|  | /* | 
|  | * SuperH FLCTL nand controller | 
|  | * | 
|  | * Copyright (c) 2008 Renesas Solutions Corp. | 
|  | * Copyright (c) 2008 Atom Create Engineering Co., Ltd. | 
|  | * | 
|  | * Based on fsl_elbc_nand.c, Copyright (c) 2006-2007 Freescale Semiconductor | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; version 2 of the License. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/completion.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/dmaengine.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/of.h> | 
|  | #include <linux/of_device.h> | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/pm_runtime.h> | 
|  | #include <linux/sh_dma.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/string.h> | 
|  |  | 
|  | #include <linux/mtd/mtd.h> | 
|  | #include <linux/mtd/nand.h> | 
|  | #include <linux/mtd/partitions.h> | 
|  | #include <linux/mtd/sh_flctl.h> | 
|  |  | 
|  | static int flctl_4secc_ooblayout_sp_ecc(struct mtd_info *mtd, int section, | 
|  | struct mtd_oob_region *oobregion) | 
|  | { | 
|  | struct nand_chip *chip = mtd_to_nand(mtd); | 
|  |  | 
|  | if (section) | 
|  | return -ERANGE; | 
|  |  | 
|  | oobregion->offset = 0; | 
|  | oobregion->length = chip->ecc.bytes; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int flctl_4secc_ooblayout_sp_free(struct mtd_info *mtd, int section, | 
|  | struct mtd_oob_region *oobregion) | 
|  | { | 
|  | if (section) | 
|  | return -ERANGE; | 
|  |  | 
|  | oobregion->offset = 12; | 
|  | oobregion->length = 4; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct mtd_ooblayout_ops flctl_4secc_oob_smallpage_ops = { | 
|  | .ecc = flctl_4secc_ooblayout_sp_ecc, | 
|  | .free = flctl_4secc_ooblayout_sp_free, | 
|  | }; | 
|  |  | 
|  | static int flctl_4secc_ooblayout_lp_ecc(struct mtd_info *mtd, int section, | 
|  | struct mtd_oob_region *oobregion) | 
|  | { | 
|  | struct nand_chip *chip = mtd_to_nand(mtd); | 
|  |  | 
|  | if (section >= chip->ecc.steps) | 
|  | return -ERANGE; | 
|  |  | 
|  | oobregion->offset = (section * 16) + 6; | 
|  | oobregion->length = chip->ecc.bytes; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int flctl_4secc_ooblayout_lp_free(struct mtd_info *mtd, int section, | 
|  | struct mtd_oob_region *oobregion) | 
|  | { | 
|  | struct nand_chip *chip = mtd_to_nand(mtd); | 
|  |  | 
|  | if (section >= chip->ecc.steps) | 
|  | return -ERANGE; | 
|  |  | 
|  | oobregion->offset = section * 16; | 
|  | oobregion->length = 6; | 
|  |  | 
|  | if (!section) { | 
|  | oobregion->offset += 2; | 
|  | oobregion->length -= 2; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct mtd_ooblayout_ops flctl_4secc_oob_largepage_ops = { | 
|  | .ecc = flctl_4secc_ooblayout_lp_ecc, | 
|  | .free = flctl_4secc_ooblayout_lp_free, | 
|  | }; | 
|  |  | 
|  | static uint8_t scan_ff_pattern[] = { 0xff, 0xff }; | 
|  |  | 
|  | static struct nand_bbt_descr flctl_4secc_smallpage = { | 
|  | .options = NAND_BBT_SCAN2NDPAGE, | 
|  | .offs = 11, | 
|  | .len = 1, | 
|  | .pattern = scan_ff_pattern, | 
|  | }; | 
|  |  | 
|  | static struct nand_bbt_descr flctl_4secc_largepage = { | 
|  | .options = NAND_BBT_SCAN2NDPAGE, | 
|  | .offs = 0, | 
|  | .len = 2, | 
|  | .pattern = scan_ff_pattern, | 
|  | }; | 
|  |  | 
|  | static void empty_fifo(struct sh_flctl *flctl) | 
|  | { | 
|  | writel(flctl->flintdmacr_base | AC1CLR | AC0CLR, FLINTDMACR(flctl)); | 
|  | writel(flctl->flintdmacr_base, FLINTDMACR(flctl)); | 
|  | } | 
|  |  | 
|  | static void start_translation(struct sh_flctl *flctl) | 
|  | { | 
|  | writeb(TRSTRT, FLTRCR(flctl)); | 
|  | } | 
|  |  | 
|  | static void timeout_error(struct sh_flctl *flctl, const char *str) | 
|  | { | 
|  | dev_err(&flctl->pdev->dev, "Timeout occurred in %s\n", str); | 
|  | } | 
|  |  | 
|  | static void wait_completion(struct sh_flctl *flctl) | 
|  | { | 
|  | uint32_t timeout = LOOP_TIMEOUT_MAX; | 
|  |  | 
|  | while (timeout--) { | 
|  | if (readb(FLTRCR(flctl)) & TREND) { | 
|  | writeb(0x0, FLTRCR(flctl)); | 
|  | return; | 
|  | } | 
|  | udelay(1); | 
|  | } | 
|  |  | 
|  | timeout_error(flctl, __func__); | 
|  | writeb(0x0, FLTRCR(flctl)); | 
|  | } | 
|  |  | 
|  | static void flctl_dma_complete(void *param) | 
|  | { | 
|  | struct sh_flctl *flctl = param; | 
|  |  | 
|  | complete(&flctl->dma_complete); | 
|  | } | 
|  |  | 
|  | static void flctl_release_dma(struct sh_flctl *flctl) | 
|  | { | 
|  | if (flctl->chan_fifo0_rx) { | 
|  | dma_release_channel(flctl->chan_fifo0_rx); | 
|  | flctl->chan_fifo0_rx = NULL; | 
|  | } | 
|  | if (flctl->chan_fifo0_tx) { | 
|  | dma_release_channel(flctl->chan_fifo0_tx); | 
|  | flctl->chan_fifo0_tx = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void flctl_setup_dma(struct sh_flctl *flctl) | 
