| /* |
| * Kernel Probes (KProbes) |
| * arch/ia64/kernel/kprobes.c |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| * |
| * Copyright (C) IBM Corporation, 2002, 2004 |
| * Copyright (C) Intel Corporation, 2005 |
| * |
| * 2005-Apr Rusty Lynch <rusty.lynch@intel.com> and Anil S Keshavamurthy |
| * <anil.s.keshavamurthy@intel.com> adapted from i386 |
| */ |
| |
| #include <linux/kprobes.h> |
| #include <linux/ptrace.h> |
| #include <linux/string.h> |
| #include <linux/slab.h> |
| #include <linux/preempt.h> |
| #include <linux/moduleloader.h> |
| #include <linux/kdebug.h> |
| |
| #include <asm/pgtable.h> |
| #include <asm/sections.h> |
| #include <asm/uaccess.h> |
| |
| extern void jprobe_inst_return(void); |
| |
| DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; |
| DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); |
| |
| enum instruction_type {A, I, M, F, B, L, X, u}; |
| static enum instruction_type bundle_encoding[32][3] = { |
| { M, I, I }, /* 00 */ |
| { M, I, I }, /* 01 */ |
| { M, I, I }, /* 02 */ |
| { M, I, I }, /* 03 */ |
| { M, L, X }, /* 04 */ |
| { M, L, X }, /* 05 */ |
| { u, u, u }, /* 06 */ |
| { u, u, u }, /* 07 */ |
| { M, M, I }, /* 08 */ |
| { M, M, I }, /* 09 */ |
| { M, M, I }, /* 0A */ |
| { M, M, I }, /* 0B */ |
| { M, F, I }, /* 0C */ |
| { M, F, I }, /* 0D */ |
| { M, M, F }, /* 0E */ |
| { M, M, F }, /* 0F */ |
| { M, I, B }, /* 10 */ |
| { M, I, B }, /* 11 */ |
| { M, B, B }, /* 12 */ |
| { M, B, B }, /* 13 */ |
| { u, u, u }, /* 14 */ |
| { u, u, u }, /* 15 */ |
| { B, B, B }, /* 16 */ |
| { B, B, B }, /* 17 */ |
| { M, M, B }, /* 18 */ |
| { M, M, B }, /* 19 */ |
| { u, u, u }, /* 1A */ |
| { u, u, u }, /* 1B */ |
| { M, F, B }, /* 1C */ |
| { M, F, B }, /* 1D */ |
| { u, u, u }, /* 1E */ |
| { u, u, u }, /* 1F */ |
| }; |
| |
| /* |
| * In this function we check to see if the instruction |
| * is IP relative instruction and update the kprobe |
| * inst flag accordingly |
| */ |
| static void __kprobes update_kprobe_inst_flag(uint template, uint slot, |
| uint major_opcode, |
| unsigned long kprobe_inst, |
| struct kprobe *p) |
| { |
| p->ainsn.inst_flag = 0; |
| p->ainsn.target_br_reg = 0; |
| p->ainsn.slot = slot; |
| |
| /* Check for Break instruction |
| * Bits 37:40 Major opcode to be zero |
| * Bits 27:32 X6 to be zero |
| * Bits 32:35 X3 to be zero |
| */ |
| if ((!major_opcode) && (!((kprobe_inst >> 27) & 0x1FF)) ) { |
| /* is a break instruction */ |
| p->ainsn.inst_flag |= INST_FLAG_BREAK_INST; |
| return; |
| } |
| |
| if (bundle_encoding[template][slot] == B) { |
| switch (major_opcode) { |
| case INDIRECT_CALL_OPCODE: |
| p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG; |
| p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7); |
| break; |
| case IP_RELATIVE_PREDICT_OPCODE: |
| case IP_RELATIVE_BRANCH_OPCODE: |
| p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR; |
| break; |
| case IP_RELATIVE_CALL_OPCODE: |
| p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR; |
| p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG; |
| p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7); |
| break; |
| } |
| } else if (bundle_encoding[template][slot] == X) { |
| switch (major_opcode) { |
| case LONG_CALL_OPCODE: |
| p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG; |
| p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7); |
| break; |
| } |
| } |
| return; |
| } |
| |
| /* |
| * In this function we check to see if the instruction |
| * (qp) cmpx.crel.ctype p1,p2=r2,r3 |
| * on which we are inserting kprobe is cmp instruction |
