| /* |
| * STMicroelectronics STM32 SPI Controller driver (master mode only) |
| * |
| * Copyright (C) 2017, STMicroelectronics - All Rights Reserved |
| * Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics. |
| * |
| * License terms: GPL V2.0. |
| * |
| * spi_stm32 driver is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License version 2 as published by |
| * the Free Software Foundation. |
| * |
| * spi_stm32 driver is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more |
| * details. |
| * |
| * You should have received a copy of the GNU General Public License along with |
| * spi_stm32 driver. If not, see <http://www.gnu.org/licenses/>. |
| */ |
| #include <linux/debugfs.h> |
| #include <linux/clk.h> |
| #include <linux/delay.h> |
| #include <linux/dmaengine.h> |
| #include <linux/gpio.h> |
| #include <linux/interrupt.h> |
| #include <linux/iopoll.h> |
| #include <linux/module.h> |
| #include <linux/of_platform.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/reset.h> |
| #include <linux/spi/spi.h> |
| |
| #define DRIVER_NAME "spi_stm32" |
| |
| /* STM32 SPI registers */ |
| #define STM32_SPI_CR1 0x00 |
| #define STM32_SPI_CR2 0x04 |
| #define STM32_SPI_CFG1 0x08 |
| #define STM32_SPI_CFG2 0x0C |
| #define STM32_SPI_IER 0x10 |
| #define STM32_SPI_SR 0x14 |
| #define STM32_SPI_IFCR 0x18 |
| #define STM32_SPI_TXDR 0x20 |
| #define STM32_SPI_RXDR 0x30 |
| #define STM32_SPI_I2SCFGR 0x50 |
| |
| /* STM32_SPI_CR1 bit fields */ |
| #define SPI_CR1_SPE BIT(0) |
| #define SPI_CR1_MASRX BIT(8) |
| #define SPI_CR1_CSTART BIT(9) |
| #define SPI_CR1_CSUSP BIT(10) |
| #define SPI_CR1_HDDIR BIT(11) |
| #define SPI_CR1_SSI BIT(12) |
| |
| /* STM32_SPI_CR2 bit fields */ |
| #define SPI_CR2_TSIZE_SHIFT 0 |
| #define SPI_CR2_TSIZE GENMASK(15, 0) |
| |
| /* STM32_SPI_CFG1 bit fields */ |
| #define SPI_CFG1_DSIZE_SHIFT 0 |
| #define SPI_CFG1_DSIZE GENMASK(4, 0) |
| #define SPI_CFG1_FTHLV_SHIFT 5 |
| #define SPI_CFG1_FTHLV GENMASK(8, 5) |
| #define SPI_CFG1_RXDMAEN BIT(14) |
| #define SPI_CFG1_TXDMAEN BIT(15) |
| #define SPI_CFG1_MBR_SHIFT 28 |
| #define SPI_CFG1_MBR GENMASK(30, 28) |
| #define SPI_CFG1_MBR_MIN 0 |
| #define SPI_CFG1_MBR_MAX (GENMASK(30, 28) >> 28) |
| |
| /* STM32_SPI_CFG2 bit fields */ |
| #define SPI_CFG2_MIDI_SHIFT 4 |
| #define SPI_CFG2_MIDI GENMASK(7, 4) |
| #define SPI_CFG2_COMM_SHIFT 17 |
| #define SPI_CFG2_COMM GENMASK(18, 17) |
| #define SPI_CFG2_SP_SHIFT 19 |
| #define SPI_CFG2_SP GENMASK(21, 19) |
| #define SPI_CFG2_MASTER BIT(22) |
| #define SPI_CFG2_LSBFRST BIT(23) |
| #define SPI_CFG2_CPHA BIT(24) |
| #define SPI_CFG2_CPOL BIT(25) |
| #define SPI_CFG2_SSM BIT(26) |
| #define SPI_CFG2_AFCNTR BIT(31) |
| |
| /* STM32_SPI_IER bit fields */ |
| #define SPI_IER_RXPIE BIT(0) |
| #define SPI_IER_TXPIE BIT(1) |
| #define SPI_IER_DXPIE BIT(2) |
| #define SPI_IER_EOTIE BIT(3) |
| #define SPI_IER_TXTFIE BIT(4) |
| #define SPI_IER_OVRIE BIT(6) |
| #define SPI_IER_MODFIE BIT(9) |
| #define SPI_IER_ALL GENMASK(10, 0) |
| |
| /* STM32_SPI_SR bit fields */ |
| #define SPI_SR_RXP BIT(0) |
| #define SPI_SR_TXP BIT(1) |
| #define SPI_SR_EOT BIT(3) |
| #define SPI_SR_OVR BIT(6) |
| #define SPI_SR_MODF BIT(9) |
| #define SPI_SR_SUSP BIT(11) |
| #define SPI_SR_RXPLVL_SHIFT 13 |
| #define SPI_SR_RXPLVL GENMASK(14, 13) |
| #define SPI_SR_RXWNE BIT(15) |
| |
| /* STM32_SPI_IFCR bit fields */ |
| #define SPI_IFCR_ALL GENMASK(11, 3) |
| |
| /* STM32_SPI_I2SCFGR bit fields */ |
| #define SPI_I2SCFGR_I2SMOD BIT(0) |
| |
| /* SPI Master Baud Rate min/max divisor */ |
| #define SPI_MBR_DIV_MIN (2 << SPI_CFG1_MBR_MIN) |
| #define SPI_MBR_DIV_MAX (2 << SPI_CFG1_MBR_MAX) |
| |
| /* SPI Communication mode */ |
| #define SPI_FULL_DUPLEX 0 |
| #define SPI_SIMPLEX_TX 1 |
| #define SPI_SIMPLEX_RX 2 |
| #define SPI_HALF_DUPLEX 3 |
| |
| #define SPI_1HZ_NS 1000000000 |
| |
| /** |
| * struct stm32_spi - private data of the SPI controller |
| * @dev: driver model representation of the controller |
| * @master: controller master interface |
| * @base: virtual memory area |
| * @clk: hw kernel clock feeding the SPI clock generator |
| * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator |
| * @rst: SPI controller reset line |
| * @lock: prevent I/O concurrent access |
| * @irq: SPI controller interrupt line |
| * @fifo_size: size of the embedded fifo in bytes |
| * @cur_midi: master inter-data idleness in ns |
| * @cur_speed: speed configured in Hz |
| * @cur_bpw: number of bits in a single SPI data frame |
| * @cur_fthlv: fifo threshold level (data frames in a single data packet) |
| * @cur_comm: SPI communication mode |
| * @cur_xferlen: current transfer length in bytes |
| * @cur_usedma: boolean to know if dma is used in current transfer |
| * @tx_buf: data to be written, or NULL |
| * @rx_buf: data to be read, or NULL |
| * @tx_len: number of data to be written in bytes |