|  | { | 
|  | dma_cap_mask_t mask; | 
|  | struct dma_slave_config cfg; | 
|  | struct platform_device *pdev = flctl->pdev; | 
|  | struct sh_flctl_platform_data *pdata = dev_get_platdata(&pdev->dev); | 
|  | int ret; | 
|  |  | 
|  | if (!pdata) | 
|  | return; | 
|  |  | 
|  | if (pdata->slave_id_fifo0_tx <= 0 || pdata->slave_id_fifo0_rx <= 0) | 
|  | return; | 
|  |  | 
|  | /* We can only either use DMA for both Tx and Rx or not use it at all */ | 
|  | dma_cap_zero(mask); | 
|  | dma_cap_set(DMA_SLAVE, mask); | 
|  |  | 
|  | flctl->chan_fifo0_tx = dma_request_channel(mask, shdma_chan_filter, | 
|  | (void *)(uintptr_t)pdata->slave_id_fifo0_tx); | 
|  | dev_dbg(&pdev->dev, "%s: TX: got channel %p\n", __func__, | 
|  | flctl->chan_fifo0_tx); | 
|  |  | 
|  | if (!flctl->chan_fifo0_tx) | 
|  | return; | 
|  |  | 
|  | memset(&cfg, 0, sizeof(cfg)); | 
|  | cfg.direction = DMA_MEM_TO_DEV; | 
|  | cfg.dst_addr = flctl->fifo; | 
|  | cfg.src_addr = 0; | 
|  | ret = dmaengine_slave_config(flctl->chan_fifo0_tx, &cfg); | 
|  | if (ret < 0) | 
|  | goto err; | 
|  |  | 
|  | flctl->chan_fifo0_rx = dma_request_channel(mask, shdma_chan_filter, | 
|  | (void *)(uintptr_t)pdata->slave_id_fifo0_rx); | 
|  | dev_dbg(&pdev->dev, "%s: RX: got channel %p\n", __func__, | 
|  | flctl->chan_fifo0_rx); | 
|  |  | 
|  | if (!flctl->chan_fifo0_rx) | 
|  | goto err; | 
|  |  | 
|  | cfg.direction = DMA_DEV_TO_MEM; | 
|  | cfg.dst_addr = 0; | 
|  | cfg.src_addr = flctl->fifo; | 
|  | ret = dmaengine_slave_config(flctl->chan_fifo0_rx, &cfg); | 
|  | if (ret < 0) | 
|  | goto err; | 
|  |  | 
|  | init_completion(&flctl->dma_complete); | 
|  |  | 
|  | return; | 
|  |  | 
|  | err: | 
|  | flctl_release_dma(flctl); | 
|  | } | 
|  |  | 
|  | static void set_addr(struct mtd_info *mtd, int column, int page_addr) | 
|  | { | 
|  | struct sh_flctl *flctl = mtd_to_flctl(mtd); | 
|  | uint32_t addr = 0; | 
|  |  | 
|  | if (column == -1) { | 
|  | addr = page_addr;	/* ERASE1 */ | 
|  | } else if (page_addr != -1) { | 
|  | /* SEQIN, READ0, etc.. */ | 
|  | if (flctl->chip.options & NAND_BUSWIDTH_16) | 
|  | column >>= 1; | 
|  | if (flctl->page_size) { | 
|  | addr = column & 0x0FFF; | 
|  | addr |= (page_addr & 0xff) << 16; | 
|  | addr |= ((page_addr >> 8) & 0xff) << 24; | 
|  | /* big than 128MB */ | 
|  | if (flctl->rw_ADRCNT == ADRCNT2_E) { | 
|  | uint32_t 	addr2; | 
|  | addr2 = (page_addr >> 16) & 0xff; | 
|  | writel(addr2, FLADR2(flctl)); | 
|  | } | 
|  | } else { | 
|  | addr = column; | 
|  | addr |= (page_addr & 0xff) << 8; | 
|  | addr |= ((page_addr >> 8) & 0xff) << 16; | 
|  | addr |= ((page_addr >> 16) & 0xff) << 24; | 
|  | } | 
|  | } | 
|  | writel(addr, FLADR(flctl)); | 
|  | } | 
|  |  | 
|  | static void wait_rfifo_ready(struct sh_flctl *flctl) | 
|  | { | 
|  | uint32_t timeout = LOOP_TIMEOUT_MAX; | 
|  |  | 
|  | while (timeout--) { | 
|  | uint32_t val; | 
|  | /* check FIFO */ | 
|  | val = readl(FLDTCNTR(flctl)) >> 16; | 
|  | if (val & 0xFF) | 
|  | return; | 
|  | udelay(1); | 
|  | } | 
|  | timeout_error(flctl, __func__); | 
|  | } | 
|  |  | 
|  | static void wait_wfifo_ready(struct sh_flctl *flctl) | 
|  | { | 
|  | uint32_t len, timeout = LOOP_TIMEOUT_MAX; | 
|  |  | 
|  | while (timeout--) { | 
|  | /* check FIFO */ | 
|  | len = (readl(FLDTCNTR(flctl)) >> 16) & 0xFF; | 
|  | if (len >= 4) | 
|  | return; | 
|  | udelay(1); | 
|  | } | 
|  | timeout_error(flctl, __func__); | 
|  | } | 
|  |  | 
|  | static enum flctl_ecc_res_t wait_recfifo_ready | 
|  | (struct sh_flctl *flctl, int sector_number) | 
|  | { | 
|  | uint32_t timeout = LOOP_TIMEOUT_MAX; | 
|  | void __iomem *ecc_reg[4]; | 
|  | int i; | 
|  | int state = FL_SUCCESS; | 
|  | uint32_t data, size; | 
|  |  | 
|  | /* | 
|  | * First this loops checks in FLDTCNTR if we are ready to read out the | 
|  | * oob data. This is the case if either all went fine without errors or | 
|  | * if the bottom part of the loop corrected the errors or marked them as | 
|  | * uncorrectable and the controller is given time to push the data into | 
|  | * the FIFO. | 
|  | */ | 
|  | while (timeout--) { | 
|  | /* check if all is ok and we can read out the OOB */ | 
|  | size = readl(FLDTCNTR(flctl)) >> 24; | 
|  | if ((size & 0xFF) == 4) | 
|  | return state; | 
|  |  | 
|  | /* check if a correction code has been calculated */ | 
|  | if (!(readl(FL4ECCCR(flctl)) & _4ECCEND)) { | 
|  | /* | 
|  | * either we wait for the fifo to be filled or a | 
|  | * correction pattern is being generated | 
|  | */ | 
|  | udelay(1); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* check for an uncorrectable error */ | 