| * with ctype as unc. |
| */ |
| static uint __kprobes is_cmp_ctype_unc_inst(uint template, uint slot, |
| uint major_opcode, |
| unsigned long kprobe_inst) |
| { |
| cmp_inst_t cmp_inst; |
| uint ctype_unc = 0; |
| |
| if (!((bundle_encoding[template][slot] == I) || |
| (bundle_encoding[template][slot] == M))) |
| goto out; |
| |
| if (!((major_opcode == 0xC) || (major_opcode == 0xD) || |
| (major_opcode == 0xE))) |
| goto out; |
| |
| cmp_inst.l = kprobe_inst; |
| if ((cmp_inst.f.x2 == 0) || (cmp_inst.f.x2 == 1)) { |
| /* Integere compare - Register Register (A6 type)*/ |
| if ((cmp_inst.f.tb == 0) && (cmp_inst.f.ta == 0) |
| &&(cmp_inst.f.c == 1)) |
| ctype_unc = 1; |
| } else if ((cmp_inst.f.x2 == 2)||(cmp_inst.f.x2 == 3)) { |
| /* Integere compare - Immediate Register (A8 type)*/ |
| if ((cmp_inst.f.ta == 0) &&(cmp_inst.f.c == 1)) |
| ctype_unc = 1; |
| } |
| out: |
| return ctype_unc; |
| } |
| |
| /* |
| * In this function we check to see if the instruction |
| * on which we are inserting kprobe is supported. |
| * Returns qp value if supported |
| * Returns -EINVAL if unsupported |
| */ |
| static int __kprobes unsupported_inst(uint template, uint slot, |
| uint major_opcode, |
| unsigned long kprobe_inst, |
| unsigned long addr) |
| { |
| int qp; |
| |
| qp = kprobe_inst & 0x3f; |
| if (is_cmp_ctype_unc_inst(template, slot, major_opcode, kprobe_inst)) { |
| if (slot == 1 && qp) { |
| printk(KERN_WARNING "Kprobes on cmp unc" |
| "instruction on slot 1 at <0x%lx>" |
| "is not supported\n", addr); |
| return -EINVAL; |
| |
| } |
| qp = 0; |
| } |
| else if (bundle_encoding[template][slot] == I) { |
| if (major_opcode == 0) { |
| /* |
| * Check for Integer speculation instruction |
| * - Bit 33-35 to be equal to 0x1 |
| */ |
| if (((kprobe_inst >> 33) & 0x7) == 1) { |
| printk(KERN_WARNING |
| "Kprobes on speculation inst at <0x%lx> not supported\n", |
| addr); |
| return -EINVAL; |
| } |
| /* |
| * IP relative mov instruction |
| * - Bit 27-35 to be equal to 0x30 |
| */ |
| if (((kprobe_inst >> 27) & 0x1FF) == 0x30) { |
| printk(KERN_WARNING |
| "Kprobes on \"mov r1=ip\" at <0x%lx> not supported\n", |
| addr); |
| return -EINVAL; |
| |
| } |
| } |
| else if ((major_opcode == 5) && !(kprobe_inst & (0xFUl << 33)) && |
| (kprobe_inst & (0x1UL << 12))) { |
| /* test bit instructions, tbit,tnat,tf |
| * bit 33-36 to be equal to 0 |
| * bit 12 to be equal to 1 |
| */ |
| if (slot == 1 && qp) { |
| printk(KERN_WARNING "Kprobes on test bit" |
| "instruction on slot at <0x%lx>" |
| "is not supported\n", addr); |
| return -EINVAL; |
| } |
| qp = 0; |
| } |
| } |
| else if (bundle_encoding[template][slot] == B) { |
| if (major_opcode == 7) { |
| /* IP-Relative Predict major code is 7 */ |
| printk(KERN_WARNING "Kprobes on IP-Relative" |
| "Predict is not supported\n"); |
| return -EINVAL; |
| } |
| else if (major_opcode == 2) { |
| /* Indirect Predict, major code is 2 |
| * bit 27-32 to be equal to 10 or 11 |
| */ |
| int x6=(kprobe_inst >> 27) & 0x3F; |
| if ((x6 == 0x10) || (x6 == 0x11)) { |
| printk(KERN_WARNING "Kprobes on" |
| "Indirect Predict is not supported\n"); |
| return -EINVAL; |
| } |
| } |
| } |
| /* kernel does not use float instruction, here for safety kprobe |
| * will judge whether it is fcmp/flass/float approximation instruction |
| */ |
| else if (unlikely(bundle_encoding[template][slot] == F)) { |
| if ((major_opcode == 4 || major_opcode == 5) && |
| (kprobe_inst & (0x1 << 12))) { |
| /* fcmp/fclass unc instruction */ |
| if (slot == 1 && qp) { |
| printk(KERN_WARNING "Kprobes on fcmp/fclass " |
