| bfset_mem_set_bit(nr, vaddr)) |
| #endif |
| |
| #define __set_bit(nr, vaddr) set_bit(nr, vaddr) |
| |
| |
| static inline void bclr_reg_clear_bit(int nr, volatile unsigned long *vaddr) |
| { |
| char *p = (char *)vaddr + (nr ^ 31) / 8; |
| |
| __asm__ __volatile__ ("bclr %1,(%0)" |
| : |
| : "a" (p), "di" (nr & 7) |
| : "memory"); |
| } |
| |
| static inline void bclr_mem_clear_bit(int nr, volatile unsigned long *vaddr) |
| { |
| char *p = (char *)vaddr + (nr ^ 31) / 8; |
| |
| __asm__ __volatile__ ("bclr %1,%0" |
| : "+m" (*p) |
| : "di" (nr & 7)); |
| } |
| |
| static inline void bfclr_mem_clear_bit(int nr, volatile unsigned long *vaddr) |
| { |
| __asm__ __volatile__ ("bfclr %1{%0:#1}" |
| : |
| : "d" (nr ^ 31), "o" (*vaddr) |
| : "memory"); |
| } |
| |
| #if defined(CONFIG_COLDFIRE) |
| #define clear_bit(nr, vaddr) bclr_reg_clear_bit(nr, vaddr) |
| #elif defined(CONFIG_CPU_HAS_NO_BITFIELDS) |
| #define clear_bit(nr, vaddr) bclr_mem_clear_bit(nr, vaddr) |
| #else |
| #define clear_bit(nr, vaddr) (__builtin_constant_p(nr) ? \ |
| bclr_mem_clear_bit(nr, vaddr) : \ |
| bfclr_mem_clear_bit(nr, vaddr)) |
| #endif |
| |
| #define __clear_bit(nr, vaddr) clear_bit(nr, vaddr) |
| |
| |
| static inline void bchg_reg_change_bit(int nr, volatile unsigned long *vaddr) |
| { |
| char *p = (char *)vaddr + (nr ^ 31) / 8; |
| |
| __asm__ __volatile__ ("bchg %1,(%0)" |
| : |
| : "a" (p), "di" (nr & 7) |
| : "memory"); |
| } |
| |
| static inline void bchg_mem_change_bit(int nr, volatile unsigned long *vaddr) |
| { |
| char *p = (char *)vaddr + (nr ^ 31) / 8; |
| |
| __asm__ __volatile__ ("bchg %1,%0" |
| : "+m" (*p) |
| : "di" (nr & 7)); |
| } |
| |
| static inline void bfchg_mem_change_bit(int nr, volatile unsigned long *vaddr) |
| { |
| __asm__ __volatile__ ("bfchg %1{%0:#1}" |
| : |
| : "d" (nr ^ 31), "o" (*vaddr) |
| : "memory"); |
| } |
| |
| #if defined(CONFIG_COLDFIRE) |
| #define change_bit(nr, vaddr) bchg_reg_change_bit(nr, vaddr) |
| #elif defined(CONFIG_CPU_HAS_NO_BITFIELDS) |
| #define change_bit(nr, vaddr) bchg_mem_change_bit(nr, vaddr) |
| #else |
| #define change_bit(nr, vaddr) (__builtin_constant_p(nr) ? \ |
| bchg_mem_change_bit(nr, vaddr) : \ |
| bfchg_mem_change_bit(nr, vaddr)) |
| #endif |
| |
| #define __change_bit(nr, vaddr) change_bit(nr, vaddr) |
| |
| |
| static inline int test_bit(int nr, const volatile unsigned long *vaddr) |
| { |
| return (vaddr[nr >> 5] & (1UL << (nr & 31))) != 0; |
| } |
| |
| |
| static inline int bset_reg_test_and_set_bit(int nr, |
| volatile unsigned long *vaddr) |
| { |
| char *p = (char *)vaddr + (nr ^ 31) / 8; |
| char retval; |
| |
| __asm__ __volatile__ ("bset %2,(%1); sne %0" |
| : "=d" (retval) |
| : "a" (p), "di" (nr & 7) |
| : "memory"); |
| return retval; |
| } |
| |
| static inline int bset_mem_test_and_set_bit(int nr, |
| volatile unsigned long *vaddr) |
| { |
| char *p = (char *)vaddr + (nr ^ 31) / 8; |
| char retval; |
| |
| __asm__ __volatile__ ("bset %2,%1; sne %0" |
