| /* |
| * multiorder.c: Multi-order radix tree entry testing |
| * Copyright (c) 2016 Intel Corporation |
| * Author: Ross Zwisler <ross.zwisler@linux.intel.com> |
| * Author: Matthew Wilcox <matthew.r.wilcox@intel.com> |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms and conditions of the GNU General Public License, |
| * version 2, as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| */ |
| #include <linux/radix-tree.h> |
| #include <linux/slab.h> |
| #include <linux/errno.h> |
| |
| #include "test.h" |
| |
| #define for_each_index(i, base, order) \ |
| for (i = base; i < base + (1 << order); i++) |
| |
| static void __multiorder_tag_test(int index, int order) |
| { |
| RADIX_TREE(tree, GFP_KERNEL); |
| int base, err, i; |
| |
| /* our canonical entry */ |
| base = index & ~((1 << order) - 1); |
| |
| printv(2, "Multiorder tag test with index %d, canonical entry %d\n", |
| index, base); |
| |
| err = item_insert_order(&tree, index, order); |
| assert(!err); |
| |
| /* |
| * Verify we get collisions for covered indices. We try and fail to |
| * insert an exceptional entry so we don't leak memory via |
| * item_insert_order(). |
| */ |
| for_each_index(i, base, order) { |
| err = __radix_tree_insert(&tree, i, order, |
| (void *)(0xA0 | RADIX_TREE_EXCEPTIONAL_ENTRY)); |
| assert(err == -EEXIST); |
| } |
| |
| for_each_index(i, base, order) { |
| assert(!radix_tree_tag_get(&tree, i, 0)); |
| assert(!radix_tree_tag_get(&tree, i, 1)); |
| } |
| |
| assert(radix_tree_tag_set(&tree, index, 0)); |
| |
| for_each_index(i, base, order) { |
| assert(radix_tree_tag_get(&tree, i, 0)); |
| assert(!radix_tree_tag_get(&tree, i, 1)); |
| } |
| |
| assert(tag_tagged_items(&tree, NULL, 0, ~0UL, 10, 0, 1) == 1); |
| assert(radix_tree_tag_clear(&tree, index, 0)); |
| |
| for_each_index(i, base, order) { |
| assert(!radix_tree_tag_get(&tree, i, 0)); |
| assert(radix_tree_tag_get(&tree, i, 1)); |
| } |
| |
| assert(radix_tree_tag_clear(&tree, index, 1)); |
| |
| assert(!radix_tree_tagged(&tree, 0)); |
| assert(!radix_tree_tagged(&tree, 1)); |
| |
| item_kill_tree(&tree); |
| } |
| |
| static void __multiorder_tag_test2(unsigned order, unsigned long index2) |
| { |
| RADIX_TREE(tree, GFP_KERNEL); |
| unsigned long index = (1 << order); |
| index2 += index; |
| |
| assert(item_insert_order(&tree, 0, order) == 0); |
| assert(item_insert(&tree, index2) == 0); |
| |
| assert(radix_tree_tag_set(&tree, 0, 0)); |
| assert(radix_tree_tag_set(&tree, index2, 0)); |
| |
| assert(tag_tagged_items(&tree, NULL, 0, ~0UL, 10, 0, 1) == 2); |
| |
| item_kill_tree(&tree); |
| } |
| |
| static void multiorder_tag_tests(void) |
| { |
| int i, j; |
| |
| /* test multi-order entry for indices 0-7 with no sibling pointers */ |
| __multiorder_tag_test(0, 3); |
| __multiorder_tag_test(5, 3); |
| |
| /* test multi-order entry for indices 8-15 with no sibling pointers */ |
| __multiorder_tag_test(8, 3); |
| __multiorder_tag_test(15, 3); |
| |
| /* |
| * Our order 5 entry covers indices 0-31 in a tree with height=2. |
