| /* |
| * raid5.c : Multiple Devices driver for Linux |
| * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman |
| * Copyright (C) 1999, 2000 Ingo Molnar |
| * Copyright (C) 2002, 2003 H. Peter Anvin |
| * |
| * RAID-4/5/6 management functions. |
| * Thanks to Penguin Computing for making the RAID-6 development possible |
| * by donating a test server! |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2, or (at your option) |
| * any later version. |
| * |
| * You should have received a copy of the GNU General Public License |
| * (for example /usr/src/linux/COPYING); if not, write to the Free |
| * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| */ |
| |
| /* |
| * BITMAP UNPLUGGING: |
| * |
| * The sequencing for updating the bitmap reliably is a little |
| * subtle (and I got it wrong the first time) so it deserves some |
| * explanation. |
| * |
| * We group bitmap updates into batches. Each batch has a number. |
| * We may write out several batches at once, but that isn't very important. |
| * conf->seq_write is the number of the last batch successfully written. |
| * conf->seq_flush is the number of the last batch that was closed to |
| * new additions. |
| * When we discover that we will need to write to any block in a stripe |
| * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq |
| * the number of the batch it will be in. This is seq_flush+1. |
| * When we are ready to do a write, if that batch hasn't been written yet, |
| * we plug the array and queue the stripe for later. |
| * When an unplug happens, we increment bm_flush, thus closing the current |
| * batch. |
| * When we notice that bm_flush > bm_write, we write out all pending updates |
| * to the bitmap, and advance bm_write to where bm_flush was. |
| * This may occasionally write a bit out twice, but is sure never to |
| * miss any bits. |
| */ |
| |
| #include <linux/blkdev.h> |
| #include <linux/kthread.h> |
| #include <linux/raid/pq.h> |
| #include <linux/async_tx.h> |
| #include <linux/async.h> |
| #include <linux/seq_file.h> |
| #include <linux/cpu.h> |
| #include <linux/slab.h> |
| #include <linux/ratelimit.h> |
| #include "md.h" |
| #include "raid5.h" |
| #include "raid0.h" |
| #include "bitmap.h" |
| |
| /* |
| * Stripe cache |
| */ |
| |
| #define NR_STRIPES 256 |
| #define STRIPE_SIZE PAGE_SIZE |
| #define STRIPE_SHIFT (PAGE_SHIFT - 9) |
| #define STRIPE_SECTORS (STRIPE_SIZE>>9) |
| #define IO_THRESHOLD 1 |
| #define BYPASS_THRESHOLD 1 |
| #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head)) |
| #define HASH_MASK (NR_HASH - 1) |
| |
| static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect) |
| { |
| int hash = (sect >> STRIPE_SHIFT) & HASH_MASK; |
| return &conf->stripe_hashtbl[hash]; |
| } |
| |
| /* bio's attached to a stripe+device for I/O are linked together in bi_sector |
| * order without overlap. There may be several bio's per stripe+device, and |
| * a bio could span several devices. |
| * When walking this list for a particular stripe+device, we must never proceed |
| * beyond a bio that extends past this device, as the next bio might no longer |
| * be valid. |
| * This function is used to determine the 'next' bio in the list, given the sector |
| * of the current stripe+device |
| */ |
| static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector) |
| { |
| int sectors = bio->bi_size >> 9; |
| if (bio->bi_sector + sectors < sector + STRIPE_SECTORS) |
| return bio->bi_next; |
| else |
| return NULL; |
| } |
| |
| /* |
| * We maintain a biased count of active stripes in the bottom 16 bits of |
| * bi_phys_segments, and a count of processed stripes in the upper 16 bits |
| */ |
| static inline int raid5_bi_phys_segments(struct bio *bio) |
| { |
| return bio->bi_phys_segments & 0xffff; |
| } |
| |
| static inline int raid5_bi_hw_segments(struct bio *bio) |
| { |
| return (bio->bi_phys_segments >> 16) & 0xffff; |
| } |
| |
| static inline int raid5_dec_bi_phys_segments(struct bio *bio) |
| { |
| --bio->bi_phys_segments; |
| return raid5_bi_phys_segments(bio); |
| } |
| |
| static inline int raid5_dec_bi_hw_segments(struct bio *bio) |
| { |
| unsigned short val = raid5_bi_hw_segments(bio); |
| |
| --val; |
| bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio); |
| return val; |
| } |
| |
| static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt) |
| { |
| bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16); |
| } |
| |
| /* Find first data disk in a raid6 stripe */ |
| static inline int raid6_d0(struct stripe_head *sh) |
| { |
| if (sh->ddf_layout) |
| /* ddf always start from first device */ |
| return 0; |
| /* md starts just after Q block */ |
| if (sh->qd_idx == sh->disks - 1) |
| return 0; |
| else |
| return sh->qd_idx + 1; |
| } |
| static inline int raid6_next_disk(int disk, int raid_disks) |
| { |
| disk++; |
| return (disk < raid_disks) ? disk : 0; |
| } |
| |
| /* When walking through the disks in a raid5, starting at raid6_d0, |
| * We need to map each disk to a 'slot', where the data disks are slot |
| * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk |
| * is raid_disks-1. This help does that mapping. |
| */ |
| static int raid6_idx_to_slot(int idx, struct stripe_head *sh, |
| int *count, int syndrome_disks) |
| { |
| int slot = *count; |
| |
| if (sh->ddf_layout) |
| (*count)++; |
| if (idx == sh->pd_idx) |
| return syndrome_disks; |
| if (idx == sh->qd_idx) |
| return syndrome_disks + 1; |
| if (!sh->ddf_layout) |
| (*count)++; |
| return slot; |
| } |
| |
| static void return_io(struct bio *return_bi) |
| { |
| struct bio *bi = return_bi; |
| while (bi) { |
| |
| return_bi = bi->bi_next; |
| bi->bi_next = NULL; |
| bi->bi_size = 0; |
| bio_endio(bi, 0); |
| bi = return_bi; |
| } |
| } |
| |
| static void print_raid5_conf (struct r5conf *conf); |
| |
| static int stripe_operations_active(struct stripe_head *sh) |
| { |
| return sh->check_state || sh->reconstruct_state || |
| test_bit(STRIPE_BIOFILL_RUN, &sh->state) || |
| test_bit(STRIPE_COMPUTE_RUN, &sh->state); |
| } |
| |
| static void __release_stripe(struct r5conf *conf, struct stripe_head *sh) |
| { |
| if (atomic_dec_and_test(&sh->count)) { |
| BUG_ON(!list_empty(&sh->lru)); |
| BUG_ON(atomic_read(&conf->active_stripes)==0); |
| if (test_bit(STRIPE_HANDLE, &sh->state)) { |
| if (test_bit(STRIPE_DELAYED, &sh->state)) |
| list_add_tail(&sh->lru, &conf->delayed_list); |
| else if (test_bit(STRIPE_BIT_DELAY, &sh->state) && |
| sh->bm_seq - conf->seq_write > 0) |
| list_add_tail(&sh->lru, &conf->bitmap_list); |
| else { |
| clear_bit(STRIPE_BIT_DELAY, &sh->state); |
| list_add_tail(&sh->lru, &conf->handle_list); |
| } |
| md_wakeup_thread(conf->mddev->thread); |
| } else { |
| BUG_ON(stripe_operations_active(sh)); |
| if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { |
| atomic_dec(&conf->preread_active_stripes); |
| if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) |
| md_wakeup_thread(conf->mddev->thread); |
| } |
| atomic_dec(&conf->active_stripes); |
| if (!test_bit(STRIPE_EXPANDING, &sh->state)) { |
| list_add_tail(&sh->lru, &conf->inactive_list); |
| wake_up(&conf->wait_for_stripe); |
| if (conf->retry_read_aligned) |
| md_wakeup_thread(conf->mddev->thread); |
| } |
| } |
| } |
| } |
| |
| static void release_stripe(struct stripe_head *sh) |
| { |
| struct r5conf *conf = sh->raid_conf; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&conf->device_lock, flags); |
| __release_stripe(conf, sh); |
| spin_unlock_irqrestore(&conf->device_lock, flags); |
| } |
| |
| static inline void remove_hash(struct stripe_head *sh) |
| { |
| pr_debug("remove_hash(), stripe %llu\n", |
| (unsigned long long)sh->sector); |
| |
| hlist_del_init(&sh->hash); |
| } |
| |
| static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh) |
| { |
| struct hlist_head *hp = stripe_hash(conf, sh->sector); |
| |
| pr_debug("insert_hash(), stripe %llu\n", |
| (unsigned long long)sh->sector); |
| |
| hlist_add_head(&sh->hash, hp); |
| } |
| |
| |
| /* find an idle stripe, make sure it is unhashed, and return it. */ |
| static struct stripe_head *get_free_stripe(struct r5conf *conf) |
| { |
| struct stripe_head *sh = NULL; |
| struct list_head *first; |
| |
| if (list_empty(&conf->inactive_list)) |
| goto out; |
| first = conf->inactive_list.next; |
| sh = list_entry(first, struct stripe_head, lru); |
| list_del_init(first); |
| remove_hash(sh); |
| atomic_inc(&conf->active_stripes); |
| out: |
| return sh; |
| } |
| |
| static void shrink_buffers(struct stripe_head *sh) |
| { |
| struct page *p; |
| int i; |
| int num = sh->raid_conf->pool_size; |
| |
| for (i = 0; i < num ; i++) { |
| p = sh->dev[i].page; |
| if (!p) |
| continue; |
| sh->dev[i].page = NULL; |
| put_page(p); |
| } |
| } |
| |
| static int grow_buffers(struct stripe_head *sh) |
| { |
| int i; |
| int num = sh->raid_conf->pool_size; |
| |
| for (i = 0; i < num; i++) { |
| struct page *page; |
| |
| if (!(page = alloc_page(GFP_KERNEL))) { |
| return 1; |
| } |
| sh->dev[i].page = page; |
| } |
| return 0; |
| } |
| |
| static void raid5_build_block(struct stripe_head *sh, int i, int previous); |
| static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, |
| struct stripe_head *sh); |
| |
| static void init_stripe(struct stripe_head *sh, sector_t sector, int previous) |
| { |
| struct r5conf *conf = sh->raid_conf; |
| int i; |
| |
| BUG_ON(atomic_read(&sh->count) != 0); |
| BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); |
| BUG_ON(stripe_operations_active(sh)); |
| |
| pr_debug("init_stripe called, stripe %llu\n", |
| (unsigned long long)sh->sector); |
| |
| remove_hash(sh); |
| |
| sh->generation = conf->generation - previous; |
| sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks; |
| sh->sector = sector; |
| stripe_set_idx(sector, conf, previous, sh); |
| sh->state = 0; |
| |
| |
| for (i = sh->disks; i--; ) { |
| struct r5dev *dev = &sh->dev[i]; |
| |
| if (dev->toread || dev->read || dev->towrite || dev->written || |
| test_bit(R5_LOCKED, &dev->flags)) { |
| printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n", |
| (unsigned long long)sh->sector, i, dev->toread, |
| dev->read, dev->towrite, dev->written, |
| test_bit(R5_LOCKED, &dev->flags)); |
| WARN_ON(1); |
| } |
| dev->flags = 0; |
| raid5_build_block(sh, i, previous); |
| } |
| insert_hash(conf, sh); |
| } |
| |
| static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector, |
| short generation) |
| { |
| struct stripe_head *sh; |
| struct hlist_node *hn; |
| |
| pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector); |
| hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash) |
| if (sh->sector == sector && sh->generation == generation) |
| return sh; |
| pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector); |
| return NULL; |
| } |
| |
| /* |
| * Need to check if array has failed when deciding whether to: |
| * - start an array |
| * - remove non-faulty devices |
| * - add a spare |
| * - allow a reshape |
| * This determination is simple when no reshape is happening. |
| * However if there is a reshape, we need to carefully check |
| * both the before and after sections. |
| * This is because some failed devices may only affect one |
| * of the two sections, and some non-in_sync devices may |
| * be insync in the section most affected by failed devices. |
| */ |
| static int has_failed(struct r5conf *conf) |
| { |
| int degraded; |
| int i; |
| if (conf->mddev->reshape_position == MaxSector) |
| return conf->mddev->degraded > conf->max_degraded; |
| |
| rcu_read_lock(); |
| degraded = 0; |
| for (i = 0; i < conf->previous_raid_disks; i++) { |
| struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); |
| if (!rdev || test_bit(Faulty, &rdev->flags)) |
| degraded++; |
| else if (test_bit(In_sync, &rdev->flags)) |
| ; |
| else |
| /* not in-sync or faulty. |
| * If the reshape increases the number of devices, |
| * this is being recovered by the reshape, so |
| * this 'previous' section is not in_sync. |
| * If the number of devices is being reduced however, |
| * the device can only be part of the array if |
| * we are reverting a reshape, so this section will |
| * be in-sync. |
| */ |
| if (conf->raid_disks >= conf->previous_raid_disks) |
| degraded++; |
| } |
| rcu_read_unlock(); |
| if (degraded > conf->max_degraded) |
| return 1; |
| rcu_read_lock(); |
| degraded = 0; |
| for (i = 0; i < conf->raid_disks; i++) { |
| struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); |
| if (!rdev || test_bit(Faulty, &rdev->flags)) |
| degraded++; |
| else if (test_bit(In_sync, &rdev->flags)) |
| ; |
| else |
| /* not in-sync or faulty. |
| * If reshape increases the number of devices, this |
| * section has already been recovered, else it |
| * almost certainly hasn't. |
| */ |
| if (conf->raid_disks <= conf->previous_raid_disks) |
| degraded++; |
| } |
| rcu_read_unlock(); |
| if (degraded > conf->max_degraded) |
| return 1; |
| return 0; |
| } |
| |
| static struct stripe_head * |
| get_active_stripe(struct r5conf *conf, sector_t sector, |
| int previous, int noblock, int noquiesce) |
| { |
| struct stripe_head *sh; |
| |
| pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector); |
| |
| spin_lock_irq(&conf->device_lock); |
| |
| do { |
| wait_event_lock_irq(conf->wait_for_stripe, |
| conf->quiesce == 0 || noquiesce, |
| conf->device_lock, /* nothing */); |
| sh = __find_stripe(conf, sector, conf->generation - previous); |
| if (!sh) { |
| if (!conf->inactive_blocked) |
| sh = get_free_stripe(conf); |
| if (noblock && sh == NULL) |
| break; |
| if (!sh) { |
| conf->inactive_blocked = 1; |
| wait_event_lock_irq(conf->wait_for_stripe, |
| !list_empty(&conf->inactive_list) && |
| (atomic_read(&conf->active_stripes) |
| < (conf->max_nr_stripes *3/4) |
| || !conf->inactive_blocked), |
| conf->device_lock, |
| ); |
| conf->inactive_blocked = 0; |
| } else |
| init_stripe(sh, sector, previous); |
| } else { |
| if (atomic_read(&sh->count)) { |
| BUG_ON(!list_empty(&sh->lru) |
| && !test_bit(STRIPE_EXPANDING, &sh->state)); |
| } else { |
| if (!test_bit(STRIPE_HANDLE, &sh->state)) |
| atomic_inc(&conf->active_stripes); |
| if (list_empty(&sh->lru) && |
| !test_bit(STRIPE_EXPANDING, &sh->state)) |
| BUG(); |
| list_del_init(&sh->lru); |
| } |
| } |
| } while (sh == NULL); |
| |
| if (sh) |
| atomic_inc(&sh->count); |
| |
| spin_unlock_irq(&conf->device_lock); |
| return sh; |
| } |
| |
| static void |
| raid5_end_read_request(struct bio *bi, int error); |
| static void |
| raid5_end_write_request(struct bio *bi, int error); |
| |
| static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s) |
| { |
| struct r5conf *conf = sh->raid_conf; |
| int i, disks = sh->disks; |
| |
| might_sleep(); |
| |
| for (i = disks; i--; ) { |
| int rw; |
| struct bio *bi; |
| struct md_rdev *rdev; |
| if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) { |
| if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags)) |
| rw = WRITE_FUA; |
| else |
| rw = WRITE; |
| } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) |
| rw = READ; |
| else |
| continue; |
| |
| bi = &sh->dev[i].req; |
| |
| bi->bi_rw = rw; |
| if (rw & WRITE) |
| bi->bi_end_io = raid5_end_write_request; |
| else |
| bi->bi_end_io = raid5_end_read_request; |
| |
| rcu_read_lock(); |
| rdev = rcu_dereference(conf->disks[i].rdev); |
| if (rdev && test_bit(Faulty, &rdev->flags)) |
| rdev = NULL; |
| if (rdev) |
| atomic_inc(&rdev->nr_pending); |
| rcu_read_unlock(); |
| |
| /* We have already checked bad blocks for reads. Now |
| * need to check for writes. |
| */ |
| while ((rw & WRITE) && rdev && |
| test_bit(WriteErrorSeen, &rdev->flags)) { |
| sector_t first_bad; |
| int bad_sectors; |
| int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS, |
| &first_bad, &bad_sectors); |
| if (!bad) |
| break; |
| |
| if (bad < 0) { |
| set_bit(BlockedBadBlocks, &rdev->flags); |
| if (!conf->mddev->external && |
| conf->mddev->flags) { |
| /* It is very unlikely, but we might |
| * still need to write out the |
| * bad block log - better give it |
| * a chance*/ |
| md_check_recovery(conf->mddev); |
| } |
| md_wait_for_blocked_rdev(rdev, conf->mddev); |
| } else { |
| /* Acknowledged bad block - skip the write */ |
| rdev_dec_pending(rdev, conf->mddev); |
| rdev = NULL; |
| } |
| } |
| |
| if (rdev) { |
| if (s->syncing || s->expanding || s->expanded) |
| md_sync_acct(rdev->bdev, STRIPE_SECTORS); |
| |
| set_bit(STRIPE_IO_STARTED, &sh->state); |
| |
| bi->bi_bdev = rdev->bdev; |
| pr_debug("%s: for %llu schedule op %ld on disc %d\n", |
| __func__, (unsigned long long)sh->sector, |
| bi->bi_rw, i); |
| atomic_inc(&sh->count); |
| bi->bi_sector = sh->sector + rdev->data_offset; |
| bi->bi_flags = 1 << BIO_UPTODATE; |
| bi->bi_vcnt = 1; |
| bi->bi_max_vecs = 1; |
| bi->bi_idx = 0; |
| bi->bi_io_vec = &sh->dev[i].vec; |
| bi->bi_io_vec[0].bv_len = STRIPE_SIZE; |
| bi->bi_io_vec[0].bv_offset = 0; |
| bi->bi_size = STRIPE_SIZE; |
| bi->bi_next = NULL; |
| generic_make_request(bi); |
| } else { |
| if (rw & WRITE) |
| set_bit(STRIPE_DEGRADED, &sh->state); |
| pr_debug("skip op %ld on disc %d for sector %llu\n", |
| bi->bi_rw, i, (unsigned long long)sh->sector); |
| clear_bit(R5_LOCKED, &sh->dev[i].flags); |
| set_bit(STRIPE_HANDLE, &sh->state); |
| } |
| } |
| } |
| |
| static struct dma_async_tx_descriptor * |
| async_copy_data(int frombio, struct bio *bio, struct page *page, |
| sector_t sector, struct dma_async_tx_descriptor *tx) |
| { |
| struct bio_vec *bvl; |
| struct page *bio_page; |
| int i; |
| int page_offset; |
| struct async_submit_ctl submit; |
| enum async_tx_flags flags = 0; |
| |
| if (bio->bi_sector >= sector) |
| page_offset = (signed)(bio->bi_sector - sector) * 512; |
| else |
| page_offset = (signed)(sector - bio->bi_sector) * -512; |
| |
| if (frombio) |
| flags |= ASYNC_TX_FENCE; |
| init_async_submit(&submit, flags, tx, NULL, NULL, NULL); |
| |
| bio_for_each_segment(bvl, bio, i) { |
| int len = bvl->bv_len; |
| int clen; |
| int b_offset = 0; |
| |
| if (page_offset < 0) { |
| b_offset = -page_offset; |
| page_offset += b_offset; |
| len -= b_offset; |
| } |
| |
| if (len > 0 && page_offset + len > STRIPE_SIZE) |
| clen = STRIPE_SIZE - page_offset; |
| else |
| clen = len; |
| |
| if (clen > 0) { |
| b_offset += bvl->bv_offset; |
| bio_page = bvl->bv_page; |
| if (frombio) |
| tx = async_memcpy(page, bio_page, page_offset, |
| b_offset, clen, &submit); |
| else |
| tx = async_memcpy(bio_page, page, b_offset, |