| : "=d" (retval), "+m" (*p) |
| : "di" (nr & 7)); |
| return retval; |
| } |
| |
| static inline int bfset_mem_test_and_set_bit(int nr, |
| volatile unsigned long *vaddr) |
| { |
| char retval; |
| |
| __asm__ __volatile__ ("bfset %2{%1:#1}; sne %0" |
| : "=d" (retval) |
| : "d" (nr ^ 31), "o" (*vaddr) |
| : "memory"); |
| return retval; |
| } |
| |
| #if defined(CONFIG_COLDFIRE) |
| #define test_and_set_bit(nr, vaddr) bset_reg_test_and_set_bit(nr, vaddr) |
| #elif defined(CONFIG_CPU_HAS_NO_BITFIELDS) |
| #define test_and_set_bit(nr, vaddr) bset_mem_test_and_set_bit(nr, vaddr) |
| #else |
| #define test_and_set_bit(nr, vaddr) (__builtin_constant_p(nr) ? \ |
| bset_mem_test_and_set_bit(nr, vaddr) : \ |
| bfset_mem_test_and_set_bit(nr, vaddr)) |
| #endif |
| |
| #define __test_and_set_bit(nr, vaddr) test_and_set_bit(nr, vaddr) |
| |
| |
| static inline int bclr_reg_test_and_clear_bit(int nr, |
| volatile unsigned long *vaddr) |
| { |
| char *p = (char *)vaddr + (nr ^ 31) / 8; |
| char retval; |
| |
| __asm__ __volatile__ ("bclr %2,(%1); sne %0" |
| : "=d" (retval) |
| : "a" (p), "di" (nr & 7) |
| : "memory"); |
| return retval; |
| } |
| |
| static inline int bclr_mem_test_and_clear_bit(int nr, |
| volatile unsigned long *vaddr) |
| { |
| char *p = (char *)vaddr + (nr ^ 31) / 8; |
| char retval; |
| |
| __asm__ __volatile__ ("bclr %2,%1; sne %0" |
| : "=d" (retval), "+m" (*p) |
| : "di" (nr & 7)); |
| return retval; |
| } |
| |
| static inline int bfclr_mem_test_and_clear_bit(int nr, |
| volatile unsigned long *vaddr) |
| { |
| char retval; |
| |
| __asm__ __volatile__ ("bfclr %2{%1:#1}; sne %0" |
| : "=d" (retval) |
| : "d" (nr ^ 31), "o" (*vaddr) |
| : "memory"); |
| return retval; |
| } |
| |
| #if defined(CONFIG_COLDFIRE) |
| #define test_and_clear_bit(nr, vaddr) bclr_reg_test_and_clear_bit(nr, vaddr) |
| #elif defined(CONFIG_CPU_HAS_NO_BITFIELDS) |
| #define test_and_clear_bit(nr, vaddr) bclr_mem_test_and_clear_bit(nr, vaddr) |
| #else |
| #define test_and_clear_bit(nr, vaddr) (__builtin_constant_p(nr) ? \ |
| bclr_mem_test_and_clear_bit(nr, vaddr) : \ |
| bfclr_mem_test_and_clear_bit(nr, vaddr)) |
| #endif |
| |
| #define __test_and_clear_bit(nr, vaddr) test_and_clear_bit(nr, vaddr) |
| |
| |
| static inline int bchg_reg_test_and_change_bit(int nr, |
| volatile unsigned long *vaddr) |
| { |
| char *p = (char *)vaddr + (nr ^ 31) / 8; |
| char retval; |
| |
| __asm__ __volatile__ ("bchg %2,(%1); sne %0" |
| : "=d" (retval) |
| : "a" (p), "di" (nr & 7) |
| : "memory"); |
| return retval; |
| } |
| |
| static inline int bchg_mem_test_and_change_bit(int nr, |
| volatile unsigned long *vaddr) |
| { |
| char *p = (char *)vaddr + (nr ^ 31) / 8; |
| char retval; |
| |
| __asm__ __volatile__ ("bchg %2,%1; sne %0" |
| : "=d" (retval), "+m" (*p) |
| : "di" (nr & 7)); |
| return retval; |
| } |
| |
| static inline int bfchg_mem_test_and_change_bit(int nr, |
| volatile unsigned long *vaddr) |
| { |
| char retval; |
| |
| __asm__ __volatile__ ("bfchg %2{%1:#1}; sne %0" |