| "instruction on slot at <0x%lx> " |
| "is not supported\n", addr); |
| return -EINVAL; |
| |
| } |
| qp = 0; |
| } |
| if ((major_opcode == 0 || major_opcode == 1) && |
| (kprobe_inst & (0x1UL << 33))) { |
| /* float Approximation instruction */ |
| if (slot == 1 && qp) { |
| printk(KERN_WARNING "Kprobes on float Approx " |
| "instr at <0x%lx> is not supported\n", |
| addr); |
| return -EINVAL; |
| } |
| qp = 0; |
| } |
| } |
| return qp; |
| } |
| |
| /* |
| * In this function we override the bundle with |
| * the break instruction at the given slot. |
| */ |
| static void __kprobes prepare_break_inst(uint template, uint slot, |
| uint major_opcode, |
| unsigned long kprobe_inst, |
| struct kprobe *p, |
| int qp) |
| { |
| unsigned long break_inst = BREAK_INST; |
| bundle_t *bundle = &p->opcode.bundle; |
| |
| /* |
| * Copy the original kprobe_inst qualifying predicate(qp) |
| * to the break instruction |
| */ |
| break_inst |= qp; |
| |
| switch (slot) { |
| case 0: |
| bundle->quad0.slot0 = break_inst; |
| break; |
| case 1: |
| bundle->quad0.slot1_p0 = break_inst; |
| bundle->quad1.slot1_p1 = break_inst >> (64-46); |
| break; |
| case 2: |
| bundle->quad1.slot2 = break_inst; |
| break; |
| } |
| |
| /* |
| * Update the instruction flag, so that we can |
| * emulate the instruction properly after we |
| * single step on original instruction |
| */ |
| update_kprobe_inst_flag(template, slot, major_opcode, kprobe_inst, p); |
| } |
| |
| static void __kprobes get_kprobe_inst(bundle_t *bundle, uint slot, |
| unsigned long *kprobe_inst, uint *major_opcode) |
| { |
| unsigned long kprobe_inst_p0, kprobe_inst_p1; |
| unsigned int template; |
| |
| template = bundle->quad0.template; |
| |
| switch (slot) { |
| case 0: |
| *major_opcode = (bundle->quad0.slot0 >> SLOT0_OPCODE_SHIFT); |
| *kprobe_inst = bundle->quad0.slot0; |
| break; |
| case 1: |
| *major_opcode = (bundle->quad1.slot1_p1 >> SLOT1_p1_OPCODE_SHIFT); |
| kprobe_inst_p0 = bundle->quad0.slot1_p0; |
| kprobe_inst_p1 = bundle->quad1.slot1_p1; |
| *kprobe_inst = kprobe_inst_p0 | (kprobe_inst_p1 << (64-46)); |
| break; |
| case 2: |
| *major_opcode = (bundle->quad1.slot2 >> SLOT2_OPCODE_SHIFT); |
| *kprobe_inst = bundle->quad1.slot2; |
| break; |
| } |
| } |
| |
| /* Returns non-zero if the addr is in the Interrupt Vector Table */ |
| static int __kprobes in_ivt_functions(unsigned long addr) |
| { |
| return (addr >= (unsigned long)__start_ivt_text |
| && addr < (unsigned long)__end_ivt_text); |
| } |
| |
| static int __kprobes valid_kprobe_addr(int template, int slot, |
| unsigned long addr) |
| { |
| if ((slot > 2) || ((bundle_encoding[template][1] == L) && slot > 1)) { |
| printk(KERN_WARNING "Attempting to insert unaligned kprobe " |
| "at 0x%lx\n", addr); |
| return -EINVAL; |
| } |
| |
| if (in_ivt_functions(addr)) { |
| printk(KERN_WARNING "Kprobes can't be inserted inside " |
| "IVT functions at 0x%lx\n", addr); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) |
| { |
| kcb->prev_kprobe.kp = kprobe_running(); |
| kcb->prev_kprobe.status = kcb->kprobe_status; |
| } |
| |
| static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) |
| { |
| __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp; |
| kcb->kprobe_status = kcb->prev_kprobe.status; |
| } |
| |
| static void __kprobes set_current_kprobe(struct kprobe *p, |
| struct kprobe_ctlblk *kcb) |
| { |
| __get_cpu_var(current_kprobe) = p; |
| } |
| |
| static void kretprobe_trampoline(void) |
| { |
| } |
| |
| /* |
| * At this point the target function has been tricked into |
