| /* |
| * vsp1_wpf.c -- R-Car VSP1 Write Pixel Formatter |
| * |
| * Copyright (C) 2013-2014 Renesas Electronics Corporation |
| * |
| * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com) |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| */ |
| |
| #include <linux/device.h> |
| |
| #include <media/v4l2-subdev.h> |
| |
| #include "vsp1.h" |
| #include "vsp1_dl.h" |
| #include "vsp1_pipe.h" |
| #include "vsp1_rwpf.h" |
| #include "vsp1_video.h" |
| |
| #define WPF_GEN2_MAX_WIDTH 2048U |
| #define WPF_GEN2_MAX_HEIGHT 2048U |
| #define WPF_GEN3_MAX_WIDTH 8190U |
| #define WPF_GEN3_MAX_HEIGHT 8190U |
| |
| /* ----------------------------------------------------------------------------- |
| * Device Access |
| */ |
| |
| static inline void vsp1_wpf_write(struct vsp1_rwpf *wpf, |
| struct vsp1_dl_list *dl, u32 reg, u32 data) |
| { |
| vsp1_dl_list_write(dl, reg + wpf->entity.index * VI6_WPF_OFFSET, data); |
| } |
| |
| /* ----------------------------------------------------------------------------- |
| * Controls |
| */ |
| |
| enum wpf_flip_ctrl { |
| WPF_CTRL_VFLIP = 0, |
| WPF_CTRL_HFLIP = 1, |
| }; |
| |
| static int vsp1_wpf_set_rotation(struct vsp1_rwpf *wpf, unsigned int rotation) |
| { |
| struct vsp1_video *video = wpf->video; |
| struct v4l2_mbus_framefmt *sink_format; |
| struct v4l2_mbus_framefmt *source_format; |
| bool rotate; |
| int ret = 0; |
| |
| /* |
| * Only consider the 0°/180° from/to 90°/270° modifications, the rest |
| * is taken care of by the flipping configuration. |
| */ |
| rotate = rotation == 90 || rotation == 270; |
| if (rotate == wpf->flip.rotate) |
| return 0; |
| |
| /* Changing rotation isn't allowed when buffers are allocated. */ |
| mutex_lock(&video->lock); |
| |
| if (vb2_is_busy(&video->queue)) { |
| ret = -EBUSY; |
| goto done; |
| } |
| |
| sink_format = vsp1_entity_get_pad_format(&wpf->entity, |
| wpf->entity.config, |
| RWPF_PAD_SINK); |
| source_format = vsp1_entity_get_pad_format(&wpf->entity, |
| wpf->entity.config, |
| RWPF_PAD_SOURCE); |
| |
| mutex_lock(&wpf->entity.lock); |
| |
| if (rotate) { |
| source_format->width = sink_format->height; |
| source_format->height = sink_format->width; |
| } else { |
| source_format->width = sink_format->width; |
| source_format->height = sink_format->height; |
| } |
| |
| wpf->flip.rotate = rotate; |
| |
| mutex_unlock(&wpf->entity.lock); |
| |
| done: |
| mutex_unlock(&video->lock); |
| return ret; |
| } |
| |
| static int vsp1_wpf_s_ctrl(struct v4l2_ctrl *ctrl) |
| { |
| struct vsp1_rwpf *wpf = |
| container_of(ctrl->handler, struct vsp1_rwpf, ctrls); |
| unsigned int rotation; |
| u32 flip = 0; |
| int ret; |
| |
| /* Update the rotation. */ |
| rotation = wpf->flip.ctrls.rotate ? wpf->flip.ctrls.rotate->val : 0; |
| ret = vsp1_wpf_set_rotation(wpf, rotation); |
| if (ret < 0) |
| return ret; |
| |
| /* |
| * Compute the flip value resulting from all three controls, with |
| * rotation by 180° flipping the image in both directions. Store the |
| * result in the pending flip field for the next frame that will be |
| * processed. |
| */ |
| if (wpf->flip.ctrls.vflip->val) |
| flip |= BIT(WPF_CTRL_VFLIP); |
| |
