| /* |
| * Octeon Watchdog driver |
| * |
| * Copyright (C) 2007, 2008, 2009, 2010 Cavium Networks |
| * |
| * Converted to use WATCHDOG_CORE by Aaro Koskinen <aaro.koskinen@iki.fi>. |
| * |
| * Some parts derived from wdt.c |
| * |
| * (c) Copyright 1996-1997 Alan Cox <alan@lxorguk.ukuu.org.uk>, |
| * All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| * Neither Alan Cox nor CymruNet Ltd. admit liability nor provide |
| * warranty for any of this software. This material is provided |
| * "AS-IS" and at no charge. |
| * |
| * (c) Copyright 1995 Alan Cox <alan@lxorguk.ukuu.org.uk> |
| * |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| * |
| * |
| * The OCTEON watchdog has a maximum timeout of 2^32 * io_clock. |
| * For most systems this is less than 10 seconds, so to allow for |
| * software to request longer watchdog heartbeats, we maintain software |
| * counters to count multiples of the base rate. If the system locks |
| * up in such a manner that we can not run the software counters, the |
| * only result is a watchdog reset sooner than was requested. But |
| * that is OK, because in this case userspace would likely not be able |
| * to do anything anyhow. |
| * |
| * The hardware watchdog interval we call the period. The OCTEON |
| * watchdog goes through several stages, after the first period an |
| * irq is asserted, then if it is not reset, after the next period NMI |
| * is asserted, then after an additional period a chip wide soft reset. |
| * So for the software counters, we reset watchdog after each period |
| * and decrement the counter. But for the last two periods we need to |
| * let the watchdog progress to the NMI stage so we disable the irq |
| * and let it proceed. Once in the NMI, we print the register state |
| * to the serial port and then wait for the reset. |
| * |
| * A watchdog is maintained for each CPU in the system, that way if |
| * one CPU suffers a lockup, we also get a register dump and reset. |
| * The userspace ping resets the watchdog on all CPUs. |
| * |
| * Before userspace opens the watchdog device, we still run the |
| * watchdogs to catch any lockups that may be kernel related. |
| * |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/miscdevice.h> |
| #include <linux/interrupt.h> |
| #include <linux/watchdog.h> |
| #include <linux/cpumask.h> |
| #include <linux/bitops.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/string.h> |
| #include <linux/delay.h> |
| #include <linux/cpu.h> |
| #include <linux/smp.h> |
| #include <linux/fs.h> |
| #include <linux/irq.h> |
| |
| #include <asm/mipsregs.h> |
| #include <asm/uasm.h> |
| |
| #include <asm/octeon/octeon.h> |
| |
| /* The count needed to achieve timeout_sec. */ |
| static unsigned int timeout_cnt; |
| |
| /* The maximum period supported. */ |
| static unsigned int max_timeout_sec; |
| |
| /* The current period. */ |
| static unsigned int timeout_sec; |
| |
| /* Set to non-zero when userspace countdown mode active */ |
| static int do_coundown; |
| static unsigned int countdown_reset; |
| static unsigned int per_cpu_countdown[NR_CPUS]; |
| |
| static cpumask_t irq_enabled_cpus; |
| |
| #define WD_TIMO 60 /* Default heartbeat = 60 seconds */ |
| |
| static int heartbeat = WD_TIMO; |
| module_param(heartbeat, int, S_IRUGO); |
| MODULE_PARM_DESC(heartbeat, |
| "Watchdog heartbeat in seconds. (0 < heartbeat, default=" |
| __MODULE_STRING(WD_TIMO) ")"); |
| |
| static bool nowayout = WATCHDOG_NOWAYOUT; |
| module_param(nowayout, bool, S_IRUGO); |
| MODULE_PARM_DESC(nowayout, |
| "Watchdog cannot be stopped once started (default=" |
| __MODULE_STRING(WATCHDOG_NOWAYOUT) ")"); |