| page_offset, clen, &submit); |
| } |
| /* chain the operations */ |
| submit.depend_tx = tx; |
| |
| if (clen < len) /* hit end of page */ |
| break; |
| page_offset += len; |
| } |
| |
| return tx; |
| } |
| |
| static void ops_complete_biofill(void *stripe_head_ref) |
| { |
| struct stripe_head *sh = stripe_head_ref; |
| struct bio *return_bi = NULL; |
| struct r5conf *conf = sh->raid_conf; |
| int i; |
| |
| pr_debug("%s: stripe %llu\n", __func__, |
| (unsigned long long)sh->sector); |
| |
| /* clear completed biofills */ |
| spin_lock_irq(&conf->device_lock); |
| for (i = sh->disks; i--; ) { |
| struct r5dev *dev = &sh->dev[i]; |
| |
| /* acknowledge completion of a biofill operation */ |
| /* and check if we need to reply to a read request, |
| * new R5_Wantfill requests are held off until |
| * !STRIPE_BIOFILL_RUN |
| */ |
| if (test_and_clear_bit(R5_Wantfill, &dev->flags)) { |
| struct bio *rbi, *rbi2; |
| |
| BUG_ON(!dev->read); |
| rbi = dev->read; |
| dev->read = NULL; |
| while (rbi && rbi->bi_sector < |
| dev->sector + STRIPE_SECTORS) { |
| rbi2 = r5_next_bio(rbi, dev->sector); |
| if (!raid5_dec_bi_phys_segments(rbi)) { |
| rbi->bi_next = return_bi; |
| return_bi = rbi; |
| } |
| rbi = rbi2; |
| } |
| } |
| } |
| spin_unlock_irq(&conf->device_lock); |
| clear_bit(STRIPE_BIOFILL_RUN, &sh->state); |
| |
| return_io(return_bi); |
| |
| set_bit(STRIPE_HANDLE, &sh->state); |
| release_stripe(sh); |
| } |
| |
| static void ops_run_biofill(struct stripe_head *sh) |
| { |
| struct dma_async_tx_descriptor *tx = NULL; |
| struct r5conf *conf = sh->raid_conf; |
| struct async_submit_ctl submit; |
| int i; |
| |
| pr_debug("%s: stripe %llu\n", __func__, |
| (unsigned long long)sh->sector); |
| |
| for (i = sh->disks; i--; ) { |
| struct r5dev *dev = &sh->dev[i]; |
| if (test_bit(R5_Wantfill, &dev->flags)) { |
| struct bio *rbi; |
| spin_lock_irq(&conf->device_lock); |
| dev->read = rbi = dev->toread; |
| dev->toread = NULL; |
| spin_unlock_irq(&conf->device_lock); |
| while (rbi && rbi->bi_sector < |
| dev->sector + STRIPE_SECTORS) { |
| tx = async_copy_data(0, rbi, dev->page, |
| dev->sector, tx); |
| rbi = r5_next_bio(rbi, dev->sector); |
| } |
| } |
| } |
| |
| atomic_inc(&sh->count); |
| init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL); |
| async_trigger_callback(&submit); |
| } |
| |
| static void mark_target_uptodate(struct stripe_head *sh, int target) |
| { |
| struct r5dev *tgt; |
| |
| if (target < 0) |
| return; |
| |
| tgt = &sh->dev[target]; |
| set_bit(R5_UPTODATE, &tgt->flags); |
| BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); |
| clear_bit(R5_Wantcompute, &tgt->flags); |
| } |
| |
| static void ops_complete_compute(void *stripe_head_ref) |
| { |
| struct stripe_head *sh = stripe_head_ref; |
| |
| pr_debug("%s: stripe %llu\n", __func__, |
| (unsigned long long)sh->sector); |
| |
| /* mark the computed target(s) as uptodate */ |
| mark_target_uptodate(sh, sh->ops.target); |
| mark_target_uptodate(sh, sh->ops.target2); |
| |
| clear_bit(STRIPE_COMPUTE_RUN, &sh->state); |
| if (sh->check_state == check_state_compute_run) |
| sh->check_state = check_state_compute_result; |
| set_bit(STRIPE_HANDLE, &sh->state); |
| release_stripe(sh); |
| } |
| |
| /* return a pointer to the address conversion region of the scribble buffer */ |
| static addr_conv_t *to_addr_conv(struct stripe_head *sh, |
| struct raid5_percpu *percpu) |
| { |
| return percpu->scribble + sizeof(struct page *) * (sh->disks + 2); |
| } |
| |
| static struct dma_async_tx_descriptor * |
| ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu) |
| { |
| int disks = sh->disks; |
| struct page **xor_srcs = percpu->scribble; |
| int target = sh->ops.target; |
| struct r5dev *tgt = &sh->dev[target]; |
| struct page *xor_dest = tgt->page; |
| int count = 0; |
| struct dma_async_tx_descriptor *tx; |
| struct async_submit_ctl submit; |
| int i; |
| |
| pr_debug("%s: stripe %llu block: %d\n", |
| __func__, (unsigned long long)sh->sector, target); |
| BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); |
| |
| for (i = disks; i--; ) |
| if (i != target) |
| xor_srcs[count++] = sh->dev[i].page; |
| |
| atomic_inc(&sh->count); |
| |
| init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL, |
| ops_complete_compute, sh, to_addr_conv(sh, percpu)); |
| if (unlikely(count == 1)) |
| tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); |
| else |
| tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); |
| |
| return tx; |
| } |
| |
| /* set_syndrome_sources - populate source buffers for gen_syndrome |
| * @srcs - (struct page *) array of size sh->disks |
| * @sh - stripe_head to parse |
| * |
| * Populates srcs in proper layout order for the stripe and returns the |
| * 'count' of sources to be used in a call to async_gen_syndrome. The P |
| * destination buffer is recorded in srcs[count] and the Q destination |
| * is recorded in srcs[count+1]]. |
| */ |
| static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh) |
| { |
| int disks = sh->disks; |
| int syndrome_disks = sh->ddf_layout ? disks : (disks - 2); |
| int d0_idx = raid6_d0(sh); |
| int count; |
| int i; |
| |
| for (i = 0; i < disks; i++) |
| srcs[i] = NULL; |
| |
| count = 0; |
| i = d0_idx; |
| do { |
| int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); |
| |
| srcs[slot] = sh->dev[i].page; |
| i = raid6_next_disk(i, disks); |
| } while (i != d0_idx); |
| |
| return syndrome_disks; |
| } |
| |
| static struct dma_async_tx_descriptor * |
| ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu) |
| { |
| int disks = sh->disks; |
| struct page **blocks = percpu->scribble; |
| int target; |
| int qd_idx = sh->qd_idx; |
| struct dma_async_tx_descriptor *tx; |
| struct async_submit_ctl submit; |
| struct r5dev *tgt; |
| struct page *dest; |
| int i; |
| int count; |
| |
| if (sh->ops.target < 0) |
| target = sh->ops.target2; |
| else if (sh->ops.target2 < 0) |
| target = sh->ops.target; |
| else |
| /* we should only have one valid target */ |
| BUG(); |
| BUG_ON(target < 0); |
| pr_debug("%s: stripe %llu block: %d\n", |
| __func__, (unsigned long long)sh->sector, target); |
| |
| tgt = &sh->dev[target]; |
| BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); |
| dest = tgt->page; |
| |
| atomic_inc(&sh->count); |
| |
| if (target == qd_idx) { |
| count = set_syndrome_sources(blocks, sh); |
| blocks[count] = NULL; /* regenerating p is not necessary */ |
| BUG_ON(blocks[count+1] != dest); /* q should already be set */ |
| init_async_submit(&submit, ASYNC_TX_FENCE, NULL, |
| ops_complete_compute, sh, |
| to_addr_conv(sh, percpu)); |
| tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); |
| } else { |
| /* Compute any data- or p-drive using XOR */ |
| count = 0; |
| for (i = disks; i-- ; ) { |
| if (i == target || i == qd_idx) |
| continue; |
| blocks[count++] = sh->dev[i].page; |
| } |
| |
| init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, |
| NULL, ops_complete_compute, sh, |
| to_addr_conv(sh, percpu)); |
| tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit); |
| } |
| |
| return tx; |
| } |
| |
| static struct dma_async_tx_descriptor * |
| ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu) |
| { |
| int i, count, disks = sh->disks; |
| int syndrome_disks = sh->ddf_layout ? disks : disks-2; |
| int d0_idx = raid6_d0(sh); |
| int faila = -1, failb = -1; |
| int target = sh->ops.target; |
| int target2 = sh->ops.target2; |
| struct r5dev *tgt = &sh->dev[target]; |
| struct r5dev *tgt2 = &sh->dev[target2]; |
| struct dma_async_tx_descriptor *tx; |
| struct page **blocks = percpu->scribble; |
| struct async_submit_ctl submit; |
| |
| pr_debug("%s: stripe %llu block1: %d block2: %d\n", |
| __func__, (unsigned long long)sh->sector, target, target2); |
| BUG_ON(target < 0 || target2 < 0); |
| BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); |
| BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags)); |
| |
| /* we need to open-code set_syndrome_sources to handle the |
| * slot number conversion for 'faila' and 'failb' |
| */ |
| for (i = 0; i < disks ; i++) |
| blocks[i] = NULL; |
| count = 0; |
| i = d0_idx; |
| do { |
| int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); |
| |
| blocks[slot] = sh->dev[i].page; |
| |
| if (i == target) |
| faila = slot; |
| if (i == target2) |
| failb = slot; |
| i = raid6_next_disk(i, disks); |
| } while (i != d0_idx); |
| |
| BUG_ON(faila == failb); |
| if (failb < faila) |
| swap(faila, failb); |
| pr_debug("%s: stripe: %llu faila: %d failb: %d\n", |
| __func__, (unsigned long long)sh->sector, faila, failb); |
| |
| atomic_inc(&sh->count); |
| |
| if (failb == syndrome_disks+1) { |
| /* Q disk is one of the missing disks */ |
| if (faila == syndrome_disks) { |
| /* Missing P+Q, just recompute */ |
| init_async_submit(&submit, ASYNC_TX_FENCE, NULL, |
| ops_complete_compute, sh, |
| to_addr_conv(sh, percpu)); |
| return async_gen_syndrome(blocks, 0, syndrome_disks+2, |
| STRIPE_SIZE, &submit); |
| } else { |
| struct page *dest; |
| int data_target; |
| int qd_idx = sh->qd_idx; |
| |
| /* Missing D+Q: recompute D from P, then recompute Q */ |
| if (target == qd_idx) |
| data_target = target2; |
| else |
| data_target = target; |
| |
| count = 0; |
| for (i = disks; i-- ; ) { |
| if (i == data_target || i == qd_idx) |
| continue; |
| blocks[count++] = sh->dev[i].page; |
| } |
| dest = sh->dev[data_target].page; |
| init_async_submit(&submit, |
| ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, |
| NULL, NULL, NULL, |
| to_addr_conv(sh, percpu)); |
| tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, |
| &submit); |
| |
| count = set_syndrome_sources(blocks, sh); |
| init_async_submit(&submit, ASYNC_TX_FENCE, tx, |
| ops_complete_compute, sh, |
| to_addr_conv(sh, percpu)); |
| return async_gen_syndrome(blocks, 0, count+2, |
| STRIPE_SIZE, &submit); |
| } |
| } else { |
| init_async_submit(&submit, ASYNC_TX_FENCE, NULL, |
| ops_complete_compute, sh, |
| to_addr_conv(sh, percpu)); |
| if (failb == syndrome_disks) { |
| /* We're missing D+P. */ |
| return async_raid6_datap_recov(syndrome_disks+2, |
| STRIPE_SIZE, faila, |
| blocks, &submit); |
| } else { |
| /* We're missing D+D. */ |
| return async_raid6_2data_recov(syndrome_disks+2, |
| STRIPE_SIZE, faila, failb, |
| blocks, &submit); |
| } |
| } |
| } |
| |
| |
| static void ops_complete_prexor(void *stripe_head_ref) |
| { |
| struct stripe_head *sh = stripe_head_ref; |
| |
| pr_debug("%s: stripe %llu\n", __func__, |
| (unsigned long long)sh->sector); |
| } |
| |
| static struct dma_async_tx_descriptor * |
| ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu, |
| struct dma_async_tx_descriptor *tx) |
| { |
| int disks = sh->disks; |
| struct page **xor_srcs = percpu->scribble; |
| int count = 0, pd_idx = sh->pd_idx, i; |
| struct async_submit_ctl submit; |
| |
| /* existing parity data subtracted */ |
| struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; |
| |
| pr_debug("%s: stripe %llu\n", __func__, |
| (unsigned long long)sh->sector); |
| |
| for (i = disks; i--; ) { |
| struct r5dev *dev = &sh->dev[i]; |
| /* Only process blocks that are known to be uptodate */ |
| if (test_bit(R5_Wantdrain, &dev->flags)) |
| xor_srcs[count++] = dev->page; |
| } |
| |
| init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, |
| ops_complete_prexor, sh, to_addr_conv(sh, percpu)); |
| tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); |
| |
| return tx; |
| } |
| |
| static struct dma_async_tx_descriptor * |
| ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) |
| { |
| int disks = sh->disks; |
| int i; |
| |
| pr_debug("%s: stripe %llu\n", __func__, |
| (unsigned long long)sh->sector); |
| |
| for (i = disks; i--; ) { |
| struct r5dev *dev = &sh->dev[i]; |
| struct bio *chosen; |
| |
| if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) { |
| struct bio *wbi; |
| |
| spin_lock_irq(&sh->raid_conf->device_lock); |
| chosen = dev->towrite; |
| dev->towrite = NULL; |
| BUG_ON(dev->written); |
| wbi = dev->written = chosen; |
| spin_unlock_irq(&sh->raid_conf->device_lock); |
| |
| while (wbi && wbi->bi_sector < |
| dev->sector + STRIPE_SECTORS) { |
| if (wbi->bi_rw & REQ_FUA) |
| set_bit(R5_WantFUA, &dev->flags); |
| tx = async_copy_data(1, wbi, dev->page, |
| dev->sector, tx); |
| wbi = r5_next_bio(wbi, dev->sector); |
| } |
| } |
| } |
| |
| return tx; |
| } |
| |
| static void ops_complete_reconstruct(void *stripe_head_ref) |
| { |
| struct stripe_head *sh = stripe_head_ref; |
| int disks = sh->disks; |
| int pd_idx = sh->pd_idx; |
| int qd_idx = sh->qd_idx; |
| int i; |
| bool fua = false; |
| |
| pr_debug("%s: stripe %llu\n", __func__, |
| (unsigned long long)sh->sector); |
| |
| for (i = disks; i--; ) |
| fua |= test_bit(R5_WantFUA, &sh->dev[i].flags); |
| |
| for (i = disks; i--; ) { |
| struct r5dev *dev = &sh->dev[i]; |
| |
| if (dev->written || i == pd_idx || i == qd_idx) { |
| set_bit(R5_UPTODATE, &dev->flags); |
| if (fua) |
| set_bit(R5_WantFUA, &dev->flags); |
| } |
| } |
| |
| if (sh->reconstruct_state == reconstruct_state_drain_run) |
| sh->reconstruct_state = reconstruct_state_drain_result; |
| else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) |
| sh->reconstruct_state = reconstruct_state_prexor_drain_result; |
| else { |
| BUG_ON(sh->reconstruct_state != reconstruct_state_run); |
| sh->reconstruct_state = reconstruct_state_result; |
| } |
| |
| set_bit(STRIPE_HANDLE, &sh->state); |
| release_stripe(sh); |
| } |
| |
| static void |
| ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu, |
| struct dma_async_tx_descriptor *tx) |
| { |
| int disks = sh->disks; |
| struct page **xor_srcs = percpu->scribble; |
| struct async_submit_ctl submit; |
| int count = 0, pd_idx = sh->pd_idx, i; |
| struct page *xor_dest; |
| int prexor = 0; |
| unsigned long flags; |
| |
| pr_debug("%s: stripe %llu\n", __func__, |
| (unsigned long long)sh->sector); |
| |
| /* check if prexor is active which means only process blocks |
| * that are part of a read-modify-write (written) |
| */ |
| if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) { |
| prexor = 1; |
| xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; |
| for (i = disks; i--; ) { |
| struct r5dev *dev = &sh->dev[i]; |
| if (dev->written) |
| xor_srcs[count++] = dev->page; |
| } |
| } else { |
| xor_dest = sh->dev[pd_idx].page; |
| for (i = disks; i--; ) { |
| struct r5dev *dev = &sh->dev[i]; |
| if (i != pd_idx) |
| xor_srcs[count++] = dev->page; |
| } |
| } |
| |
| /* 1/ if we prexor'd then the dest is reused as a source |
| * 2/ if we did not prexor then we are redoing the parity |
| * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST |
| * for the synchronous xor case |
| */ |
| flags = ASYNC_TX_ACK | |
| (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST); |
| |
| atomic_inc(&sh->count); |
| |
| init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh, |
| to_addr_conv(sh, percpu)); |
| if (unlikely(count == 1)) |
| tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); |
| else |
| tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); |
| } |
| |
| static void |
| ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu, |
| struct dma_async_tx_descriptor *tx) |
| { |
| struct async_submit_ctl submit; |
| struct page **blocks = percpu->scribble; |
| int count; |
| |
| pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); |
| |
| count = set_syndrome_sources(blocks, sh); |
| |
| atomic_inc(&sh->count); |
| |
| init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct, |
| sh, to_addr_conv(sh, percpu)); |
| async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); |
| } |
| |
| static void ops_complete_check(void *stripe_head_ref) |
| { |
| struct stripe_head *sh = stripe_head_ref; |
| |
| pr_debug("%s: stripe %llu\n", __func__, |
| (unsigned long long)sh->sector); |
| |
| sh->check_state = check_state_check_result; |
| set_bit(STRIPE_HANDLE, &sh->state); |
| release_stripe(sh); |
| } |
| |
| static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu) |
| { |
| int disks = sh->disks; |
| int pd_idx = sh->pd_idx; |
| int qd_idx = sh->qd_idx; |
| struct page *xor_dest; |
| struct page **xor_srcs = percpu->scribble; |
| struct dma_async_tx_descriptor *tx; |
| struct async_submit_ctl submit; |
| int count; |
| int i; |
| |
| pr_debug("%s: stripe %llu\n", __func__, |
| (unsigned long long)sh->sector); |
| |
| count = 0; |
| xor_dest = sh->dev[pd_idx].page; |
| xor_srcs[count++] = xor_dest; |
| for (i = disks; i--; ) { |
| if (i == pd_idx || i == qd_idx) |
| continue; |
| xor_srcs[count++] = sh->dev[i].page; |
| } |
| |
| init_async_submit(&submit, 0, NULL, NULL, NULL, |
| to_addr_conv(sh, percpu)); |
| tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, |
| &sh->ops.zero_sum_result, &submit); |
| |
| atomic_inc(&sh->count); |
| init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL); |
| tx = async_trigger_callback(&submit); |
| } |
| |
| static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp) |
| { |
| struct page **srcs = percpu->scribble; |
| struct async_submit_ctl submit; |
| int count; |
| |
| pr_debug("%s: stripe %llu checkp: %d\n", __func__, |
| (unsigned long long)sh->sector, checkp); |
| |
| count = set_syndrome_sources(srcs, sh); |
| if (!checkp) |
| srcs[count] = NULL; |
| |
| atomic_inc(&sh->count); |
| init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check, |
| sh, to_addr_conv(sh, percpu)); |
| async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE, |
| &sh->ops.zero_sum_result, percpu->spare_page, &submit); |
| } |
| |
| static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request) |
| { |
| int overlap_clear = 0, i, disks = sh->disks; |
| struct dma_async_tx_descriptor *tx = NULL; |
| struct r5conf *conf = sh->raid_conf; |
| int level = conf->level; |
| struct raid5_percpu *percpu; |
| unsigned long cpu; |
| |
| cpu = get_cpu(); |
| percpu = per_cpu_ptr(conf->percpu, cpu); |
| if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) { |
| ops_run_biofill(sh); |
| overlap_clear++; |
| } |
| |
| if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) { |
| if (level < 6) |
| tx = ops_run_compute5(sh, percpu); |
| else { |
| if (sh->ops.target2 < 0 || sh->ops.target < 0) |
| tx = ops_run_compute6_1(sh, percpu); |
| else |
| tx = ops_run_compute6_2(sh, percpu); |
| } |
| /* terminate the chain if reconstruct is not set to be run */ |
| if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) |
| async_tx_ack(tx); |