| * @rx_len: number of data to be read in bytes |
| * @dma_tx: dma channel for TX transfer |
| * @dma_rx: dma channel for RX transfer |
| * @phys_addr: SPI registers physical base address |
| */ |
| struct stm32_spi { |
| struct device *dev; |
| struct spi_master *master; |
| void __iomem *base; |
| struct clk *clk; |
| u32 clk_rate; |
| struct reset_control *rst; |
| spinlock_t lock; /* prevent I/O concurrent access */ |
| int irq; |
| unsigned int fifo_size; |
| |
| unsigned int cur_midi; |
| unsigned int cur_speed; |
| unsigned int cur_bpw; |
| unsigned int cur_fthlv; |
| unsigned int cur_comm; |
| unsigned int cur_xferlen; |
| bool cur_usedma; |
| |
| const void *tx_buf; |
| void *rx_buf; |
| int tx_len; |
| int rx_len; |
| struct dma_chan *dma_tx; |
| struct dma_chan *dma_rx; |
| dma_addr_t phys_addr; |
| }; |
| |
| static inline void stm32_spi_set_bits(struct stm32_spi *spi, |
| u32 offset, u32 bits) |
| { |
| writel_relaxed(readl_relaxed(spi->base + offset) | bits, |
| spi->base + offset); |
| } |
| |
| static inline void stm32_spi_clr_bits(struct stm32_spi *spi, |
| u32 offset, u32 bits) |
| { |
| writel_relaxed(readl_relaxed(spi->base + offset) & ~bits, |
| spi->base + offset); |
| } |
| |
| /** |
| * stm32_spi_get_fifo_size - Return fifo size |
| * @spi: pointer to the spi controller data structure |
| */ |
| static int stm32_spi_get_fifo_size(struct stm32_spi *spi) |
| { |
| unsigned long flags; |
| u32 count = 0; |
| |
| spin_lock_irqsave(&spi->lock, flags); |
| |
| stm32_spi_set_bits(spi, STM32_SPI_CR1, SPI_CR1_SPE); |
| |
| while (readl_relaxed(spi->base + STM32_SPI_SR) & SPI_SR_TXP) |
| writeb_relaxed(++count, spi->base + STM32_SPI_TXDR); |
| |
| stm32_spi_clr_bits(spi, STM32_SPI_CR1, SPI_CR1_SPE); |
| |
| spin_unlock_irqrestore(&spi->lock, flags); |
| |
| dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count); |
| |
| return count; |
| } |
| |
| /** |
| * stm32_spi_get_bpw_mask - Return bits per word mask |
| * @spi: pointer to the spi controller data structure |
| */ |
| static int stm32_spi_get_bpw_mask(struct stm32_spi *spi) |
| { |
| unsigned long flags; |
| u32 cfg1, max_bpw; |
| |
| spin_lock_irqsave(&spi->lock, flags); |
| |
| /* |
| * The most significant bit at DSIZE bit field is reserved when the |
| * maximum data size of periperal instances is limited to 16-bit |
| */ |
| stm32_spi_set_bits(spi, STM32_SPI_CFG1, SPI_CFG1_DSIZE); |
| |
| cfg1 = readl_relaxed(spi->base + STM32_SPI_CFG1); |
| max_bpw = (cfg1 & SPI_CFG1_DSIZE) >> SPI_CFG1_DSIZE_SHIFT; |
| max_bpw += 1; |
| |
| spin_unlock_irqrestore(&spi->lock, flags); |
| |
| dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw); |
| |
| return SPI_BPW_RANGE_MASK(4, max_bpw); |
| } |
| |
| /** |
| * stm32_spi_prepare_mbr - Determine SPI_CFG1.MBR value |
| * @spi: pointer to the spi controller data structure |
| * @speed_hz: requested speed |
| * |
| * Return SPI_CFG1.MBR value in case of success or -EINVAL |
| */ |
| static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz) |
| { |
| u32 div, mbrdiv; |
| |
| div = DIV_ROUND_UP(spi->clk_rate, speed_hz); |
| |
| /* |
| * SPI framework set xfer->speed_hz to master->max_speed_hz if |
| * xfer->speed_hz is greater than master->max_speed_hz, and it returns |
| * an error when xfer->speed_hz is lower than master->min_speed_hz, so |
| * no need to check it there. |
| * However, we need to ensure the following calculations. |
| */ |
| if ((div < SPI_MBR_DIV_MIN) && |
| (div > SPI_MBR_DIV_MAX)) |
| return -EINVAL; |
| |
| /* Determine the first power of 2 greater than or equal to div */ |
| if (div & (div - 1)) |
| mbrdiv = fls(div); |
| else |
| mbrdiv = fls(div) - 1; |
| |
| spi->cur_speed = spi->clk_rate / (1 << mbrdiv); |
| |
| return mbrdiv - 1; |
| } |
| |
| /** |
| * stm32_spi_prepare_fthlv - Determine FIFO threshold level |
| * @spi: pointer to the spi controller data structure |
| */ |
| static u32 stm32_spi_prepare_fthlv(struct stm32_spi *spi) |
| { |
| u32 fthlv, half_fifo; |
| |
| /* data packet should not exceed 1/2 of fifo space */ |
| half_fifo = (spi->fifo_size / 2); |
| |
| if (spi->cur_bpw <= 8) |
| fthlv = half_fifo; |
| else if (spi->cur_bpw <= 16) |
| fthlv = half_fifo / 2; |
| else |
| fthlv = half_fifo / 4; |
| |
| /* align packet size with data registers access */ |
| if (spi->cur_bpw > 8) |
| fthlv -= (fthlv % 2); /* multiple of 2 */ |
| else |
| fthlv -= (fthlv % 4); /* multiple of 4 */ |
| |
| return fthlv; |
| } |
| |
| /** |
| * stm32_spi_write_txfifo - Write bytes in Transmit Data Register |
| * @spi: pointer to the spi controller data structure |
| * |
| * Read from tx_buf depends on remaining bytes to avoid to read beyond |
| * tx_buf end. |
| */ |
| static void stm32_spi_write_txfifo(struct stm32_spi *spi) |
| { |
| while ((spi->tx_len > 0) && |
| (readl_relaxed(spi->base + STM32_SPI_SR) & SPI_SR_TXP)) { |