| |
| static u32 nmi_stage1_insns[64] __initdata; |
| /* We need one branch and therefore one relocation per target label. */ |
| static struct uasm_label labels[5] __initdata; |
| static struct uasm_reloc relocs[5] __initdata; |
| |
| enum lable_id { |
| label_enter_bootloader = 1 |
| }; |
| |
| /* Some CP0 registers */ |
| #define K0 26 |
| #define C0_CVMMEMCTL 11, 7 |
| #define C0_STATUS 12, 0 |
| #define C0_EBASE 15, 1 |
| #define C0_DESAVE 31, 0 |
| |
| void octeon_wdt_nmi_stage2(void); |
| |
| static void __init octeon_wdt_build_stage1(void) |
| { |
| int i; |
| int len; |
| u32 *p = nmi_stage1_insns; |
| #ifdef CONFIG_HOTPLUG_CPU |
| struct uasm_label *l = labels; |
| struct uasm_reloc *r = relocs; |
| #endif |
| |
| /* |
| * For the next few instructions running the debugger may |
| * cause corruption of k0 in the saved registers. Since we're |
| * about to crash, nobody probably cares. |
| * |
| * Save K0 into the debug scratch register |
| */ |
| uasm_i_dmtc0(&p, K0, C0_DESAVE); |
| |
| uasm_i_mfc0(&p, K0, C0_STATUS); |
| #ifdef CONFIG_HOTPLUG_CPU |
| if (octeon_bootloader_entry_addr) |
| uasm_il_bbit0(&p, &r, K0, ilog2(ST0_NMI), |
| label_enter_bootloader); |
| #endif |
| /* Force 64-bit addressing enabled */ |
| uasm_i_ori(&p, K0, K0, ST0_UX | ST0_SX | ST0_KX); |
| uasm_i_mtc0(&p, K0, C0_STATUS); |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| if (octeon_bootloader_entry_addr) { |
| uasm_i_mfc0(&p, K0, C0_EBASE); |
| /* Coreid number in K0 */ |
| uasm_i_andi(&p, K0, K0, 0xf); |
| /* 8 * coreid in bits 16-31 */ |
| uasm_i_dsll_safe(&p, K0, K0, 3 + 16); |
| uasm_i_ori(&p, K0, K0, 0x8001); |
| uasm_i_dsll_safe(&p, K0, K0, 16); |
| uasm_i_ori(&p, K0, K0, 0x0700); |
| uasm_i_drotr_safe(&p, K0, K0, 32); |
| /* |
| * Should result in: 0x8001,0700,0000,8*coreid which is |
| * CVMX_CIU_WDOGX(coreid) - 0x0500 |
| * |
| * Now ld K0, CVMX_CIU_WDOGX(coreid) |
| */ |
| uasm_i_ld(&p, K0, 0x500, K0); |
| /* |
| * If bit one set handle the NMI as a watchdog event. |
| * otherwise transfer control to bootloader. |
| */ |
| uasm_il_bbit0(&p, &r, K0, 1, label_enter_bootloader); |
| uasm_i_nop(&p); |
| } |
| #endif |
| |
| /* Clear Dcache so cvmseg works right. */ |
| uasm_i_cache(&p, 1, 0, 0); |
| |
| /* Use K0 to do a read/modify/write of CVMMEMCTL */ |
| uasm_i_dmfc0(&p, K0, C0_CVMMEMCTL); |
| /* Clear out the size of CVMSEG */ |
| uasm_i_dins(&p, K0, 0, 0, 6); |
| /* Set CVMSEG to its largest value */ |
| uasm_i_ori(&p, K0, K0, 0x1c0 | 54); |
| /* Store the CVMMEMCTL value */ |
| uasm_i_dmtc0(&p, K0, C0_CVMMEMCTL); |
| |
| /* Load the address of the second stage handler */ |
| UASM_i_LA(&p, K0, (long)octeon_wdt_nmi_stage2); |
| uasm_i_jr(&p, K0); |
| uasm_i_dmfc0(&p, K0, C0_DESAVE); |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| if (octeon_bootloader_entry_addr) { |
| uasm_build_label(&l, p, label_enter_bootloader); |
| /* Jump to the bootloader and restore K0 */ |
| UASM_i_LA(&p, K0, (long)octeon_bootloader_entry_addr); |
| uasm_i_jr(&p, K0); |
| uasm_i_dmfc0(&p, K0, C0_DESAVE); |
| } |
| #endif |
| uasm_resolve_relocs(relocs, labels); |
| |
| len = (int)(p - nmi_stage1_insns); |
| pr_debug("Synthesized NMI stage 1 handler (%d instructions)\n", len); |
| |
| pr_debug("\t.set push\n"); |
| pr_debug("\t.set noreorder\n"); |
| for (i = 0; i < len; i++) |
| pr_debug("\t.word 0x%08x\n", nmi_stage1_insns[i]); |
| pr_debug("\t.set pop\n"); |
| |
| if (len > 32) |
| panic("NMI stage 1 handler exceeds 32 instructions, was %d\n", |
| len); |
| } |
| |
| static int cpu2core(int cpu) |
| { |
| #ifdef CONFIG_SMP |
| return cpu_logical_map(cpu); |
| #else |