|  | if (readl(FL4ECCCR(flctl)) & _4ECCFA) { | 
|  | /* check if we face a non-empty page */ | 
|  | for (i = 0; i < 512; i++) { | 
|  | if (flctl->done_buff[i] != 0xff) { | 
|  | state = FL_ERROR; /* can't correct */ | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (state == FL_SUCCESS) | 
|  | dev_dbg(&flctl->pdev->dev, | 
|  | "reading empty sector %d, ecc error ignored\n", | 
|  | sector_number); | 
|  |  | 
|  | writel(0, FL4ECCCR(flctl)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* start error correction */ | 
|  | ecc_reg[0] = FL4ECCRESULT0(flctl); | 
|  | ecc_reg[1] = FL4ECCRESULT1(flctl); | 
|  | ecc_reg[2] = FL4ECCRESULT2(flctl); | 
|  | ecc_reg[3] = FL4ECCRESULT3(flctl); | 
|  |  | 
|  | for (i = 0; i < 3; i++) { | 
|  | uint8_t org; | 
|  | unsigned int index; | 
|  |  | 
|  | data = readl(ecc_reg[i]); | 
|  |  | 
|  | if (flctl->page_size) | 
|  | index = (512 * sector_number) + | 
|  | (data >> 16); | 
|  | else | 
|  | index = data >> 16; | 
|  |  | 
|  | org = flctl->done_buff[index]; | 
|  | flctl->done_buff[index] = org ^ (data & 0xFF); | 
|  | } | 
|  | state = FL_REPAIRABLE; | 
|  | writel(0, FL4ECCCR(flctl)); | 
|  | } | 
|  |  | 
|  | timeout_error(flctl, __func__); | 
|  | return FL_TIMEOUT;	/* timeout */ | 
|  | } | 
|  |  | 
|  | static void wait_wecfifo_ready(struct sh_flctl *flctl) | 
|  | { | 
|  | uint32_t timeout = LOOP_TIMEOUT_MAX; | 
|  | uint32_t len; | 
|  |  | 
|  | while (timeout--) { | 
|  | /* check FLECFIFO */ | 
|  | len = (readl(FLDTCNTR(flctl)) >> 24) & 0xFF; | 
|  | if (len >= 4) | 
|  | return; | 
|  | udelay(1); | 
|  | } | 
|  | timeout_error(flctl, __func__); | 
|  | } | 
|  |  | 
|  | static int flctl_dma_fifo0_transfer(struct sh_flctl *flctl, unsigned long *buf, | 
|  | int len, enum dma_data_direction dir) | 
|  | { | 
|  | struct dma_async_tx_descriptor *desc = NULL; | 
|  | struct dma_chan *chan; | 
|  | enum dma_transfer_direction tr_dir; | 
|  | dma_addr_t dma_addr; | 
|  | dma_cookie_t cookie; | 
|  | uint32_t reg; | 
|  | int ret; | 
|  |  | 
|  | if (dir == DMA_FROM_DEVICE) { | 
|  | chan = flctl->chan_fifo0_rx; | 
|  | tr_dir = DMA_DEV_TO_MEM; | 
|  | } else { | 
|  | chan = flctl->chan_fifo0_tx; | 
|  | tr_dir = DMA_MEM_TO_DEV; | 
|  | } | 
|  |  | 
|  | dma_addr = dma_map_single(chan->device->dev, buf, len, dir); | 
|  |  | 
|  | if (dma_addr) | 
|  | desc = dmaengine_prep_slave_single(chan, dma_addr, len, | 
|  | tr_dir, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); | 
|  |  | 
|  | if (desc) { | 
|  | reg = readl(FLINTDMACR(flctl)); | 
|  | reg |= DREQ0EN; | 
|  | writel(reg, FLINTDMACR(flctl)); | 
|  |  | 
|  | desc->callback = flctl_dma_complete; | 
|  | desc->callback_param = flctl; | 
|  | cookie = dmaengine_submit(desc); | 
|  | if (dma_submit_error(cookie)) { | 
|  | ret = dma_submit_error(cookie); | 
|  | dev_warn(&flctl->pdev->dev, | 
|  | "DMA submit failed, falling back to PIO\n"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | dma_async_issue_pending(chan); | 
|  | } else { | 
|  | /* DMA failed, fall back to PIO */ | 
|  | flctl_release_dma(flctl); | 
|  | dev_warn(&flctl->pdev->dev, | 
|  | "DMA failed, falling back to PIO\n"); | 
|  | ret = -EIO; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = | 
|  | wait_for_completion_timeout(&flctl->dma_complete, | 
|  | msecs_to_jiffies(3000)); | 
|  |  | 
|  | if (ret <= 0) { | 
|  | dmaengine_terminate_all(chan); | 
|  | dev_err(&flctl->pdev->dev, "wait_for_completion_timeout\n"); | 
|  | } | 
|  |  | 
|  | out: | 
|  | reg = readl(FLINTDMACR(flctl)); | 
|  | reg &= ~DREQ0EN; | 
|  | writel(reg, FLINTDMACR(flctl)); | 
|  |  | 
|  | dma_unmap_single(chan->device->dev, dma_addr, len, dir); | 
|  |  | 
|  | /* ret > 0 is success */ | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void read_datareg(struct sh_flctl *flctl, int offset) | 
|  | { | 
|  | unsigned long data; | 
|  | unsigned long *buf = (unsigned long *)&flctl->done_buff[offset]; | 
|  |  | 
|  | wait_completion(flctl); | 
|  |  | 
|  | data = readl(FLDATAR(flctl)); | 
|  | *buf = le32_to_cpu(data); | 
|  | } | 
|  |  | 
|  | static void read_fiforeg(struct sh_flctl *flctl, int rlen, int offset) | 
|  | { | 
|  | int i, len_4align; | 
|  | unsigned long *buf = (unsigned long *)&flctl->done_buff[offset]; | 
|  |  | 
|  | len_4align = (rlen + 3) / 4; | 
|  |  | 
|  | /* initiate DMA transfer */ | 
|  | if (flctl->chan_fifo0_rx && rlen >= 32 && | 
|  | flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_DEV_TO_MEM) > 0) | 
|  | goto convert;	/* DMA success */ | 
|  |  | 
|  | /* do polling transfer */ | 
|  | for (i = 0; i < len_4align; i++) { | 
|  | wait_rfifo_ready(flctl); | 
|  | buf[i] = readl(FLDTFIFO(flctl)); | 
|  | } | 
|  |  | 