| u32 offs = spi->cur_xferlen - spi->tx_len; |
| |
| if (spi->tx_len >= sizeof(u32)) { |
| const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs); |
| |
| writel_relaxed(*tx_buf32, spi->base + STM32_SPI_TXDR); |
| spi->tx_len -= sizeof(u32); |
| } else if (spi->tx_len >= sizeof(u16)) { |
| const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs); |
| |
| writew_relaxed(*tx_buf16, spi->base + STM32_SPI_TXDR); |
| spi->tx_len -= sizeof(u16); |
| } else { |
| const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs); |
| |
| writeb_relaxed(*tx_buf8, spi->base + STM32_SPI_TXDR); |
| spi->tx_len -= sizeof(u8); |
| } |
| } |
| |
| dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len); |
| } |
| |
| /** |
| * stm32_spi_read_rxfifo - Read bytes in Receive Data Register |
| * @spi: pointer to the spi controller data structure |
| * |
| * Write in rx_buf depends on remaining bytes to avoid to write beyond |
| * rx_buf end. |
| */ |
| static void stm32_spi_read_rxfifo(struct stm32_spi *spi, bool flush) |
| { |
| u32 sr = readl_relaxed(spi->base + STM32_SPI_SR); |
| u32 rxplvl = (sr & SPI_SR_RXPLVL) >> SPI_SR_RXPLVL_SHIFT; |
| |
| while ((spi->rx_len > 0) && |
| ((sr & SPI_SR_RXP) || |
| (flush && ((sr & SPI_SR_RXWNE) || (rxplvl > 0))))) { |
| u32 offs = spi->cur_xferlen - spi->rx_len; |
| |
| if ((spi->rx_len >= sizeof(u32)) || |
| (flush && (sr & SPI_SR_RXWNE))) { |
| u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs); |
| |
| *rx_buf32 = readl_relaxed(spi->base + STM32_SPI_RXDR); |
| spi->rx_len -= sizeof(u32); |
| } else if ((spi->rx_len >= sizeof(u16)) || |
| (flush && (rxplvl >= 2 || spi->cur_bpw > 8))) { |
| u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs); |
| |
| *rx_buf16 = readw_relaxed(spi->base + STM32_SPI_RXDR); |
| spi->rx_len -= sizeof(u16); |
| } else { |
| u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs); |
| |
| *rx_buf8 = readb_relaxed(spi->base + STM32_SPI_RXDR); |
| spi->rx_len -= sizeof(u8); |
| } |
| |
| sr = readl_relaxed(spi->base + STM32_SPI_SR); |
| rxplvl = (sr & SPI_SR_RXPLVL) >> SPI_SR_RXPLVL_SHIFT; |
| } |
| |
| dev_dbg(spi->dev, "%s%s: %d bytes left\n", __func__, |
| flush ? "(flush)" : "", spi->rx_len); |
| } |
| |
| /** |
| * stm32_spi_enable - Enable SPI controller |
| * @spi: pointer to the spi controller data structure |
| * |
| * SPI data transfer is enabled but spi_ker_ck is idle. |
| * SPI_CFG1 and SPI_CFG2 are now write protected. |
| */ |
| static void stm32_spi_enable(struct stm32_spi *spi) |
| { |
| dev_dbg(spi->dev, "enable controller\n"); |
| |
| stm32_spi_set_bits(spi, STM32_SPI_CR1, SPI_CR1_SPE); |
| } |
| |
| /** |
| * stm32_spi_disable - Disable SPI controller |
| * @spi: pointer to the spi controller data structure |
| * |
| * RX-Fifo is flushed when SPI controller is disabled. To prevent any data |
| * loss, use stm32_spi_read_rxfifo(flush) to read the remaining bytes in |
| * RX-Fifo. |
| */ |
| static void stm32_spi_disable(struct stm32_spi *spi) |
| { |
| unsigned long flags; |
| u32 cr1, sr; |
| |
| dev_dbg(spi->dev, "disable controller\n"); |
| |
| spin_lock_irqsave(&spi->lock, flags); |
| |
| cr1 = readl_relaxed(spi->base + STM32_SPI_CR1); |
| |
| if (!(cr1 & SPI_CR1_SPE)) { |
| spin_unlock_irqrestore(&spi->lock, flags); |
| return; |
| } |
| |
| /* Wait on EOT or suspend the flow */ |
| if (readl_relaxed_poll_timeout_atomic(spi->base + STM32_SPI_SR, |
| sr, !(sr & SPI_SR_EOT), |
| 10, 100000) < 0) { |
| if (cr1 & SPI_CR1_CSTART) { |
| writel_relaxed(cr1 | SPI_CR1_CSUSP, |
| spi->base + STM32_SPI_CR1); |
| if (readl_relaxed_poll_timeout_atomic( |
| spi->base + STM32_SPI_SR, |
| sr, !(sr & SPI_SR_SUSP), |
| 10, 100000) < 0) |
| dev_warn(spi->dev, |
| "Suspend request timeout\n"); |
| } |
| } |
| |
| if (!spi->cur_usedma && spi->rx_buf && (spi->rx_len > 0)) |
| stm32_spi_read_rxfifo(spi, true); |
| |
| if (spi->cur_usedma && spi->tx_buf) |
| dmaengine_terminate_all(spi->dma_tx); |
| if (spi->cur_usedma && spi->rx_buf) |
| dmaengine_terminate_all(spi->dma_rx); |
| |
| stm32_spi_clr_bits(spi, STM32_SPI_CR1, SPI_CR1_SPE); |
| |
| stm32_spi_clr_bits(spi, STM32_SPI_CFG1, SPI_CFG1_TXDMAEN | |
| SPI_CFG1_RXDMAEN); |
| |
| /* Disable interrupts and clear status flags */ |
| writel_relaxed(0, spi->base + STM32_SPI_IER); |
| writel_relaxed(SPI_IFCR_ALL, spi->base + STM32_SPI_IFCR); |
| |
| spin_unlock_irqrestore(&spi->lock, flags); |
| } |
| |
| /** |
| * stm32_spi_can_dma - Determine if the transfer is eligible for DMA use |
| * |
| * If the current transfer size is greater than fifo size, use DMA. |
| */ |
| static bool stm32_spi_can_dma(struct spi_master *master, |
| struct spi_device *spi_dev, |
| struct spi_transfer *transfer) |
| { |
| struct stm32_spi *spi = spi_master_get_devdata(master); |
| |
| dev_dbg(spi->dev, "%s: %s\n", __func__, |