| } |
| |
| if (test_bit(STRIPE_OP_PREXOR, &ops_request)) |
| tx = ops_run_prexor(sh, percpu, tx); |
| |
| if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) { |
| tx = ops_run_biodrain(sh, tx); |
| overlap_clear++; |
| } |
| |
| if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) { |
| if (level < 6) |
| ops_run_reconstruct5(sh, percpu, tx); |
| else |
| ops_run_reconstruct6(sh, percpu, tx); |
| } |
| |
| if (test_bit(STRIPE_OP_CHECK, &ops_request)) { |
| if (sh->check_state == check_state_run) |
| ops_run_check_p(sh, percpu); |
| else if (sh->check_state == check_state_run_q) |
| ops_run_check_pq(sh, percpu, 0); |
| else if (sh->check_state == check_state_run_pq) |
| ops_run_check_pq(sh, percpu, 1); |
| else |
| BUG(); |
| } |
| |
| if (overlap_clear) |
| for (i = disks; i--; ) { |
| struct r5dev *dev = &sh->dev[i]; |
| if (test_and_clear_bit(R5_Overlap, &dev->flags)) |
| wake_up(&sh->raid_conf->wait_for_overlap); |
| } |
| put_cpu(); |
| } |
| |
| #ifdef CONFIG_MULTICORE_RAID456 |
| static void async_run_ops(void *param, async_cookie_t cookie) |
| { |
| struct stripe_head *sh = param; |
| unsigned long ops_request = sh->ops.request; |
| |
| clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state); |
| wake_up(&sh->ops.wait_for_ops); |
| |
| __raid_run_ops(sh, ops_request); |
| release_stripe(sh); |
| } |
| |
| static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request) |
| { |
| /* since handle_stripe can be called outside of raid5d context |
| * we need to ensure sh->ops.request is de-staged before another |
| * request arrives |
| */ |
| wait_event(sh->ops.wait_for_ops, |
| !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state)); |
| sh->ops.request = ops_request; |
| |
| atomic_inc(&sh->count); |
| async_schedule(async_run_ops, sh); |
| } |
| #else |
| #define raid_run_ops __raid_run_ops |
| #endif |
| |
| static int grow_one_stripe(struct r5conf *conf) |
| { |
| struct stripe_head *sh; |
| sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL); |
| if (!sh) |
| return 0; |
| |
| sh->raid_conf = conf; |
| #ifdef CONFIG_MULTICORE_RAID456 |
| init_waitqueue_head(&sh->ops.wait_for_ops); |
| #endif |
| |
| if (grow_buffers(sh)) { |
| shrink_buffers(sh); |
| kmem_cache_free(conf->slab_cache, sh); |
| return 0; |
| } |
| /* we just created an active stripe so... */ |
| atomic_set(&sh->count, 1); |
| atomic_inc(&conf->active_stripes); |
| INIT_LIST_HEAD(&sh->lru); |
| release_stripe(sh); |
| return 1; |
| } |
| |
| static int grow_stripes(struct r5conf *conf, int num) |
| { |
| struct kmem_cache *sc; |
| int devs = max(conf->raid_disks, conf->previous_raid_disks); |
| |
| if (conf->mddev->gendisk) |
| sprintf(conf->cache_name[0], |
| "raid%d-%s", conf->level, mdname(conf->mddev)); |
| else |
| sprintf(conf->cache_name[0], |
| "raid%d-%p", conf->level, conf->mddev); |
| sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]); |
| |
| conf->active_name = 0; |
| sc = kmem_cache_create(conf->cache_name[conf->active_name], |
| sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev), |
| 0, 0, NULL); |
| if (!sc) |
| return 1; |
| conf->slab_cache = sc; |
| conf->pool_size = devs; |
| while (num--) |
| if (!grow_one_stripe(conf)) |
| return 1; |
| return 0; |
| } |
| |
| /** |
| * scribble_len - return the required size of the scribble region |
| * @num - total number of disks in the array |
| * |
| * The size must be enough to contain: |
| * 1/ a struct page pointer for each device in the array +2 |
| * 2/ room to convert each entry in (1) to its corresponding dma |
| * (dma_map_page()) or page (page_address()) address. |
| * |
| * Note: the +2 is for the destination buffers of the ddf/raid6 case where we |
| * calculate over all devices (not just the data blocks), using zeros in place |
| * of the P and Q blocks. |
| */ |
| static size_t scribble_len(int num) |
| { |
| size_t len; |
| |
| len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2); |
| |
| return len; |
| } |
| |
| static int resize_stripes(struct r5conf *conf, int newsize) |
| { |
| /* Make all the stripes able to hold 'newsize' devices. |
| * New slots in each stripe get 'page' set to a new page. |
| * |
| * This happens in stages: |
| * 1/ create a new kmem_cache and allocate the required number of |
| * stripe_heads. |
| * 2/ gather all the old stripe_heads and tranfer the pages across |
| * to the new stripe_heads. This will have the side effect of |
| * freezing the array as once all stripe_heads have been collected, |
| * no IO will be possible. Old stripe heads are freed once their |
| * pages have been transferred over, and the old kmem_cache is |
| * freed when all stripes are done. |
| * 3/ reallocate conf->disks to be suitable bigger. If this fails, |
| * we simple return a failre status - no need to clean anything up. |
| * 4/ allocate new pages for the new slots in the new stripe_heads. |
| * If this fails, we don't bother trying the shrink the |
| * stripe_heads down again, we just leave them as they are. |
| * As each stripe_head is processed the new one is released into |
| * active service. |
| * |
| * Once step2 is started, we cannot afford to wait for a write, |
| * so we use GFP_NOIO allocations. |
| */ |
| struct stripe_head *osh, *nsh; |
| LIST_HEAD(newstripes); |
| struct disk_info *ndisks; |
| unsigned long cpu; |
| int err; |
| struct kmem_cache *sc; |
| int i; |
| |
| if (newsize <= conf->pool_size) |
| return 0; /* never bother to shrink */ |
| |
| err = md_allow_write(conf->mddev); |
| if (err) |
| return err; |
| |
| /* Step 1 */ |
| sc = kmem_cache_create(conf->cache_name[1-conf->active_name], |
| sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev), |
| 0, 0, NULL); |
| if (!sc) |
| return -ENOMEM; |
| |
| for (i = conf->max_nr_stripes; i; i--) { |
| nsh = kmem_cache_zalloc(sc, GFP_KERNEL); |
| if (!nsh) |
| break; |
| |
| nsh->raid_conf = conf; |
| #ifdef CONFIG_MULTICORE_RAID456 |
| init_waitqueue_head(&nsh->ops.wait_for_ops); |
| #endif |
| |
| list_add(&nsh->lru, &newstripes); |
| } |
| if (i) { |
| /* didn't get enough, give up */ |
| while (!list_empty(&newstripes)) { |
| nsh = list_entry(newstripes.next, struct stripe_head, lru); |
| list_del(&nsh->lru); |
| kmem_cache_free(sc, nsh); |
| } |
| kmem_cache_destroy(sc); |
| return -ENOMEM; |
| } |
| /* Step 2 - Must use GFP_NOIO now. |
| * OK, we have enough stripes, start collecting inactive |
| * stripes and copying them over |
| */ |
| list_for_each_entry(nsh, &newstripes, lru) { |
| spin_lock_irq(&conf->device_lock); |
| wait_event_lock_irq(conf->wait_for_stripe, |
| !list_empty(&conf->inactive_list), |
| conf->device_lock, |
| ); |
| osh = get_free_stripe(conf); |
| spin_unlock_irq(&conf->device_lock); |
| atomic_set(&nsh->count, 1); |
| for(i=0; i<conf->pool_size; i++) |
| nsh->dev[i].page = osh->dev[i].page; |
| for( ; i<newsize; i++) |
| nsh->dev[i].page = NULL; |
| kmem_cache_free(conf->slab_cache, osh); |
| } |
| kmem_cache_destroy(conf->slab_cache); |
| |
| /* Step 3. |
| * At this point, we are holding all the stripes so the array |
| * is completely stalled, so now is a good time to resize |
| * conf->disks and the scribble region |
| */ |
| ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO); |
| if (ndisks) { |
| for (i=0; i<conf->raid_disks; i++) |
| ndisks[i] = conf->disks[i]; |
| kfree(conf->disks); |
| conf->disks = ndisks; |
| } else |
| err = -ENOMEM; |
| |
| get_online_cpus(); |
| conf->scribble_len = scribble_len(newsize); |
| for_each_present_cpu(cpu) { |
| struct raid5_percpu *percpu; |
| void *scribble; |
| |
| percpu = per_cpu_ptr(conf->percpu, cpu); |
| scribble = kmalloc(conf->scribble_len, GFP_NOIO); |
| |
| if (scribble) { |
| kfree(percpu->scribble); |
| percpu->scribble = scribble; |
| } else { |
| err = -ENOMEM; |
| break; |
| } |
| } |
| put_online_cpus(); |
| |
| /* Step 4, return new stripes to service */ |
| while(!list_empty(&newstripes)) { |
| nsh = list_entry(newstripes.next, struct stripe_head, lru); |
| list_del_init(&nsh->lru); |
| |
| for (i=conf->raid_disks; i < newsize; i++) |
| if (nsh->dev[i].page == NULL) { |
| struct page *p = alloc_page(GFP_NOIO); |
| nsh->dev[i].page = p; |
| if (!p) |
| err = -ENOMEM; |
| } |
| release_stripe(nsh); |
| } |
| /* critical section pass, GFP_NOIO no longer needed */ |
| |
| conf->slab_cache = sc; |
| conf->active_name = 1-conf->active_name; |
| conf->pool_size = newsize; |
| return err; |
| } |
| |
| static int drop_one_stripe(struct r5conf *conf) |
| { |
| struct stripe_head *sh; |
| |
| spin_lock_irq(&conf->device_lock); |
| sh = get_free_stripe(conf); |
| spin_unlock_irq(&conf->device_lock); |
| if (!sh) |
| return 0; |
| BUG_ON(atomic_read(&sh->count)); |
| shrink_buffers(sh); |
| kmem_cache_free(conf->slab_cache, sh); |
| atomic_dec(&conf->active_stripes); |
| return 1; |
| } |
| |
| static void shrink_stripes(struct r5conf *conf) |
| { |
| while (drop_one_stripe(conf)) |
| ; |
| |
| if (conf->slab_cache) |
| kmem_cache_destroy(conf->slab_cache); |
| conf->slab_cache = NULL; |
| } |
| |
| static void raid5_end_read_request(struct bio * bi, int error) |
| { |
| struct stripe_head *sh = bi->bi_private; |
| struct r5conf *conf = sh->raid_conf; |
| int disks = sh->disks, i; |
| int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); |
| char b[BDEVNAME_SIZE]; |
| struct md_rdev *rdev; |
| |
| |
| for (i=0 ; i<disks; i++) |
| if (bi == &sh->dev[i].req) |
| break; |
| |
| pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n", |
| (unsigned long long)sh->sector, i, atomic_read(&sh->count), |
| uptodate); |
| if (i == disks) { |
| BUG(); |
| return; |
| } |
| |
| if (uptodate) { |
| set_bit(R5_UPTODATE, &sh->dev[i].flags); |
| if (test_bit(R5_ReadError, &sh->dev[i].flags)) { |
| rdev = conf->disks[i].rdev; |
| printk_ratelimited( |
| KERN_INFO |
| "md/raid:%s: read error corrected" |
| " (%lu sectors at %llu on %s)\n", |
| mdname(conf->mddev), STRIPE_SECTORS, |
| (unsigned long long)(sh->sector |
| + rdev->data_offset), |
| bdevname(rdev->bdev, b)); |
| atomic_add(STRIPE_SECTORS, &rdev->corrected_errors); |
| clear_bit(R5_ReadError, &sh->dev[i].flags); |
| clear_bit(R5_ReWrite, &sh->dev[i].flags); |
| } |
| if (atomic_read(&conf->disks[i].rdev->read_errors)) |
| atomic_set(&conf->disks[i].rdev->read_errors, 0); |
| } else { |
| const char *bdn = bdevname(conf->disks[i].rdev->bdev, b); |
| int retry = 0; |
| rdev = conf->disks[i].rdev; |
| |
| clear_bit(R5_UPTODATE, &sh->dev[i].flags); |
| atomic_inc(&rdev->read_errors); |
| if (conf->mddev->degraded >= conf->max_degraded) |
| printk_ratelimited( |
| KERN_WARNING |
| "md/raid:%s: read error not correctable " |
| "(sector %llu on %s).\n", |
| mdname(conf->mddev), |
| (unsigned long long)(sh->sector |
| + rdev->data_offset), |
| bdn); |
| else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) |
| /* Oh, no!!! */ |
| printk_ratelimited( |
| KERN_WARNING |
| "md/raid:%s: read error NOT corrected!! " |
| "(sector %llu on %s).\n", |
| mdname(conf->mddev), |
| (unsigned long long)(sh->sector |
| + rdev->data_offset), |
| bdn); |
| else if (atomic_read(&rdev->read_errors) |
| > conf->max_nr_stripes) |
| printk(KERN_WARNING |
| "md/raid:%s: Too many read errors, failing device %s.\n", |
| mdname(conf->mddev), bdn); |
| else |
| retry = 1; |
| if (retry) |
| set_bit(R5_ReadError, &sh->dev[i].flags); |
| else { |
| clear_bit(R5_ReadError, &sh->dev[i].flags); |
| clear_bit(R5_ReWrite, &sh->dev[i].flags); |
| md_error(conf->mddev, rdev); |
| } |
| } |
| rdev_dec_pending(conf->disks[i].rdev, conf->mddev); |
| clear_bit(R5_LOCKED, &sh->dev[i].flags); |
| set_bit(STRIPE_HANDLE, &sh->state); |
| release_stripe(sh); |
| } |
| |
| static void raid5_end_write_request(struct bio *bi, int error) |
| { |
| struct stripe_head *sh = bi->bi_private; |
| struct r5conf *conf = sh->raid_conf; |
| int disks = sh->disks, i; |
| int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); |
| sector_t first_bad; |
| int bad_sectors; |
| |
| for (i=0 ; i<disks; i++) |
| if (bi == &sh->dev[i].req) |
| break; |
| |
| pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n", |
| (unsigned long long)sh->sector, i, atomic_read(&sh->count), |
| uptodate); |
| if (i == disks) { |
| BUG(); |
| return; |
| } |
| |
| if (!uptodate) { |
| set_bit(WriteErrorSeen, &conf->disks[i].rdev->flags); |
| set_bit(R5_WriteError, &sh->dev[i].flags); |
| } else if (is_badblock(conf->disks[i].rdev, sh->sector, STRIPE_SECTORS, |
| &first_bad, &bad_sectors)) |
| set_bit(R5_MadeGood, &sh->dev[i].flags); |
| |
| rdev_dec_pending(conf->disks[i].rdev, conf->mddev); |
| |
| clear_bit(R5_LOCKED, &sh->dev[i].flags); |
| set_bit(STRIPE_HANDLE, &sh->state); |
| release_stripe(sh); |
| } |
| |
| |
| static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous); |
| |
| static void raid5_build_block(struct stripe_head *sh, int i, int previous) |
| { |
| struct r5dev *dev = &sh->dev[i]; |
| |
| bio_init(&dev->req); |
| dev->req.bi_io_vec = &dev->vec; |
| dev->req.bi_vcnt++; |
| dev->req.bi_max_vecs++; |
| dev->vec.bv_page = dev->page; |
| dev->vec.bv_len = STRIPE_SIZE; |
| dev->vec.bv_offset = 0; |
| |
| dev->req.bi_sector = sh->sector; |
| dev->req.bi_private = sh; |
| |
| dev->flags = 0; |
| dev->sector = compute_blocknr(sh, i, previous); |
| } |
| |
| static void error(struct mddev *mddev, struct md_rdev *rdev) |
| { |
| char b[BDEVNAME_SIZE]; |
| struct r5conf *conf = mddev->private; |
| pr_debug("raid456: error called\n"); |
| |
| if (test_and_clear_bit(In_sync, &rdev->flags)) { |
| unsigned long flags; |
| spin_lock_irqsave(&conf->device_lock, flags); |
| mddev->degraded++; |
| spin_unlock_irqrestore(&conf->device_lock, flags); |
| /* |
| * if recovery was running, make sure it aborts. |
| */ |
| set_bit(MD_RECOVERY_INTR, &mddev->recovery); |
| } |
| set_bit(Blocked, &rdev->flags); |
| set_bit(Faulty, &rdev->flags); |
| set_bit(MD_CHANGE_DEVS, &mddev->flags); |
| printk(KERN_ALERT |
| "md/raid:%s: Disk failure on %s, disabling device.\n" |
| "md/raid:%s: Operation continuing on %d devices.\n", |
| mdname(mddev), |
| bdevname(rdev->bdev, b), |
| mdname(mddev), |
| conf->raid_disks - mddev->degraded); |
| } |
| |
| /* |
| * Input: a 'big' sector number, |
| * Output: index of the data and parity disk, and the sector # in them. |
| */ |
| static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector, |
| int previous, int *dd_idx, |
| struct stripe_head *sh) |
| { |
| sector_t stripe, stripe2; |
| sector_t chunk_number; |
| unsigned int chunk_offset; |
| int pd_idx, qd_idx; |
| int ddf_layout = 0; |
| sector_t new_sector; |
| int algorithm = previous ? conf->prev_algo |
| : conf->algorithm; |
| int sectors_per_chunk = previous ? conf->prev_chunk_sectors |
| : conf->chunk_sectors; |
| int raid_disks = previous ? conf->previous_raid_disks |
| : conf->raid_disks; |
| int data_disks = raid_disks - conf->max_degraded; |
| |
| /* First compute the information on this sector */ |
| |
| /* |
| * Compute the chunk number and the sector offset inside the chunk |
| */ |
| chunk_offset = sector_div(r_sector, sectors_per_chunk); |
| chunk_number = r_sector; |
| |
| /* |
| * Compute the stripe number |
| */ |
| stripe = chunk_number; |
| *dd_idx = sector_div(stripe, data_disks); |
| stripe2 = stripe; |
| /* |
| * Select the parity disk based on the user selected algorithm. |
| */ |
| pd_idx = qd_idx = -1; |
| switch(conf->level) { |
| case 4: |
| pd_idx = data_disks; |
| break; |
| case 5: |
| switch (algorithm) { |
| case ALGORITHM_LEFT_ASYMMETRIC: |
| pd_idx = data_disks - sector_div(stripe2, raid_disks); |
| if (*dd_idx >= pd_idx) |
| (*dd_idx)++; |
| break; |
| case ALGORITHM_RIGHT_ASYMMETRIC: |
| pd_idx = sector_div(stripe2, raid_disks); |
| if (*dd_idx >= pd_idx) |
| (*dd_idx)++; |
| break; |
| case ALGORITHM_LEFT_SYMMETRIC: |
| pd_idx = data_disks - sector_div(stripe2, raid_disks); |
| *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; |
| break; |
| case ALGORITHM_RIGHT_SYMMETRIC: |
| pd_idx = sector_div(stripe2, raid_disks); |
| *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; |
| break; |
| case ALGORITHM_PARITY_0: |
| pd_idx = 0; |
| (*dd_idx)++; |
| break; |
| case ALGORITHM_PARITY_N: |
| pd_idx = data_disks; |
| break; |
| default: |
| BUG(); |
| } |
| break; |
| case 6: |
| |
| switch (algorithm) { |
| case ALGORITHM_LEFT_ASYMMETRIC: |
| pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); |
| qd_idx = pd_idx + 1; |
| if (pd_idx == raid_disks-1) { |
| (*dd_idx)++; /* Q D D D P */ |
| qd_idx = 0; |
| } else if (*dd_idx >= pd_idx) |
| (*dd_idx) += 2; /* D D P Q D */ |
| break; |
| case ALGORITHM_RIGHT_ASYMMETRIC: |
| pd_idx = sector_div(stripe2, raid_disks); |
| qd_idx = pd_idx + 1; |
| if (pd_idx == raid_disks-1) { |
| (*dd_idx)++; /* Q D D D P */ |
| qd_idx = 0; |
| } else if (*dd_idx >= pd_idx) |
| (*dd_idx) += 2; /* D D P Q D */ |
| break; |
| case ALGORITHM_LEFT_SYMMETRIC: |
| pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); |
| qd_idx = (pd_idx + 1) % raid_disks; |
| *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; |
| break; |
| case ALGORITHM_RIGHT_SYMMETRIC: |
| pd_idx = sector_div(stripe2, raid_disks); |
| qd_idx = (pd_idx + 1) % raid_disks; |
| *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; |
| break; |
| |
| case ALGORITHM_PARITY_0: |
| pd_idx = 0; |
| qd_idx = 1; |
| (*dd_idx) += 2; |
| break; |
| case ALGORITHM_PARITY_N: |
| pd_idx = data_disks; |
| qd_idx = data_disks + 1; |
| break; |
| |
| case ALGORITHM_ROTATING_ZERO_RESTART: |
| /* Exactly the same as RIGHT_ASYMMETRIC, but or |
| * of blocks for computing Q is different. |
| */ |
| pd_idx = sector_div(stripe2, raid_disks); |
| qd_idx = pd_idx + 1; |
| if (pd_idx == raid_disks-1) { |
| (*dd_idx)++; /* Q D D D P */ |
| qd_idx = 0; |
| } else if (*dd_idx >= pd_idx) |
| (*dd_idx) += 2; /* D D P Q D */ |
| ddf_layout = 1; |
| break; |
| |
| case ALGORITHM_ROTATING_N_RESTART: |
| /* Same a left_asymmetric, by first stripe is |
| * D D D P Q rather than |
| * Q D D D P |
| */ |
| stripe2 += 1; |
| pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); |
| qd_idx = pd_idx + 1; |
| if (pd_idx == raid_disks-1) { |
| (*dd_idx)++; /* Q D D D P */ |
| qd_idx = 0; |
| } else if (*dd_idx >= pd_idx) |
| (*dd_idx) += 2; /* D D P Q D */ |
| ddf_layout = 1; |
| break; |
| |
| case ALGORITHM_ROTATING_N_CONTINUE: |
| /* Same as left_symmetric but Q is before P */ |
| pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); |
| qd_idx = (pd_idx + raid_disks - 1) % raid_disks; |