| * returning into our trampoline. Lookup the associated instance |
| * and then: |
| * - call the handler function |
| * - cleanup by marking the instance as unused |
| * - long jump back to the original return address |
| */ |
| int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs) |
| { |
| struct kretprobe_instance *ri = NULL; |
| struct hlist_head *head, empty_rp; |
| struct hlist_node *node, *tmp; |
| unsigned long flags, orig_ret_address = 0; |
| unsigned long trampoline_address = |
| ((struct fnptr *)kretprobe_trampoline)->ip; |
| |
| INIT_HLIST_HEAD(&empty_rp); |
| spin_lock_irqsave(&kretprobe_lock, flags); |
| head = kretprobe_inst_table_head(current); |
| |
| /* |
| * It is possible to have multiple instances associated with a given |
| * task either because an multiple functions in the call path |
| * have a return probe installed on them, and/or more then one return |
| * return probe was registered for a target function. |
| * |
| * We can handle this because: |
| * - instances are always inserted at the head of the list |
| * - when multiple return probes are registered for the same |
| * function, the first instance's ret_addr will point to the |
| * real return address, and all the rest will point to |
| * kretprobe_trampoline |
| */ |
| hlist_for_each_entry_safe(ri, node, tmp, head, hlist) { |
| if (ri->task != current) |
| /* another task is sharing our hash bucket */ |
| continue; |
| |
| if (ri->rp && ri->rp->handler) |
| ri->rp->handler(ri, regs); |
| |
| orig_ret_address = (unsigned long)ri->ret_addr; |
| recycle_rp_inst(ri, &empty_rp); |
| |
| if (orig_ret_address != trampoline_address) |
| /* |
| * This is the real return address. Any other |
| * instances associated with this task are for |
| * other calls deeper on the call stack |
| */ |
| break; |
| } |
| |
| kretprobe_assert(ri, orig_ret_address, trampoline_address); |
| |
| regs->cr_iip = orig_ret_address; |
| |
| reset_current_kprobe(); |
| spin_unlock_irqrestore(&kretprobe_lock, flags); |
| preempt_enable_no_resched(); |
| |
| hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) { |
| hlist_del(&ri->hlist); |
| kfree(ri); |
| } |
| /* |
| * By returning a non-zero value, we are telling |
| * kprobe_handler() that we don't want the post_handler |
| * to run (and have re-enabled preemption) |
| */ |
| return 1; |
| } |
| |
| /* Called with kretprobe_lock held */ |
| void __kprobes arch_prepare_kretprobe(struct kretprobe *rp, |
| struct pt_regs *regs) |
| { |
| struct kretprobe_instance *ri; |
| |
| if ((ri = get_free_rp_inst(rp)) != NULL) { |
| ri->rp = rp; |
| ri->task = current; |
| ri->ret_addr = (kprobe_opcode_t *)regs->b0; |
| |
| /* Replace the return addr with trampoline addr */ |
| regs->b0 = ((struct fnptr *)kretprobe_trampoline)->ip; |
| |
| add_rp_inst(ri); |
| } else { |
| rp->nmissed++; |
| } |
| } |
| |
| int __kprobes arch_prepare_kprobe(struct kprobe *p) |
| { |
| unsigned long addr = (unsigned long) p->addr; |
| unsigned long *kprobe_addr = (unsigned long *)(addr & ~0xFULL); |
| unsigned long kprobe_inst=0; |
| unsigned int slot = addr & 0xf, template, major_opcode = 0; |
| bundle_t *bundle; |
| int qp; |
| |
| bundle = &((kprobe_opcode_t *)kprobe_addr)->bundle; |
| template = bundle->quad0.template; |
| |
| if(valid_kprobe_addr(template, slot, addr)) |
| return -EINVAL; |
| |
| /* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */ |
| if (slot == 1 && bundle_encoding[template][1] == L) |
| slot++; |
| |
| /* Get kprobe_inst and major_opcode from the bundle */ |
| get_kprobe_inst(bundle, slot, &kprobe_inst, &major_opcode); |
| |