| (transfer->len > spi->fifo_size) ? "true" : "false"); |
| |
| return (transfer->len > spi->fifo_size); |
| } |
| |
| /** |
| * stm32_spi_irq - Interrupt handler for SPI controller events |
| * @irq: interrupt line |
| * @dev_id: SPI controller master interface |
| */ |
| static irqreturn_t stm32_spi_irq(int irq, void *dev_id) |
| { |
| struct spi_master *master = dev_id; |
| struct stm32_spi *spi = spi_master_get_devdata(master); |
| u32 sr, ier, mask; |
| unsigned long flags; |
| bool end = false; |
| |
| spin_lock_irqsave(&spi->lock, flags); |
| |
| sr = readl_relaxed(spi->base + STM32_SPI_SR); |
| ier = readl_relaxed(spi->base + STM32_SPI_IER); |
| |
| mask = ier; |
| /* EOTIE is triggered on EOT, SUSP and TXC events. */ |
| mask |= SPI_SR_SUSP; |
| /* |
| * When TXTF is set, DXPIE and TXPIE are cleared. So in case of |
| * Full-Duplex, need to poll RXP event to know if there are remaining |
| * data, before disabling SPI. |
| */ |
| if (spi->rx_buf && !spi->cur_usedma) |
| mask |= SPI_SR_RXP; |
| |
| if (!(sr & mask)) { |
| dev_dbg(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n", |
| sr, ier); |
| spin_unlock_irqrestore(&spi->lock, flags); |
| return IRQ_NONE; |
| } |
| |
| if (sr & SPI_SR_SUSP) { |
| dev_warn(spi->dev, "Communication suspended\n"); |
| if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0))) |
| stm32_spi_read_rxfifo(spi, false); |
| /* |
| * If communication is suspended while using DMA, it means |
| * that something went wrong, so stop the current transfer |
| */ |
| if (spi->cur_usedma) |
| end = true; |
| } |
| |
| if (sr & SPI_SR_MODF) { |
| dev_warn(spi->dev, "Mode fault: transfer aborted\n"); |
| end = true; |
| } |
| |
| if (sr & SPI_SR_OVR) { |
| dev_warn(spi->dev, "Overrun: received value discarded\n"); |
| if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0))) |
| stm32_spi_read_rxfifo(spi, false); |
| /* |
| * If overrun is detected while using DMA, it means that |
| * something went wrong, so stop the current transfer |
| */ |
| if (spi->cur_usedma) |
| end = true; |
| } |
| |
| if (sr & SPI_SR_EOT) { |
| if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0))) |
| stm32_spi_read_rxfifo(spi, true); |
| end = true; |
| } |
| |
| if (sr & SPI_SR_TXP) |
| if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0))) |
| stm32_spi_write_txfifo(spi); |
| |
| if (sr & SPI_SR_RXP) |
| if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0))) |
| stm32_spi_read_rxfifo(spi, false); |
| |
| writel_relaxed(mask, spi->base + STM32_SPI_IFCR); |
| |
| spin_unlock_irqrestore(&spi->lock, flags); |
| |
| if (end) { |
| spi_finalize_current_transfer(master); |
| stm32_spi_disable(spi); |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| /** |
| * stm32_spi_setup - setup device chip select |
| */ |
| static int stm32_spi_setup(struct spi_device *spi_dev) |
| { |
| int ret = 0; |
| |
| if (!gpio_is_valid(spi_dev->cs_gpio)) { |
| dev_err(&spi_dev->dev, "%d is not a valid gpio\n", |
| spi_dev->cs_gpio); |
| return -EINVAL; |
| } |
| |
| dev_dbg(&spi_dev->dev, "%s: set gpio%d output %s\n", __func__, |
| spi_dev->cs_gpio, |
| (spi_dev->mode & SPI_CS_HIGH) ? "low" : "high"); |
| |
| ret = gpio_direction_output(spi_dev->cs_gpio, |
| !(spi_dev->mode & SPI_CS_HIGH)); |
| |
| return ret; |
| } |
| |
| /** |
| * stm32_spi_prepare_msg - set up the controller to transfer a single message |
| */ |
| static int stm32_spi_prepare_msg(struct spi_master *master, |
| struct spi_message *msg) |
| { |
| struct stm32_spi *spi = spi_master_get_devdata(master); |
| struct spi_device *spi_dev = msg->spi; |
| struct device_node *np = spi_dev->dev.of_node; |
| unsigned long flags; |
| u32 cfg2_clrb = 0, cfg2_setb = 0; |
| |
| /* SPI slave device may need time between data frames */ |
| spi->cur_midi = 0; |
| if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi)) |
| dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi); |
| |
| if (spi_dev->mode & SPI_CPOL) |
| cfg2_setb |= SPI_CFG2_CPOL; |
| else |
| cfg2_clrb |= SPI_CFG2_CPOL; |
| |
| if (spi_dev->mode & SPI_CPHA) |
| cfg2_setb |= SPI_CFG2_CPHA; |
| else |
| cfg2_clrb |= SPI_CFG2_CPHA; |
| |
| if (spi_dev->mode & SPI_LSB_FIRST) |
| cfg2_setb |= SPI_CFG2_LSBFRST; |
| else |
| cfg2_clrb |= SPI_CFG2_LSBFRST; |
| |
| dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n", |
| spi_dev->mode & SPI_CPOL, |
| spi_dev->mode & SPI_CPHA, |
| spi_dev->mode & SPI_LSB_FIRST, |
| spi_dev->mode & SPI_CS_HIGH); |
| |
| spin_lock_irqsave(&spi->lock, flags); |
| |
| if (cfg2_clrb || cfg2_setb) |
| writel_relaxed( |
| (readl_relaxed(spi->base + STM32_SPI_CFG2) & |
| ~cfg2_clrb) | cfg2_setb, |
| spi->base + STM32_SPI_CFG2); |
| |
| spin_unlock_irqrestore(&spi->lock, flags); |
| |
| return 0; |
| } |
| |
| /** |
| * stm32_spi_dma_cb - dma callback |
| * |
| * DMA callback is called when the transfer is complete or when an error |