| if (wpf->flip.ctrls.hflip && wpf->flip.ctrls.hflip->val) |
| flip |= BIT(WPF_CTRL_HFLIP); |
| |
| if (rotation == 180 || rotation == 270) |
| flip ^= BIT(WPF_CTRL_VFLIP) | BIT(WPF_CTRL_HFLIP); |
| |
| spin_lock_irq(&wpf->flip.lock); |
| wpf->flip.pending = flip; |
| spin_unlock_irq(&wpf->flip.lock); |
| |
| return 0; |
| } |
| |
| static const struct v4l2_ctrl_ops vsp1_wpf_ctrl_ops = { |
| .s_ctrl = vsp1_wpf_s_ctrl, |
| }; |
| |
| static int wpf_init_controls(struct vsp1_rwpf *wpf) |
| { |
| struct vsp1_device *vsp1 = wpf->entity.vsp1; |
| unsigned int num_flip_ctrls; |
| |
| spin_lock_init(&wpf->flip.lock); |
| |
| if (wpf->entity.index != 0) { |
| /* Only WPF0 supports flipping. */ |
| num_flip_ctrls = 0; |
| } else if (vsp1->info->features & VSP1_HAS_WPF_HFLIP) { |
| /* |
| * When horizontal flip is supported the WPF implements three |
| * controls (horizontal flip, vertical flip and rotation). |
| */ |
| num_flip_ctrls = 3; |
| } else if (vsp1->info->features & VSP1_HAS_WPF_VFLIP) { |
| /* |
| * When only vertical flip is supported the WPF implements a |
| * single control (vertical flip). |
| */ |
| num_flip_ctrls = 1; |
| } else { |
| /* Otherwise flipping is not supported. */ |
| num_flip_ctrls = 0; |
| } |
| |
| vsp1_rwpf_init_ctrls(wpf, num_flip_ctrls); |
| |
| if (num_flip_ctrls >= 1) { |
| wpf->flip.ctrls.vflip = |
| v4l2_ctrl_new_std(&wpf->ctrls, &vsp1_wpf_ctrl_ops, |
| V4L2_CID_VFLIP, 0, 1, 1, 0); |
| } |
| |
| if (num_flip_ctrls == 3) { |
| wpf->flip.ctrls.hflip = |
| v4l2_ctrl_new_std(&wpf->ctrls, &vsp1_wpf_ctrl_ops, |
| V4L2_CID_HFLIP, 0, 1, 1, 0); |
| wpf->flip.ctrls.rotate = |
| v4l2_ctrl_new_std(&wpf->ctrls, &vsp1_wpf_ctrl_ops, |
| V4L2_CID_ROTATE, 0, 270, 90, 0); |
| v4l2_ctrl_cluster(3, &wpf->flip.ctrls.vflip); |
| } |
| |
| if (wpf->ctrls.error) { |
| dev_err(vsp1->dev, "wpf%u: failed to initialize controls\n", |
| wpf->entity.index); |
| return wpf->ctrls.error; |
| } |
| |
| return 0; |
| } |
| |
| /* ----------------------------------------------------------------------------- |
| * V4L2 Subdevice Core Operations |
| */ |
| |
| static int wpf_s_stream(struct v4l2_subdev *subdev, int enable) |
| { |
| struct vsp1_rwpf *wpf = to_rwpf(subdev); |
| struct vsp1_device *vsp1 = wpf->entity.vsp1; |
| |
| if (enable) |
| return 0; |
| |
| /* |
| * Write to registers directly when stopping the stream as there will be |
| * no pipeline run to apply the display list. |
| */ |
| vsp1_write(vsp1, VI6_WPF_IRQ_ENB(wpf->entity.index), 0); |
| vsp1_write(vsp1, wpf->entity.index * VI6_WPF_OFFSET + |
| VI6_WPF_SRCRPF, 0); |
| |
| return 0; |
| } |
| |
| /* ----------------------------------------------------------------------------- |
| * V4L2 Subdevice Operations |
| */ |
| |
| static const struct v4l2_subdev_video_ops wpf_video_ops = { |
| .s_stream = wpf_s_stream, |
| }; |
| |
| static const struct v4l2_subdev_ops wpf_ops = { |
| .video = &wpf_video_ops, |
| .pad = &vsp1_rwpf_pad_ops, |
| }; |
| |
| /* ----------------------------------------------------------------------------- |
| * VSP1 Entity Operations |
| */ |
| |
| static void vsp1_wpf_destroy(struct vsp1_entity *entity) |
| { |
| struct vsp1_rwpf *wpf = entity_to_rwpf(entity); |