| qp = unsupported_inst(template, slot, major_opcode, kprobe_inst, addr); |
| if (qp < 0) |
| return -EINVAL; |
| |
| p->ainsn.insn = get_insn_slot(); |
| if (!p->ainsn.insn) |
| return -ENOMEM; |
| memcpy(&p->opcode, kprobe_addr, sizeof(kprobe_opcode_t)); |
| memcpy(p->ainsn.insn, kprobe_addr, sizeof(kprobe_opcode_t)); |
| |
| prepare_break_inst(template, slot, major_opcode, kprobe_inst, p, qp); |
| |
| return 0; |
| } |
| |
| void __kprobes arch_arm_kprobe(struct kprobe *p) |
| { |
| unsigned long arm_addr; |
| bundle_t *src, *dest; |
| |
| arm_addr = ((unsigned long)p->addr) & ~0xFUL; |
| dest = &((kprobe_opcode_t *)arm_addr)->bundle; |
| src = &p->opcode.bundle; |
| |
| flush_icache_range((unsigned long)p->ainsn.insn, |
| (unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t)); |
| switch (p->ainsn.slot) { |
| case 0: |
| dest->quad0.slot0 = src->quad0.slot0; |
| break; |
| case 1: |
| dest->quad1.slot1_p1 = src->quad1.slot1_p1; |
| break; |
| case 2: |
| dest->quad1.slot2 = src->quad1.slot2; |
| break; |
| } |
| flush_icache_range(arm_addr, arm_addr + sizeof(kprobe_opcode_t)); |
| } |
| |
| void __kprobes arch_disarm_kprobe(struct kprobe *p) |
| { |
| unsigned long arm_addr; |
| bundle_t *src, *dest; |
| |
| arm_addr = ((unsigned long)p->addr) & ~0xFUL; |
| dest = &((kprobe_opcode_t *)arm_addr)->bundle; |
| /* p->ainsn.insn contains the original unaltered kprobe_opcode_t */ |
| src = &p->ainsn.insn->bundle; |
| switch (p->ainsn.slot) { |
| case 0: |
| dest->quad0.slot0 = src->quad0.slot0; |
| break; |
| case 1: |
| dest->quad1.slot1_p1 = src->quad1.slot1_p1; |
| break; |
| case 2: |
| dest->quad1.slot2 = src->quad1.slot2; |
| break; |
| } |
| flush_icache_range(arm_addr, arm_addr + sizeof(kprobe_opcode_t)); |
| } |
| |
| void __kprobes arch_remove_kprobe(struct kprobe *p) |
| { |
| mutex_lock(&kprobe_mutex); |
| free_insn_slot(p->ainsn.insn, 0); |
| mutex_unlock(&kprobe_mutex); |
| } |
| /* |
| * We are resuming execution after a single step fault, so the pt_regs |
| * structure reflects the register state after we executed the instruction |
| * located in the kprobe (p->ainsn.insn.bundle). We still need to adjust |
| * the ip to point back to the original stack address. To set the IP address |
| * to original stack address, handle the case where we need to fixup the |
| * relative IP address and/or fixup branch register. |
| */ |
| static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs) |
| { |
| unsigned long bundle_addr = (unsigned long) (&p->ainsn.insn->bundle); |
| unsigned long resume_addr = (unsigned long)p->addr & ~0xFULL; |
| unsigned long template; |
| int slot = ((unsigned long)p->addr & 0xf); |
| |
| template = p->ainsn.insn->bundle.quad0.template; |
| |
| if (slot == 1 && bundle_encoding[template][1] == L) |
| slot = 2; |
| |
| if (p->ainsn.inst_flag) { |
| |
| if (p->ainsn.inst_flag & INST_FLAG_FIX_RELATIVE_IP_ADDR) { |
| /* Fix relative IP address */ |
| regs->cr_iip = (regs->cr_iip - bundle_addr) + |
| resume_addr; |
| } |
| |
| if (p->ainsn.inst_flag & INST_FLAG_FIX_BRANCH_REG) { |
| /* |
| * Fix target branch register, software convention is |
| * to use either b0 or b6 or b7, so just checking |
| * only those registers |
| */ |
| switch (p->ainsn.target_br_reg) { |
| case 0: |
| if ((regs->b0 == bundle_addr) || |
| (regs->b0 == bundle_addr + 0x10)) { |
| regs->b0 = (regs->b0 - bundle_addr) + |
| resume_addr; |
| } |
| break; |
| case 6: |
| if ((regs->b6 == bundle_addr) || |
| (regs->b6 == bundle_addr + 0x10)) { |
| regs->b6 = (regs->b6 - bundle_addr) + |
| resume_addr; |
| } |