| * occurs. If the transfer is complete, EOT flag is raised. |
| */ |
| static void stm32_spi_dma_cb(void *data) |
| { |
| struct stm32_spi *spi = data; |
| unsigned long flags; |
| u32 sr; |
| |
| spin_lock_irqsave(&spi->lock, flags); |
| |
| sr = readl_relaxed(spi->base + STM32_SPI_SR); |
| |
| spin_unlock_irqrestore(&spi->lock, flags); |
| |
| if (!(sr & SPI_SR_EOT)) |
| dev_warn(spi->dev, "DMA error (sr=0x%08x)\n", sr); |
| |
| /* Now wait for EOT, or SUSP or OVR in case of error */ |
| } |
| |
| /** |
| * stm32_spi_dma_config - configure dma slave channel depending on current |
| * transfer bits_per_word. |
| */ |
| static void stm32_spi_dma_config(struct stm32_spi *spi, |
| struct dma_slave_config *dma_conf, |
| enum dma_transfer_direction dir) |
| { |
| enum dma_slave_buswidth buswidth; |
| u32 maxburst; |
| |
| if (spi->cur_bpw <= 8) |
| buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE; |
| else if (spi->cur_bpw <= 16) |
| buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES; |
| else |
| buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES; |
| |
| /* Valid for DMA Half or Full Fifo threshold */ |
| if (spi->cur_fthlv == 2) |
| maxburst = 1; |
| else |
| maxburst = spi->cur_fthlv; |
| |
| memset(dma_conf, 0, sizeof(struct dma_slave_config)); |
| dma_conf->direction = dir; |
| if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */ |
| dma_conf->src_addr = spi->phys_addr + STM32_SPI_RXDR; |
| dma_conf->src_addr_width = buswidth; |
| dma_conf->src_maxburst = maxburst; |
| |
| dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n", |
| buswidth, maxburst); |
| } else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */ |
| dma_conf->dst_addr = spi->phys_addr + STM32_SPI_TXDR; |
| dma_conf->dst_addr_width = buswidth; |
| dma_conf->dst_maxburst = maxburst; |
| |
| dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n", |
| buswidth, maxburst); |
| } |
| } |
| |
| /** |
| * stm32_spi_transfer_one_irq - transfer a single spi_transfer using |
| * interrupts |
| * |
| * It must returns 0 if the transfer is finished or 1 if the transfer is still |
| * in progress. |
| */ |
| static int stm32_spi_transfer_one_irq(struct stm32_spi *spi) |
| { |
| unsigned long flags; |
| u32 ier = 0; |
| |
| /* Enable the interrupts relative to the current communication mode */ |
| if (spi->tx_buf && spi->rx_buf) /* Full Duplex */ |
| ier |= SPI_IER_DXPIE; |
| else if (spi->tx_buf) /* Half-Duplex TX dir or Simplex TX */ |
| ier |= SPI_IER_TXPIE; |
| else if (spi->rx_buf) /* Half-Duplex RX dir or Simplex RX */ |
| ier |= SPI_IER_RXPIE; |
| |
| /* Enable the interrupts relative to the end of transfer */ |
| ier |= SPI_IER_EOTIE | SPI_IER_TXTFIE | SPI_IER_OVRIE | SPI_IER_MODFIE; |
| |
| spin_lock_irqsave(&spi->lock, flags); |
| |
| stm32_spi_enable(spi); |
| |
| /* Be sure to have data in fifo before starting data transfer */ |
| if (spi->tx_buf) |
| stm32_spi_write_txfifo(spi); |
| |
| stm32_spi_set_bits(spi, STM32_SPI_CR1, SPI_CR1_CSTART); |
| |
| writel_relaxed(ier, spi->base + STM32_SPI_IER); |
| |
| spin_unlock_irqrestore(&spi->lock, flags); |
| |
| return 1; |
| } |
| |
| /** |
| * stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA |
| * |
| * It must returns 0 if the transfer is finished or 1 if the transfer is still |
| * in progress. |
| */ |
| static int stm32_spi_transfer_one_dma(struct stm32_spi *spi, |
| struct spi_transfer *xfer) |
| { |
| struct dma_slave_config tx_dma_conf, rx_dma_conf; |
| struct dma_async_tx_descriptor *tx_dma_desc, *rx_dma_desc; |
| unsigned long flags; |
| u32 ier = 0; |
| |
| spin_lock_irqsave(&spi->lock, flags); |
| |
| rx_dma_desc = NULL; |
| if (spi->rx_buf) { |
| stm32_spi_dma_config(spi, &rx_dma_conf, DMA_DEV_TO_MEM); |
| dmaengine_slave_config(spi->dma_rx, &rx_dma_conf); |
| |
| /* Enable Rx DMA request */ |
| stm32_spi_set_bits(spi, STM32_SPI_CFG1, SPI_CFG1_RXDMAEN); |
| |
| rx_dma_desc = dmaengine_prep_slave_sg( |
| spi->dma_rx, xfer->rx_sg.sgl, |
| xfer->rx_sg.nents, |
| rx_dma_conf.direction, |
| DMA_PREP_INTERRUPT); |
| } |
| |
| tx_dma_desc = NULL; |
| if (spi->tx_buf) { |
| stm32_spi_dma_config(spi, &tx_dma_conf, DMA_MEM_TO_DEV); |
| dmaengine_slave_config(spi->dma_tx, &tx_dma_conf); |
| |
| tx_dma_desc = dmaengine_prep_slave_sg( |
| spi->dma_tx, xfer->tx_sg.sgl, |
| xfer->tx_sg.nents, |
| tx_dma_conf.direction, |
| DMA_PREP_INTERRUPT); |
| } |
| |
| if ((spi->tx_buf && !tx_dma_desc) || |
| (spi->rx_buf && !rx_dma_desc)) |
| goto dma_desc_error; |
| |
| if (rx_dma_desc) { |
| rx_dma_desc->callback = stm32_spi_dma_cb; |
| rx_dma_desc->callback_param = spi; |
| |
| if (dma_submit_error(dmaengine_submit(rx_dma_desc))) { |
| dev_err(spi->dev, "Rx DMA submit failed\n"); |
| goto dma_desc_error; |
| } |
| /* Enable Rx DMA channel */ |
| dma_async_issue_pending(spi->dma_rx); |
| } |