| |
| vsp1_dlm_destroy(wpf->dlm); |
| } |
| |
| static void wpf_configure(struct vsp1_entity *entity, |
| struct vsp1_pipeline *pipe, |
| struct vsp1_dl_list *dl, |
| enum vsp1_entity_params params) |
| { |
| struct vsp1_rwpf *wpf = to_rwpf(&entity->subdev); |
| struct vsp1_device *vsp1 = wpf->entity.vsp1; |
| const struct v4l2_mbus_framefmt *source_format; |
| const struct v4l2_mbus_framefmt *sink_format; |
| unsigned int i; |
| u32 outfmt = 0; |
| u32 srcrpf = 0; |
| |
| if (params == VSP1_ENTITY_PARAMS_RUNTIME) { |
| const unsigned int mask = BIT(WPF_CTRL_VFLIP) |
| | BIT(WPF_CTRL_HFLIP); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&wpf->flip.lock, flags); |
| wpf->flip.active = (wpf->flip.active & ~mask) |
| | (wpf->flip.pending & mask); |
| spin_unlock_irqrestore(&wpf->flip.lock, flags); |
| |
| outfmt = (wpf->alpha << VI6_WPF_OUTFMT_PDV_SHIFT) | wpf->outfmt; |
| |
| if (wpf->flip.active & BIT(WPF_CTRL_VFLIP)) |
| outfmt |= VI6_WPF_OUTFMT_FLP; |
| if (wpf->flip.active & BIT(WPF_CTRL_HFLIP)) |
| outfmt |= VI6_WPF_OUTFMT_HFLP; |
| |
| vsp1_wpf_write(wpf, dl, VI6_WPF_OUTFMT, outfmt); |
| return; |
| } |
| |
| sink_format = vsp1_entity_get_pad_format(&wpf->entity, |
| wpf->entity.config, |
| RWPF_PAD_SINK); |
| source_format = vsp1_entity_get_pad_format(&wpf->entity, |
| wpf->entity.config, |
| RWPF_PAD_SOURCE); |
| |
| if (params == VSP1_ENTITY_PARAMS_PARTITION) { |
| const struct v4l2_pix_format_mplane *format = &wpf->format; |
| const struct vsp1_format_info *fmtinfo = wpf->fmtinfo; |
| struct vsp1_rwpf_memory mem = wpf->mem; |
| unsigned int flip = wpf->flip.active; |
| unsigned int width = sink_format->width; |
| unsigned int height = sink_format->height; |
| unsigned int offset; |
| |
| /* |
| * Cropping. The partition algorithm can split the image into |
| * multiple slices. |
| */ |
| if (pipe->partitions > 1) |
| width = pipe->partition->wpf.width; |
| |
| vsp1_wpf_write(wpf, dl, VI6_WPF_HSZCLIP, VI6_WPF_SZCLIP_EN | |
| (0 << VI6_WPF_SZCLIP_OFST_SHIFT) | |
| (width << VI6_WPF_SZCLIP_SIZE_SHIFT)); |
| vsp1_wpf_write(wpf, dl, VI6_WPF_VSZCLIP, VI6_WPF_SZCLIP_EN | |
| (0 << VI6_WPF_SZCLIP_OFST_SHIFT) | |
| (height << VI6_WPF_SZCLIP_SIZE_SHIFT)); |
| |
| if (pipe->lif) |
| return; |
| |
| /* |
| * Update the memory offsets based on flipping configuration. |
| * The destination addresses point to the locations where the |
| * VSP starts writing to memory, which can be any corner of the |
| * image depending on the combination of flipping and rotation. |
| */ |
| |
| /* |
| * First take the partition left coordinate into account. |
| * Compute the offset to order the partitions correctly on the |
| * output based on whether flipping is enabled. Consider |
| * horizontal flipping when rotation is disabled but vertical |
| * flipping when rotation is enabled, as rotating the image |
| * switches the horizontal and vertical directions. The offset |
| * is applied horizontally or vertically accordingly. |
| */ |
| if (flip & BIT(WPF_CTRL_HFLIP) && !wpf->flip.rotate) |
| offset = format->width - pipe->partition->wpf.left |
| - pipe->partition->wpf.width; |
| else if (flip & BIT(WPF_CTRL_VFLIP) && wpf->flip.rotate) |