| * This is broken up as follows: |
| * 0-7: canonical entry |
| * 8-15: sibling 1 |
| * 16-23: sibling 2 |
| * 24-31: sibling 3 |
| */ |
| __multiorder_tag_test(0, 5); |
| __multiorder_tag_test(29, 5); |
| |
| /* same test, but with indices 32-63 */ |
| __multiorder_tag_test(32, 5); |
| __multiorder_tag_test(44, 5); |
| |
| /* |
| * Our order 8 entry covers indices 0-255 in a tree with height=3. |
| * This is broken up as follows: |
| * 0-63: canonical entry |
| * 64-127: sibling 1 |
| * 128-191: sibling 2 |
| * 192-255: sibling 3 |
| */ |
| __multiorder_tag_test(0, 8); |
| __multiorder_tag_test(190, 8); |
| |
| /* same test, but with indices 256-511 */ |
| __multiorder_tag_test(256, 8); |
| __multiorder_tag_test(300, 8); |
| |
| __multiorder_tag_test(0x12345678UL, 8); |
| |
| for (i = 1; i < 10; i++) |
| for (j = 0; j < (10 << i); j++) |
| __multiorder_tag_test2(i, j); |
| } |
| |
| static void multiorder_check(unsigned long index, int order) |
| { |
| unsigned long i; |
| unsigned long min = index & ~((1UL << order) - 1); |
| unsigned long max = min + (1UL << order); |
| void **slot; |
| struct item *item2 = item_create(min, order); |
| RADIX_TREE(tree, GFP_KERNEL); |
| |
| printv(2, "Multiorder index %ld, order %d\n", index, order); |
| |
| assert(item_insert_order(&tree, index, order) == 0); |
| |
| for (i = min; i < max; i++) { |
| struct item *item = item_lookup(&tree, i); |
| assert(item != 0); |
| assert(item->index == index); |
| } |
| for (i = 0; i < min; i++) |
| item_check_absent(&tree, i); |
| for (i = max; i < 2*max; i++) |
| item_check_absent(&tree, i); |
| for (i = min; i < max; i++) |
| assert(radix_tree_insert(&tree, i, item2) == -EEXIST); |
| |
| slot = radix_tree_lookup_slot(&tree, index); |
| free(*slot); |
| radix_tree_replace_slot(&tree, slot, item2); |
| for (i = min; i < max; i++) { |
| struct item *item = item_lookup(&tree, i); |
| assert(item != 0); |
| assert(item->index == min); |
| } |
| |
| assert(item_delete(&tree, min) != 0); |
| |
| for (i = 0; i < 2*max; i++) |
| item_check_absent(&tree, i); |
| } |
| |
| static void multiorder_shrink(unsigned long index, int order) |
| { |
| unsigned long i; |
| unsigned long max = 1 << order; |
| RADIX_TREE(tree, GFP_KERNEL); |
| struct radix_tree_node *node; |
| |
| printv(2, "Multiorder shrink index %ld, order %d\n", index, order); |
| |
| assert(item_insert_order(&tree, 0, order) == 0); |
| |
| node = tree.rnode; |
| |
| assert(item_insert(&tree, index) == 0); |
| assert(node != tree.rnode); |
| |
| assert(item_delete(&tree, index) != 0); |
| assert(node == tree.rnode); |
| |
| for (i = 0; i < max; i++) { |
| struct item *item = item_lookup(&tree, i); |
| assert(item != 0); |
| assert(item->index == 0); |
| } |
| for (i = max; i < 2*max; i++) |
| item_check_absent(&tree, i); |
| |
| if (!item_delete(&tree, 0)) { |
| printv(2, "failed to delete index %ld (order %d)\n", index, order); |
| abort(); |
| } |
| |
| for (i = 0; i < 2*max; i++) |