| break; |
| case 7: |
| if ((regs->b7 == bundle_addr) || |
| (regs->b7 == bundle_addr + 0x10)) { |
| regs->b7 = (regs->b7 - bundle_addr) + |
| resume_addr; |
| } |
| break; |
| } /* end switch */ |
| } |
| goto turn_ss_off; |
| } |
| |
| if (slot == 2) { |
| if (regs->cr_iip == bundle_addr + 0x10) { |
| regs->cr_iip = resume_addr + 0x10; |
| } |
| } else { |
| if (regs->cr_iip == bundle_addr) { |
| regs->cr_iip = resume_addr; |
| } |
| } |
| |
| turn_ss_off: |
| /* Turn off Single Step bit */ |
| ia64_psr(regs)->ss = 0; |
| } |
| |
| static void __kprobes prepare_ss(struct kprobe *p, struct pt_regs *regs) |
| { |
| unsigned long bundle_addr = (unsigned long) &p->ainsn.insn->bundle; |
| unsigned long slot = (unsigned long)p->addr & 0xf; |
| |
| /* single step inline if break instruction */ |
| if (p->ainsn.inst_flag == INST_FLAG_BREAK_INST) |
| regs->cr_iip = (unsigned long)p->addr & ~0xFULL; |
| else |
| regs->cr_iip = bundle_addr & ~0xFULL; |
| |
| if (slot > 2) |
| slot = 0; |
| |
| ia64_psr(regs)->ri = slot; |
| |
| /* turn on single stepping */ |
| ia64_psr(regs)->ss = 1; |
| } |
| |
| static int __kprobes is_ia64_break_inst(struct pt_regs *regs) |
| { |
| unsigned int slot = ia64_psr(regs)->ri; |
| unsigned int template, major_opcode; |
| unsigned long kprobe_inst; |
| unsigned long *kprobe_addr = (unsigned long *)regs->cr_iip; |
| bundle_t bundle; |
| |
| memcpy(&bundle, kprobe_addr, sizeof(bundle_t)); |
| template = bundle.quad0.template; |
| |
| /* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */ |
| if (slot == 1 && bundle_encoding[template][1] == L) |
| slot++; |
| |
| /* Get Kprobe probe instruction at given slot*/ |
| get_kprobe_inst(&bundle, slot, &kprobe_inst, &major_opcode); |
| |
| /* For break instruction, |
| * Bits 37:40 Major opcode to be zero |
| * Bits 27:32 X6 to be zero |
| * Bits 32:35 X3 to be zero |
| */ |
| if (major_opcode || ((kprobe_inst >> 27) & 0x1FF) ) { |
| /* Not a break instruction */ |
| return 0; |
| } |
| |
| /* Is a break instruction */ |
| return 1; |
| } |
| |
| static int __kprobes pre_kprobes_handler(struct die_args *args) |
| { |
| struct kprobe *p; |
| int ret = 0; |
| struct pt_regs *regs = args->regs; |
| kprobe_opcode_t *addr = (kprobe_opcode_t *)instruction_pointer(regs); |
| struct kprobe_ctlblk *kcb; |
| |
| /* |
| * We don't want to be preempted for the entire |
| * duration of kprobe processing |
| */ |
| preempt_disable(); |
| kcb = get_kprobe_ctlblk(); |
| |
| /* Handle recursion cases */ |
| if (kprobe_running()) { |
| p = get_kprobe(addr); |
| if (p) { |
| if ((kcb->kprobe_status == KPROBE_HIT_SS) && |
| (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)) { |
| ia64_psr(regs)->ss = 0; |
| goto no_kprobe; |
| } |
| /* We have reentered the pre_kprobe_handler(), since |
| * another probe was hit while within the handler. |
| * We here save the original kprobes variables and |
| * just single step on the instruction of the new probe |
| * without calling any user handlers. |
| */ |
| save_previous_kprobe(kcb); |
| set_current_kprobe(p, kcb); |
| kprobes_inc_nmissed_count(p); |
| prepare_ss(p, regs); |
| kcb->kprobe_status = KPROBE_REENTER; |
| return 1; |
| } else if (args->err == __IA64_BREAK_JPROBE) { |
| /* |
| * jprobe instrumented function just completed |
| */ |
| p = __get_cpu_var(current_kprobe); |
| if (p->break_handler && p->break_handler(p, regs)) { |
| goto ss_probe; |
| } |
| } else if (!is_ia64_break_inst(regs)) { |
| /* The breakpoint instruction was removed by |
| * another cpu right after we hit, no further |
| * handling of this interrupt is appropriate |