| offset = format->height - pipe->partition->wpf.left |
| - pipe->partition->wpf.width; |
| else |
| offset = pipe->partition->wpf.left; |
| |
| for (i = 0; i < format->num_planes; ++i) { |
| unsigned int hsub = i > 0 ? fmtinfo->hsub : 1; |
| unsigned int vsub = i > 0 ? fmtinfo->vsub : 1; |
| |
| if (wpf->flip.rotate) |
| mem.addr[i] += offset / vsub |
| * format->plane_fmt[i].bytesperline; |
| else |
| mem.addr[i] += offset / hsub |
| * fmtinfo->bpp[i] / 8; |
| } |
| |
| if (flip & BIT(WPF_CTRL_VFLIP)) { |
| /* |
| * When rotating the output (after rotation) image |
| * height is equal to the partition width (before |
| * rotation). Otherwise it is equal to the output |
| * image height. |
| */ |
| if (wpf->flip.rotate) |
| height = pipe->partition->wpf.width; |
| else |
| height = format->height; |
| |
| mem.addr[0] += (height - 1) |
| * format->plane_fmt[0].bytesperline; |
| |
| if (format->num_planes > 1) { |
| offset = (height / fmtinfo->vsub - 1) |
| * format->plane_fmt[1].bytesperline; |
| mem.addr[1] += offset; |
| mem.addr[2] += offset; |
| } |
| } |
| |
| if (wpf->flip.rotate && !(flip & BIT(WPF_CTRL_HFLIP))) { |
| unsigned int hoffset = max(0, (int)format->width - 16); |
| |
| /* |
| * Compute the output coordinate. The partition |
| * horizontal (left) offset becomes a vertical offset. |
| */ |
| for (i = 0; i < format->num_planes; ++i) { |
| unsigned int hsub = i > 0 ? fmtinfo->hsub : 1; |
| |
| mem.addr[i] += hoffset / hsub |
| * fmtinfo->bpp[i] / 8; |
| } |
| } |
| |
| /* |
| * On Gen3 hardware the SPUVS bit has no effect on 3-planar |
| * formats. Swap the U and V planes manually in that case. |
| */ |
| if (vsp1->info->gen == 3 && format->num_planes == 3 && |
| fmtinfo->swap_uv) |
| swap(mem.addr[1], mem.addr[2]); |
| |
| vsp1_wpf_write(wpf, dl, VI6_WPF_DSTM_ADDR_Y, mem.addr[0]); |
| vsp1_wpf_write(wpf, dl, VI6_WPF_DSTM_ADDR_C0, mem.addr[1]); |
| vsp1_wpf_write(wpf, dl, VI6_WPF_DSTM_ADDR_C1, mem.addr[2]); |
| return; |
| } |
| |
| /* Format */ |
| if (!pipe->lif) { |
| const struct v4l2_pix_format_mplane *format = &wpf->format; |
| const struct vsp1_format_info *fmtinfo = wpf->fmtinfo; |
| |
| outfmt = fmtinfo->hwfmt << VI6_WPF_OUTFMT_WRFMT_SHIFT; |
| |
| if (wpf->flip.rotate) |
| outfmt |= VI6_WPF_OUTFMT_ROT; |
| |
| if (fmtinfo->alpha) |
| outfmt |= VI6_WPF_OUTFMT_PXA; |
| if (fmtinfo->swap_yc) |
| outfmt |= VI6_WPF_OUTFMT_SPYCS; |
| if (fmtinfo->swap_uv) |
| outfmt |= VI6_WPF_OUTFMT_SPUVS; |
| |
| /* Destination stride and byte swapping. */ |
| vsp1_wpf_write(wpf, dl, VI6_WPF_DSTM_STRIDE_Y, |
| format->plane_fmt[0].bytesperline); |
| if (format->num_planes > 1) |
| vsp1_wpf_write(wpf, dl, VI6_WPF_DSTM_STRIDE_C, |
| format->plane_fmt[1].bytesperline); |
| |
| vsp1_wpf_write(wpf, dl, VI6_WPF_DSWAP, fmtinfo->swap); |
| |
| if (vsp1->info->features & VSP1_HAS_WPF_HFLIP && |
| wpf->entity.index == 0) |
| vsp1_wpf_write(wpf, dl, VI6_WPF_ROT_CTRL, |
| VI6_WPF_ROT_CTRL_LN16 | |
| (256 << VI6_WPF_ROT_CTRL_LMEM_WD_SHIFT)); |
| } |
| |
| if (sink_format->code != source_format->code) |
| outfmt |= VI6_WPF_OUTFMT_CSC; |
| |
| wpf->outfmt = outfmt; |
| |
| vsp1_dl_list_write(dl, VI6_DPR_WPF_FPORCH(wpf->entity.index), |