| item_check_absent(&tree, i); |
| } |
| |
| static void multiorder_insert_bug(void) |
| { |
| RADIX_TREE(tree, GFP_KERNEL); |
| |
| item_insert(&tree, 0); |
| radix_tree_tag_set(&tree, 0, 0); |
| item_insert_order(&tree, 3 << 6, 6); |
| |
| item_kill_tree(&tree); |
| } |
| |
| void multiorder_iteration(void) |
| { |
| RADIX_TREE(tree, GFP_KERNEL); |
| struct radix_tree_iter iter; |
| void **slot; |
| int i, j, err; |
| |
| printv(1, "Multiorder iteration test\n"); |
| |
| #define NUM_ENTRIES 11 |
| int index[NUM_ENTRIES] = {0, 2, 4, 8, 16, 32, 34, 36, 64, 72, 128}; |
| int order[NUM_ENTRIES] = {1, 1, 2, 3, 4, 1, 0, 1, 3, 0, 7}; |
| |
| for (i = 0; i < NUM_ENTRIES; i++) { |
| err = item_insert_order(&tree, index[i], order[i]); |
| assert(!err); |
| } |
| |
| for (j = 0; j < 256; j++) { |
| for (i = 0; i < NUM_ENTRIES; i++) |
| if (j <= (index[i] | ((1 << order[i]) - 1))) |
| break; |
| |
| radix_tree_for_each_slot(slot, &tree, &iter, j) { |
| int height = order[i] / RADIX_TREE_MAP_SHIFT; |
| int shift = height * RADIX_TREE_MAP_SHIFT; |
| unsigned long mask = (1UL << order[i]) - 1; |
| struct item *item = *slot; |
| |
| assert((iter.index | mask) == (index[i] | mask)); |
| assert(iter.shift == shift); |
| assert(!radix_tree_is_internal_node(item)); |
| assert((item->index | mask) == (index[i] | mask)); |
| assert(item->order == order[i]); |
| i++; |
| } |
| } |
| |
| item_kill_tree(&tree); |
| } |
| |
| void multiorder_tagged_iteration(void) |
| { |
| RADIX_TREE(tree, GFP_KERNEL); |
| struct radix_tree_iter iter; |
| void **slot; |
| int i, j; |
| |
| printv(1, "Multiorder tagged iteration test\n"); |
| |
| #define MT_NUM_ENTRIES 9 |
| int index[MT_NUM_ENTRIES] = {0, 2, 4, 16, 32, 40, 64, 72, 128}; |
| int order[MT_NUM_ENTRIES] = {1, 0, 2, 4, 3, 1, 3, 0, 7}; |
| |
| #define TAG_ENTRIES 7 |
| int tag_index[TAG_ENTRIES] = {0, 4, 16, 40, 64, 72, 128}; |
| |
| for (i = 0; i < MT_NUM_ENTRIES; i++) |
| assert(!item_insert_order(&tree, index[i], order[i])); |
| |
| assert(!radix_tree_tagged(&tree, 1)); |
| |
| for (i = 0; i < TAG_ENTRIES; i++) |
| assert(radix_tree_tag_set(&tree, tag_index[i], 1)); |
| |
| for (j = 0; j < 256; j++) { |
| int k; |
| |
| for (i = 0; i < TAG_ENTRIES; i++) { |
| for (k = i; index[k] < tag_index[i]; k++) |
| ; |
| if (j <= (index[k] | ((1 << order[k]) - 1))) |
| break; |
| } |
| |
| radix_tree_for_each_tagged(slot, &tree, &iter, j, 1) { |
| unsigned long mask; |
| struct item *item = *slot; |
| for (k = i; index[k] < tag_index[i]; k++) |
| ; |
| mask = (1UL << order[k]) - 1; |
| |
| assert((iter.index | mask) == (tag_index[i] | mask)); |
| assert(!radix_tree_is_internal_node(item)); |
| assert((item->index | mask) == (tag_index[i] | mask)); |
| assert(item->order == order[k]); |
| i++; |
| } |
| } |
| |
| assert(tag_tagged_items(&tree, NULL, 0, ~0UL, TAG_ENTRIES, 1, 2) == |
| TAG_ENTRIES); |
| |
| for (j = 0; j < 256; j++) { |
| int mask, k; |
| |
| for (i = 0; i < TAG_ENTRIES; i++) { |
| for (k = i; index[k] < tag_index[i]; k++) |