|  | convert: | 
|  | for (i = 0; i < len_4align; i++) | 
|  | buf[i] = be32_to_cpu(buf[i]); | 
|  | } | 
|  |  | 
|  | static enum flctl_ecc_res_t read_ecfiforeg | 
|  | (struct sh_flctl *flctl, uint8_t *buff, int sector) | 
|  | { | 
|  | int i; | 
|  | enum flctl_ecc_res_t res; | 
|  | unsigned long *ecc_buf = (unsigned long *)buff; | 
|  |  | 
|  | res = wait_recfifo_ready(flctl , sector); | 
|  |  | 
|  | if (res != FL_ERROR) { | 
|  | for (i = 0; i < 4; i++) { | 
|  | ecc_buf[i] = readl(FLECFIFO(flctl)); | 
|  | ecc_buf[i] = be32_to_cpu(ecc_buf[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | return res; | 
|  | } | 
|  |  | 
|  | static void write_fiforeg(struct sh_flctl *flctl, int rlen, | 
|  | unsigned int offset) | 
|  | { | 
|  | int i, len_4align; | 
|  | unsigned long *buf = (unsigned long *)&flctl->done_buff[offset]; | 
|  |  | 
|  | len_4align = (rlen + 3) / 4; | 
|  | for (i = 0; i < len_4align; i++) { | 
|  | wait_wfifo_ready(flctl); | 
|  | writel(cpu_to_be32(buf[i]), FLDTFIFO(flctl)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void write_ec_fiforeg(struct sh_flctl *flctl, int rlen, | 
|  | unsigned int offset) | 
|  | { | 
|  | int i, len_4align; | 
|  | unsigned long *buf = (unsigned long *)&flctl->done_buff[offset]; | 
|  |  | 
|  | len_4align = (rlen + 3) / 4; | 
|  |  | 
|  | for (i = 0; i < len_4align; i++) | 
|  | buf[i] = cpu_to_be32(buf[i]); | 
|  |  | 
|  | /* initiate DMA transfer */ | 
|  | if (flctl->chan_fifo0_tx && rlen >= 32 && | 
|  | flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_MEM_TO_DEV) > 0) | 
|  | return;	/* DMA success */ | 
|  |  | 
|  | /* do polling transfer */ | 
|  | for (i = 0; i < len_4align; i++) { | 
|  | wait_wecfifo_ready(flctl); | 
|  | writel(buf[i], FLECFIFO(flctl)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void set_cmd_regs(struct mtd_info *mtd, uint32_t cmd, uint32_t flcmcdr_val) | 
|  | { | 
|  | struct sh_flctl *flctl = mtd_to_flctl(mtd); | 
|  | uint32_t flcmncr_val = flctl->flcmncr_base & ~SEL_16BIT; | 
|  | uint32_t flcmdcr_val, addr_len_bytes = 0; | 
|  |  | 
|  | /* Set SNAND bit if page size is 2048byte */ | 
|  | if (flctl->page_size) | 
|  | flcmncr_val |= SNAND_E; | 
|  | else | 
|  | flcmncr_val &= ~SNAND_E; | 
|  |  | 
|  | /* default FLCMDCR val */ | 
|  | flcmdcr_val = DOCMD1_E | DOADR_E; | 
|  |  | 
|  | /* Set for FLCMDCR */ | 
|  | switch (cmd) { | 
|  | case NAND_CMD_ERASE1: | 
|  | addr_len_bytes = flctl->erase_ADRCNT; | 
|  | flcmdcr_val |= DOCMD2_E; | 
|  | break; | 
|  | case NAND_CMD_READ0: | 
|  | case NAND_CMD_READOOB: | 
|  | case NAND_CMD_RNDOUT: | 
|  | addr_len_bytes = flctl->rw_ADRCNT; | 
|  | flcmdcr_val |= CDSRC_E; | 
|  | if (flctl->chip.options & NAND_BUSWIDTH_16) | 
|  | flcmncr_val |= SEL_16BIT; | 
|  | break; | 
|  | case NAND_CMD_SEQIN: | 
|  | /* This case is that cmd is READ0 or READ1 or READ00 */ | 
|  | flcmdcr_val &= ~DOADR_E;	/* ONLY execute 1st cmd */ | 
|  | break; | 
|  | case NAND_CMD_PAGEPROG: | 
|  | addr_len_bytes = flctl->rw_ADRCNT; | 
|  | flcmdcr_val |= DOCMD2_E | CDSRC_E | SELRW; | 
|  | if (flctl->chip.options & NAND_BUSWIDTH_16) | 
|  | flcmncr_val |= SEL_16BIT; | 
|  | break; | 
|  | case NAND_CMD_READID: | 
|  | flcmncr_val &= ~SNAND_E; | 
|  | flcmdcr_val |= CDSRC_E; | 
|  | addr_len_bytes = ADRCNT_1; | 
|  | break; | 
|  | case NAND_CMD_STATUS: | 
|  | case NAND_CMD_RESET: | 
|  | flcmncr_val &= ~SNAND_E; | 
|  | flcmdcr_val &= ~(DOADR_E | DOSR_E); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Set address bytes parameter */ | 
|  | flcmdcr_val |= addr_len_bytes; | 
|  |  | 
|  | /* Now actually write */ | 
|  | writel(flcmncr_val, FLCMNCR(flctl)); | 
|  | writel(flcmdcr_val, FLCMDCR(flctl)); | 
|  | writel(flcmcdr_val, FLCMCDR(flctl)); | 
|  | } | 
|  |  | 
|  | static int flctl_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, | 
|  | uint8_t *buf, int oob_required, int page) | 
|  | { | 
|  | chip->read_buf(mtd, buf, mtd->writesize); | 
|  | if (oob_required) | 
|  | chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int flctl_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, | 
|  | const uint8_t *buf, int oob_required, | 
|  | int page) | 
|  | { | 
|  | chip->write_buf(mtd, buf, mtd->writesize); | 
|  | chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void execmd_read_page_sector(struct mtd_info *mtd, int page_addr) | 
|  | { | 
|  | struct sh_flctl *flctl = mtd_to_flctl(mtd); | 
|  | int sector, page_sectors; | 
|  | enum flctl_ecc_res_t ecc_result; | 
|  |  | 
|  | page_sectors = flctl->page_size ? 4 : 1; | 
|  |  | 
|  | set_cmd_regs(mtd, NAND_CMD_READ0, | 
|  | (NAND_CMD_READSTART << 8) | NAND_CMD_READ0); | 
|  |  | 