| VI6_DPR_WPF_FPORCH_FP_WPFN); |
| |
| vsp1_dl_list_write(dl, VI6_WPF_WRBCK_CTRL, 0); |
| |
| /* |
| * Sources. If the pipeline has a single input and BRU is not used, |
| * configure it as the master layer. Otherwise configure all |
| * inputs as sub-layers and select the virtual RPF as the master |
| * layer. |
| */ |
| for (i = 0; i < vsp1->info->rpf_count; ++i) { |
| struct vsp1_rwpf *input = pipe->inputs[i]; |
| |
| if (!input) |
| continue; |
| |
| srcrpf |= (!pipe->bru && pipe->num_inputs == 1) |
| ? VI6_WPF_SRCRPF_RPF_ACT_MST(input->entity.index) |
| : VI6_WPF_SRCRPF_RPF_ACT_SUB(input->entity.index); |
| } |
| |
| if (pipe->bru || pipe->num_inputs > 1) |
| srcrpf |= pipe->bru->type == VSP1_ENTITY_BRU |
| ? VI6_WPF_SRCRPF_VIRACT_MST |
| : VI6_WPF_SRCRPF_VIRACT2_MST; |
| |
| vsp1_wpf_write(wpf, dl, VI6_WPF_SRCRPF, srcrpf); |
| |
| /* Enable interrupts */ |
| vsp1_dl_list_write(dl, VI6_WPF_IRQ_STA(wpf->entity.index), 0); |
| vsp1_dl_list_write(dl, VI6_WPF_IRQ_ENB(wpf->entity.index), |
| VI6_WFP_IRQ_ENB_DFEE); |
| } |
| |
| static unsigned int wpf_max_width(struct vsp1_entity *entity, |
| struct vsp1_pipeline *pipe) |
| { |
| struct vsp1_rwpf *wpf = to_rwpf(&entity->subdev); |
| |
| return wpf->flip.rotate ? 256 : wpf->max_width; |
| } |
| |
| static void wpf_partition(struct vsp1_entity *entity, |
| struct vsp1_pipeline *pipe, |
| struct vsp1_partition *partition, |
| unsigned int partition_idx, |
| struct vsp1_partition_window *window) |
| { |
| partition->wpf = *window; |
| } |
| |
| static const struct vsp1_entity_operations wpf_entity_ops = { |
| .destroy = vsp1_wpf_destroy, |
| .configure = wpf_configure, |
| .max_width = wpf_max_width, |
| .partition = wpf_partition, |
| }; |
| |
| /* ----------------------------------------------------------------------------- |
| * Initialization and Cleanup |
| */ |
| |
| struct vsp1_rwpf *vsp1_wpf_create(struct vsp1_device *vsp1, unsigned int index) |
| { |
| struct vsp1_rwpf *wpf; |
| char name[6]; |
| int ret; |
| |
| wpf = devm_kzalloc(vsp1->dev, sizeof(*wpf), GFP_KERNEL); |
| if (wpf == NULL) |
| return ERR_PTR(-ENOMEM); |
| |
| if (vsp1->info->gen == 2) { |
| wpf->max_width = WPF_GEN2_MAX_WIDTH; |
| wpf->max_height = WPF_GEN2_MAX_HEIGHT; |
| } else { |
| wpf->max_width = WPF_GEN3_MAX_WIDTH; |
| wpf->max_height = WPF_GEN3_MAX_HEIGHT; |
| } |
| |
| wpf->entity.ops = &wpf_entity_ops; |
| wpf->entity.type = VSP1_ENTITY_WPF; |
| wpf->entity.index = index; |
| |
| sprintf(name, "wpf.%u", index); |
| ret = vsp1_entity_init(vsp1, &wpf->entity, name, 2, &wpf_ops, |
| MEDIA_ENT_F_PROC_VIDEO_PIXEL_FORMATTER); |
| if (ret < 0) |
| return ERR_PTR(ret); |
| |
| /* Initialize the display list manager. */ |
| wpf->dlm = vsp1_dlm_create(vsp1, index, 64); |
| if (!wpf->dlm) { |
| ret = -ENOMEM; |
| goto error; |
| } |
| |
| /* Initialize the control handler. */ |
| ret = wpf_init_controls(wpf); |
| if (ret < 0) { |
| dev_err(vsp1->dev, "wpf%u: failed to initialize controls\n", |
| index); |
| goto error; |
| } |
| |
| v4l2_ctrl_handler_setup(&wpf->ctrls); |
| |
| return wpf; |
| |
| error: |
| vsp1_entity_destroy(&wpf->entity); |
| return ERR_PTR(ret); |
| } |