| |
| if (tx_dma_desc) { |
| if (spi->cur_comm == SPI_SIMPLEX_TX) { |
| tx_dma_desc->callback = stm32_spi_dma_cb; |
| tx_dma_desc->callback_param = spi; |
| } |
| |
| if (dma_submit_error(dmaengine_submit(tx_dma_desc))) { |
| dev_err(spi->dev, "Tx DMA submit failed\n"); |
| goto dma_submit_error; |
| } |
| /* Enable Tx DMA channel */ |
| dma_async_issue_pending(spi->dma_tx); |
| |
| /* Enable Tx DMA request */ |
| stm32_spi_set_bits(spi, STM32_SPI_CFG1, SPI_CFG1_TXDMAEN); |
| } |
| |
| /* Enable the interrupts relative to the end of transfer */ |
| ier |= SPI_IER_EOTIE | SPI_IER_TXTFIE | SPI_IER_OVRIE | SPI_IER_MODFIE; |
| writel_relaxed(ier, spi->base + STM32_SPI_IER); |
| |
| stm32_spi_enable(spi); |
| |
| stm32_spi_set_bits(spi, STM32_SPI_CR1, SPI_CR1_CSTART); |
| |
| spin_unlock_irqrestore(&spi->lock, flags); |
| |
| return 1; |
| |
| dma_submit_error: |
| if (spi->rx_buf) |
| dmaengine_terminate_all(spi->dma_rx); |
| |
| dma_desc_error: |
| stm32_spi_clr_bits(spi, STM32_SPI_CFG1, SPI_CFG1_RXDMAEN); |
| |
| spin_unlock_irqrestore(&spi->lock, flags); |
| |
| dev_info(spi->dev, "DMA issue: fall back to irq transfer\n"); |
| |
| return stm32_spi_transfer_one_irq(spi); |
| } |
| |
| /** |
| * stm32_spi_transfer_one_setup - common setup to transfer a single |
| * spi_transfer either using DMA or |
| * interrupts. |
| */ |
| static int stm32_spi_transfer_one_setup(struct stm32_spi *spi, |
| struct spi_device *spi_dev, |
| struct spi_transfer *transfer) |
| { |
| unsigned long flags; |
| u32 cfg1_clrb = 0, cfg1_setb = 0, cfg2_clrb = 0, cfg2_setb = 0; |
| u32 mode, nb_words; |
| int ret = 0; |
| |
| spin_lock_irqsave(&spi->lock, flags); |
| |
| if (spi->cur_bpw != transfer->bits_per_word) { |
| u32 bpw, fthlv; |
| |
| spi->cur_bpw = transfer->bits_per_word; |
| bpw = spi->cur_bpw - 1; |
| |
| cfg1_clrb |= SPI_CFG1_DSIZE; |
| cfg1_setb |= (bpw << SPI_CFG1_DSIZE_SHIFT) & SPI_CFG1_DSIZE; |
| |
| spi->cur_fthlv = stm32_spi_prepare_fthlv(spi); |
| fthlv = spi->cur_fthlv - 1; |
| |
| cfg1_clrb |= SPI_CFG1_FTHLV; |
| cfg1_setb |= (fthlv << SPI_CFG1_FTHLV_SHIFT) & SPI_CFG1_FTHLV; |
| } |
| |
| if (spi->cur_speed != transfer->speed_hz) { |
| int mbr; |
| |
| /* Update spi->cur_speed with real clock speed */ |
| mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz); |
| if (mbr < 0) { |
| ret = mbr; |
| goto out; |
| } |
| |
| transfer->speed_hz = spi->cur_speed; |
| |
| cfg1_clrb |= SPI_CFG1_MBR; |
| cfg1_setb |= ((u32)mbr << SPI_CFG1_MBR_SHIFT) & SPI_CFG1_MBR; |
| } |
| |
| if (cfg1_clrb || cfg1_setb) |
| writel_relaxed((readl_relaxed(spi->base + STM32_SPI_CFG1) & |
| ~cfg1_clrb) | cfg1_setb, |
| spi->base + STM32_SPI_CFG1); |
| |
| mode = SPI_FULL_DUPLEX; |
| if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */ |
| /* |
| * SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL |
| * is forbidden und unvalidated by SPI subsystem so depending |
| * on the valid buffer, we can determine the direction of the |
| * transfer. |
| */ |
| mode = SPI_HALF_DUPLEX; |
| if (!transfer->tx_buf) |
| stm32_spi_clr_bits(spi, STM32_SPI_CR1, SPI_CR1_HDDIR); |
| else if (!transfer->rx_buf) |
| stm32_spi_set_bits(spi, STM32_SPI_CR1, SPI_CR1_HDDIR); |
| } else { |
| if (!transfer->tx_buf) |
| mode = SPI_SIMPLEX_RX; |
| else if (!transfer->rx_buf) |
| mode = SPI_SIMPLEX_TX; |
| } |
| if (spi->cur_comm != mode) { |
| spi->cur_comm = mode; |
| |
| cfg2_clrb |= SPI_CFG2_COMM; |
| cfg2_setb |= (mode << SPI_CFG2_COMM_SHIFT) & SPI_CFG2_COMM; |
| } |
| |
| cfg2_clrb |= SPI_CFG2_MIDI; |
| if ((transfer->len > 1) && (spi->cur_midi > 0)) { |
| u32 sck_period_ns = DIV_ROUND_UP(SPI_1HZ_NS, spi->cur_speed); |
| u32 midi = min((u32)DIV_ROUND_UP(spi->cur_midi, sck_period_ns), |
| (u32)SPI_CFG2_MIDI >> SPI_CFG2_MIDI_SHIFT); |
| |
| dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n", |
| sck_period_ns, midi, midi * sck_period_ns); |
| |
| cfg2_setb |= (midi << SPI_CFG2_MIDI_SHIFT) & SPI_CFG2_MIDI; |
| } |
| |
| if (cfg2_clrb || cfg2_setb) |
| writel_relaxed((readl_relaxed(spi->base + STM32_SPI_CFG2) & |
| ~cfg2_clrb) | cfg2_setb, |
| spi->base + STM32_SPI_CFG2); |
| |
| if (spi->cur_bpw <= 8) |
| nb_words = transfer->len; |
| else if (spi->cur_bpw <= 16) |
| nb_words = DIV_ROUND_UP(transfer->len * 8, 16); |
| else |
| nb_words = DIV_ROUND_UP(transfer->len * 8, 32); |
| nb_words <<= SPI_CR2_TSIZE_SHIFT; |
| |
| if (nb_words <= SPI_CR2_TSIZE) { |
| writel_relaxed(nb_words, spi->base + STM32_SPI_CR2); |
| } else { |
| ret = -EMSGSIZE; |
| goto out; |
| } |
| |
| spi->cur_xferlen = transfer->len; |
| |
| dev_dbg(spi->dev, "transfer communication mode set to %d\n", |
| spi->cur_comm); |
| dev_dbg(spi->dev, |
| "data frame of %d-bit, data packet of %d data frames\n", |
| spi->cur_bpw, spi->cur_fthlv); |
| dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed); |
| dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n", |
| spi->cur_xferlen, nb_words); |
| dev_dbg(spi->dev, "dma %s\n", |
| (spi->cur_usedma) ? "enabled" : "disabled"); |
| |
| out: |
| spin_unlock_irqrestore(&spi->lock, flags); |
| |
| return ret; |
| } |
| |
| /** |
| * stm32_spi_transfer_one - transfer a single spi_transfer |
| * |
| * It must return 0 if the transfer is finished or 1 if the transfer is still |
| * in progress. |
| */ |
| static int stm32_spi_transfer_one(struct spi_master *master, |
| struct spi_device *spi_dev, |
| struct spi_transfer *transfer) |
| { |
| struct stm32_spi *spi = spi_master_get_devdata(master); |
| int ret; |
| |
| spi->tx_buf = transfer->tx_buf; |
| spi->rx_buf = transfer->rx_buf; |
| spi->tx_len = spi->tx_buf ? transfer->len : 0; |
| spi->rx_len = spi->rx_buf ? transfer->len : 0; |
| |
| spi->cur_usedma = (master->can_dma && |
| stm32_spi_can_dma(master, spi_dev, transfer)); |
| |
| ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer); |
| if (ret) { |
| dev_err(spi->dev, "SPI transfer setup failed\n"); |
| return ret; |
| } |
| |
| if (spi->cur_usedma) |
| return stm32_spi_transfer_one_dma(spi, transfer); |
| else |
| return stm32_spi_transfer_one_irq(spi); |
| } |
| |
| /** |
| * stm32_spi_unprepare_msg - relax the hardware |
| * |
| * Normally, if TSIZE has been configured, we should relax the hardware at the |
| * reception of the EOT interrupt. But in case of error, EOT will not be |
| * raised. So the subsystem unprepare_message call allows us to properly |
| * complete the transfer from an hardware point of view. |
| */ |
| static int stm32_spi_unprepare_msg(struct spi_master *master, |
| struct spi_message *msg) |
| { |
| struct stm32_spi *spi = spi_master_get_devdata(master); |
| |
| stm32_spi_disable(spi); |
| |
| return 0; |
| } |
| |
| /** |
| * stm32_spi_config - Configure SPI controller as SPI master |
| */ |
| static int stm32_spi_config(struct stm32_spi *spi) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&spi->lock, flags); |
| |
| /* Ensure I2SMOD bit is kept cleared */ |
| stm32_spi_clr_bits(spi, STM32_SPI_I2SCFGR, SPI_I2SCFGR_I2SMOD); |
| |
| /* |
| * - SS input value high |
| * - transmitter half duplex direction |
| * - automatic communication suspend when RX-Fifo is full |
| */ |
| stm32_spi_set_bits(spi, STM32_SPI_CR1, SPI_CR1_SSI | |
| SPI_CR1_HDDIR | |
| SPI_CR1_MASRX); |
| |
| /* |
| * - Set the master mode (default Motorola mode) |
| * - Consider 1 master/n slaves configuration and |
| * SS input value is determined by the SSI bit |
| * - keep control of all associated GPIOs |
| */ |
| stm32_spi_set_bits(spi, STM32_SPI_CFG2, SPI_CFG2_MASTER | |
| SPI_CFG2_SSM | |
| SPI_CFG2_AFCNTR); |
| |
| spin_unlock_irqrestore(&spi->lock, flags); |
| |
| return 0; |
| } |
| |
| static const struct of_device_id stm32_spi_of_match[] = { |
| { .compatible = "st,stm32h7-spi", }, |
| {}, |
| }; |
| MODULE_DEVICE_TABLE(of, stm32_spi_of_match); |
| |
| static int stm32_spi_probe(struct platform_device *pdev) |
| { |
| struct spi_master *master; |
| struct stm32_spi *spi; |
| struct resource *res; |
| int i, ret; |
| |
| master = spi_alloc_master(&pdev->dev, sizeof(struct stm32_spi)); |
| if (!master) { |
| dev_err(&pdev->dev, "spi master allocation failed\n"); |
| return -ENOMEM; |
| } |
| platform_set_drvdata(pdev, master); |
| |
| spi = spi_master_get_devdata(master); |
| spi->dev = &pdev->dev; |
| spi->master = master; |
| spin_lock_init(&spi->lock); |
| |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| spi->base = devm_ioremap_resource(&pdev->dev, res); |
| if (IS_ERR(spi->base)) { |
| ret = PTR_ERR(spi->base); |
| goto err_master_put; |
| } |
| spi->phys_addr = (dma_addr_t)res->start; |
| |
| spi->irq = platform_get_irq(pdev, 0); |
| if (spi->irq <= 0) { |
| dev_err(&pdev->dev, "no irq: %d\n", spi->irq); |
| ret = -ENOENT; |
| goto err_master_put; |
| } |
| ret = devm_request_threaded_irq(&pdev->dev, spi->irq, NULL, |
| stm32_spi_irq, IRQF_ONESHOT, |
| pdev->name, master); |
| if (ret) { |
| dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq, |
| ret); |
| goto err_master_put; |
| } |
| |
| spi->clk = devm_clk_get(&pdev->dev, 0); |
| if (IS_ERR(spi->clk)) { |
| ret = PTR_ERR(spi->clk); |
| dev_err(&pdev->dev, "clk get failed: %d\n", ret); |
| goto err_master_put; |
| } |
| |
| ret = clk_prepare_enable(spi->clk); |
| if (ret) { |
| dev_err(&pdev->dev, "clk enable failed: %d\n", ret); |
| goto err_master_put; |
| } |
| spi->clk_rate = clk_get_rate(spi->clk); |
| if (!spi->clk_rate) { |
| dev_err(&pdev->dev, "clk rate = 0\n"); |
| ret = -EINVAL; |
| goto err_master_put; |
| } |
| |
| spi->rst = devm_reset_control_get_exclusive(&pdev->dev, NULL); |
| if (!IS_ERR(spi->rst)) { |
| reset_control_assert(spi->rst); |
| udelay(2); |
| reset_control_deassert(spi->rst); |
| } |
| |
| spi->fifo_size = stm32_spi_get_fifo_size(spi); |