|  | writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE | _4ECCCORRECT, | 
|  | FLCMNCR(flctl)); | 
|  | writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl)); | 
|  | writel(page_addr << 2, FLADR(flctl)); | 
|  |  | 
|  | empty_fifo(flctl); | 
|  | start_translation(flctl); | 
|  |  | 
|  | for (sector = 0; sector < page_sectors; sector++) { | 
|  | read_fiforeg(flctl, 512, 512 * sector); | 
|  |  | 
|  | ecc_result = read_ecfiforeg(flctl, | 
|  | &flctl->done_buff[mtd->writesize + 16 * sector], | 
|  | sector); | 
|  |  | 
|  | switch (ecc_result) { | 
|  | case FL_REPAIRABLE: | 
|  | dev_info(&flctl->pdev->dev, | 
|  | "applied ecc on page 0x%x", page_addr); | 
|  | mtd->ecc_stats.corrected++; | 
|  | break; | 
|  | case FL_ERROR: | 
|  | dev_warn(&flctl->pdev->dev, | 
|  | "page 0x%x contains corrupted data\n", | 
|  | page_addr); | 
|  | mtd->ecc_stats.failed++; | 
|  | break; | 
|  | default: | 
|  | ; | 
|  | } | 
|  | } | 
|  |  | 
|  | wait_completion(flctl); | 
|  |  | 
|  | writel(readl(FLCMNCR(flctl)) & ~(ACM_SACCES_MODE | _4ECCCORRECT), | 
|  | FLCMNCR(flctl)); | 
|  | } | 
|  |  | 
|  | static void execmd_read_oob(struct mtd_info *mtd, int page_addr) | 
|  | { | 
|  | struct sh_flctl *flctl = mtd_to_flctl(mtd); | 
|  | int page_sectors = flctl->page_size ? 4 : 1; | 
|  | int i; | 
|  |  | 
|  | set_cmd_regs(mtd, NAND_CMD_READ0, | 
|  | (NAND_CMD_READSTART << 8) | NAND_CMD_READ0); | 
|  |  | 
|  | empty_fifo(flctl); | 
|  |  | 
|  | for (i = 0; i < page_sectors; i++) { | 
|  | set_addr(mtd, (512 + 16) * i + 512 , page_addr); | 
|  | writel(16, FLDTCNTR(flctl)); | 
|  |  | 
|  | start_translation(flctl); | 
|  | read_fiforeg(flctl, 16, 16 * i); | 
|  | wait_completion(flctl); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void execmd_write_page_sector(struct mtd_info *mtd) | 
|  | { | 
|  | struct sh_flctl *flctl = mtd_to_flctl(mtd); | 
|  | int page_addr = flctl->seqin_page_addr; | 
|  | int sector, page_sectors; | 
|  |  | 
|  | page_sectors = flctl->page_size ? 4 : 1; | 
|  |  | 
|  | set_cmd_regs(mtd, NAND_CMD_PAGEPROG, | 
|  | (NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN); | 
|  |  | 
|  | empty_fifo(flctl); | 
|  | writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE, FLCMNCR(flctl)); | 
|  | writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl)); | 
|  | writel(page_addr << 2, FLADR(flctl)); | 
|  | start_translation(flctl); | 
|  |  | 
|  | for (sector = 0; sector < page_sectors; sector++) { | 
|  | write_fiforeg(flctl, 512, 512 * sector); | 
|  | write_ec_fiforeg(flctl, 16, mtd->writesize + 16 * sector); | 
|  | } | 
|  |  | 
|  | wait_completion(flctl); | 
|  | writel(readl(FLCMNCR(flctl)) & ~ACM_SACCES_MODE, FLCMNCR(flctl)); | 
|  | } | 
|  |  | 
|  | static void execmd_write_oob(struct mtd_info *mtd) | 
|  | { | 
|  | struct sh_flctl *flctl = mtd_to_flctl(mtd); | 
|  | int page_addr = flctl->seqin_page_addr; | 
|  | int sector, page_sectors; | 
|  |  | 
|  | page_sectors = flctl->page_size ? 4 : 1; | 
|  |  | 
|  | set_cmd_regs(mtd, NAND_CMD_PAGEPROG, | 
|  | (NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN); | 
|  |  | 
|  | for (sector = 0; sector < page_sectors; sector++) { | 
|  | empty_fifo(flctl); | 
|  | set_addr(mtd, sector * 528 + 512, page_addr); | 
|  | writel(16, FLDTCNTR(flctl));	/* set read size */ | 
|  |  | 
|  | start_translation(flctl); | 
|  | write_fiforeg(flctl, 16, 16 * sector); | 
|  | wait_completion(flctl); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void flctl_cmdfunc(struct mtd_info *mtd, unsigned int command, | 
|  | int column, int page_addr) | 
|  | { | 
|  | struct sh_flctl *flctl = mtd_to_flctl(mtd); | 
|  | uint32_t read_cmd = 0; | 
|  |  | 
|  | pm_runtime_get_sync(&flctl->pdev->dev); | 
|  |  | 
|  | flctl->read_bytes = 0; | 
|  | if (command != NAND_CMD_PAGEPROG) | 
|  | flctl->index = 0; | 
|  |  | 
|  | switch (command) { | 
|  | case NAND_CMD_READ1: | 
|  | case NAND_CMD_READ0: | 
|  | if (flctl->hwecc) { | 
|  | /* read page with hwecc */ | 
|  | execmd_read_page_sector(mtd, page_addr); | 
|  | break; | 
|  | } | 
|  | if (flctl->page_size) | 
|  | set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8) | 
|  | | command); | 
|  | else | 
|  | set_cmd_regs(mtd, command, command); | 
|  |  | 
|  | set_addr(mtd, 0, page_addr); | 
|  |  | 
|  | flctl->read_bytes = mtd->writesize + mtd->oobsize; | 
|  | if (flctl->chip.options & NAND_BUSWIDTH_16) | 
|  | column >>= 1; | 
|  | flctl->index += column; | 
|  | goto read_normal_exit; | 
|  |  | 
|  | case NAND_CMD_READOOB: | 
|  | if (flctl->hwecc) { | 
|  | /* read page with hwecc */ | 
|  | execmd_read_oob(mtd, page_addr); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (flctl->page_size) { | 