| : "=d" (retval) |
| : "d" (nr ^ 31), "o" (*vaddr) |
| : "memory"); |
| return retval; |
| } |
| |
| #if defined(CONFIG_COLDFIRE) |
| #define test_and_change_bit(nr, vaddr) bchg_reg_test_and_change_bit(nr, vaddr) |
| #elif defined(CONFIG_CPU_HAS_NO_BITFIELDS) |
| #define test_and_change_bit(nr, vaddr) bchg_mem_test_and_change_bit(nr, vaddr) |
| #else |
| #define test_and_change_bit(nr, vaddr) (__builtin_constant_p(nr) ? \ |
| bchg_mem_test_and_change_bit(nr, vaddr) : \ |
| bfchg_mem_test_and_change_bit(nr, vaddr)) |
| #endif |
| |
| #define __test_and_change_bit(nr, vaddr) test_and_change_bit(nr, vaddr) |
| |
| |
| /* |
| * The true 68020 and more advanced processors support the "bfffo" |
| * instruction for finding bits. ColdFire and simple 68000 parts |
| * (including CPU32) do not support this. They simply use the generic |
| * functions. |
| */ |
| #if defined(CONFIG_CPU_HAS_NO_BITFIELDS) |
| #include <asm-generic/bitops/find.h> |
| #include <asm-generic/bitops/ffz.h> |
| #else |
| |
| static inline int find_first_zero_bit(const unsigned long *vaddr, |
| unsigned size) |
| { |
| const unsigned long *p = vaddr; |
| int res = 32; |
| unsigned int words; |
| unsigned long num; |
| |
| if (!size) |
| return 0; |
| |
| words = (size + 31) >> 5; |
| while (!(num = ~*p++)) { |
| if (!--words) |
| goto out; |
| } |
| |
| __asm__ __volatile__ ("bfffo %1{#0,#0},%0" |
| : "=d" (res) : "d" (num & -num)); |
| res ^= 31; |
| out: |
| res += ((long)p - (long)vaddr - 4) * 8; |
| return res < size ? res : size; |
| } |
| #define find_first_zero_bit find_first_zero_bit |
| |
| static inline int find_next_zero_bit(const unsigned long *vaddr, int size, |
| int offset) |
| { |
| const unsigned long *p = vaddr + (offset >> 5); |
| int bit = offset & 31UL, res; |
| |
| if (offset >= size) |
| return size; |
| |
| if (bit) { |
| unsigned long num = ~*p++ & (~0UL << bit); |
| offset -= bit; |
| |
| /* Look for zero in first longword */ |
| __asm__ __volatile__ ("bfffo %1{#0,#0},%0" |
| : "=d" (res) : "d" (num & -num)); |
| if (res < 32) { |
| offset += res ^ 31; |
| return offset < size ? offset : size; |
| } |
| offset += 32; |
| |
| if (offset >= size) |
| return size; |
| } |
| /* No zero yet, search remaining full bytes for a zero */ |
| return offset + find_first_zero_bit(p, size - offset); |
| } |
| #define find_next_zero_bit find_next_zero_bit |
| |
| static inline int find_first_bit(const unsigned long *vaddr, unsigned size) |
| { |
| const unsigned long *p = vaddr; |
| int res = 32; |
| unsigned int words; |
| unsigned long num; |
| |
| if (!size) |
| return 0; |
| |
| words = (size + 31) >> 5; |
| while (!(num = *p++)) { |
| if (!--words) |
| goto out; |
| } |
| |
| __asm__ __volatile__ ("bfffo %1{#0,#0},%0" |
| : "=d" (res) : "d" (num & -num)); |
| res ^= 31; |
| out: |
| res += ((long)p - (long)vaddr - 4) * 8; |
| return res < size ? res : size; |
| } |
| #define find_first_bit find_first_bit |
| |