| *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; |
| ddf_layout = 1; |
| break; |
| |
| case ALGORITHM_LEFT_ASYMMETRIC_6: |
| /* RAID5 left_asymmetric, with Q on last device */ |
| pd_idx = data_disks - sector_div(stripe2, raid_disks-1); |
| if (*dd_idx >= pd_idx) |
| (*dd_idx)++; |
| qd_idx = raid_disks - 1; |
| break; |
| |
| case ALGORITHM_RIGHT_ASYMMETRIC_6: |
| pd_idx = sector_div(stripe2, raid_disks-1); |
| if (*dd_idx >= pd_idx) |
| (*dd_idx)++; |
| qd_idx = raid_disks - 1; |
| break; |
| |
| case ALGORITHM_LEFT_SYMMETRIC_6: |
| pd_idx = data_disks - sector_div(stripe2, raid_disks-1); |
| *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); |
| qd_idx = raid_disks - 1; |
| break; |
| |
| case ALGORITHM_RIGHT_SYMMETRIC_6: |
| pd_idx = sector_div(stripe2, raid_disks-1); |
| *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); |
| qd_idx = raid_disks - 1; |
| break; |
| |
| case ALGORITHM_PARITY_0_6: |
| pd_idx = 0; |
| (*dd_idx)++; |
| qd_idx = raid_disks - 1; |
| break; |
| |
| default: |
| BUG(); |
| } |
| break; |
| } |
| |
| if (sh) { |
| sh->pd_idx = pd_idx; |
| sh->qd_idx = qd_idx; |
| sh->ddf_layout = ddf_layout; |
| } |
| /* |
| * Finally, compute the new sector number |
| */ |
| new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset; |
| return new_sector; |
| } |
| |
| |
| static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous) |
| { |
| struct r5conf *conf = sh->raid_conf; |
| int raid_disks = sh->disks; |
| int data_disks = raid_disks - conf->max_degraded; |
| sector_t new_sector = sh->sector, check; |
| int sectors_per_chunk = previous ? conf->prev_chunk_sectors |
| : conf->chunk_sectors; |
| int algorithm = previous ? conf->prev_algo |
| : conf->algorithm; |
| sector_t stripe; |
| int chunk_offset; |
| sector_t chunk_number; |
| int dummy1, dd_idx = i; |
| sector_t r_sector; |
| struct stripe_head sh2; |
| |
| |
| chunk_offset = sector_div(new_sector, sectors_per_chunk); |
| stripe = new_sector; |
| |
| if (i == sh->pd_idx) |
| return 0; |
| switch(conf->level) { |
| case 4: break; |
| case 5: |
| switch (algorithm) { |
| case ALGORITHM_LEFT_ASYMMETRIC: |
| case ALGORITHM_RIGHT_ASYMMETRIC: |
| if (i > sh->pd_idx) |
| i--; |
| break; |
| case ALGORITHM_LEFT_SYMMETRIC: |
| case ALGORITHM_RIGHT_SYMMETRIC: |
| if (i < sh->pd_idx) |
| i += raid_disks; |
| i -= (sh->pd_idx + 1); |
| break; |
| case ALGORITHM_PARITY_0: |
| i -= 1; |
| break; |
| case ALGORITHM_PARITY_N: |
| break; |
| default: |
| BUG(); |
| } |
| break; |
| case 6: |
| if (i == sh->qd_idx) |
| return 0; /* It is the Q disk */ |
| switch (algorithm) { |
| case ALGORITHM_LEFT_ASYMMETRIC: |
| case ALGORITHM_RIGHT_ASYMMETRIC: |
| case ALGORITHM_ROTATING_ZERO_RESTART: |
| case ALGORITHM_ROTATING_N_RESTART: |
| if (sh->pd_idx == raid_disks-1) |
| i--; /* Q D D D P */ |
| else if (i > sh->pd_idx) |
| i -= 2; /* D D P Q D */ |
| break; |
| case ALGORITHM_LEFT_SYMMETRIC: |
| case ALGORITHM_RIGHT_SYMMETRIC: |
| if (sh->pd_idx == raid_disks-1) |
| i--; /* Q D D D P */ |
| else { |
| /* D D P Q D */ |
| if (i < sh->pd_idx) |
| i += raid_disks; |
| i -= (sh->pd_idx + 2); |
| } |
| break; |
| case ALGORITHM_PARITY_0: |
| i -= 2; |
| break; |
| case ALGORITHM_PARITY_N: |
| break; |
| case ALGORITHM_ROTATING_N_CONTINUE: |
| /* Like left_symmetric, but P is before Q */ |
| if (sh->pd_idx == 0) |
| i--; /* P D D D Q */ |
| else { |
| /* D D Q P D */ |
| if (i < sh->pd_idx) |
| i += raid_disks; |
| i -= (sh->pd_idx + 1); |
| } |
| break; |
| case ALGORITHM_LEFT_ASYMMETRIC_6: |
| case ALGORITHM_RIGHT_ASYMMETRIC_6: |
| if (i > sh->pd_idx) |
| i--; |
| break; |
| case ALGORITHM_LEFT_SYMMETRIC_6: |
| case ALGORITHM_RIGHT_SYMMETRIC_6: |
| if (i < sh->pd_idx) |
| i += data_disks + 1; |
| i -= (sh->pd_idx + 1); |
| break; |
| case ALGORITHM_PARITY_0_6: |
| i -= 1; |
| break; |
| default: |
| BUG(); |
| } |
| break; |
| } |
| |
| chunk_number = stripe * data_disks + i; |
| r_sector = chunk_number * sectors_per_chunk + chunk_offset; |
| |
| check = raid5_compute_sector(conf, r_sector, |
| previous, &dummy1, &sh2); |
| if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx |
| || sh2.qd_idx != sh->qd_idx) { |
| printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n", |
| mdname(conf->mddev)); |
| return 0; |
| } |
| return r_sector; |
| } |
| |
| |
| static void |
| schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s, |
| int rcw, int expand) |
| { |
| int i, pd_idx = sh->pd_idx, disks = sh->disks; |
| struct r5conf *conf = sh->raid_conf; |
| int level = conf->level; |
| |
| if (rcw) { |
| /* if we are not expanding this is a proper write request, and |
| * there will be bios with new data to be drained into the |
| * stripe cache |
| */ |
| if (!expand) { |
| sh->reconstruct_state = reconstruct_state_drain_run; |
| set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); |
| } else |
| sh->reconstruct_state = reconstruct_state_run; |
| |
| set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); |
| |
| for (i = disks; i--; ) { |
| struct r5dev *dev = &sh->dev[i]; |
| |
| if (dev->towrite) { |
| set_bit(R5_LOCKED, &dev->flags); |
| set_bit(R5_Wantdrain, &dev->flags); |
| if (!expand) |
| clear_bit(R5_UPTODATE, &dev->flags); |
| s->locked++; |
| } |
| } |
| if (s->locked + conf->max_degraded == disks) |
| if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state)) |
| atomic_inc(&conf->pending_full_writes); |
| } else { |
| BUG_ON(level == 6); |
| BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) || |
| test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags))); |
| |
| sh->reconstruct_state = reconstruct_state_prexor_drain_run; |
| set_bit(STRIPE_OP_PREXOR, &s->ops_request); |
| set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); |
| set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); |
| |
| for (i = disks; i--; ) { |
| struct r5dev *dev = &sh->dev[i]; |
| if (i == pd_idx) |
| continue; |
| |
| if (dev->towrite && |
| (test_bit(R5_UPTODATE, &dev->flags) || |
| test_bit(R5_Wantcompute, &dev->flags))) { |
| set_bit(R5_Wantdrain, &dev->flags); |
| set_bit(R5_LOCKED, &dev->flags); |
| clear_bit(R5_UPTODATE, &dev->flags); |
| s->locked++; |
| } |
| } |
| } |
| |
| /* keep the parity disk(s) locked while asynchronous operations |
| * are in flight |
| */ |
| set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); |
| clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); |
| s->locked++; |
| |
| if (level == 6) { |
| int qd_idx = sh->qd_idx; |
| struct r5dev *dev = &sh->dev[qd_idx]; |
| |
| set_bit(R5_LOCKED, &dev->flags); |
| clear_bit(R5_UPTODATE, &dev->flags); |
| s->locked++; |
| } |
| |
| pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n", |
| __func__, (unsigned long long)sh->sector, |
| s->locked, s->ops_request); |
| } |
| |
| /* |
| * Each stripe/dev can have one or more bion attached. |
| * toread/towrite point to the first in a chain. |
| * The bi_next chain must be in order. |
| */ |
| static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite) |
| { |
| struct bio **bip; |
| struct r5conf *conf = sh->raid_conf; |
| int firstwrite=0; |
| |
| pr_debug("adding bi b#%llu to stripe s#%llu\n", |
| (unsigned long long)bi->bi_sector, |
| (unsigned long long)sh->sector); |
| |
| |
| spin_lock_irq(&conf->device_lock); |
| if (forwrite) { |
| bip = &sh->dev[dd_idx].towrite; |
| if (*bip == NULL && sh->dev[dd_idx].written == NULL) |
| firstwrite = 1; |
| } else |
| bip = &sh->dev[dd_idx].toread; |
| while (*bip && (*bip)->bi_sector < bi->bi_sector) { |
| if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector) |
| goto overlap; |
| bip = & (*bip)->bi_next; |
| } |
| if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9)) |
| goto overlap; |
| |
| BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next); |
| if (*bip) |
| bi->bi_next = *bip; |
| *bip = bi; |
| bi->bi_phys_segments++; |
| |
| if (forwrite) { |
| /* check if page is covered */ |
| sector_t sector = sh->dev[dd_idx].sector; |
| for (bi=sh->dev[dd_idx].towrite; |
| sector < sh->dev[dd_idx].sector + STRIPE_SECTORS && |
| bi && bi->bi_sector <= sector; |
| bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) { |
| if (bi->bi_sector + (bi->bi_size>>9) >= sector) |
| sector = bi->bi_sector + (bi->bi_size>>9); |
| } |
| if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS) |
| set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags); |
| } |
| spin_unlock_irq(&conf->device_lock); |
| |
| pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n", |
| (unsigned long long)(*bip)->bi_sector, |
| (unsigned long long)sh->sector, dd_idx); |
| |
| if (conf->mddev->bitmap && firstwrite) { |
| bitmap_startwrite(conf->mddev->bitmap, sh->sector, |
| STRIPE_SECTORS, 0); |
| sh->bm_seq = conf->seq_flush+1; |
| set_bit(STRIPE_BIT_DELAY, &sh->state); |
| } |
| return 1; |
| |
| overlap: |
| set_bit(R5_Overlap, &sh->dev[dd_idx].flags); |
| spin_unlock_irq(&conf->device_lock); |
| return 0; |
| } |
| |
| static void end_reshape(struct r5conf *conf); |
| |
| static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, |
| struct stripe_head *sh) |
| { |
| int sectors_per_chunk = |
| previous ? conf->prev_chunk_sectors : conf->chunk_sectors; |
| int dd_idx; |
| int chunk_offset = sector_div(stripe, sectors_per_chunk); |
| int disks = previous ? conf->previous_raid_disks : conf->raid_disks; |
| |
| raid5_compute_sector(conf, |
| stripe * (disks - conf->max_degraded) |
| *sectors_per_chunk + chunk_offset, |
| previous, |
| &dd_idx, sh); |
| } |
| |
| static void |
| handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh, |
| struct stripe_head_state *s, int disks, |
| struct bio **return_bi) |
| { |
| int i; |
| for (i = disks; i--; ) { |
| struct bio *bi; |
| int bitmap_end = 0; |
| |
| if (test_bit(R5_ReadError, &sh->dev[i].flags)) { |
| struct md_rdev *rdev; |
| rcu_read_lock(); |
| rdev = rcu_dereference(conf->disks[i].rdev); |
| if (rdev && test_bit(In_sync, &rdev->flags)) |
| atomic_inc(&rdev->nr_pending); |
| else |
| rdev = NULL; |
| rcu_read_unlock(); |
| if (rdev) { |
| if (!rdev_set_badblocks( |
| rdev, |
| sh->sector, |
| STRIPE_SECTORS, 0)) |
| md_error(conf->mddev, rdev); |
| rdev_dec_pending(rdev, conf->mddev); |
| } |
| } |
| spin_lock_irq(&conf->device_lock); |
| /* fail all writes first */ |
| bi = sh->dev[i].towrite; |
| sh->dev[i].towrite = NULL; |
| if (bi) { |
| s->to_write--; |
| bitmap_end = 1; |
| } |
| |
| if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) |
| wake_up(&conf->wait_for_overlap); |
| |
| while (bi && bi->bi_sector < |
| sh->dev[i].sector + STRIPE_SECTORS) { |
| struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector); |
| clear_bit(BIO_UPTODATE, &bi->bi_flags); |
| if (!raid5_dec_bi_phys_segments(bi)) { |
| md_write_end(conf->mddev); |
| bi->bi_next = *return_bi; |
| *return_bi = bi; |
| } |
| bi = nextbi; |
| } |
| /* and fail all 'written' */ |
| bi = sh->dev[i].written; |
| sh->dev[i].written = NULL; |
| if (bi) bitmap_end = 1; |
| while (bi && bi->bi_sector < |
| sh->dev[i].sector + STRIPE_SECTORS) { |
| struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector); |
| clear_bit(BIO_UPTODATE, &bi->bi_flags); |
| if (!raid5_dec_bi_phys_segments(bi)) { |
| md_write_end(conf->mddev); |
| bi->bi_next = *return_bi; |
| *return_bi = bi; |
| } |
| bi = bi2; |
| } |
| |
| /* fail any reads if this device is non-operational and |
| * the data has not reached the cache yet. |
| */ |
| if (!test_bit(R5_Wantfill, &sh->dev[i].flags) && |
| (!test_bit(R5_Insync, &sh->dev[i].flags) || |
| test_bit(R5_ReadError, &sh->dev[i].flags))) { |
| bi = sh->dev[i].toread; |
| sh->dev[i].toread = NULL; |
| if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) |
| wake_up(&conf->wait_for_overlap); |
| if (bi) s->to_read--; |
| while (bi && bi->bi_sector < |
| sh->dev[i].sector + STRIPE_SECTORS) { |
| struct bio *nextbi = |
| r5_next_bio(bi, sh->dev[i].sector); |
| clear_bit(BIO_UPTODATE, &bi->bi_flags); |
| if (!raid5_dec_bi_phys_segments(bi)) { |
| bi->bi_next = *return_bi; |
| *return_bi = bi; |
| } |
| bi = nextbi; |
| } |
| } |
| spin_unlock_irq(&conf->device_lock); |
| if (bitmap_end) |
| bitmap_endwrite(conf->mddev->bitmap, sh->sector, |
| STRIPE_SECTORS, 0, 0); |
| /* If we were in the middle of a write the parity block might |
| * still be locked - so just clear all R5_LOCKED flags |
| */ |
| clear_bit(R5_LOCKED, &sh->dev[i].flags); |
| } |
| |
| if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) |
| if (atomic_dec_and_test(&conf->pending_full_writes)) |
| md_wakeup_thread(conf->mddev->thread); |
| } |
| |
| static void |
| handle_failed_sync(struct r5conf *conf, struct stripe_head *sh, |
| struct stripe_head_state *s) |
| { |
| int abort = 0; |
| int i; |
| |
| md_done_sync(conf->mddev, STRIPE_SECTORS, 0); |
| clear_bit(STRIPE_SYNCING, &sh->state); |
| s->syncing = 0; |
| /* There is nothing more to do for sync/check/repair. |
| * For recover we need to record a bad block on all |
| * non-sync devices, or abort the recovery |
| */ |
| if (!test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) |
| return; |
| /* During recovery devices cannot be removed, so locking and |
| * refcounting of rdevs is not needed |
| */ |
| for (i = 0; i < conf->raid_disks; i++) { |
| struct md_rdev *rdev = conf->disks[i].rdev; |
| if (!rdev |
| || test_bit(Faulty, &rdev->flags) |
| || test_bit(In_sync, &rdev->flags)) |
| continue; |
| if (!rdev_set_badblocks(rdev, sh->sector, |
| STRIPE_SECTORS, 0)) |
| abort = 1; |
| } |
| if (abort) { |
| conf->recovery_disabled = conf->mddev->recovery_disabled; |
| set_bit(MD_RECOVERY_INTR, &conf->mddev->recovery); |
| } |
| } |
| |
| /* fetch_block - checks the given member device to see if its data needs |
| * to be read or computed to satisfy a request. |
| * |
| * Returns 1 when no more member devices need to be checked, otherwise returns |
| * 0 to tell the loop in handle_stripe_fill to continue |
| */ |
| static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s, |
| int disk_idx, int disks) |
| { |
| struct r5dev *dev = &sh->dev[disk_idx]; |
| struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]], |
| &sh->dev[s->failed_num[1]] }; |
| |
| /* is the data in this block needed, and can we get it? */ |
| if (!test_bit(R5_LOCKED, &dev->flags) && |
| !test_bit(R5_UPTODATE, &dev->flags) && |
| (dev->toread || |
| (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) || |
| s->syncing || s->expanding || |
| (s->failed >= 1 && fdev[0]->toread) || |
| (s->failed >= 2 && fdev[1]->toread) || |
| (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite && |
| !test_bit(R5_OVERWRITE, &fdev[0]->flags)) || |
| (sh->raid_conf->level == 6 && s->failed && s->to_write))) { |
| /* we would like to get this block, possibly by computing it, |
| * otherwise read it if the backing disk is insync |
| */ |
| BUG_ON(test_bit(R5_Wantcompute, &dev->flags)); |
| BUG_ON(test_bit(R5_Wantread, &dev->flags)); |
| if ((s->uptodate == disks - 1) && |
| (s->failed && (disk_idx == s->failed_num[0] || |
| disk_idx == s->failed_num[1]))) { |
| /* have disk failed, and we're requested to fetch it; |
| * do compute it |
| */ |
| pr_debug("Computing stripe %llu block %d\n", |
| (unsigned long long)sh->sector, disk_idx); |
| set_bit(STRIPE_COMPUTE_RUN, &sh->state); |
| set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); |
| set_bit(R5_Wantcompute, &dev->flags); |
| sh->ops.target = disk_idx; |
| sh->ops.target2 = -1; /* no 2nd target */ |
| s->req_compute = 1; |
| /* Careful: from this point on 'uptodate' is in the eye |
| * of raid_run_ops which services 'compute' operations |
| * before writes. R5_Wantcompute flags a block that will |
| * be R5_UPTODATE by the time it is needed for a |
| * subsequent operation. |
| */ |
| s->uptodate++; |
| return 1; |
| } else if (s->uptodate == disks-2 && s->failed >= 2) { |
| /* Computing 2-failure is *very* expensive; only |
| * do it if failed >= 2 |
| */ |
| int other; |
| for (other = disks; other--; ) { |
| if (other == disk_idx) |
| continue; |
| if (!test_bit(R5_UPTODATE, |
| &sh->dev[other].flags)) |
| break; |
| } |
| BUG_ON(other < 0); |
| pr_debug("Computing stripe %llu blocks %d,%d\n", |
| (unsigned long long)sh->sector, |
| disk_idx, other); |
| set_bit(STRIPE_COMPUTE_RUN, &sh->state); |
| set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); |
| set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags); |
| set_bit(R5_Wantcompute, &sh->dev[other].flags); |
| sh->ops.target = disk_idx; |
| sh->ops.target2 = other; |
| s->uptodate += 2; |
| s->req_compute = 1; |
| return 1; |
| } else if (test_bit(R5_Insync, &dev->flags)) { |
| set_bit(R5_LOCKED, &dev->flags); |
| set_bit(R5_Wantread, &dev->flags); |
| s->locked++; |
| pr_debug("Reading block %d (sync=%d)\n", |
| disk_idx, s->syncing); |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * handle_stripe_fill - read or compute data to satisfy pending requests. |
| */ |
| static void handle_stripe_fill(struct stripe_head *sh, |
| struct stripe_head_state *s, |
| int disks) |
| { |
| int i; |
| |
| /* look for blocks to read/compute, skip this if a compute |
| * is already in flight, or if the stripe contents are in the |
| * midst of changing due to a write |
| */ |
| if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state && |
| !sh->reconstruct_state) |
| for (i = disks; i--; ) |
| if (fetch_block(sh, s, i, disks)) |
| break; |
| set_bit(STRIPE_HANDLE, &sh->state); |
| } |
| |
| |
| /* handle_stripe_clean_event |
| * any written block on an uptodate or failed drive can be returned. |
| * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but |
| * never LOCKED, so we don't need to test 'failed' directly. |
| */ |
| static void handle_stripe_clean_event(struct r5conf *conf, |
| struct stripe_head *sh, int disks, struct bio **return_bi) |
| { |
| int i; |
| struct r5dev *dev; |
| |
| for (i = disks; i--; ) |
| if (sh->dev[i].written) { |
| dev = &sh->dev[i]; |
| if (!test_bit(R5_LOCKED, &dev->flags) && |
| test_bit(R5_UPTODATE, &dev->flags)) { |
| /* We can return any write requests */ |
| struct bio *wbi, *wbi2; |
| int bitmap_end = 0; |
| pr_debug("Return write for disc %d\n", i); |
| spin_lock_irq(&conf->device_lock); |
| wbi = dev->written; |
| dev->written = NULL; |
| while (wbi && wbi->bi_sector < |
| dev->sector + STRIPE_SECTORS) { |
| wbi2 = r5_next_bio(wbi, dev->sector); |
| if (!raid5_dec_bi_phys_segments(wbi)) { |
| md_write_end(conf->mddev); |
| wbi->bi_next = *return_bi; |
| *return_bi = wbi; |
| } |
| wbi = wbi2; |