|  | set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8) | 
|  | | NAND_CMD_READ0); | 
|  | set_addr(mtd, mtd->writesize, page_addr); | 
|  | } else { | 
|  | set_cmd_regs(mtd, command, command); | 
|  | set_addr(mtd, 0, page_addr); | 
|  | } | 
|  | flctl->read_bytes = mtd->oobsize; | 
|  | goto read_normal_exit; | 
|  |  | 
|  | case NAND_CMD_RNDOUT: | 
|  | if (flctl->hwecc) | 
|  | break; | 
|  |  | 
|  | if (flctl->page_size) | 
|  | set_cmd_regs(mtd, command, (NAND_CMD_RNDOUTSTART << 8) | 
|  | | command); | 
|  | else | 
|  | set_cmd_regs(mtd, command, command); | 
|  |  | 
|  | set_addr(mtd, column, 0); | 
|  |  | 
|  | flctl->read_bytes = mtd->writesize + mtd->oobsize - column; | 
|  | goto read_normal_exit; | 
|  |  | 
|  | case NAND_CMD_READID: | 
|  | set_cmd_regs(mtd, command, command); | 
|  |  | 
|  | /* READID is always performed using an 8-bit bus */ | 
|  | if (flctl->chip.options & NAND_BUSWIDTH_16) | 
|  | column <<= 1; | 
|  | set_addr(mtd, column, 0); | 
|  |  | 
|  | flctl->read_bytes = 8; | 
|  | writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */ | 
|  | empty_fifo(flctl); | 
|  | start_translation(flctl); | 
|  | read_fiforeg(flctl, flctl->read_bytes, 0); | 
|  | wait_completion(flctl); | 
|  | break; | 
|  |  | 
|  | case NAND_CMD_ERASE1: | 
|  | flctl->erase1_page_addr = page_addr; | 
|  | break; | 
|  |  | 
|  | case NAND_CMD_ERASE2: | 
|  | set_cmd_regs(mtd, NAND_CMD_ERASE1, | 
|  | (command << 8) | NAND_CMD_ERASE1); | 
|  | set_addr(mtd, -1, flctl->erase1_page_addr); | 
|  | start_translation(flctl); | 
|  | wait_completion(flctl); | 
|  | break; | 
|  |  | 
|  | case NAND_CMD_SEQIN: | 
|  | if (!flctl->page_size) { | 
|  | /* output read command */ | 
|  | if (column >= mtd->writesize) { | 
|  | column -= mtd->writesize; | 
|  | read_cmd = NAND_CMD_READOOB; | 
|  | } else if (column < 256) { | 
|  | read_cmd = NAND_CMD_READ0; | 
|  | } else { | 
|  | column -= 256; | 
|  | read_cmd = NAND_CMD_READ1; | 
|  | } | 
|  | } | 
|  | flctl->seqin_column = column; | 
|  | flctl->seqin_page_addr = page_addr; | 
|  | flctl->seqin_read_cmd = read_cmd; | 
|  | break; | 
|  |  | 
|  | case NAND_CMD_PAGEPROG: | 
|  | empty_fifo(flctl); | 
|  | if (!flctl->page_size) { | 
|  | set_cmd_regs(mtd, NAND_CMD_SEQIN, | 
|  | flctl->seqin_read_cmd); | 
|  | set_addr(mtd, -1, -1); | 
|  | writel(0, FLDTCNTR(flctl));	/* set 0 size */ | 
|  | start_translation(flctl); | 
|  | wait_completion(flctl); | 
|  | } | 
|  | if (flctl->hwecc) { | 
|  | /* write page with hwecc */ | 
|  | if (flctl->seqin_column == mtd->writesize) | 
|  | execmd_write_oob(mtd); | 
|  | else if (!flctl->seqin_column) | 
|  | execmd_write_page_sector(mtd); | 
|  | else | 
|  | printk(KERN_ERR "Invalid address !?\n"); | 
|  | break; | 
|  | } | 
|  | set_cmd_regs(mtd, command, (command << 8) | NAND_CMD_SEQIN); | 
|  | set_addr(mtd, flctl->seqin_column, flctl->seqin_page_addr); | 
|  | writel(flctl->index, FLDTCNTR(flctl));	/* set write size */ | 
|  | start_translation(flctl); | 
|  | write_fiforeg(flctl, flctl->index, 0); | 
|  | wait_completion(flctl); | 
|  | break; | 
|  |  | 
|  | case NAND_CMD_STATUS: | 
|  | set_cmd_regs(mtd, command, command); | 
|  | set_addr(mtd, -1, -1); | 
|  |  | 
|  | flctl->read_bytes = 1; | 
|  | writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */ | 
|  | start_translation(flctl); | 
|  | read_datareg(flctl, 0); /* read and end */ | 
|  | break; | 
|  |  | 
|  | case NAND_CMD_RESET: | 
|  | set_cmd_regs(mtd, command, command); | 
|  | set_addr(mtd, -1, -1); | 
|  |  | 
|  | writel(0, FLDTCNTR(flctl));	/* set 0 size */ | 
|  | start_translation(flctl); | 
|  | wait_completion(flctl); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  | goto runtime_exit; | 
|  |  | 
|  | read_normal_exit: | 
|  | writel(flctl->read_bytes, FLDTCNTR(flctl));	/* set read size */ | 
|  | empty_fifo(flctl); | 
|  | start_translation(flctl); | 
|  | read_fiforeg(flctl, flctl->read_bytes, 0); | 
|  | wait_completion(flctl); | 
|  | runtime_exit: | 
|  | pm_runtime_put_sync(&flctl->pdev->dev); | 
|  | return; | 
|  | } | 
|  |  | 
|  | static void flctl_select_chip(struct mtd_info *mtd, int chipnr) | 
|  | { | 
|  | struct sh_flctl *flctl = mtd_to_flctl(mtd); | 
|  | int ret; | 
|  |  | 
|  | switch (chipnr) { | 
|  | case -1: | 
|  | flctl->flcmncr_base &= ~CE0_ENABLE; | 
|  |  | 
|  | pm_runtime_get_sync(&flctl->pdev->dev); | 
|  | writel(flctl->flcmncr_base, FLCMNCR(flctl)); | 
|  |  | 
|  | if (flctl->qos_request) { | 
|  | dev_pm_qos_remove_request(&flctl->pm_qos); | 
|  | flctl->qos_request = 0; | 
|  | } | 
|  |  | 
|  | pm_runtime_put_sync(&flctl->pdev->dev); | 
|  | break; | 
|  | case 0: | 