| ; |
| if (j <= (index[k] | ((1 << order[k]) - 1))) |
| break; |
| } |
| |
| radix_tree_for_each_tagged(slot, &tree, &iter, j, 2) { |
| struct item *item = *slot; |
| for (k = i; index[k] < tag_index[i]; k++) |
| ; |
| mask = (1 << order[k]) - 1; |
| |
| assert((iter.index | mask) == (tag_index[i] | mask)); |
| assert(!radix_tree_is_internal_node(item)); |
| assert((item->index | mask) == (tag_index[i] | mask)); |
| assert(item->order == order[k]); |
| i++; |
| } |
| } |
| |
| assert(tag_tagged_items(&tree, NULL, 1, ~0UL, MT_NUM_ENTRIES * 2, 1, 0) |
| == TAG_ENTRIES); |
| i = 0; |
| radix_tree_for_each_tagged(slot, &tree, &iter, 0, 0) { |
| assert(iter.index == tag_index[i]); |
| i++; |
| } |
| |
| item_kill_tree(&tree); |
| } |
| |
| /* |
| * Basic join checks: make sure we can't find an entry in the tree after |
| * a larger entry has replaced it |
| */ |
| static void multiorder_join1(unsigned long index, |
| unsigned order1, unsigned order2) |
| { |
| unsigned long loc; |
| void *item, *item2 = item_create(index + 1, order1); |
| RADIX_TREE(tree, GFP_KERNEL); |
| |
| item_insert_order(&tree, index, order2); |
| item = radix_tree_lookup(&tree, index); |
| radix_tree_join(&tree, index + 1, order1, item2); |
| loc = find_item(&tree, item); |
| if (loc == -1) |
| free(item); |
| item = radix_tree_lookup(&tree, index + 1); |
| assert(item == item2); |
| item_kill_tree(&tree); |
| } |
| |
| /* |
| * Check that the accounting of exceptional entries is handled correctly |
| * by joining an exceptional entry to a normal pointer. |
| */ |
| static void multiorder_join2(unsigned order1, unsigned order2) |
| { |
| RADIX_TREE(tree, GFP_KERNEL); |
| struct radix_tree_node *node; |
| void *item1 = item_create(0, order1); |
| void *item2; |
| |
| item_insert_order(&tree, 0, order2); |
| radix_tree_insert(&tree, 1 << order2, (void *)0x12UL); |
| item2 = __radix_tree_lookup(&tree, 1 << order2, &node, NULL); |
| assert(item2 == (void *)0x12UL); |
| assert(node->exceptional == 1); |
| |
| item2 = radix_tree_lookup(&tree, 0); |
| free(item2); |
| |
| radix_tree_join(&tree, 0, order1, item1); |
| item2 = __radix_tree_lookup(&tree, 1 << order2, &node, NULL); |
| assert(item2 == item1); |
| assert(node->exceptional == 0); |
| item_kill_tree(&tree); |
| } |
| |
| /* |
| * This test revealed an accounting bug for exceptional entries at one point. |
| * Nodes were being freed back into the pool with an elevated exception count |
| * by radix_tree_join() and then radix_tree_split() was failing to zero the |
| * count of exceptional entries. |
| */ |
| static void multiorder_join3(unsigned int order) |
| { |
| RADIX_TREE(tree, GFP_KERNEL); |
| struct radix_tree_node *node; |
| void **slot; |
| struct radix_tree_iter iter; |
| unsigned long i; |
| |
| for (i = 0; i < (1 << order); i++) { |
| radix_tree_insert(&tree, i, (void *)0x12UL); |
| } |
| |
| radix_tree_join(&tree, 0, order, (void *)0x16UL); |
| rcu_barrier(); |
| |
| radix_tree_split(&tree, 0, 0); |
| |