| } |
| if (dev->towrite == NULL) |
| bitmap_end = 1; |
| spin_unlock_irq(&conf->device_lock); |
| if (bitmap_end) |
| bitmap_endwrite(conf->mddev->bitmap, |
| sh->sector, |
| STRIPE_SECTORS, |
| !test_bit(STRIPE_DEGRADED, &sh->state), |
| 0); |
| } |
| } |
| |
| if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) |
| if (atomic_dec_and_test(&conf->pending_full_writes)) |
| md_wakeup_thread(conf->mddev->thread); |
| } |
| |
| static void handle_stripe_dirtying(struct r5conf *conf, |
| struct stripe_head *sh, |
| struct stripe_head_state *s, |
| int disks) |
| { |
| int rmw = 0, rcw = 0, i; |
| if (conf->max_degraded == 2) { |
| /* RAID6 requires 'rcw' in current implementation |
| * Calculate the real rcw later - for now fake it |
| * look like rcw is cheaper |
| */ |
| rcw = 1; rmw = 2; |
| } else for (i = disks; i--; ) { |
| /* would I have to read this buffer for read_modify_write */ |
| struct r5dev *dev = &sh->dev[i]; |
| if ((dev->towrite || i == sh->pd_idx) && |
| !test_bit(R5_LOCKED, &dev->flags) && |
| !(test_bit(R5_UPTODATE, &dev->flags) || |
| test_bit(R5_Wantcompute, &dev->flags))) { |
| if (test_bit(R5_Insync, &dev->flags)) |
| rmw++; |
| else |
| rmw += 2*disks; /* cannot read it */ |
| } |
| /* Would I have to read this buffer for reconstruct_write */ |
| if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx && |
| !test_bit(R5_LOCKED, &dev->flags) && |
| !(test_bit(R5_UPTODATE, &dev->flags) || |
| test_bit(R5_Wantcompute, &dev->flags))) { |
| if (test_bit(R5_Insync, &dev->flags)) rcw++; |
| else |
| rcw += 2*disks; |
| } |
| } |
| pr_debug("for sector %llu, rmw=%d rcw=%d\n", |
| (unsigned long long)sh->sector, rmw, rcw); |
| set_bit(STRIPE_HANDLE, &sh->state); |
| if (rmw < rcw && rmw > 0) |
| /* prefer read-modify-write, but need to get some data */ |
| for (i = disks; i--; ) { |
| struct r5dev *dev = &sh->dev[i]; |
| if ((dev->towrite || i == sh->pd_idx) && |
| !test_bit(R5_LOCKED, &dev->flags) && |
| !(test_bit(R5_UPTODATE, &dev->flags) || |
| test_bit(R5_Wantcompute, &dev->flags)) && |
| test_bit(R5_Insync, &dev->flags)) { |
| if ( |
| test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { |
| pr_debug("Read_old block " |
| "%d for r-m-w\n", i); |
| set_bit(R5_LOCKED, &dev->flags); |
| set_bit(R5_Wantread, &dev->flags); |
| s->locked++; |
| } else { |
| set_bit(STRIPE_DELAYED, &sh->state); |
| set_bit(STRIPE_HANDLE, &sh->state); |
| } |
| } |
| } |
| if (rcw <= rmw && rcw > 0) { |
| /* want reconstruct write, but need to get some data */ |
| rcw = 0; |
| for (i = disks; i--; ) { |
| struct r5dev *dev = &sh->dev[i]; |
| if (!test_bit(R5_OVERWRITE, &dev->flags) && |
| i != sh->pd_idx && i != sh->qd_idx && |
| !test_bit(R5_LOCKED, &dev->flags) && |
| !(test_bit(R5_UPTODATE, &dev->flags) || |
| test_bit(R5_Wantcompute, &dev->flags))) { |
| rcw++; |
| if (!test_bit(R5_Insync, &dev->flags)) |
| continue; /* it's a failed drive */ |
| if ( |
| test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { |
| pr_debug("Read_old block " |
| "%d for Reconstruct\n", i); |
| set_bit(R5_LOCKED, &dev->flags); |
| set_bit(R5_Wantread, &dev->flags); |
| s->locked++; |
| } else { |
| set_bit(STRIPE_DELAYED, &sh->state); |
| set_bit(STRIPE_HANDLE, &sh->state); |
| } |
| } |
| } |
| } |
| /* now if nothing is locked, and if we have enough data, |
| * we can start a write request |
| */ |
| /* since handle_stripe can be called at any time we need to handle the |
| * case where a compute block operation has been submitted and then a |
| * subsequent call wants to start a write request. raid_run_ops only |
| * handles the case where compute block and reconstruct are requested |
| * simultaneously. If this is not the case then new writes need to be |
| * held off until the compute completes. |
| */ |
| if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) && |
| (s->locked == 0 && (rcw == 0 || rmw == 0) && |
| !test_bit(STRIPE_BIT_DELAY, &sh->state))) |
| schedule_reconstruction(sh, s, rcw == 0, 0); |
| } |
| |
| static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh, |
| struct stripe_head_state *s, int disks) |
| { |
| struct r5dev *dev = NULL; |
| |
| set_bit(STRIPE_HANDLE, &sh->state); |
| |
| switch (sh->check_state) { |
| case check_state_idle: |
| /* start a new check operation if there are no failures */ |
| if (s->failed == 0) { |
| BUG_ON(s->uptodate != disks); |
| sh->check_state = check_state_run; |
| set_bit(STRIPE_OP_CHECK, &s->ops_request); |
| clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); |
| s->uptodate--; |
| break; |
| } |
| dev = &sh->dev[s->failed_num[0]]; |
| /* fall through */ |
| case check_state_compute_result: |
| sh->check_state = check_state_idle; |
| if (!dev) |
| dev = &sh->dev[sh->pd_idx]; |
| |
| /* check that a write has not made the stripe insync */ |
| if (test_bit(STRIPE_INSYNC, &sh->state)) |
| break; |
| |
| /* either failed parity check, or recovery is happening */ |
| BUG_ON(!test_bit(R5_UPTODATE, &dev->flags)); |
| BUG_ON(s->uptodate != disks); |
| |
| set_bit(R5_LOCKED, &dev->flags); |
| s->locked++; |
| set_bit(R5_Wantwrite, &dev->flags); |
| |
| clear_bit(STRIPE_DEGRADED, &sh->state); |
| set_bit(STRIPE_INSYNC, &sh->state); |
| break; |
| case check_state_run: |
| break; /* we will be called again upon completion */ |
| case check_state_check_result: |
| sh->check_state = check_state_idle; |
| |
| /* if a failure occurred during the check operation, leave |
| * STRIPE_INSYNC not set and let the stripe be handled again |
| */ |
| if (s->failed) |
| break; |
| |
| /* handle a successful check operation, if parity is correct |
| * we are done. Otherwise update the mismatch count and repair |
| * parity if !MD_RECOVERY_CHECK |
| */ |
| if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0) |
| /* parity is correct (on disc, |
| * not in buffer any more) |
| */ |
| set_bit(STRIPE_INSYNC, &sh->state); |
| else { |
| conf->mddev->resync_mismatches += STRIPE_SECTORS; |
| if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) |
| /* don't try to repair!! */ |
| set_bit(STRIPE_INSYNC, &sh->state); |
| else { |
| sh->check_state = check_state_compute_run; |
| set_bit(STRIPE_COMPUTE_RUN, &sh->state); |
| set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); |
| set_bit(R5_Wantcompute, |
| &sh->dev[sh->pd_idx].flags); |
| sh->ops.target = sh->pd_idx; |
| sh->ops.target2 = -1; |
| s->uptodate++; |
| } |
| } |
| break; |
| case check_state_compute_run: |
| break; |
| default: |
| printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n", |
| __func__, sh->check_state, |
| (unsigned long long) sh->sector); |
| BUG(); |
| } |
| } |
| |
| |
| static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh, |
| struct stripe_head_state *s, |
| int disks) |
| { |
| int pd_idx = sh->pd_idx; |
| int qd_idx = sh->qd_idx; |
| struct r5dev *dev; |
| |
| set_bit(STRIPE_HANDLE, &sh->state); |
| |
| BUG_ON(s->failed > 2); |
| |
| /* Want to check and possibly repair P and Q. |
| * However there could be one 'failed' device, in which |
| * case we can only check one of them, possibly using the |
| * other to generate missing data |
| */ |
| |
| switch (sh->check_state) { |
| case check_state_idle: |
| /* start a new check operation if there are < 2 failures */ |
| if (s->failed == s->q_failed) { |
| /* The only possible failed device holds Q, so it |
| * makes sense to check P (If anything else were failed, |
| * we would have used P to recreate it). |
| */ |
| sh->check_state = check_state_run; |
| } |
| if (!s->q_failed && s->failed < 2) { |
| /* Q is not failed, and we didn't use it to generate |
| * anything, so it makes sense to check it |
| */ |
| if (sh->check_state == check_state_run) |
| sh->check_state = check_state_run_pq; |
| else |
| sh->check_state = check_state_run_q; |
| } |
| |
| /* discard potentially stale zero_sum_result */ |
| sh->ops.zero_sum_result = 0; |
| |
| if (sh->check_state == check_state_run) { |
| /* async_xor_zero_sum destroys the contents of P */ |
| clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); |
| s->uptodate--; |
| } |
| if (sh->check_state >= check_state_run && |
| sh->check_state <= check_state_run_pq) { |
| /* async_syndrome_zero_sum preserves P and Q, so |
| * no need to mark them !uptodate here |
| */ |
| set_bit(STRIPE_OP_CHECK, &s->ops_request); |
| break; |
| } |
| |
| /* we have 2-disk failure */ |
| BUG_ON(s->failed != 2); |
| /* fall through */ |
| case check_state_compute_result: |
| sh->check_state = check_state_idle; |
| |
| /* check that a write has not made the stripe insync */ |
| if (test_bit(STRIPE_INSYNC, &sh->state)) |
| break; |
| |
| /* now write out any block on a failed drive, |
| * or P or Q if they were recomputed |
| */ |
| BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */ |
| if (s->failed == 2) { |
| dev = &sh->dev[s->failed_num[1]]; |
| s->locked++; |
| set_bit(R5_LOCKED, &dev->flags); |
| set_bit(R5_Wantwrite, &dev->flags); |
| } |
| if (s->failed >= 1) { |
| dev = &sh->dev[s->failed_num[0]]; |
| s->locked++; |
| set_bit(R5_LOCKED, &dev->flags); |
| set_bit(R5_Wantwrite, &dev->flags); |
| } |
| if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { |
| dev = &sh->dev[pd_idx]; |
| s->locked++; |
| set_bit(R5_LOCKED, &dev->flags); |
| set_bit(R5_Wantwrite, &dev->flags); |
| } |
| if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { |
| dev = &sh->dev[qd_idx]; |
| s->locked++; |
| set_bit(R5_LOCKED, &dev->flags); |
| set_bit(R5_Wantwrite, &dev->flags); |
| } |
| clear_bit(STRIPE_DEGRADED, &sh->state); |
| |
| set_bit(STRIPE_INSYNC, &sh->state); |
| break; |
| case check_state_run: |
| case check_state_run_q: |
| case check_state_run_pq: |
| break; /* we will be called again upon completion */ |
| case check_state_check_result: |
| sh->check_state = check_state_idle; |
| |
| /* handle a successful check operation, if parity is correct |
| * we are done. Otherwise update the mismatch count and repair |
| * parity if !MD_RECOVERY_CHECK |
| */ |
| if (sh->ops.zero_sum_result == 0) { |
| /* both parities are correct */ |
| if (!s->failed) |
| set_bit(STRIPE_INSYNC, &sh->state); |
| else { |
| /* in contrast to the raid5 case we can validate |
| * parity, but still have a failure to write |
| * back |
| */ |
| sh->check_state = check_state_compute_result; |
| /* Returning at this point means that we may go |
| * off and bring p and/or q uptodate again so |
| * we make sure to check zero_sum_result again |
| * to verify if p or q need writeback |
| */ |
| } |
| } else { |
| conf->mddev->resync_mismatches += STRIPE_SECTORS; |
| if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) |
| /* don't try to repair!! */ |
| set_bit(STRIPE_INSYNC, &sh->state); |
| else { |
| int *target = &sh->ops.target; |
| |
| sh->ops.target = -1; |
| sh->ops.target2 = -1; |
| sh->check_state = check_state_compute_run; |
| set_bit(STRIPE_COMPUTE_RUN, &sh->state); |
| set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); |
| if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { |
| set_bit(R5_Wantcompute, |
| &sh->dev[pd_idx].flags); |
| *target = pd_idx; |
| target = &sh->ops.target2; |
| s->uptodate++; |
| } |
| if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { |
| set_bit(R5_Wantcompute, |
| &sh->dev[qd_idx].flags); |
| *target = qd_idx; |
| s->uptodate++; |
| } |
| } |
| } |
| break; |
| case check_state_compute_run: |
| break; |
| default: |
| printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n", |
| __func__, sh->check_state, |
| (unsigned long long) sh->sector); |
| BUG(); |
| } |
| } |
| |
| static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh) |
| { |
| int i; |
| |
| /* We have read all the blocks in this stripe and now we need to |
| * copy some of them into a target stripe for expand. |
| */ |
| struct dma_async_tx_descriptor *tx = NULL; |
| clear_bit(STRIPE_EXPAND_SOURCE, &sh->state); |
| for (i = 0; i < sh->disks; i++) |
| if (i != sh->pd_idx && i != sh->qd_idx) { |
| int dd_idx, j; |
| struct stripe_head *sh2; |
| struct async_submit_ctl submit; |
| |
| sector_t bn = compute_blocknr(sh, i, 1); |
| sector_t s = raid5_compute_sector(conf, bn, 0, |
| &dd_idx, NULL); |
| sh2 = get_active_stripe(conf, s, 0, 1, 1); |
| if (sh2 == NULL) |
| /* so far only the early blocks of this stripe |
| * have been requested. When later blocks |
| * get requested, we will try again |
| */ |
| continue; |
| if (!test_bit(STRIPE_EXPANDING, &sh2->state) || |
| test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) { |
| /* must have already done this block */ |
| release_stripe(sh2); |
| continue; |
| } |
| |
| /* place all the copies on one channel */ |
| init_async_submit(&submit, 0, tx, NULL, NULL, NULL); |
| tx = async_memcpy(sh2->dev[dd_idx].page, |
| sh->dev[i].page, 0, 0, STRIPE_SIZE, |
| &submit); |
| |
| set_bit(R5_Expanded, &sh2->dev[dd_idx].flags); |
| set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags); |
| for (j = 0; j < conf->raid_disks; j++) |
| if (j != sh2->pd_idx && |
| j != sh2->qd_idx && |
| !test_bit(R5_Expanded, &sh2->dev[j].flags)) |
| break; |
| if (j == conf->raid_disks) { |
| set_bit(STRIPE_EXPAND_READY, &sh2->state); |
| set_bit(STRIPE_HANDLE, &sh2->state); |
| } |
| release_stripe(sh2); |
| |
| } |
| /* done submitting copies, wait for them to complete */ |
| if (tx) { |
| async_tx_ack(tx); |
| dma_wait_for_async_tx(tx); |
| } |
| } |
| |
| |
| /* |
| * handle_stripe - do things to a stripe. |
| * |
| * We lock the stripe and then examine the state of various bits |
| * to see what needs to be done. |
| * Possible results: |
| * return some read request which now have data |
| * return some write requests which are safely on disc |
| * schedule a read on some buffers |
| * schedule a write of some buffers |
| * return confirmation of parity correctness |
| * |
| * buffers are taken off read_list or write_list, and bh_cache buffers |
| * get BH_Lock set before the stripe lock is released. |
| * |
| */ |
| |
| static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s) |
| { |
| struct r5conf *conf = sh->raid_conf; |
| int disks = sh->disks; |
| struct r5dev *dev; |
| int i; |
| |
| memset(s, 0, sizeof(*s)); |
| |
| s->syncing = test_bit(STRIPE_SYNCING, &sh->state); |
| s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state); |
| s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state); |
| s->failed_num[0] = -1; |
| s->failed_num[1] = -1; |
| |
| /* Now to look around and see what can be done */ |
| rcu_read_lock(); |
| spin_lock_irq(&conf->device_lock); |
| for (i=disks; i--; ) { |
| struct md_rdev *rdev; |
| sector_t first_bad; |
| int bad_sectors; |
| int is_bad = 0; |
| |
| dev = &sh->dev[i]; |
| |
| pr_debug("check %d: state 0x%lx read %p write %p written %p\n", |
| i, dev->flags, dev->toread, dev->towrite, dev->written); |
| /* maybe we can reply to a read |
| * |
| * new wantfill requests are only permitted while |
| * ops_complete_biofill is guaranteed to be inactive |
| */ |
| if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread && |
| !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) |
| set_bit(R5_Wantfill, &dev->flags); |
| |
| /* now count some things */ |
| if (test_bit(R5_LOCKED, &dev->flags)) |
| s->locked++; |
| if (test_bit(R5_UPTODATE, &dev->flags)) |
| s->uptodate++; |
| if (test_bit(R5_Wantcompute, &dev->flags)) { |
| s->compute++; |
| BUG_ON(s->compute > 2); |
| } |
| |
| if (test_bit(R5_Wantfill, &dev->flags)) |
| s->to_fill++; |
| else if (dev->toread) |
| s->to_read++; |
| if (dev->towrite) { |
| s->to_write++; |
| if (!test_bit(R5_OVERWRITE, &dev->flags)) |
| s->non_overwrite++; |
| } |
| if (dev->written) |
| s->written++; |
| rdev = rcu_dereference(conf->disks[i].rdev); |
| if (rdev) { |
| is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS, |
| &first_bad, &bad_sectors); |
| if (s->blocked_rdev == NULL |
| && (test_bit(Blocked, &rdev->flags) |
| || is_bad < 0)) { |
| if (is_bad < 0) |
| set_bit(BlockedBadBlocks, |
| &rdev->flags); |
| s->blocked_rdev = rdev; |
| atomic_inc(&rdev->nr_pending); |
| } |
| } |
| clear_bit(R5_Insync, &dev->flags); |
| if (!rdev) |
| /* Not in-sync */; |
| else if (is_bad) { |
| /* also not in-sync */ |
| if (!test_bit(WriteErrorSeen, &rdev->flags)) { |
| /* treat as in-sync, but with a read error |
| * which we can now try to correct |
| */ |
| set_bit(R5_Insync, &dev->flags); |
| set_bit(R5_ReadError, &dev->flags); |
| } |
| } else if (test_bit(In_sync, &rdev->flags)) |
| set_bit(R5_Insync, &dev->flags); |
| else if (!test_bit(Faulty, &rdev->flags)) { |
| /* in sync if before recovery_offset */ |
| if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset) |
| set_bit(R5_Insync, &dev->flags); |
| } |
| if (test_bit(R5_WriteError, &dev->flags)) { |
| clear_bit(R5_Insync, &dev->flags); |
| if (!test_bit(Faulty, &rdev->flags)) { |
| s->handle_bad_blocks = 1; |
| atomic_inc(&rdev->nr_pending); |
| } else |
| clear_bit(R5_WriteError, &dev->flags); |
| } |
| if (test_bit(R5_MadeGood, &dev->flags)) { |
| if (!test_bit(Faulty, &rdev->flags)) { |
| s->handle_bad_blocks = 1; |
| atomic_inc(&rdev->nr_pending); |
| } else |
| clear_bit(R5_MadeGood, &dev->flags); |
| } |
| if (!test_bit(R5_Insync, &dev->flags)) { |
| /* The ReadError flag will just be confusing now */ |
| clear_bit(R5_ReadError, &dev->flags); |
| clear_bit(R5_ReWrite, &dev->flags); |
| } |
| if (test_bit(R5_ReadError, &dev->flags)) |
| clear_bit(R5_Insync, &dev->flags); |
| if (!test_bit(R5_Insync, &dev->flags)) { |
| if (s->failed < 2) |
| s->failed_num[s->failed] = i; |
| s->failed++; |
| } |
| } |
| spin_unlock_irq(&conf->device_lock); |
| rcu_read_unlock(); |
| } |
| |
| static void handle_stripe(struct stripe_head *sh) |
| { |
| struct stripe_head_state s; |
| struct r5conf *conf = sh->raid_conf; |
| int i; |
| int prexor; |
| int disks = sh->disks; |
| struct r5dev *pdev, *qdev; |
| |
| clear_bit(STRIPE_HANDLE, &sh->state); |
| if (test_and_set_bit(STRIPE_ACTIVE, &sh->state)) { |
| /* already being handled, ensure it gets handled |
| * again when current action finishes */ |
| set_bit(STRIPE_HANDLE, &sh->state); |
| return; |
| } |
| |
| if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) { |
| set_bit(STRIPE_SYNCING, &sh->state); |
| clear_bit(STRIPE_INSYNC, &sh->state); |
| } |
| clear_bit(STRIPE_DELAYED, &sh->state); |
| |
| pr_debug("handling stripe %llu, state=%#lx cnt=%d, " |
| "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n", |
| (unsigned long long)sh->sector, sh->state, |
| atomic_read(&sh->count), sh->pd_idx, sh->qd_idx, |