|  | flctl->flcmncr_base |= CE0_ENABLE; | 
|  |  | 
|  | if (!flctl->qos_request) { | 
|  | ret = dev_pm_qos_add_request(&flctl->pdev->dev, | 
|  | &flctl->pm_qos, | 
|  | DEV_PM_QOS_RESUME_LATENCY, | 
|  | 100); | 
|  | if (ret < 0) | 
|  | dev_err(&flctl->pdev->dev, | 
|  | "PM QoS request failed: %d\n", ret); | 
|  | flctl->qos_request = 1; | 
|  | } | 
|  |  | 
|  | if (flctl->holden) { | 
|  | pm_runtime_get_sync(&flctl->pdev->dev); | 
|  | writel(HOLDEN, FLHOLDCR(flctl)); | 
|  | pm_runtime_put_sync(&flctl->pdev->dev); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void flctl_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) | 
|  | { | 
|  | struct sh_flctl *flctl = mtd_to_flctl(mtd); | 
|  |  | 
|  | memcpy(&flctl->done_buff[flctl->index], buf, len); | 
|  | flctl->index += len; | 
|  | } | 
|  |  | 
|  | static uint8_t flctl_read_byte(struct mtd_info *mtd) | 
|  | { | 
|  | struct sh_flctl *flctl = mtd_to_flctl(mtd); | 
|  | uint8_t data; | 
|  |  | 
|  | data = flctl->done_buff[flctl->index]; | 
|  | flctl->index++; | 
|  | return data; | 
|  | } | 
|  |  | 
|  | static uint16_t flctl_read_word(struct mtd_info *mtd) | 
|  | { | 
|  | struct sh_flctl *flctl = mtd_to_flctl(mtd); | 
|  | uint16_t *buf = (uint16_t *)&flctl->done_buff[flctl->index]; | 
|  |  | 
|  | flctl->index += 2; | 
|  | return *buf; | 
|  | } | 
|  |  | 
|  | static void flctl_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) | 
|  | { | 
|  | struct sh_flctl *flctl = mtd_to_flctl(mtd); | 
|  |  | 
|  | memcpy(buf, &flctl->done_buff[flctl->index], len); | 
|  | flctl->index += len; | 
|  | } | 
|  |  | 
|  | static int flctl_chip_init_tail(struct mtd_info *mtd) | 
|  | { | 
|  | struct sh_flctl *flctl = mtd_to_flctl(mtd); | 
|  | struct nand_chip *chip = &flctl->chip; | 
|  |  | 
|  | if (mtd->writesize == 512) { | 
|  | flctl->page_size = 0; | 
|  | if (chip->chipsize > (32 << 20)) { | 
|  | /* big than 32MB */ | 
|  | flctl->rw_ADRCNT = ADRCNT_4; | 
|  | flctl->erase_ADRCNT = ADRCNT_3; | 
|  | } else if (chip->chipsize > (2 << 16)) { | 
|  | /* big than 128KB */ | 
|  | flctl->rw_ADRCNT = ADRCNT_3; | 
|  | flctl->erase_ADRCNT = ADRCNT_2; | 
|  | } else { | 
|  | flctl->rw_ADRCNT = ADRCNT_2; | 
|  | flctl->erase_ADRCNT = ADRCNT_1; | 
|  | } | 
|  | } else { | 
|  | flctl->page_size = 1; | 
|  | if (chip->chipsize > (128 << 20)) { | 
|  | /* big than 128MB */ | 
|  | flctl->rw_ADRCNT = ADRCNT2_E; | 
|  | flctl->erase_ADRCNT = ADRCNT_3; | 
|  | } else if (chip->chipsize > (8 << 16)) { | 
|  | /* big than 512KB */ | 
|  | flctl->rw_ADRCNT = ADRCNT_4; | 
|  | flctl->erase_ADRCNT = ADRCNT_2; | 
|  | } else { | 
|  | flctl->rw_ADRCNT = ADRCNT_3; | 
|  | flctl->erase_ADRCNT = ADRCNT_1; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (flctl->hwecc) { | 
|  | if (mtd->writesize == 512) { | 
|  | mtd_set_ooblayout(mtd, &flctl_4secc_oob_smallpage_ops); | 
|  | chip->badblock_pattern = &flctl_4secc_smallpage; | 
|  | } else { | 
|  | mtd_set_ooblayout(mtd, &flctl_4secc_oob_largepage_ops); | 
|  | chip->badblock_pattern = &flctl_4secc_largepage; | 
|  | } | 
|  |  | 
|  | chip->ecc.size = 512; | 
|  | chip->ecc.bytes = 10; | 
|  | chip->ecc.strength = 4; | 
|  | chip->ecc.read_page = flctl_read_page_hwecc; | 
|  | chip->ecc.write_page = flctl_write_page_hwecc; | 
|  | chip->ecc.mode = NAND_ECC_HW; | 
|  |  | 
|  | /* 4 symbols ECC enabled */ | 
|  | flctl->flcmncr_base |= _4ECCEN; | 
|  | } else { | 
|  | chip->ecc.mode = NAND_ECC_SOFT; | 
|  | chip->ecc.algo = NAND_ECC_HAMMING; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static irqreturn_t flctl_handle_flste(int irq, void *dev_id) | 
|  | { | 
|  | struct sh_flctl *flctl = dev_id; | 
|  |  | 
|  | dev_err(&flctl->pdev->dev, "flste irq: %x\n", readl(FLINTDMACR(flctl))); | 
|  | writel(flctl->flintdmacr_base, FLINTDMACR(flctl)); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | struct flctl_soc_config { | 
|  | unsigned long flcmncr_val; | 
|  | unsigned has_hwecc:1; | 
|  | unsigned use_holden:1; | 
|  | }; | 
|  |  | 
|  | static struct flctl_soc_config flctl_sh7372_config = { | 
|  | .flcmncr_val = CLK_16B_12L_4H | TYPESEL_SET | SHBUSSEL, | 
|  | .has_hwecc = 1, | 
|  | .use_holden = 1, | 
|  | }; | 
|  |  | 
|  | static const struct of_device_id of_flctl_match[] = { | 
|  | { .compatible = "renesas,shmobile-flctl-sh7372", | 
|  | .data = &flctl_sh7372_config }, | 
|  | {}, | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(of, of_flctl_match); | 
|  |  | 
|  | static struct sh_flctl_platform_data *flctl_parse_dt(struct device *dev) | 
|  | { | 
|  | const struct of_device_id *match; | 
|  | struct flctl_soc_config *config; | 
|  | struct sh_flctl_platform_data *pdata; | 
|  |  | 