| static inline int find_next_bit(const unsigned long *vaddr, int size, |
| int offset) |
| { |
| const unsigned long *p = vaddr + (offset >> 5); |
| int bit = offset & 31UL, res; |
| |
| if (offset >= size) |
| return size; |
| |
| if (bit) { |
| unsigned long num = *p++ & (~0UL << bit); |
| offset -= bit; |
| |
| /* Look for one in first longword */ |
| __asm__ __volatile__ ("bfffo %1{#0,#0},%0" |
| : "=d" (res) : "d" (num & -num)); |
| if (res < 32) { |
| offset += res ^ 31; |
| return offset < size ? offset : size; |
| } |
| offset += 32; |
| |
| if (offset >= size) |
| return size; |
| } |
| /* No one yet, search remaining full bytes for a one */ |
| return offset + find_first_bit(p, size - offset); |
| } |
| #define find_next_bit find_next_bit |
| |
| /* |
| * ffz = Find First Zero in word. Undefined if no zero exists, |
| * so code should check against ~0UL first.. |
| */ |
| static inline unsigned long ffz(unsigned long word) |
| { |
| int res; |
| |
| __asm__ __volatile__ ("bfffo %1{#0,#0},%0" |
| : "=d" (res) : "d" (~word & -~word)); |
| return res ^ 31; |
| } |
| |
| #endif |
| |
| #ifdef __KERNEL__ |
| |
| #if defined(CONFIG_CPU_HAS_NO_BITFIELDS) |
| |
| /* |
| * The newer ColdFire family members support a "bitrev" instruction |
| * and we can use that to implement a fast ffs. Older Coldfire parts, |
| * and normal 68000 parts don't have anything special, so we use the |
| * generic functions for those. |
| */ |
| #if (defined(__mcfisaaplus__) || defined(__mcfisac__)) && \ |
| !defined(CONFIG_M68000) && !defined(CONFIG_MCPU32) |
| static inline int __ffs(int x) |
| { |
| __asm__ __volatile__ ("bitrev %0; ff1 %0" |
| : "=d" (x) |
| : "0" (x)); |
| return x; |
| } |
| |
| static inline int ffs(int x) |
| { |
| if (!x) |
| return 0; |
| return __ffs(x) + 1; |
| } |
| |
| #else |
| #include <asm-generic/bitops/ffs.h> |
| #include <asm-generic/bitops/__ffs.h> |
| #endif |
| |
| #include <asm-generic/bitops/fls.h> |
| #include <asm-generic/bitops/__fls.h> |
| |
| #else |
| |
| /* |
| * ffs: find first bit set. This is defined the same way as |
| * the libc and compiler builtin ffs routines, therefore |
| * differs in spirit from the above ffz (man ffs). |
| */ |
| static inline int ffs(int x) |
| { |
| int cnt; |
| |
| __asm__ ("bfffo %1{#0:#0},%0" |
| : "=d" (cnt) |
| : "dm" (x & -x)); |
| return 32 - cnt; |
| } |
| #define __ffs(x) (ffs(x) - 1) |
| |
| /* |
| * fls: find last bit set. |
| */ |
| static inline int fls(int x) |
| { |
| int cnt; |
| |
| __asm__ ("bfffo %1{#0,#0},%0" |
| : "=d" (cnt) |
| : "dm" (x)); |
| return 32 - cnt; |
| } |
| |
| static inline int __fls(int x) |
| { |
| return fls(x) - 1; |
| } |
| |
| #endif |
| |
| #include <asm-generic/bitops/ext2-atomic.h> |
| #include <asm-generic/bitops/le.h> |
| #include <asm-generic/bitops/fls64.h> |
| #include <asm-generic/bitops/sched.h> |
| #include <asm-generic/bitops/hweight.h> |
| #include <asm-generic/bitops/lock.h> |
| #endif /* __KERNEL__ */ |
| |
| #endif /* _M68K_BITOPS_H */ |