| sh->check_state, sh->reconstruct_state); |
| |
| analyse_stripe(sh, &s); |
| |
| if (s.handle_bad_blocks) { |
| set_bit(STRIPE_HANDLE, &sh->state); |
| goto finish; |
| } |
| |
| if (unlikely(s.blocked_rdev)) { |
| if (s.syncing || s.expanding || s.expanded || |
| s.to_write || s.written) { |
| set_bit(STRIPE_HANDLE, &sh->state); |
| goto finish; |
| } |
| /* There is nothing for the blocked_rdev to block */ |
| rdev_dec_pending(s.blocked_rdev, conf->mddev); |
| s.blocked_rdev = NULL; |
| } |
| |
| if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) { |
| set_bit(STRIPE_OP_BIOFILL, &s.ops_request); |
| set_bit(STRIPE_BIOFILL_RUN, &sh->state); |
| } |
| |
| pr_debug("locked=%d uptodate=%d to_read=%d" |
| " to_write=%d failed=%d failed_num=%d,%d\n", |
| s.locked, s.uptodate, s.to_read, s.to_write, s.failed, |
| s.failed_num[0], s.failed_num[1]); |
| /* check if the array has lost more than max_degraded devices and, |
| * if so, some requests might need to be failed. |
| */ |
| if (s.failed > conf->max_degraded && s.to_read+s.to_write+s.written) |
| handle_failed_stripe(conf, sh, &s, disks, &s.return_bi); |
| if (s.failed > conf->max_degraded && s.syncing) |
| handle_failed_sync(conf, sh, &s); |
| |
| /* |
| * might be able to return some write requests if the parity blocks |
| * are safe, or on a failed drive |
| */ |
| pdev = &sh->dev[sh->pd_idx]; |
| s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx) |
| || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx); |
| qdev = &sh->dev[sh->qd_idx]; |
| s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx) |
| || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx) |
| || conf->level < 6; |
| |
| if (s.written && |
| (s.p_failed || ((test_bit(R5_Insync, &pdev->flags) |
| && !test_bit(R5_LOCKED, &pdev->flags) |
| && test_bit(R5_UPTODATE, &pdev->flags)))) && |
| (s.q_failed || ((test_bit(R5_Insync, &qdev->flags) |
| && !test_bit(R5_LOCKED, &qdev->flags) |
| && test_bit(R5_UPTODATE, &qdev->flags))))) |
| handle_stripe_clean_event(conf, sh, disks, &s.return_bi); |
| |
| /* Now we might consider reading some blocks, either to check/generate |
| * parity, or to satisfy requests |
| * or to load a block that is being partially written. |
| */ |
| if (s.to_read || s.non_overwrite |
| || (conf->level == 6 && s.to_write && s.failed) |
| || (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding) |
| handle_stripe_fill(sh, &s, disks); |
| |
| /* Now we check to see if any write operations have recently |
| * completed |
| */ |
| prexor = 0; |
| if (sh->reconstruct_state == reconstruct_state_prexor_drain_result) |
| prexor = 1; |
| if (sh->reconstruct_state == reconstruct_state_drain_result || |
| sh->reconstruct_state == reconstruct_state_prexor_drain_result) { |
| sh->reconstruct_state = reconstruct_state_idle; |
| |
| /* All the 'written' buffers and the parity block are ready to |
| * be written back to disk |
| */ |
| BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags)); |
| BUG_ON(sh->qd_idx >= 0 && |
| !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags)); |
| for (i = disks; i--; ) { |
| struct r5dev *dev = &sh->dev[i]; |
| if (test_bit(R5_LOCKED, &dev->flags) && |
| (i == sh->pd_idx || i == sh->qd_idx || |
| dev->written)) { |
| pr_debug("Writing block %d\n", i); |
| set_bit(R5_Wantwrite, &dev->flags); |
| if (prexor) |
| continue; |
| if (!test_bit(R5_Insync, &dev->flags) || |
| ((i == sh->pd_idx || i == sh->qd_idx) && |
| s.failed == 0)) |
| set_bit(STRIPE_INSYNC, &sh->state); |
| } |
| } |
| if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) |
| s.dec_preread_active = 1; |
| } |
| |
| /* Now to consider new write requests and what else, if anything |
| * should be read. We do not handle new writes when: |
| * 1/ A 'write' operation (copy+xor) is already in flight. |
| * 2/ A 'check' operation is in flight, as it may clobber the parity |
| * block. |
| */ |
| if (s.to_write && !sh->reconstruct_state && !sh->check_state) |
| handle_stripe_dirtying(conf, sh, &s, disks); |
| |
| /* maybe we need to check and possibly fix the parity for this stripe |
| * Any reads will already have been scheduled, so we just see if enough |
| * data is available. The parity check is held off while parity |
| * dependent operations are in flight. |
| */ |
| if (sh->check_state || |
| (s.syncing && s.locked == 0 && |
| !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && |
| !test_bit(STRIPE_INSYNC, &sh->state))) { |
| if (conf->level == 6) |
| handle_parity_checks6(conf, sh, &s, disks); |
| else |
| handle_parity_checks5(conf, sh, &s, disks); |
| } |
| |
| if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) { |
| md_done_sync(conf->mddev, STRIPE_SECTORS, 1); |
| clear_bit(STRIPE_SYNCING, &sh->state); |
| } |
| |
| /* If the failed drives are just a ReadError, then we might need |
| * to progress the repair/check process |
| */ |
| if (s.failed <= conf->max_degraded && !conf->mddev->ro) |
| for (i = 0; i < s.failed; i++) { |
| struct r5dev *dev = &sh->dev[s.failed_num[i]]; |
| if (test_bit(R5_ReadError, &dev->flags) |
| && !test_bit(R5_LOCKED, &dev->flags) |
| && test_bit(R5_UPTODATE, &dev->flags) |
| ) { |
| if (!test_bit(R5_ReWrite, &dev->flags)) { |
| set_bit(R5_Wantwrite, &dev->flags); |
| set_bit(R5_ReWrite, &dev->flags); |
| set_bit(R5_LOCKED, &dev->flags); |
| s.locked++; |
| } else { |
| /* let's read it back */ |
| set_bit(R5_Wantread, &dev->flags); |
| set_bit(R5_LOCKED, &dev->flags); |
| s.locked++; |
| } |
| } |
| } |
| |
| |
| /* Finish reconstruct operations initiated by the expansion process */ |
| if (sh->reconstruct_state == reconstruct_state_result) { |
| struct stripe_head *sh_src |
| = get_active_stripe(conf, sh->sector, 1, 1, 1); |
| if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) { |
| /* sh cannot be written until sh_src has been read. |
| * so arrange for sh to be delayed a little |
| */ |
| set_bit(STRIPE_DELAYED, &sh->state); |
| set_bit(STRIPE_HANDLE, &sh->state); |
| if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, |
| &sh_src->state)) |
| atomic_inc(&conf->preread_active_stripes); |
| release_stripe(sh_src); |
| goto finish; |
| } |
| if (sh_src) |
| release_stripe(sh_src); |
| |
| sh->reconstruct_state = reconstruct_state_idle; |
| clear_bit(STRIPE_EXPANDING, &sh->state); |
| for (i = conf->raid_disks; i--; ) { |
| set_bit(R5_Wantwrite, &sh->dev[i].flags); |
| set_bit(R5_LOCKED, &sh->dev[i].flags); |
| s.locked++; |
| } |
| } |
| |
| if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) && |
| !sh->reconstruct_state) { |
| /* Need to write out all blocks after computing parity */ |
| sh->disks = conf->raid_disks; |
| stripe_set_idx(sh->sector, conf, 0, sh); |
| schedule_reconstruction(sh, &s, 1, 1); |
| } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) { |
| clear_bit(STRIPE_EXPAND_READY, &sh->state); |
| atomic_dec(&conf->reshape_stripes); |
| wake_up(&conf->wait_for_overlap); |
| md_done_sync(conf->mddev, STRIPE_SECTORS, 1); |
| } |
| |
| if (s.expanding && s.locked == 0 && |
| !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) |
| handle_stripe_expansion(conf, sh); |
| |
| finish: |
| /* wait for this device to become unblocked */ |
| if (conf->mddev->external && unlikely(s.blocked_rdev)) |
| md_wait_for_blocked_rdev(s.blocked_rdev, conf->mddev); |
| |
| if (s.handle_bad_blocks) |
| for (i = disks; i--; ) { |
| struct md_rdev *rdev; |
| struct r5dev *dev = &sh->dev[i]; |
| if (test_and_clear_bit(R5_WriteError, &dev->flags)) { |
| /* We own a safe reference to the rdev */ |
| rdev = conf->disks[i].rdev; |
| if (!rdev_set_badblocks(rdev, sh->sector, |
| STRIPE_SECTORS, 0)) |
| md_error(conf->mddev, rdev); |
| rdev_dec_pending(rdev, conf->mddev); |
| } |
| if (test_and_clear_bit(R5_MadeGood, &dev->flags)) { |
| rdev = conf->disks[i].rdev; |
| rdev_clear_badblocks(rdev, sh->sector, |
| STRIPE_SECTORS); |
| rdev_dec_pending(rdev, conf->mddev); |
| } |
| } |
| |
| if (s.ops_request) |
| raid_run_ops(sh, s.ops_request); |
| |
| ops_run_io(sh, &s); |
| |
| if (s.dec_preread_active) { |
| /* We delay this until after ops_run_io so that if make_request |
| * is waiting on a flush, it won't continue until the writes |
| * have actually been submitted. |
| */ |
| atomic_dec(&conf->preread_active_stripes); |
| if (atomic_read(&conf->preread_active_stripes) < |
| IO_THRESHOLD) |
| md_wakeup_thread(conf->mddev->thread); |
| } |
| |
| return_io(s.return_bi); |
| |
| clear_bit(STRIPE_ACTIVE, &sh->state); |
| } |
| |
| static void raid5_activate_delayed(struct r5conf *conf) |
| { |
| if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) { |
| while (!list_empty(&conf->delayed_list)) { |
| struct list_head *l = conf->delayed_list.next; |
| struct stripe_head *sh; |
| sh = list_entry(l, struct stripe_head, lru); |
| list_del_init(l); |
| clear_bit(STRIPE_DELAYED, &sh->state); |
| if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) |
| atomic_inc(&conf->preread_active_stripes); |
| list_add_tail(&sh->lru, &conf->hold_list); |
| } |
| } |
| } |
| |
| static void activate_bit_delay(struct r5conf *conf) |
| { |
| /* device_lock is held */ |
| struct list_head head; |
| list_add(&head, &conf->bitmap_list); |
| list_del_init(&conf->bitmap_list); |
| while (!list_empty(&head)) { |
| struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru); |
| list_del_init(&sh->lru); |
| atomic_inc(&sh->count); |
| __release_stripe(conf, sh); |
| } |
| } |
| |
| int md_raid5_congested(struct mddev *mddev, int bits) |
| { |
| struct r5conf *conf = mddev->private; |
| |
| /* No difference between reads and writes. Just check |
| * how busy the stripe_cache is |
| */ |
| |
| if (conf->inactive_blocked) |
| return 1; |
| if (conf->quiesce) |
| return 1; |
| if (list_empty_careful(&conf->inactive_list)) |
| return 1; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(md_raid5_congested); |
| |
| static int raid5_congested(void *data, int bits) |
| { |
| struct mddev *mddev = data; |
| |
| return mddev_congested(mddev, bits) || |
| md_raid5_congested(mddev, bits); |
| } |
| |
| /* We want read requests to align with chunks where possible, |
| * but write requests don't need to. |
| */ |
| static int raid5_mergeable_bvec(struct request_queue *q, |
| struct bvec_merge_data *bvm, |
| struct bio_vec *biovec) |
| { |
| struct mddev *mddev = q->queuedata; |
| sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); |
| int max; |
| unsigned int chunk_sectors = mddev->chunk_sectors; |
| unsigned int bio_sectors = bvm->bi_size >> 9; |
| |
| if ((bvm->bi_rw & 1) == WRITE) |
| return biovec->bv_len; /* always allow writes to be mergeable */ |
| |
| if (mddev->new_chunk_sectors < mddev->chunk_sectors) |
| chunk_sectors = mddev->new_chunk_sectors; |
| max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9; |
| if (max < 0) max = 0; |
| if (max <= biovec->bv_len && bio_sectors == 0) |
| return biovec->bv_len; |
| else |
| return max; |
| } |
| |
| |
| static int in_chunk_boundary(struct mddev *mddev, struct bio *bio) |
| { |
| sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev); |
| unsigned int chunk_sectors = mddev->chunk_sectors; |
| unsigned int bio_sectors = bio->bi_size >> 9; |
| |
| if (mddev->new_chunk_sectors < mddev->chunk_sectors) |
| chunk_sectors = mddev->new_chunk_sectors; |
| return chunk_sectors >= |
| ((sector & (chunk_sectors - 1)) + bio_sectors); |
| } |
| |
| /* |
| * add bio to the retry LIFO ( in O(1) ... we are in interrupt ) |
| * later sampled by raid5d. |
| */ |
| static void add_bio_to_retry(struct bio *bi,struct r5conf *conf) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&conf->device_lock, flags); |
| |
| bi->bi_next = conf->retry_read_aligned_list; |
| conf->retry_read_aligned_list = bi; |
| |
| spin_unlock_irqrestore(&conf->device_lock, flags); |
| md_wakeup_thread(conf->mddev->thread); |
| } |
| |
| |
| static struct bio *remove_bio_from_retry(struct r5conf *conf) |
| { |
| struct bio *bi; |
| |
| bi = conf->retry_read_aligned; |
| if (bi) { |
| conf->retry_read_aligned = NULL; |
| return bi; |
| } |
| bi = conf->retry_read_aligned_list; |
| if(bi) { |
| conf->retry_read_aligned_list = bi->bi_next; |
| bi->bi_next = NULL; |
| /* |
| * this sets the active strip count to 1 and the processed |
| * strip count to zero (upper 8 bits) |
| */ |
| bi->bi_phys_segments = 1; /* biased count of active stripes */ |
| } |
| |
| return bi; |
| } |
| |
| |
| /* |
| * The "raid5_align_endio" should check if the read succeeded and if it |
| * did, call bio_endio on the original bio (having bio_put the new bio |
| * first). |
| * If the read failed.. |
| */ |
| static void raid5_align_endio(struct bio *bi, int error) |
| { |
| struct bio* raid_bi = bi->bi_private; |
| struct mddev *mddev; |
| struct r5conf *conf; |
| int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); |
| struct md_rdev *rdev; |
| |
| bio_put(bi); |
| |
| rdev = (void*)raid_bi->bi_next; |
| raid_bi->bi_next = NULL; |
| mddev = rdev->mddev; |
| conf = mddev->private; |
| |
| rdev_dec_pending(rdev, conf->mddev); |
| |
| if (!error && uptodate) { |
| bio_endio(raid_bi, 0); |
| if (atomic_dec_and_test(&conf->active_aligned_reads)) |
| wake_up(&conf->wait_for_stripe); |
| return; |
| } |
| |
| |
| pr_debug("raid5_align_endio : io error...handing IO for a retry\n"); |
| |
| add_bio_to_retry(raid_bi, conf); |
| } |
| |
| static int bio_fits_rdev(struct bio *bi) |
| { |
| struct request_queue *q = bdev_get_queue(bi->bi_bdev); |
| |
| if ((bi->bi_size>>9) > queue_max_sectors(q)) |
| return 0; |
| blk_recount_segments(q, bi); |
| if (bi->bi_phys_segments > queue_max_segments(q)) |
| return 0; |
| |
| if (q->merge_bvec_fn) |
| /* it's too hard to apply the merge_bvec_fn at this stage, |
| * just just give up |
| */ |
| return 0; |
| |
| return 1; |
| } |
| |
| |
| static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio) |
| { |
| struct r5conf *conf = mddev->private; |
| int dd_idx; |
| struct bio* align_bi; |
| struct md_rdev *rdev; |
| |
| if (!in_chunk_boundary(mddev, raid_bio)) { |
| pr_debug("chunk_aligned_read : non aligned\n"); |
| return 0; |
| } |
| /* |
| * use bio_clone_mddev to make a copy of the bio |
| */ |
| align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev); |
| if (!align_bi) |
| return 0; |
| /* |
| * set bi_end_io to a new function, and set bi_private to the |
| * original bio. |
| */ |
| align_bi->bi_end_io = raid5_align_endio; |
| align_bi->bi_private = raid_bio; |
| /* |
| * compute position |
| */ |
| align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector, |
| 0, |
| &dd_idx, NULL); |
| |
| rcu_read_lock(); |
| rdev = rcu_dereference(conf->disks[dd_idx].rdev); |
| if (rdev && test_bit(In_sync, &rdev->flags)) { |
| sector_t first_bad; |
| int bad_sectors; |
| |
| atomic_inc(&rdev->nr_pending); |
| rcu_read_unlock(); |
| raid_bio->bi_next = (void*)rdev; |
| align_bi->bi_bdev = rdev->bdev; |
| align_bi->bi_flags &= ~(1 << BIO_SEG_VALID); |
| align_bi->bi_sector += rdev->data_offset; |
| |
| if (!bio_fits_rdev(align_bi) || |
| is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9, |
| &first_bad, &bad_sectors)) { |
| /* too big in some way, or has a known bad block */ |
| bio_put(align_bi); |
| rdev_dec_pending(rdev, mddev); |
| return 0; |
| } |
| |
| spin_lock_irq(&conf->device_lock); |
| wait_event_lock_irq(conf->wait_for_stripe, |
| conf->quiesce == 0, |
| conf->device_lock, /* nothing */); |
| atomic_inc(&conf->active_aligned_reads); |
| spin_unlock_irq(&conf->device_lock); |
| |
| generic_make_request(align_bi); |
| return 1; |
| } else { |
| rcu_read_unlock(); |
| bio_put(align_bi); |
| return 0; |
| } |
| } |
| |
| /* __get_priority_stripe - get the next stripe to process |
| * |
| * Full stripe writes are allowed to pass preread active stripes up until |
| * the bypass_threshold is exceeded. In general the bypass_count |
| * increments when the handle_list is handled before the hold_list; however, it |
| * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a |
| * stripe with in flight i/o. The bypass_count will be reset when the |
| * head of the hold_list has changed, i.e. the head was promoted to the |
| * handle_list. |
| */ |
| static struct stripe_head *__get_priority_stripe(struct r5conf *conf) |
| { |
| struct stripe_head *sh; |
| |
| pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n", |
| __func__, |
| list_empty(&conf->handle_list) ? "empty" : "busy", |
| list_empty(&conf->hold_list) ? "empty" : "busy", |
| atomic_read(&conf->pending_full_writes), conf->bypass_count); |
| |
| if (!list_empty(&conf->handle_list)) { |
| sh = list_entry(conf->handle_list.next, typeof(*sh), lru); |
| |
| if (list_empty(&conf->hold_list)) |
| conf->bypass_count = 0; |
| else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) { |
| if (conf->hold_list.next == conf->last_hold) |
| conf->bypass_count++; |
| else { |
| conf->last_hold = conf->hold_list.next; |
| conf->bypass_count -= conf->bypass_threshold; |
| if (conf->bypass_count < 0) |
| conf->bypass_count = 0; |
| } |
| } |
| } else if (!list_empty(&conf->hold_list) && |
| ((conf->bypass_threshold && |
| conf->bypass_count > conf->bypass_threshold) || |
| atomic_read(&conf->pending_full_writes) == 0)) { |
| sh = list_entry(conf->hold_list.next, |
| typeof(*sh), lru); |
| conf->bypass_count -= conf->bypass_threshold; |
| if (conf->bypass_count < 0) |
| conf->bypass_count = 0; |
| } else |
| return NULL; |
| |
| list_del_init(&sh->lru); |
| atomic_inc(&sh->count); |
| BUG_ON(atomic_read(&sh->count) != 1); |
| return sh; |
| } |
| |
| static int make_request(struct mddev *mddev, struct bio * bi) |
| { |
| struct r5conf *conf = mddev->private; |
| int dd_idx; |
| sector_t new_sector; |
| sector_t logical_sector, last_sector; |
| struct stripe_head *sh; |
| const int rw = bio_data_dir(bi); |
| int remaining; |
| int plugged; |
| |
| if (unlikely(bi->bi_rw & REQ_FLUSH)) { |
| md_flush_request(mddev, bi); |
| return 0; |
| } |
| |
| md_write_start(mddev, bi); |
| |
| if (rw == READ && |
| mddev->reshape_position == MaxSector && |
| chunk_aligned_read(mddev,bi)) |
| return 0; |
| |
| logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1); |
| last_sector = bi->bi_sector + (bi->bi_size>>9); |
| bi->bi_next = NULL; |
| bi->bi_phys_segments = 1; /* over-loaded to count active stripes */ |
| |
| plugged = mddev_check_plugged(mddev); |
| for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) { |
| DEFINE_WAIT(w); |
| int disks, data_disks; |
| int previous; |
| |
| retry: |