|  | match = of_match_device(of_flctl_match, dev); | 
|  | if (match) | 
|  | config = (struct flctl_soc_config *)match->data; | 
|  | else { | 
|  | dev_err(dev, "%s: no OF configuration attached\n", __func__); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | pdata = devm_kzalloc(dev, sizeof(struct sh_flctl_platform_data), | 
|  | GFP_KERNEL); | 
|  | if (!pdata) | 
|  | return NULL; | 
|  |  | 
|  | /* set SoC specific options */ | 
|  | pdata->flcmncr_val = config->flcmncr_val; | 
|  | pdata->has_hwecc = config->has_hwecc; | 
|  | pdata->use_holden = config->use_holden; | 
|  |  | 
|  | return pdata; | 
|  | } | 
|  |  | 
|  | static int flctl_probe(struct platform_device *pdev) | 
|  | { | 
|  | struct resource *res; | 
|  | struct sh_flctl *flctl; | 
|  | struct mtd_info *flctl_mtd; | 
|  | struct nand_chip *nand; | 
|  | struct sh_flctl_platform_data *pdata; | 
|  | int ret; | 
|  | int irq; | 
|  |  | 
|  | flctl = devm_kzalloc(&pdev->dev, sizeof(struct sh_flctl), GFP_KERNEL); | 
|  | if (!flctl) | 
|  | return -ENOMEM; | 
|  |  | 
|  | res = platform_get_resource(pdev, IORESOURCE_MEM, 0); | 
|  | flctl->reg = devm_ioremap_resource(&pdev->dev, res); | 
|  | if (IS_ERR(flctl->reg)) | 
|  | return PTR_ERR(flctl->reg); | 
|  | flctl->fifo = res->start + 0x24; /* FLDTFIFO */ | 
|  |  | 
|  | irq = platform_get_irq(pdev, 0); | 
|  | if (irq < 0) { | 
|  | dev_err(&pdev->dev, "failed to get flste irq data\n"); | 
|  | return -ENXIO; | 
|  | } | 
|  |  | 
|  | ret = devm_request_irq(&pdev->dev, irq, flctl_handle_flste, IRQF_SHARED, | 
|  | "flste", flctl); | 
|  | if (ret) { | 
|  | dev_err(&pdev->dev, "request interrupt failed.\n"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (pdev->dev.of_node) | 
|  | pdata = flctl_parse_dt(&pdev->dev); | 
|  | else | 
|  | pdata = dev_get_platdata(&pdev->dev); | 
|  |  | 
|  | if (!pdata) { | 
|  | dev_err(&pdev->dev, "no setup data defined\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | platform_set_drvdata(pdev, flctl); | 
|  | nand = &flctl->chip; | 
|  | flctl_mtd = nand_to_mtd(nand); | 
|  | nand_set_flash_node(nand, pdev->dev.of_node); | 
|  | flctl_mtd->dev.parent = &pdev->dev; | 
|  | flctl->pdev = pdev; | 
|  | flctl->hwecc = pdata->has_hwecc; | 
|  | flctl->holden = pdata->use_holden; | 
|  | flctl->flcmncr_base = pdata->flcmncr_val; | 
|  | flctl->flintdmacr_base = flctl->hwecc ? (STERINTE | ECERB) : STERINTE; | 
|  |  | 
|  | /* Set address of hardware control function */ | 
|  | /* 20 us command delay time */ | 
|  | nand->chip_delay = 20; | 
|  |  | 
|  | nand->read_byte = flctl_read_byte; | 
|  | nand->read_word = flctl_read_word; | 
|  | nand->write_buf = flctl_write_buf; | 
|  | nand->read_buf = flctl_read_buf; | 
|  | nand->select_chip = flctl_select_chip; | 
|  | nand->cmdfunc = flctl_cmdfunc; | 
|  |  | 
|  | if (pdata->flcmncr_val & SEL_16BIT) | 
|  | nand->options |= NAND_BUSWIDTH_16; | 
|  |  | 
|  | pm_runtime_enable(&pdev->dev); | 
|  | pm_runtime_resume(&pdev->dev); | 
|  |  | 
|  | flctl_setup_dma(flctl); | 
|  |  | 
|  | ret = nand_scan_ident(flctl_mtd, 1, NULL); | 
|  | if (ret) | 
|  | goto err_chip; | 
|  |  | 
|  | if (nand->options & NAND_BUSWIDTH_16) { | 
|  | /* | 
|  | * NAND_BUSWIDTH_16 may have been set by nand_scan_ident(). | 
|  | * Add the SEL_16BIT flag in pdata->flcmncr_val and re-assign | 
|  | * flctl->flcmncr_base to pdata->flcmncr_val. | 
|  | */ | 
|  | pdata->flcmncr_val |= SEL_16BIT; | 
|  | flctl->flcmncr_base = pdata->flcmncr_val; | 
|  | } | 
|  |  | 
|  | ret = flctl_chip_init_tail(flctl_mtd); | 
|  | if (ret) | 
|  | goto err_chip; | 
|  |  | 
|  | ret = nand_scan_tail(flctl_mtd); | 
|  | if (ret) | 
|  | goto err_chip; | 
|  |  | 
|  | ret = mtd_device_register(flctl_mtd, pdata->parts, pdata->nr_parts); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_chip: | 
|  | flctl_release_dma(flctl); | 
|  | pm_runtime_disable(&pdev->dev); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int flctl_remove(struct platform_device *pdev) | 
|  | { | 
|  | struct sh_flctl *flctl = platform_get_drvdata(pdev); | 
|  |  | 
|  | flctl_release_dma(flctl); | 
|  | nand_release(nand_to_mtd(&flctl->chip)); | 
|  | pm_runtime_disable(&pdev->dev); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct platform_driver flctl_driver = { | 
|  | .remove		= flctl_remove, | 
|  | .driver = { | 
|  | .name	= "sh_flctl", | 
|  | .of_match_table = of_match_ptr(of_flctl_match), | 
|  | }, | 
|  | }; | 
|  |  | 
|  | module_platform_driver_probe(flctl_driver, flctl_probe); | 
|  |  | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_AUTHOR("Yoshihiro Shimoda"); | 
|  | MODULE_DESCRIPTION("SuperH FLCTL driver"); | 
|  | MODULE_ALIAS("platform:sh_flctl"); |