| radix_tree_for_each_slot(slot, &tree, &iter, 0) { |
| radix_tree_iter_replace(&tree, &iter, slot, (void *)0x12UL); |
| } |
| |
| __radix_tree_lookup(&tree, 0, &node, NULL); |
| assert(node->exceptional == node->count); |
| |
| item_kill_tree(&tree); |
| } |
| |
| static void multiorder_join(void) |
| { |
| int i, j, idx; |
| |
| for (idx = 0; idx < 1024; idx = idx * 2 + 3) { |
| for (i = 1; i < 15; i++) { |
| for (j = 0; j < i; j++) { |
| multiorder_join1(idx, i, j); |
| } |
| } |
| } |
| |
| for (i = 1; i < 15; i++) { |
| for (j = 0; j < i; j++) { |
| multiorder_join2(i, j); |
| } |
| } |
| |
| for (i = 3; i < 10; i++) { |
| multiorder_join3(i); |
| } |
| } |
| |
| static void check_mem(unsigned old_order, unsigned new_order, unsigned alloc) |
| { |
| struct radix_tree_preload *rtp = &radix_tree_preloads; |
| if (rtp->nr != 0) |
| printv(2, "split(%u %u) remaining %u\n", old_order, new_order, |
| rtp->nr); |
| /* |
| * Can't check for equality here as some nodes may have been |
| * RCU-freed while we ran. But we should never finish with more |
| * nodes allocated since they should have all been preloaded. |
| */ |
| if (nr_allocated > alloc) |
| printv(2, "split(%u %u) allocated %u %u\n", old_order, new_order, |
| alloc, nr_allocated); |
| } |
| |
| static void __multiorder_split(int old_order, int new_order) |
| { |
| RADIX_TREE(tree, GFP_ATOMIC); |
| void **slot; |
| struct radix_tree_iter iter; |
| unsigned alloc; |
| struct item *item; |
| |
| radix_tree_preload(GFP_KERNEL); |
| assert(item_insert_order(&tree, 0, old_order) == 0); |
| radix_tree_preload_end(); |
| |
| /* Wipe out the preloaded cache or it'll confuse check_mem() */ |
| radix_tree_cpu_dead(0); |
| |
| item = radix_tree_tag_set(&tree, 0, 2); |
| |
| radix_tree_split_preload(old_order, new_order, GFP_KERNEL); |
| alloc = nr_allocated; |
| radix_tree_split(&tree, 0, new_order); |
| check_mem(old_order, new_order, alloc); |
| radix_tree_for_each_slot(slot, &tree, &iter, 0) { |
| radix_tree_iter_replace(&tree, &iter, slot, |
| item_create(iter.index, new_order)); |
| } |
| radix_tree_preload_end(); |
| |
| item_kill_tree(&tree); |
| free(item); |
| } |
| |
| static void __multiorder_split2(int old_order, int new_order) |
| { |
| RADIX_TREE(tree, GFP_KERNEL); |
| void **slot; |
| struct radix_tree_iter iter; |
| struct radix_tree_node *node; |
| void *item; |
| |
| __radix_tree_insert(&tree, 0, old_order, (void *)0x12); |
| |
| item = __radix_tree_lookup(&tree, 0, &node, NULL); |
| assert(item == (void *)0x12); |
| assert(node->exceptional > 0); |
| |
| radix_tree_split(&tree, 0, new_order); |
| radix_tree_for_each_slot(slot, &tree, &iter, 0) { |
| radix_tree_iter_replace(&tree, &iter, slot, |
| item_create(iter.index, new_order)); |
| } |
| |
| item = __radix_tree_lookup(&tree, 0, &node, NULL); |
| assert(item != (void *)0x12); |
| assert(node->exceptional == 0); |
| |
| item_kill_tree(&tree); |
| } |
| |
| static void __multiorder_split3(int old_order, int new_order) |
| { |
| RADIX_TREE(tree, GFP_KERNEL); |