| */ |
| ret = 1; |
| goto no_kprobe; |
| } else { |
| /* Not our break */ |
| goto no_kprobe; |
| } |
| } |
| |
| p = get_kprobe(addr); |
| if (!p) { |
| if (!is_ia64_break_inst(regs)) { |
| /* |
| * The breakpoint instruction was removed right |
| * after we hit it. Another cpu has removed |
| * either a probepoint or a debugger breakpoint |
| * at this address. In either case, no further |
| * handling of this interrupt is appropriate. |
| */ |
| ret = 1; |
| |
| } |
| |
| /* Not one of our break, let kernel handle it */ |
| goto no_kprobe; |
| } |
| |
| set_current_kprobe(p, kcb); |
| kcb->kprobe_status = KPROBE_HIT_ACTIVE; |
| |
| if (p->pre_handler && p->pre_handler(p, regs)) |
| /* |
| * Our pre-handler is specifically requesting that we just |
| * do a return. This is used for both the jprobe pre-handler |
| * and the kretprobe trampoline |
| */ |
| return 1; |
| |
| ss_probe: |
| prepare_ss(p, regs); |
| kcb->kprobe_status = KPROBE_HIT_SS; |
| return 1; |
| |
| no_kprobe: |
| preempt_enable_no_resched(); |
| return ret; |
| } |
| |
| static int __kprobes post_kprobes_handler(struct pt_regs *regs) |
| { |
| struct kprobe *cur = kprobe_running(); |
| struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); |
| |
| if (!cur) |
| return 0; |
| |
| if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { |
| kcb->kprobe_status = KPROBE_HIT_SSDONE; |
| cur->post_handler(cur, regs, 0); |
| } |
| |
| resume_execution(cur, regs); |
| |
| /*Restore back the original saved kprobes variables and continue. */ |
| if (kcb->kprobe_status == KPROBE_REENTER) { |
| restore_previous_kprobe(kcb); |
| goto out; |
| } |
| reset_current_kprobe(); |
| |
| out: |
| preempt_enable_no_resched(); |
| return 1; |
| } |
| |
| static int __kprobes kprobes_fault_handler(struct pt_regs *regs, int trapnr) |
| { |
| struct kprobe *cur = kprobe_running(); |
| struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); |
| |
| |
| switch(kcb->kprobe_status) { |
| case KPROBE_HIT_SS: |
| case KPROBE_REENTER: |
| /* |
| * We are here because the instruction being single |
| * stepped caused a page fault. We reset the current |
| * kprobe and the instruction pointer points back to |
| * the probe address and allow the page fault handler |
| * to continue as a normal page fault. |
| */ |
| regs->cr_iip = ((unsigned long)cur->addr) & ~0xFULL; |
| ia64_psr(regs)->ri = ((unsigned long)cur->addr) & 0xf; |
| if (kcb->kprobe_status == KPROBE_REENTER) |
| restore_previous_kprobe(kcb); |
| else |
| reset_current_kprobe(); |
| preempt_enable_no_resched(); |
| break; |
| case KPROBE_HIT_ACTIVE: |
| case KPROBE_HIT_SSDONE: |
| /* |
| * We increment the nmissed count for accounting, |
| * we can also use npre/npostfault count for accouting |
| * these specific fault cases. |
| */ |
| kprobes_inc_nmissed_count(cur); |
| |
| /* |
| * We come here because instructions in the pre/post |
| * handler caused the page_fault, this could happen |
| * if handler tries to access user space by |
| * copy_from_user(), get_user() etc. Let the |
| * user-specified handler try to fix it first. |
| */ |
| if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) |
| return 1; |
| /* |
| * In case the user-specified fault handler returned |
| * zero, try to fix up. |
| */ |
| if (ia64_done_with_exception(regs)) |
| return 1; |
| |
| /* |
| * Let ia64_do_page_fault() fix it. |
| */ |
| break; |
| default: |
| break; |
| } |
| |
| return 0; |
| } |
| |
| int __kprobes kprobe_exceptions_notify(struct notifier_block *self, |
| unsigned long val, void *data) |