| |
| ret = stm32_spi_config(spi); |
| if (ret) { |
| dev_err(&pdev->dev, "controller configuration failed: %d\n", |
| ret); |
| goto err_clk_disable; |
| } |
| |
| master->dev.of_node = pdev->dev.of_node; |
| master->auto_runtime_pm = true; |
| master->bus_num = pdev->id; |
| master->mode_bits = SPI_MODE_3 | SPI_CS_HIGH | SPI_LSB_FIRST | |
| SPI_3WIRE | SPI_LOOP; |
| master->bits_per_word_mask = stm32_spi_get_bpw_mask(spi); |
| master->max_speed_hz = spi->clk_rate / SPI_MBR_DIV_MIN; |
| master->min_speed_hz = spi->clk_rate / SPI_MBR_DIV_MAX; |
| master->setup = stm32_spi_setup; |
| master->prepare_message = stm32_spi_prepare_msg; |
| master->transfer_one = stm32_spi_transfer_one; |
| master->unprepare_message = stm32_spi_unprepare_msg; |
| |
| spi->dma_tx = dma_request_slave_channel(spi->dev, "tx"); |
| if (!spi->dma_tx) |
| dev_warn(&pdev->dev, "failed to request tx dma channel\n"); |
| else |
| master->dma_tx = spi->dma_tx; |
| |
| spi->dma_rx = dma_request_slave_channel(spi->dev, "rx"); |
| if (!spi->dma_rx) |
| dev_warn(&pdev->dev, "failed to request rx dma channel\n"); |
| else |
| master->dma_rx = spi->dma_rx; |
| |
| if (spi->dma_tx || spi->dma_rx) |
| master->can_dma = stm32_spi_can_dma; |
| |
| pm_runtime_set_active(&pdev->dev); |
| pm_runtime_enable(&pdev->dev); |
| |
| ret = devm_spi_register_master(&pdev->dev, master); |
| if (ret) { |
| dev_err(&pdev->dev, "spi master registration failed: %d\n", |
| ret); |
| goto err_dma_release; |
| } |
| |
| if (!master->cs_gpios) { |
| dev_err(&pdev->dev, "no CS gpios available\n"); |
| ret = -EINVAL; |
| goto err_dma_release; |
| } |
| |
| for (i = 0; i < master->num_chipselect; i++) { |
| if (!gpio_is_valid(master->cs_gpios[i])) { |
| dev_err(&pdev->dev, "%i is not a valid gpio\n", |
| master->cs_gpios[i]); |
| ret = -EINVAL; |
| goto err_dma_release; |
| } |
| |
| ret = devm_gpio_request(&pdev->dev, master->cs_gpios[i], |
| DRIVER_NAME); |
| if (ret) { |
| dev_err(&pdev->dev, "can't get CS gpio %i\n", |
| master->cs_gpios[i]); |
| goto err_dma_release; |
| } |
| } |
| |
| dev_info(&pdev->dev, "driver initialized\n"); |
| |
| return 0; |
| |
| err_dma_release: |
| if (spi->dma_tx) |
| dma_release_channel(spi->dma_tx); |
| if (spi->dma_rx) |
| dma_release_channel(spi->dma_rx); |
| |
| pm_runtime_disable(&pdev->dev); |
| err_clk_disable: |
| clk_disable_unprepare(spi->clk); |
| err_master_put: |
| spi_master_put(master); |
| |
| return ret; |
| } |
| |
| static int stm32_spi_remove(struct platform_device *pdev) |
| { |
| struct spi_master *master = platform_get_drvdata(pdev); |
| struct stm32_spi *spi = spi_master_get_devdata(master); |
| |
| stm32_spi_disable(spi); |
| |
| if (master->dma_tx) |
| dma_release_channel(master->dma_tx); |
| if (master->dma_rx) |
| dma_release_channel(master->dma_rx); |
| |
| clk_disable_unprepare(spi->clk); |
| |
| pm_runtime_disable(&pdev->dev); |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_PM |
| static int stm32_spi_runtime_suspend(struct device *dev) |
| { |
| struct spi_master *master = dev_get_drvdata(dev); |
| struct stm32_spi *spi = spi_master_get_devdata(master); |
| |
| clk_disable_unprepare(spi->clk); |
| |
| return 0; |
| } |
| |
| static int stm32_spi_runtime_resume(struct device *dev) |
| { |
| struct spi_master *master = dev_get_drvdata(dev); |
| struct stm32_spi *spi = spi_master_get_devdata(master); |
| |
| return clk_prepare_enable(spi->clk); |
| } |
| #endif |
| |
| #ifdef CONFIG_PM_SLEEP |
| static int stm32_spi_suspend(struct device *dev) |
| { |
| struct spi_master *master = dev_get_drvdata(dev); |
| int ret; |
| |
| ret = spi_master_suspend(master); |
| if (ret) |
| return ret; |
| |
| return pm_runtime_force_suspend(dev); |
| } |
| |
| static int stm32_spi_resume(struct device *dev) |
| { |
| struct spi_master *master = dev_get_drvdata(dev); |
| struct stm32_spi *spi = spi_master_get_devdata(master); |
| int ret; |
| |
| ret = pm_runtime_force_resume(dev); |
| if (ret) |
| return ret; |
| |
| ret = spi_master_resume(master); |
| if (ret) |
| clk_disable_unprepare(spi->clk); |
| |
| return ret; |
| } |
| #endif |
| |
| static const struct dev_pm_ops stm32_spi_pm_ops = { |
| SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume) |
| SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend, |
| stm32_spi_runtime_resume, NULL) |
| }; |
| |
| static struct platform_driver stm32_spi_driver = { |
| .probe = stm32_spi_probe, |
| .remove = stm32_spi_remove, |
| .driver = { |
| .name = DRIVER_NAME, |
| .pm = &stm32_spi_pm_ops, |
| .of_match_table = stm32_spi_of_match, |
| }, |
| }; |
| |
| module_platform_driver(stm32_spi_driver); |
| |
| MODULE_ALIAS("platform:" DRIVER_NAME); |
| MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver"); |
| MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>"); |
| MODULE_LICENSE("GPL v2"); |