| previous = 0; |
| disks = conf->raid_disks; |
| prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE); |
| if (unlikely(conf->reshape_progress != MaxSector)) { |
| /* spinlock is needed as reshape_progress may be |
| * 64bit on a 32bit platform, and so it might be |
| * possible to see a half-updated value |
| * Of course reshape_progress could change after |
| * the lock is dropped, so once we get a reference |
| * to the stripe that we think it is, we will have |
| * to check again. |
| */ |
| spin_lock_irq(&conf->device_lock); |
| if (mddev->delta_disks < 0 |
| ? logical_sector < conf->reshape_progress |
| : logical_sector >= conf->reshape_progress) { |
| disks = conf->previous_raid_disks; |
| previous = 1; |
| } else { |
| if (mddev->delta_disks < 0 |
| ? logical_sector < conf->reshape_safe |
| : logical_sector >= conf->reshape_safe) { |
| spin_unlock_irq(&conf->device_lock); |
| schedule(); |
| goto retry; |
| } |
| } |
| spin_unlock_irq(&conf->device_lock); |
| } |
| data_disks = disks - conf->max_degraded; |
| |
| new_sector = raid5_compute_sector(conf, logical_sector, |
| previous, |
| &dd_idx, NULL); |
| pr_debug("raid456: make_request, sector %llu logical %llu\n", |
| (unsigned long long)new_sector, |
| (unsigned long long)logical_sector); |
| |
| sh = get_active_stripe(conf, new_sector, previous, |
| (bi->bi_rw&RWA_MASK), 0); |
| if (sh) { |
| if (unlikely(previous)) { |
| /* expansion might have moved on while waiting for a |
| * stripe, so we must do the range check again. |
| * Expansion could still move past after this |
| * test, but as we are holding a reference to |
| * 'sh', we know that if that happens, |
| * STRIPE_EXPANDING will get set and the expansion |
| * won't proceed until we finish with the stripe. |
| */ |
| int must_retry = 0; |
| spin_lock_irq(&conf->device_lock); |
| if (mddev->delta_disks < 0 |
| ? logical_sector >= conf->reshape_progress |
| : logical_sector < conf->reshape_progress) |
| /* mismatch, need to try again */ |
| must_retry = 1; |
| spin_unlock_irq(&conf->device_lock); |
| if (must_retry) { |
| release_stripe(sh); |
| schedule(); |
| goto retry; |
| } |
| } |
| |
| if (rw == WRITE && |
| logical_sector >= mddev->suspend_lo && |
| logical_sector < mddev->suspend_hi) { |
| release_stripe(sh); |
| /* As the suspend_* range is controlled by |
| * userspace, we want an interruptible |
| * wait. |
| */ |
| flush_signals(current); |
| prepare_to_wait(&conf->wait_for_overlap, |
| &w, TASK_INTERRUPTIBLE); |
| if (logical_sector >= mddev->suspend_lo && |
| logical_sector < mddev->suspend_hi) |
| schedule(); |
| goto retry; |
| } |
| |
| if (test_bit(STRIPE_EXPANDING, &sh->state) || |
| !add_stripe_bio(sh, bi, dd_idx, rw)) { |
| /* Stripe is busy expanding or |
| * add failed due to overlap. Flush everything |
| * and wait a while |
| */ |
| md_wakeup_thread(mddev->thread); |
| release_stripe(sh); |
| schedule(); |
| goto retry; |
| } |
| finish_wait(&conf->wait_for_overlap, &w); |
| set_bit(STRIPE_HANDLE, &sh->state); |
| clear_bit(STRIPE_DELAYED, &sh->state); |
| if ((bi->bi_rw & REQ_SYNC) && |
| !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) |
| atomic_inc(&conf->preread_active_stripes); |
| release_stripe(sh); |
| } else { |
| /* cannot get stripe for read-ahead, just give-up */ |
| clear_bit(BIO_UPTODATE, &bi->bi_flags); |
| finish_wait(&conf->wait_for_overlap, &w); |
| break; |
| } |
| |
| } |
| if (!plugged) |
| md_wakeup_thread(mddev->thread); |
| |
| spin_lock_irq(&conf->device_lock); |
| remaining = raid5_dec_bi_phys_segments(bi); |
| spin_unlock_irq(&conf->device_lock); |
| if (remaining == 0) { |
| |
| if ( rw == WRITE ) |
| md_write_end(mddev); |
| |
| bio_endio(bi, 0); |
| } |
| |
| return 0; |
| } |
| |
| static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks); |
| |
| static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped) |
| { |
| /* reshaping is quite different to recovery/resync so it is |
| * handled quite separately ... here. |
| * |
| * On each call to sync_request, we gather one chunk worth of |
| * destination stripes and flag them as expanding. |
| * Then we find all the source stripes and request reads. |
| * As the reads complete, handle_stripe will copy the data |
| * into the destination stripe and release that stripe. |
| */ |
| struct r5conf *conf = mddev->private; |
| struct stripe_head *sh; |
| sector_t first_sector, last_sector; |
| int raid_disks = conf->previous_raid_disks; |
| int data_disks = raid_disks - conf->max_degraded; |
| int new_data_disks = conf->raid_disks - conf->max_degraded; |
| int i; |
| int dd_idx; |
| sector_t writepos, readpos, safepos; |
| sector_t stripe_addr; |
| int reshape_sectors; |
| struct list_head stripes; |
| |
| if (sector_nr == 0) { |
| /* If restarting in the middle, skip the initial sectors */ |
| if (mddev->delta_disks < 0 && |
| conf->reshape_progress < raid5_size(mddev, 0, 0)) { |
| sector_nr = raid5_size(mddev, 0, 0) |
| - conf->reshape_progress; |
| } else if (mddev->delta_disks >= 0 && |
| conf->reshape_progress > 0) |
| sector_nr = conf->reshape_progress; |
| sector_div(sector_nr, new_data_disks); |
| if (sector_nr) { |
| mddev->curr_resync_completed = sector_nr; |
| sysfs_notify(&mddev->kobj, NULL, "sync_completed"); |
| *skipped = 1; |
| return sector_nr; |
| } |
| } |
| |
| /* We need to process a full chunk at a time. |
| * If old and new chunk sizes differ, we need to process the |
| * largest of these |
| */ |
| if (mddev->new_chunk_sectors > mddev->chunk_sectors) |
| reshape_sectors = mddev->new_chunk_sectors; |
| else |
| reshape_sectors = mddev->chunk_sectors; |
| |
| /* we update the metadata when there is more than 3Meg |
| * in the block range (that is rather arbitrary, should |
| * probably be time based) or when the data about to be |
| * copied would over-write the source of the data at |
| * the front of the range. |
| * i.e. one new_stripe along from reshape_progress new_maps |
| * to after where reshape_safe old_maps to |
| */ |
| writepos = conf->reshape_progress; |
| sector_div(writepos, new_data_disks); |
| readpos = conf->reshape_progress; |
| sector_div(readpos, data_disks); |
| safepos = conf->reshape_safe; |
| sector_div(safepos, data_disks); |
| if (mddev->delta_disks < 0) { |
| writepos -= min_t(sector_t, reshape_sectors, writepos); |
| readpos += reshape_sectors; |
| safepos += reshape_sectors; |
| } else { |
| writepos += reshape_sectors; |
| readpos -= min_t(sector_t, reshape_sectors, readpos); |
| safepos -= min_t(sector_t, reshape_sectors, safepos); |
| } |
| |
| /* 'writepos' is the most advanced device address we might write. |
| * 'readpos' is the least advanced device address we might read. |
| * 'safepos' is the least address recorded in the metadata as having |
| * been reshaped. |
| * If 'readpos' is behind 'writepos', then there is no way that we can |
| * ensure safety in the face of a crash - that must be done by userspace |
| * making a backup of the data. So in that case there is no particular |
| * rush to update metadata. |
| * Otherwise if 'safepos' is behind 'writepos', then we really need to |
| * update the metadata to advance 'safepos' to match 'readpos' so that |
| * we can be safe in the event of a crash. |
| * So we insist on updating metadata if safepos is behind writepos and |
| * readpos is beyond writepos. |
| * In any case, update the metadata every 10 seconds. |
| * Maybe that number should be configurable, but I'm not sure it is |
| * worth it.... maybe it could be a multiple of safemode_delay??? |
| */ |
| if ((mddev->delta_disks < 0 |
| ? (safepos > writepos && readpos < writepos) |
| : (safepos < writepos && readpos > writepos)) || |
| time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { |
| /* Cannot proceed until we've updated the superblock... */ |
| wait_event(conf->wait_for_overlap, |
| atomic_read(&conf->reshape_stripes)==0); |
| mddev->reshape_position = conf->reshape_progress; |
| mddev->curr_resync_completed = sector_nr; |
| conf->reshape_checkpoint = jiffies; |
| set_bit(MD_CHANGE_DEVS, &mddev->flags); |
| md_wakeup_thread(mddev->thread); |
| wait_event(mddev->sb_wait, mddev->flags == 0 || |
| kthread_should_stop()); |
| spin_lock_irq(&conf->device_lock); |
| conf->reshape_safe = mddev->reshape_position; |
| spin_unlock_irq(&conf->device_lock); |
| wake_up(&conf->wait_for_overlap); |
| sysfs_notify(&mddev->kobj, NULL, "sync_completed"); |
| } |
| |
| if (mddev->delta_disks < 0) { |
| BUG_ON(conf->reshape_progress == 0); |
| stripe_addr = writepos; |
| BUG_ON((mddev->dev_sectors & |
| ~((sector_t)reshape_sectors - 1)) |
| - reshape_sectors - stripe_addr |
| != sector_nr); |
| } else { |
| BUG_ON(writepos != sector_nr + reshape_sectors); |
| stripe_addr = sector_nr; |
| } |
| INIT_LIST_HEAD(&stripes); |
| for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) { |
| int j; |
| int skipped_disk = 0; |
| sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1); |
| set_bit(STRIPE_EXPANDING, &sh->state); |
| atomic_inc(&conf->reshape_stripes); |
| /* If any of this stripe is beyond the end of the old |
| * array, then we need to zero those blocks |
| */ |
| for (j=sh->disks; j--;) { |
| sector_t s; |
| if (j == sh->pd_idx) |
| continue; |
| if (conf->level == 6 && |
| j == sh->qd_idx) |
| continue; |
| s = compute_blocknr(sh, j, 0); |
| if (s < raid5_size(mddev, 0, 0)) { |
| skipped_disk = 1; |
| continue; |
| } |
| memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE); |
| set_bit(R5_Expanded, &sh->dev[j].flags); |
| set_bit(R5_UPTODATE, &sh->dev[j].flags); |
| } |
| if (!skipped_disk) { |
| set_bit(STRIPE_EXPAND_READY, &sh->state); |
| set_bit(STRIPE_HANDLE, &sh->state); |
| } |
| list_add(&sh->lru, &stripes); |
| } |
| spin_lock_irq(&conf->device_lock); |
| if (mddev->delta_disks < 0) |
| conf->reshape_progress -= reshape_sectors * new_data_disks; |
| else |
| conf->reshape_progress += reshape_sectors * new_data_disks; |
| spin_unlock_irq(&conf->device_lock); |
| /* Ok, those stripe are ready. We can start scheduling |
| * reads on the source stripes. |
| * The source stripes are determined by mapping the first and last |
| * block on the destination stripes. |
| */ |
| first_sector = |
| raid5_compute_sector(conf, stripe_addr*(new_data_disks), |
| 1, &dd_idx, NULL); |
| last_sector = |
| raid5_compute_sector(conf, ((stripe_addr+reshape_sectors) |
| * new_data_disks - 1), |
| 1, &dd_idx, NULL); |
| if (last_sector >= mddev->dev_sectors) |
| last_sector = mddev->dev_sectors - 1; |
| while (first_sector <= last_sector) { |
| sh = get_active_stripe(conf, first_sector, 1, 0, 1); |
| set_bit(STRIPE_EXPAND_SOURCE, &sh->state); |
| set_bit(STRIPE_HANDLE, &sh->state); |
| release_stripe(sh); |
| first_sector += STRIPE_SECTORS; |
| } |
| /* Now that the sources are clearly marked, we can release |
| * the destination stripes |
| */ |
| while (!list_empty(&stripes)) { |
| sh = list_entry(stripes.next, struct stripe_head, lru); |
| list_del_init(&sh->lru); |
| release_stripe(sh); |
| } |
| /* If this takes us to the resync_max point where we have to pause, |
| * then we need to write out the superblock. |
| */ |
| sector_nr += reshape_sectors; |
| if ((sector_nr - mddev->curr_resync_completed) * 2 |
| >= mddev->resync_max - mddev->curr_resync_completed) { |
| /* Cannot proceed until we've updated the superblock... */ |
| wait_event(conf->wait_for_overlap, |
| atomic_read(&conf->reshape_stripes) == 0); |
| mddev->reshape_position = conf->reshape_progress; |
| mddev->curr_resync_completed = sector_nr; |
| conf->reshape_checkpoint = jiffies; |
| set_bit(MD_CHANGE_DEVS, &mddev->flags); |
| md_wakeup_thread(mddev->thread); |
| wait_event(mddev->sb_wait, |
| !test_bit(MD_CHANGE_DEVS, &mddev->flags) |
| || kthread_should_stop()); |
| spin_lock_irq(&conf->device_lock); |
| conf->reshape_safe = mddev->reshape_position; |
| spin_unlock_irq(&conf->device_lock); |
| wake_up(&conf->wait_for_overlap); |
| sysfs_notify(&mddev->kobj, NULL, "sync_completed"); |
| } |
| return reshape_sectors; |
| } |
| |
| /* FIXME go_faster isn't used */ |
| static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster) |
| { |
| struct r5conf *conf = mddev->private; |
| struct stripe_head *sh; |
| sector_t max_sector = mddev->dev_sectors; |
| sector_t sync_blocks; |
| int still_degraded = 0; |
| int i; |
| |
| if (sector_nr >= max_sector) { |
| /* just being told to finish up .. nothing much to do */ |
| |
| if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { |
| end_reshape(conf); |
| return 0; |
| } |
| |
| if (mddev->curr_resync < max_sector) /* aborted */ |
| bitmap_end_sync(mddev->bitmap, mddev->curr_resync, |
| &sync_blocks, 1); |
| else /* completed sync */ |
| conf->fullsync = 0; |
| bitmap_close_sync(mddev->bitmap); |
| |
| return 0; |
| } |
| |
| /* Allow raid5_quiesce to complete */ |
| wait_event(conf->wait_for_overlap, conf->quiesce != 2); |
| |
| if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) |
| return reshape_request(mddev, sector_nr, skipped); |
| |
| /* No need to check resync_max as we never do more than one |
| * stripe, and as resync_max will always be on a chunk boundary, |
| * if the check in md_do_sync didn't fire, there is no chance |
| * of overstepping resync_max here |
| */ |
| |
| /* if there is too many failed drives and we are trying |
| * to resync, then assert that we are finished, because there is |
| * nothing we can do. |
| */ |
| if (mddev->degraded >= conf->max_degraded && |
| test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { |
| sector_t rv = mddev->dev_sectors - sector_nr; |
| *skipped = 1; |
| return rv; |
| } |
| if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && |
| !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && |
| !conf->fullsync && sync_blocks >= STRIPE_SECTORS) { |
| /* we can skip this block, and probably more */ |
| sync_blocks /= STRIPE_SECTORS; |
| *skipped = 1; |
| return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */ |
| } |
| |
| |
| bitmap_cond_end_sync(mddev->bitmap, sector_nr); |
| |
| sh = get_active_stripe(conf, sector_nr, 0, 1, 0); |
| if (sh == NULL) { |
| sh = get_active_stripe(conf, sector_nr, 0, 0, 0); |
| /* make sure we don't swamp the stripe cache if someone else |
| * is trying to get access |
| */ |
| schedule_timeout_uninterruptible(1); |
| } |
| /* Need to check if array will still be degraded after recovery/resync |
| * We don't need to check the 'failed' flag as when that gets set, |
| * recovery aborts. |
| */ |
| for (i = 0; i < conf->raid_disks; i++) |
| if (conf->disks[i].rdev == NULL) |
| still_degraded = 1; |
| |
| bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded); |
| |
| set_bit(STRIPE_SYNC_REQUESTED, &sh->state); |
| |
| handle_stripe(sh); |
| release_stripe(sh); |
| |
| return STRIPE_SECTORS; |
| } |
| |
| static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio) |
| { |
| /* We may not be able to submit a whole bio at once as there |
| * may not be enough stripe_heads available. |
| * We cannot pre-allocate enough stripe_heads as we may need |
| * more than exist in the cache (if we allow ever large chunks). |
| * So we do one stripe head at a time and record in |
| * ->bi_hw_segments how many have been done. |
| * |
| * We *know* that this entire raid_bio is in one chunk, so |
| * it will be only one 'dd_idx' and only need one call to raid5_compute_sector. |
| */ |
| struct stripe_head *sh; |
| int dd_idx; |
| sector_t sector, logical_sector, last_sector; |
| int scnt = 0; |
| int remaining; |
| int handled = 0; |
| |
| logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1); |
| sector = raid5_compute_sector(conf, logical_sector, |
| 0, &dd_idx, NULL); |
| last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9); |
| |
| for (; logical_sector < last_sector; |
| logical_sector += STRIPE_SECTORS, |
| sector += STRIPE_SECTORS, |
| scnt++) { |
| |
| if (scnt < raid5_bi_hw_segments(raid_bio)) |
| /* already done this stripe */ |
| continue; |
| |
| sh = get_active_stripe(conf, sector, 0, 1, 0); |
| |
| if (!sh) { |
| /* failed to get a stripe - must wait */ |
| raid5_set_bi_hw_segments(raid_bio, scnt); |
| conf->retry_read_aligned = raid_bio; |
| return handled; |
| } |
| |
| set_bit(R5_ReadError, &sh->dev[dd_idx].flags); |
| if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) { |
| release_stripe(sh); |
| raid5_set_bi_hw_segments(raid_bio, scnt); |
| conf->retry_read_aligned = raid_bio; |
| return handled; |
| } |
| |
| handle_stripe(sh); |
| release_stripe(sh); |
| handled++; |
| } |
| spin_lock_irq(&conf->device_lock); |
| remaining = raid5_dec_bi_phys_segments(raid_bio); |
| spin_unlock_irq(&conf->device_lock); |
| if (remaining == 0) |
| bio_endio(raid_bio, 0); |
| if (atomic_dec_and_test(&conf->active_aligned_reads)) |
| wake_up(&conf->wait_for_stripe); |
| return handled; |
| } |
| |
| |
| /* |
| * This is our raid5 kernel thread. |
| * |
| * We scan the hash table for stripes which can be handled now. |
| * During the scan, completed stripes are saved for us by the interrupt |
| * handler, so that they will not have to wait for our next wakeup. |
| */ |
| static void raid5d(struct mddev *mddev) |
| { |
| struct stripe_head *sh; |
| struct r5conf *conf = mddev->private; |
| int handled; |
| struct blk_plug plug; |
| |
| pr_debug("+++ raid5d active\n"); |
| |
| md_check_recovery(mddev); |
| |
| blk_start_plug(&plug); |
| handled = 0; |
| spin_lock_irq(&conf->device_lock); |
| while (1) { |
| struct bio *bio; |
| |
| if (atomic_read(&mddev->plug_cnt) == 0 && |
| !list_empty(&conf->bitmap_list)) { |
| /* Now is a good time to flush some bitmap updates */ |
| conf->seq_flush++; |
| spin_unlock_irq(&conf->device_lock); |
| bitmap_unplug(mddev->bitmap); |
| spin_lock_irq(&conf->device_lock); |
| conf->seq_write = conf->seq_flush; |
| activate_bit_delay(conf); |
| } |
| if (atomic_read(&mddev->plug_cnt) == 0) |
| raid5_activate_delayed(conf); |
| |
| while ((bio = remove_bio_from_retry(conf))) { |
| int ok; |
| spin_unlock_irq(&conf->device_lock); |
| ok = retry_aligned_read(conf, bio); |
| spin_lock_irq(&conf->device_lock); |
| if (!ok) |
| break; |
| handled++; |
| } |
| |
| sh = __get_priority_stripe(conf); |
| |
| if (!sh) |
| break; |
| spin_unlock_irq(&conf->device_lock); |
| |
| handled++; |
| handle_stripe(sh); |
| release_stripe(sh); |
| cond_resched(); |
| |
| if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) |
| md_check_recovery(mddev); |
| |
| spin_lock_irq(&conf->device_lock); |
| } |