| void **slot; |
| struct radix_tree_iter iter; |
| struct radix_tree_node *node; |
| void *item; |
| |
| __radix_tree_insert(&tree, 0, old_order, (void *)0x12); |
| |
| item = __radix_tree_lookup(&tree, 0, &node, NULL); |
| assert(item == (void *)0x12); |
| assert(node->exceptional > 0); |
| |
| radix_tree_split(&tree, 0, new_order); |
| radix_tree_for_each_slot(slot, &tree, &iter, 0) { |
| radix_tree_iter_replace(&tree, &iter, slot, (void *)0x16); |
| } |
| |
| item = __radix_tree_lookup(&tree, 0, &node, NULL); |
| assert(item == (void *)0x16); |
| assert(node->exceptional > 0); |
| |
| item_kill_tree(&tree); |
| |
| __radix_tree_insert(&tree, 0, old_order, (void *)0x12); |
| |
| item = __radix_tree_lookup(&tree, 0, &node, NULL); |
| assert(item == (void *)0x12); |
| assert(node->exceptional > 0); |
| |
| radix_tree_split(&tree, 0, new_order); |
| radix_tree_for_each_slot(slot, &tree, &iter, 0) { |
| if (iter.index == (1 << new_order)) |
| radix_tree_iter_replace(&tree, &iter, slot, |
| (void *)0x16); |
| else |
| radix_tree_iter_replace(&tree, &iter, slot, NULL); |
| } |
| |
| item = __radix_tree_lookup(&tree, 1 << new_order, &node, NULL); |
| assert(item == (void *)0x16); |
| assert(node->count == node->exceptional); |
| do { |
| node = node->parent; |
| if (!node) |
| break; |
| assert(node->count == 1); |
| assert(node->exceptional == 0); |
| } while (1); |
| |
| item_kill_tree(&tree); |
| } |
| |
| static void multiorder_split(void) |
| { |
| int i, j; |
| |
| for (i = 3; i < 11; i++) |
| for (j = 0; j < i; j++) { |
| __multiorder_split(i, j); |
| __multiorder_split2(i, j); |
| __multiorder_split3(i, j); |
| } |
| } |
| |
| static void multiorder_account(void) |
| { |
| RADIX_TREE(tree, GFP_KERNEL); |
| struct radix_tree_node *node; |
| void **slot; |
| |
| item_insert_order(&tree, 0, 5); |
| |
| __radix_tree_insert(&tree, 1 << 5, 5, (void *)0x12); |
| __radix_tree_lookup(&tree, 0, &node, NULL); |
| assert(node->count == node->exceptional * 2); |
| radix_tree_delete(&tree, 1 << 5); |
| assert(node->exceptional == 0); |
| |
| __radix_tree_insert(&tree, 1 << 5, 5, (void *)0x12); |
| __radix_tree_lookup(&tree, 1 << 5, &node, &slot); |
| assert(node->count == node->exceptional * 2); |
| __radix_tree_replace(&tree, node, slot, NULL, NULL, NULL); |
| assert(node->exceptional == 0); |
| |
| item_kill_tree(&tree); |
| } |
| |
| void multiorder_checks(void) |
| { |
| int i; |
| |
| for (i = 0; i < 20; i++) { |
| multiorder_check(200, i); |
| multiorder_check(0, i); |
| multiorder_check((1UL << i) + 1, i); |
| } |
| |
| for (i = 0; i < 15; i++) |
| multiorder_shrink((1UL << (i + RADIX_TREE_MAP_SHIFT)), i); |
| |
| multiorder_insert_bug(); |
| multiorder_tag_tests(); |
| multiorder_iteration(); |
| multiorder_tagged_iteration(); |
| multiorder_join(); |
| multiorder_split(); |
| multiorder_account(); |
| |
| radix_tree_cpu_dead(0); |
| } |
| |
| int __weak main(void) |
| { |
| radix_tree_init(); |
| multiorder_checks(); |
| return 0; |
| } |