| return cvmx_get_core_num(); |
| #endif |
| } |
| |
| static int core2cpu(int coreid) |
| { |
| #ifdef CONFIG_SMP |
| return cpu_number_map(coreid); |
| #else |
| return 0; |
| #endif |
| } |
| |
| /** |
| * Poke the watchdog when an interrupt is received |
| * |
| * @cpl: |
| * @dev_id: |
| * |
| * Returns |
| */ |
| static irqreturn_t octeon_wdt_poke_irq(int cpl, void *dev_id) |
| { |
| unsigned int core = cvmx_get_core_num(); |
| int cpu = core2cpu(core); |
| |
| if (do_coundown) { |
| if (per_cpu_countdown[cpu] > 0) { |
| /* We're alive, poke the watchdog */ |
| cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1); |
| per_cpu_countdown[cpu]--; |
| } else { |
| /* Bad news, you are about to reboot. */ |
| disable_irq_nosync(cpl); |
| cpumask_clear_cpu(cpu, &irq_enabled_cpus); |
| } |
| } else { |
| /* Not open, just ping away... */ |
| cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1); |
| } |
| return IRQ_HANDLED; |
| } |
| |
| /* From setup.c */ |
| extern int prom_putchar(char c); |
| |
| /** |
| * Write a string to the uart |
| * |
| * @str: String to write |
| */ |
| static void octeon_wdt_write_string(const char *str) |
| { |
| /* Just loop writing one byte at a time */ |
| while (*str) |
| prom_putchar(*str++); |
| } |
| |
| /** |
| * Write a hex number out of the uart |
| * |
| * @value: Number to display |
| * @digits: Number of digits to print (1 to 16) |
| */ |
| static void octeon_wdt_write_hex(u64 value, int digits) |
| { |
| int d; |
| int v; |
| |
| for (d = 0; d < digits; d++) { |
| v = (value >> ((digits - d - 1) * 4)) & 0xf; |
| if (v >= 10) |
| prom_putchar('a' + v - 10); |
| else |
| prom_putchar('0' + v); |
| } |
| } |
| |
| static const char reg_name[][3] = { |
| "$0", "at", "v0", "v1", "a0", "a1", "a2", "a3", |
| "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3", |
| "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", |
| "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra" |
| }; |
| |
| /** |
| * NMI stage 3 handler. NMIs are handled in the following manner: |
| * 1) The first NMI handler enables CVMSEG and transfers from |
| * the bootbus region into normal memory. It is careful to not |
| * destroy any registers. |
| * 2) The second stage handler uses CVMSEG to save the registers |
| * and create a stack for C code. It then calls the third level |
| * handler with one argument, a pointer to the register values. |
| * 3) The third, and final, level handler is the following C |
| * function that prints out some useful infomration. |
| * |
| * @reg: Pointer to register state before the NMI |
| */ |
| void octeon_wdt_nmi_stage3(u64 reg[32]) |
| { |
| u64 i; |
| |
| unsigned int coreid = cvmx_get_core_num(); |
| /* |
| * Save status and cause early to get them before any changes |
| * might happen. |
| */ |
| u64 cp0_cause = read_c0_cause(); |
| u64 cp0_status = read_c0_status(); |
| u64 cp0_error_epc = read_c0_errorepc(); |
| u64 cp0_epc = read_c0_epc(); |
| |
| /* Delay so output from all cores output is not jumbled together. */ |
| __delay(100000000ull * coreid); |
| |
| octeon_wdt_write_string("\r\n*** NMI Watchdog interrupt on Core 0x"); |
| octeon_wdt_write_hex(coreid, 1); |
| octeon_wdt_write_string(" ***\r\n"); |
| for (i = 0; i < 32; i++) { |
| octeon_wdt_write_string("\t"); |
| octeon_wdt_write_string(reg_name[i]); |
| octeon_wdt_write_string("\t0x"); |
| octeon_wdt_write_hex(reg[i], 16); |
| if (i & 1) |
| octeon_wdt_write_string("\r\n"); |
| } |
| octeon_wdt_write_string("\terr_epc\t0x"); |
| octeon_wdt_write_hex(cp0_error_epc, 16); |
| |
| octeon_wdt_write_string("\tepc\t0x"); |
| octeon_wdt_write_hex(cp0_epc, 16); |