| { |
| struct die_args *args = (struct die_args *)data; |
| int ret = NOTIFY_DONE; |
| |
| if (args->regs && user_mode(args->regs)) |
| return ret; |
| |
| switch(val) { |
| case DIE_BREAK: |
| /* err is break number from ia64_bad_break() */ |
| if ((args->err >> 12) == (__IA64_BREAK_KPROBE >> 12) |
| || args->err == __IA64_BREAK_JPROBE |
| || args->err == 0) |
| if (pre_kprobes_handler(args)) |
| ret = NOTIFY_STOP; |
| break; |
| case DIE_FAULT: |
| /* err is vector number from ia64_fault() */ |
| if (args->err == 36) |
| if (post_kprobes_handler(args->regs)) |
| ret = NOTIFY_STOP; |
| break; |
| case DIE_PAGE_FAULT: |
| /* kprobe_running() needs smp_processor_id() */ |
| preempt_disable(); |
| if (kprobe_running() && |
| kprobes_fault_handler(args->regs, args->trapnr)) |
| ret = NOTIFY_STOP; |
| preempt_enable(); |
| default: |
| break; |
| } |
| return ret; |
| } |
| |
| struct param_bsp_cfm { |
| unsigned long ip; |
| unsigned long *bsp; |
| unsigned long cfm; |
| }; |
| |
| static void ia64_get_bsp_cfm(struct unw_frame_info *info, void *arg) |
| { |
| unsigned long ip; |
| struct param_bsp_cfm *lp = arg; |
| |
| do { |
| unw_get_ip(info, &ip); |
| if (ip == 0) |
| break; |
| if (ip == lp->ip) { |
| unw_get_bsp(info, (unsigned long*)&lp->bsp); |
| unw_get_cfm(info, (unsigned long*)&lp->cfm); |
| return; |
| } |
| } while (unw_unwind(info) >= 0); |
| lp->bsp = NULL; |
| lp->cfm = 0; |
| return; |
| } |
| |
| int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) |
| { |
| struct jprobe *jp = container_of(p, struct jprobe, kp); |
| unsigned long addr = ((struct fnptr *)(jp->entry))->ip; |
| struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); |
| struct param_bsp_cfm pa; |
| int bytes; |
| |
| /* |
| * Callee owns the argument space and could overwrite it, eg |
| * tail call optimization. So to be absolutely safe |
| * we save the argument space before transfering the control |
| * to instrumented jprobe function which runs in |
| * the process context |
| */ |
| pa.ip = regs->cr_iip; |
| unw_init_running(ia64_get_bsp_cfm, &pa); |
| bytes = (char *)ia64_rse_skip_regs(pa.bsp, pa.cfm & 0x3f) |
| - (char *)pa.bsp; |
| memcpy( kcb->jprobes_saved_stacked_regs, |
| pa.bsp, |
| bytes ); |
| kcb->bsp = pa.bsp; |
| kcb->cfm = pa.cfm; |
| |
| /* save architectural state */ |
| kcb->jprobe_saved_regs = *regs; |
| |
| /* after rfi, execute the jprobe instrumented function */ |
| regs->cr_iip = addr & ~0xFULL; |
| ia64_psr(regs)->ri = addr & 0xf; |
| regs->r1 = ((struct fnptr *)(jp->entry))->gp; |
| |
| /* |
| * fix the return address to our jprobe_inst_return() function |
| * in the jprobes.S file |
| */ |
| regs->b0 = ((struct fnptr *)(jprobe_inst_return))->ip; |
| |
| return 1; |
| } |
| |
| int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) |
| { |
| struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); |
| int bytes; |
| |
| /* restoring architectural state */ |
| *regs = kcb->jprobe_saved_regs; |
| |
| /* restoring the original argument space */ |
| flush_register_stack(); |
| bytes = (char *)ia64_rse_skip_regs(kcb->bsp, kcb->cfm & 0x3f) |
| - (char *)kcb->bsp; |
| memcpy( kcb->bsp, |
| kcb->jprobes_saved_stacked_regs, |
| bytes ); |
| invalidate_stacked_regs(); |
| |
| preempt_enable_no_resched(); |
| return 1; |
| } |
| |
| static struct kprobe trampoline_p = { |
| .pre_handler = trampoline_probe_handler |
| }; |
| |
| int __init arch_init_kprobes(void) |
| { |
| trampoline_p.addr = |
| (kprobe_opcode_t *)((struct fnptr *)kretprobe_trampoline)->ip; |
| return register_kprobe(&trampoline_p); |
| } |