| octeon_wdt_write_string("\r\n"); |
| |
| octeon_wdt_write_string("\tstatus\t0x"); |
| octeon_wdt_write_hex(cp0_status, 16); |
| octeon_wdt_write_string("\tcause\t0x"); |
| octeon_wdt_write_hex(cp0_cause, 16); |
| octeon_wdt_write_string("\r\n"); |
| |
| octeon_wdt_write_string("\tsum0\t0x"); |
| octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_SUM0(coreid * 2)), 16); |
| octeon_wdt_write_string("\ten0\t0x"); |
| octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2)), 16); |
| octeon_wdt_write_string("\r\n"); |
| |
| octeon_wdt_write_string("*** Chip soft reset soon ***\r\n"); |
| } |
| |
| static int octeon_wdt_cpu_pre_down(unsigned int cpu) |
| { |
| unsigned int core; |
| unsigned int irq; |
| union cvmx_ciu_wdogx ciu_wdog; |
| |
| core = cpu2core(cpu); |
| |
| irq = OCTEON_IRQ_WDOG0 + core; |
| |
| /* Poke the watchdog to clear out its state */ |
| cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1); |
| |
| /* Disable the hardware. */ |
| ciu_wdog.u64 = 0; |
| cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64); |
| |
| free_irq(irq, octeon_wdt_poke_irq); |
| return 0; |
| } |
| |
| static int octeon_wdt_cpu_online(unsigned int cpu) |
| { |
| unsigned int core; |
| unsigned int irq; |
| union cvmx_ciu_wdogx ciu_wdog; |
| |
| core = cpu2core(cpu); |
| |
| /* Disable it before doing anything with the interrupts. */ |
| ciu_wdog.u64 = 0; |
| cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64); |
| |
| per_cpu_countdown[cpu] = countdown_reset; |
| |
| irq = OCTEON_IRQ_WDOG0 + core; |
| |
| if (request_irq(irq, octeon_wdt_poke_irq, |
| IRQF_NO_THREAD, "octeon_wdt", octeon_wdt_poke_irq)) |
| panic("octeon_wdt: Couldn't obtain irq %d", irq); |
| |
| cpumask_set_cpu(cpu, &irq_enabled_cpus); |
| |
| /* Poke the watchdog to clear out its state */ |
| cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1); |
| |
| /* Finally enable the watchdog now that all handlers are installed */ |
| ciu_wdog.u64 = 0; |
| ciu_wdog.s.len = timeout_cnt; |
| ciu_wdog.s.mode = 3; /* 3 = Interrupt + NMI + Soft-Reset */ |
| cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64); |
| |
| return 0; |
| } |
| |
| static int octeon_wdt_ping(struct watchdog_device __always_unused *wdog) |
| { |
| int cpu; |
| int coreid; |
| |
| for_each_online_cpu(cpu) { |
| coreid = cpu2core(cpu); |
| cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1); |
| per_cpu_countdown[cpu] = countdown_reset; |
| if ((countdown_reset || !do_coundown) && |
| !cpumask_test_cpu(cpu, &irq_enabled_cpus)) { |
| /* We have to enable the irq */ |
| int irq = OCTEON_IRQ_WDOG0 + coreid; |
| |
| enable_irq(irq); |
| cpumask_set_cpu(cpu, &irq_enabled_cpus); |
| } |
| } |
| return 0; |
| } |
| |
| static void octeon_wdt_calc_parameters(int t) |
| { |
| unsigned int periods; |
| |
| timeout_sec = max_timeout_sec; |
| |
| |
| /* |
| * Find the largest interrupt period, that can evenly divide |
| * the requested heartbeat time. |
| */ |
| while ((t % timeout_sec) != 0) |
| timeout_sec--; |
| |
| periods = t / timeout_sec; |
| |
| /* |
| * The last two periods are after the irq is disabled, and |
| * then to the nmi, so we subtract them off. |
| */ |
| |
| countdown_reset = periods > 2 ? periods - 2 : 0; |
| heartbeat = t; |
| timeout_cnt = ((octeon_get_io_clock_rate() >> 8) * timeout_sec) >> 8; |
| } |
| |
| static int octeon_wdt_set_timeout(struct watchdog_device *wdog, |
| unsigned int t) |
| { |
| int cpu; |
| int coreid; |
| union cvmx_ciu_wdogx ciu_wdog; |
| |
| if (t <= 0) |
| return -1; |
| |
| octeon_wdt_calc_parameters(t); |
| |
| for_each_online_cpu(cpu) { |
| coreid = cpu2core(cpu); |
| cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1); |
| ciu_wdog.u64 = 0; |
| ciu_wdog.s.len = timeout_cnt; |
| ciu_wdog.s.mode = 3; /* 3 = Interrupt + NMI + Soft-Reset */ |
| cvmx_write_csr(CVMX_CIU_WDOGX(coreid), ciu_wdog.u64); |
| cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1); |
| } |
| octeon_wdt_ping(wdog); /* Get the irqs back on. */ |
| return 0; |
| } |
| |
| static int octeon_wdt_start(struct watchdog_device *wdog) |
| { |
| octeon_wdt_ping(wdog); |
| do_coundown = 1; |
| return 0; |
| } |
| |
| static int octeon_wdt_stop(struct watchdog_device *wdog) |
| { |
| do_coundown = 0; |
| octeon_wdt_ping(wdog); |
| return 0; |
| } |
| |
| static const struct watchdog_info octeon_wdt_info = { |
| .options = WDIOF_SETTIMEOUT | WDIOF_MAGICCLOSE | WDIOF_KEEPALIVEPING, |
| .identity = "OCTEON", |
| }; |
| |
| static const struct watchdog_ops octeon_wdt_ops = { |
| .owner = THIS_MODULE, |
| .start = octeon_wdt_start, |
| .stop = octeon_wdt_stop, |
| .ping = octeon_wdt_ping, |
| .set_timeout = octeon_wdt_set_timeout, |
| }; |
| |
| static struct watchdog_device octeon_wdt = { |
| .info = &octeon_wdt_info, |
| .ops = &octeon_wdt_ops, |
| }; |
| |
| static enum cpuhp_state octeon_wdt_online; |
| /** |
| * Module/ driver initialization. |
| * |
| * Returns Zero on success |
| */ |
| static int __init octeon_wdt_init(void) |
| { |
| int i; |
| int ret; |
| u64 *ptr; |
| |
| /* |
| * Watchdog time expiration length = The 16 bits of LEN |
| * represent the most significant bits of a 24 bit decrementer |
| * that decrements every 256 cycles. |
| * |
| * Try for a timeout of 5 sec, if that fails a smaller number |
| * of even seconds, |
| */ |
| max_timeout_sec = 6; |
| do { |
| max_timeout_sec--; |
| timeout_cnt = ((octeon_get_io_clock_rate() >> 8) * |
| max_timeout_sec) >> 8; |
| } while (timeout_cnt > 65535); |
| |
| BUG_ON(timeout_cnt == 0); |
| |
| octeon_wdt_calc_parameters(heartbeat); |
| |
| pr_info("Initial granularity %d Sec\n", timeout_sec); |
| |
| octeon_wdt.timeout = timeout_sec; |
| octeon_wdt.max_timeout = UINT_MAX; |
| |
| watchdog_set_nowayout(&octeon_wdt, nowayout); |
| |
| ret = watchdog_register_device(&octeon_wdt); |
| if (ret) { |
| pr_err("watchdog_register_device() failed: %d\n", ret); |
| return ret; |
| } |
| |
| /* Build the NMI handler ... */ |
| octeon_wdt_build_stage1(); |
| |
| /* ... and install it. */ |
| ptr = (u64 *) nmi_stage1_insns; |
| for (i = 0; i < 16; i++) { |
| cvmx_write_csr(CVMX_MIO_BOOT_LOC_ADR, i * 8); |
| cvmx_write_csr(CVMX_MIO_BOOT_LOC_DAT, ptr[i]); |
| } |
| cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0x81fc0000); |
| |
| cpumask_clear(&irq_enabled_cpus); |
| |
| ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "watchdog/octeon:online", |
| octeon_wdt_cpu_online, octeon_wdt_cpu_pre_down); |
| if (ret < 0) |
| goto err; |
| octeon_wdt_online = ret; |
| return 0; |
| err: |
| cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0); |
| watchdog_unregister_device(&octeon_wdt); |
| return ret; |
| } |
| |
| /** |
| * Module / driver shutdown |
| */ |
| static void __exit octeon_wdt_cleanup(void) |
| { |
| watchdog_unregister_device(&octeon_wdt); |
| cpuhp_remove_state(octeon_wdt_online); |
| |
| /* |
| * Disable the boot-bus memory, the code it points to is soon |
| * to go missing. |
| */ |
| cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0); |
| } |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Cavium Networks <support@caviumnetworks.com>"); |
| MODULE_DESCRIPTION("Cavium Networks Octeon Watchdog driver."); |
| module_init(octeon_wdt_init); |
| module_exit(octeon_wdt_cleanup); |