| pr_debug("%d stripes handled\n", handled); |
| |
| spin_unlock_irq(&conf->device_lock); |
| |
| async_tx_issue_pending_all(); |
| blk_finish_plug(&plug); |
| |
| pr_debug("--- raid5d inactive\n"); |
| } |
| |
| static ssize_t |
| raid5_show_stripe_cache_size(struct mddev *mddev, char *page) |
| { |
| struct r5conf *conf = mddev->private; |
| if (conf) |
| return sprintf(page, "%d\n", conf->max_nr_stripes); |
| else |
| return 0; |
| } |
| |
| int |
| raid5_set_cache_size(struct mddev *mddev, int size) |
| { |
| struct r5conf *conf = mddev->private; |
| int err; |
| |
| if (size <= 16 || size > 32768) |
| return -EINVAL; |
| while (size < conf->max_nr_stripes) { |
| if (drop_one_stripe(conf)) |
| conf->max_nr_stripes--; |
| else |
| break; |
| } |
| err = md_allow_write(mddev); |
| if (err) |
| return err; |
| while (size > conf->max_nr_stripes) { |
| if (grow_one_stripe(conf)) |
| conf->max_nr_stripes++; |
| else break; |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL(raid5_set_cache_size); |
| |
| static ssize_t |
| raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len) |
| { |
| struct r5conf *conf = mddev->private; |
| unsigned long new; |
| int err; |
| |
| if (len >= PAGE_SIZE) |
| return -EINVAL; |
| if (!conf) |
| return -ENODEV; |
| |
| if (strict_strtoul(page, 10, &new)) |
| return -EINVAL; |
| err = raid5_set_cache_size(mddev, new); |
| if (err) |
| return err; |
| return len; |
| } |
| |
| static struct md_sysfs_entry |
| raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR, |
| raid5_show_stripe_cache_size, |
| raid5_store_stripe_cache_size); |
| |
| static ssize_t |
| raid5_show_preread_threshold(struct mddev *mddev, char *page) |
| { |
| struct r5conf *conf = mddev->private; |
| if (conf) |
| return sprintf(page, "%d\n", conf->bypass_threshold); |
| else |
| return 0; |
| } |
| |
| static ssize_t |
| raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len) |
| { |
| struct r5conf *conf = mddev->private; |
| unsigned long new; |
| if (len >= PAGE_SIZE) |
| return -EINVAL; |
| if (!conf) |
| return -ENODEV; |
| |
| if (strict_strtoul(page, 10, &new)) |
| return -EINVAL; |
| if (new > conf->max_nr_stripes) |
| return -EINVAL; |
| conf->bypass_threshold = new; |
| return len; |
| } |
| |
| static struct md_sysfs_entry |
| raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold, |
| S_IRUGO | S_IWUSR, |
| raid5_show_preread_threshold, |
| raid5_store_preread_threshold); |
| |
| static ssize_t |
| stripe_cache_active_show(struct mddev *mddev, char *page) |
| { |
| struct r5conf *conf = mddev->private; |
| if (conf) |
| return sprintf(page, "%d\n", atomic_read(&conf->active_stripes)); |
| else |
| return 0; |
| } |
| |
| static struct md_sysfs_entry |
| raid5_stripecache_active = __ATTR_RO(stripe_cache_active); |
| |
| static struct attribute *raid5_attrs[] = { |
| &raid5_stripecache_size.attr, |
| &raid5_stripecache_active.attr, |
| &raid5_preread_bypass_threshold.attr, |
| NULL, |
| }; |
| static struct attribute_group raid5_attrs_group = { |
| .name = NULL, |
| .attrs = raid5_attrs, |
| }; |
| |
| static sector_t |
| raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks) |
| { |
| struct r5conf *conf = mddev->private; |
| |
| if (!sectors) |
| sectors = mddev->dev_sectors; |
| if (!raid_disks) |
| /* size is defined by the smallest of previous and new size */ |
| raid_disks = min(conf->raid_disks, conf->previous_raid_disks); |
| |
| sectors &= ~((sector_t)mddev->chunk_sectors - 1); |
| sectors &= ~((sector_t)mddev->new_chunk_sectors - 1); |
| return sectors * (raid_disks - conf->max_degraded); |
| } |
| |
| static void raid5_free_percpu(struct r5conf *conf) |
| { |
| struct raid5_percpu *percpu; |
| unsigned long cpu; |
| |
| if (!conf->percpu) |
| return; |
| |
| get_online_cpus(); |
| for_each_possible_cpu(cpu) { |
| percpu = per_cpu_ptr(conf->percpu, cpu); |
| safe_put_page(percpu->spare_page); |
| kfree(percpu->scribble); |
| } |
| #ifdef CONFIG_HOTPLUG_CPU |
| unregister_cpu_notifier(&conf->cpu_notify); |
| #endif |
| put_online_cpus(); |
| |
| free_percpu(conf->percpu); |
| } |
| |
| static void free_conf(struct r5conf *conf) |
| { |
| shrink_stripes(conf); |
| raid5_free_percpu(conf); |
| kfree(conf->disks); |
| kfree(conf->stripe_hashtbl); |
| kfree(conf); |
| } |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action, |
| void *hcpu) |
| { |
| struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify); |
| long cpu = (long)hcpu; |
| struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu); |
| |
| switch (action) { |
| case CPU_UP_PREPARE: |
| case CPU_UP_PREPARE_FROZEN: |
| if (conf->level == 6 && !percpu->spare_page) |
| percpu->spare_page = alloc_page(GFP_KERNEL); |
| if (!percpu->scribble) |
| percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL); |
| |
| if (!percpu->scribble || |
| (conf->level == 6 && !percpu->spare_page)) { |
| safe_put_page(percpu->spare_page); |
| kfree(percpu->scribble); |
| pr_err("%s: failed memory allocation for cpu%ld\n", |
| __func__, cpu); |
| return notifier_from_errno(-ENOMEM); |
| } |
| break; |
| case CPU_DEAD: |
| case CPU_DEAD_FROZEN: |
| safe_put_page(percpu->spare_page); |
| kfree(percpu->scribble); |
| percpu->spare_page = NULL; |
| percpu->scribble = NULL; |
| break; |
| default: |
| break; |
| } |
| return NOTIFY_OK; |
| } |
| #endif |
| |
| static int raid5_alloc_percpu(struct r5conf *conf) |
| { |
| unsigned long cpu; |
| struct page *spare_page; |
| struct raid5_percpu __percpu *allcpus; |
| void *scribble; |
| int err; |
| |
| allcpus = alloc_percpu(struct raid5_percpu); |
| if (!allcpus) |
| return -ENOMEM; |
| conf->percpu = allcpus; |
| |
| get_online_cpus(); |
| err = 0; |
| for_each_present_cpu(cpu) { |
| if (conf->level == 6) { |
| spare_page = alloc_page(GFP_KERNEL); |
| if (!spare_page) { |
| err = -ENOMEM; |
| break; |
| } |
| per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page; |
| } |
| scribble = kmalloc(conf->scribble_len, GFP_KERNEL); |
| if (!scribble) { |
| err = -ENOMEM; |
| break; |
| } |
| per_cpu_ptr(conf->percpu, cpu)->scribble = scribble; |
| } |
| #ifdef CONFIG_HOTPLUG_CPU |
| conf->cpu_notify.notifier_call = raid456_cpu_notify; |
| conf->cpu_notify.priority = 0; |
| if (err == 0) |
| err = register_cpu_notifier(&conf->cpu_notify); |
| #endif |
| put_online_cpus(); |
| |
| return err; |
| } |
| |
| static struct r5conf *setup_conf(struct mddev *mddev) |
| { |
| struct r5conf *conf; |
| int raid_disk, memory, max_disks; |
| struct md_rdev *rdev; |
| struct disk_info *disk; |
| |
| if (mddev->new_level != 5 |
| && mddev->new_level != 4 |
| && mddev->new_level != 6) { |
| printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n", |
| mdname(mddev), mddev->new_level); |
| return ERR_PTR(-EIO); |
| } |
| if ((mddev->new_level == 5 |
| && !algorithm_valid_raid5(mddev->new_layout)) || |
| (mddev->new_level == 6 |
| && !algorithm_valid_raid6(mddev->new_layout))) { |
| printk(KERN_ERR "md/raid:%s: layout %d not supported\n", |
| mdname(mddev), mddev->new_layout); |
| return ERR_PTR(-EIO); |
| } |
| if (mddev->new_level == 6 && mddev->raid_disks < 4) { |
| printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n", |
| mdname(mddev), mddev->raid_disks); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| if (!mddev->new_chunk_sectors || |
| (mddev->new_chunk_sectors << 9) % PAGE_SIZE || |
| !is_power_of_2(mddev->new_chunk_sectors)) { |
| printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n", |
| mdname(mddev), mddev->new_chunk_sectors << 9); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL); |
| if (conf == NULL) |
| goto abort; |
| spin_lock_init(&conf->device_lock); |
| init_waitqueue_head(&conf->wait_for_stripe); |
| init_waitqueue_head(&conf->wait_for_overlap); |
| INIT_LIST_HEAD(&conf->handle_list); |
| INIT_LIST_HEAD(&conf->hold_list); |
| INIT_LIST_HEAD(&conf->delayed_list); |
| INIT_LIST_HEAD(&conf->bitmap_list); |
| INIT_LIST_HEAD(&conf->inactive_list); |
| atomic_set(&conf->active_stripes, 0); |
| atomic_set(&conf->preread_active_stripes, 0); |
| atomic_set(&conf->active_aligned_reads, 0); |
| conf->bypass_threshold = BYPASS_THRESHOLD; |
| conf->recovery_disabled = mddev->recovery_disabled - 1; |
| |
| conf->raid_disks = mddev->raid_disks; |
| if (mddev->reshape_position == MaxSector) |
| conf->previous_raid_disks = mddev->raid_disks; |
| else |
| conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks; |
| max_disks = max(conf->raid_disks, conf->previous_raid_disks); |
| conf->scribble_len = scribble_len(max_disks); |
| |
| conf->disks = kzalloc(max_disks * sizeof(struct disk_info), |
| GFP_KERNEL); |
| if (!conf->disks) |
| goto abort; |
| |
| conf->mddev = mddev; |
| |
| if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL) |
| goto abort; |
| |
| conf->level = mddev->new_level; |
| if (raid5_alloc_percpu(conf) != 0) |
| goto abort; |
| |
| pr_debug("raid456: run(%s) called.\n", mdname(mddev)); |
| |
| list_for_each_entry(rdev, &mddev->disks, same_set) { |
| raid_disk = rdev->raid_disk; |
| if (raid_disk >= max_disks |
| || raid_disk < 0) |
| continue; |
| disk = conf->disks + raid_disk; |
| |
| disk->rdev = rdev; |
| |
| if (test_bit(In_sync, &rdev->flags)) { |
| char b[BDEVNAME_SIZE]; |
| printk(KERN_INFO "md/raid:%s: device %s operational as raid" |
| " disk %d\n", |
| mdname(mddev), bdevname(rdev->bdev, b), raid_disk); |
| } else if (rdev->saved_raid_disk != raid_disk) |
| /* Cannot rely on bitmap to complete recovery */ |
| conf->fullsync = 1; |
| } |
| |
| conf->chunk_sectors = mddev->new_chunk_sectors; |
| conf->level = mddev->new_level; |
| if (conf->level == 6) |
| conf->max_degraded = 2; |
| else |
| conf->max_degraded = 1; |
| conf->algorithm = mddev->new_layout; |
| conf->max_nr_stripes = NR_STRIPES; |
| conf->reshape_progress = mddev->reshape_position; |
| if (conf->reshape_progress != MaxSector) { |
| conf->prev_chunk_sectors = mddev->chunk_sectors; |
| conf->prev_algo = mddev->layout; |
| } |
| |
| memory = conf->max_nr_stripes * (sizeof(struct stripe_head) + |
| max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024; |
| if (grow_stripes(conf, conf->max_nr_stripes)) { |
| printk(KERN_ERR |
| "md/raid:%s: couldn't allocate %dkB for buffers\n", |
| mdname(mddev), memory); |
| goto abort; |
| } else |
| printk(KERN_INFO "md/raid:%s: allocated %dkB\n", |
| mdname(mddev), memory); |
| |
| conf->thread = md_register_thread(raid5d, mddev, NULL); |
| if (!conf->thread) { |
| printk(KERN_ERR |
| "md/raid:%s: couldn't allocate thread.\n", |
| mdname(mddev)); |
| goto abort; |
| } |
| |
| return conf; |
| |
| abort: |
| if (conf) { |
| free_conf(conf); |
| return ERR_PTR(-EIO); |
| } else |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| |
| static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded) |
| { |
| switch (algo) { |
| case ALGORITHM_PARITY_0: |
| if (raid_disk < max_degraded) |
| return 1; |
| break; |
| case ALGORITHM_PARITY_N: |
| if (raid_disk >= raid_disks - max_degraded) |
| return 1; |
| break; |
| case ALGORITHM_PARITY_0_6: |
| if (raid_disk == 0 || |
| raid_disk == raid_disks - 1) |
| return 1; |
| break; |
| case ALGORITHM_LEFT_ASYMMETRIC_6: |
| case ALGORITHM_RIGHT_ASYMMETRIC_6: |
| case ALGORITHM_LEFT_SYMMETRIC_6: |
| case ALGORITHM_RIGHT_SYMMETRIC_6: |
| if (raid_disk == raid_disks - 1) |
| return 1; |
| } |
| return 0; |
| } |
| |
| static int run(struct mddev *mddev) |
| { |
| struct r5conf *conf; |
| int working_disks = 0; |
| int dirty_parity_disks = 0; |
| struct md_rdev *rdev; |
| sector_t reshape_offset = 0; |
| |
| if (mddev->recovery_cp != MaxSector) |
| printk(KERN_NOTICE "md/raid:%s: not clean" |
| " -- starting background reconstruction\n", |
| mdname(mddev)); |
| if (mddev->reshape_position != MaxSector) { |
| /* Check that we can continue the reshape. |
| * Currently only disks can change, it must |
| * increase, and we must be past the point where |
| * a stripe over-writes itself |
| */ |
| sector_t here_new, here_old; |
| int old_disks; |
| int max_degraded = (mddev->level == 6 ? 2 : 1); |
| |
| if (mddev->new_level != mddev->level) { |
| printk(KERN_ERR "md/raid:%s: unsupported reshape " |
| "required - aborting.\n", |
| mdname(mddev)); |
| return -EINVAL; |
| } |
| old_disks = mddev->raid_disks - mddev->delta_disks; |
| /* reshape_position must be on a new-stripe boundary, and one |
| * further up in new geometry must map after here in old |
| * geometry. |
| */ |
| here_new = mddev->reshape_position; |
| if (sector_div(here_new, mddev->new_chunk_sectors * |
| (mddev->raid_disks - max_degraded))) { |
| printk(KERN_ERR "md/raid:%s: reshape_position not " |
| "on a stripe boundary\n", mdname(mddev)); |
| return -EINVAL; |
| } |
| reshape_offset = here_new * mddev->new_chunk_sectors; |
| /* here_new is the stripe we will write to */ |
| here_old = mddev->reshape_position; |
| sector_div(here_old, mddev->chunk_sectors * |
| (old_disks-max_degraded)); |
| /* here_old is the first stripe that we might need to read |
| * from */ |
| if (mddev->delta_disks == 0) { |
| /* We cannot be sure it is safe to start an in-place |
| * reshape. It is only safe if user-space if monitoring |
| * and taking constant backups. |
| * mdadm always starts a situation like this in |
| * readonly mode so it can take control before |
| * allowing any writes. So just check for that. |
| */ |
| if ((here_new * mddev->new_chunk_sectors != |
| here_old * mddev->chunk_sectors) || |
| mddev->ro == 0) { |
| printk(KERN_ERR "md/raid:%s: in-place reshape must be started" |
| " in read-only mode - aborting\n", |
| mdname(mddev)); |
| return -EINVAL; |
| } |
| } else if (mddev->delta_disks < 0 |
| ? (here_new * mddev->new_chunk_sectors <= |
| here_old * mddev->chunk_sectors) |
| : (here_new * mddev->new_chunk_sectors >= |
| here_old * mddev->chunk_sectors)) { |
| /* Reading from the same stripe as writing to - bad */ |
| printk(KERN_ERR "md/raid:%s: reshape_position too early for " |
| "auto-recovery - aborting.\n", |
| mdname(mddev)); |
| return -EINVAL; |
| } |
| printk(KERN_INFO "md/raid:%s: reshape will continue\n", |
| mdname(mddev)); |
| /* OK, we should be able to continue; */ |
| } else { |
| BUG_ON(mddev->level != mddev->new_level); |
| BUG_ON(mddev->layout != mddev->new_layout); |
| BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors); |
| BUG_ON(mddev->delta_disks != 0); |
| } |
| |
| if (mddev->private == NULL) |
| conf = setup_conf(mddev); |
| else |
| conf = mddev->private; |
| |
| if (IS_ERR(conf)) |
| return PTR_ERR(conf); |
| |
| mddev->thread = conf->thread; |
| conf->thread = NULL; |
| mddev->private = conf; |
| |
| /* |
| * 0 for a fully functional array, 1 or 2 for a degraded array. |
| */ |
| list_for_each_entry(rdev, &mddev->disks, same_set) { |
| if (rdev->raid_disk < 0) |
| continue; |
| if (test_bit(In_sync, &rdev->flags)) { |
| working_disks++; |
| continue; |
| } |
| /* This disc is not fully in-sync. However if it |
| * just stored parity (beyond the recovery_offset), |
| * when we don't need to be concerned about the |
| * array being dirty. |
| * When reshape goes 'backwards', we never have |
| * partially completed devices, so we only need |
| * to worry about reshape going forwards. |
| */ |
| /* Hack because v0.91 doesn't store recovery_offset properly. */ |
| if (mddev->major_version == 0 && |
| mddev->minor_version > 90) |
| rdev->recovery_offset = reshape_offset; |
| |
| if (rdev->recovery_offset < reshape_offset) { |
| /* We need to check old and new layout */ |
| if (!only_parity(rdev->raid_disk, |
| conf->algorithm, |
| conf->raid_disks, |
| conf->max_degraded)) |
| continue; |
| } |
| if (!only_parity(rdev->raid_disk, |
| conf->prev_algo, |
| conf->previous_raid_disks, |
| conf->max_degraded)) |
| continue; |
| dirty_parity_disks++; |
| } |
| |
| mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks) |
| - working_disks); |
| |
| if (has_failed(conf)) { |
| printk(KERN_ERR "md/raid:%s: not enough operational devices" |
| " (%d/%d failed)\n", |
| mdname(mddev), mddev->degraded, conf->raid_disks); |
| goto abort; |
| } |
| |
| /* device size must be a multiple of chunk size */ |
| mddev->dev_sectors &= ~(mddev->chunk_sectors - 1); |
| mddev->resync_max_sectors = mddev->dev_sectors; |
| |
| if (mddev->degraded > dirty_parity_disks && |
| mddev->recovery_cp != MaxSector) { |
| if (mddev->ok_start_degraded) |
| printk(KERN_WARNING |
| "md/raid:%s: starting dirty degraded array" |
| " - data corruption possible.\n", |
| mdname(mddev)); |
| else { |
| printk(KERN_ERR |
| "md/raid:%s: cannot start dirty degraded array.\n", |
| mdname(mddev)); |
| goto abort; |
| } |
| } |
| |
| if (mddev->degraded == 0) |
| printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d" |
| " devices, algorithm %d\n", mdname(mddev), conf->level, |
| mddev->raid_disks-mddev->degraded, mddev->raid_disks, |
| mddev->new_layout); |
| else |
| printk(KERN_ALERT "md/raid:%s: raid level %d active with %d" |
| " out of %d devices, algorithm %d\n", |
| mdname(mddev), conf->level, |
| mddev->raid_disks - mddev->degraded, |
| mddev->raid_disks, mddev->new_layout); |
| |
| print_raid5_conf(conf); |
| |
| if (conf->reshape_progress != MaxSector) { |
| conf->reshape_safe = conf->reshape_progress; |
| atomic_set(&conf->reshape_stripes, 0); |
| clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); |
| clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); |
| set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); |
| set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); |
| mddev->sync_thread = md_register_thread(md_do_sync, mddev, |
| "reshape"); |
| } |
| |
| |
| /* Ok, everything is just fine now */ |
| if (mddev->to_remove == &raid5_attrs_group) |
| mddev->to_remove = NULL; |
| else if (mddev->kobj.sd && |
| sysfs_create_group(&mddev->kobj, &raid5_attrs_group)) |
| printk(KERN_WARNING |
| "raid5: failed to create sysfs attributes for %s\n", |
| mdname(mddev)); |
| md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); |
| |
| if (mddev->queue) { |
| int chunk_size; |
| /* read-ahead size must cover two whole stripes, which |
| * is 2 * (datadisks) * chunksize where 'n' is the |
| * number of raid devices |
| */ |
| int data_disks = conf->previous_raid_disks - conf->max_degraded; |
| int stripe = data_disks * |
| ((mddev->chunk_sectors << 9) / PAGE_SIZE); |
| if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe) |
| mddev->queue->backing_dev_info.ra_pages = 2 * stripe; |
| |
| blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec); |
| |
| mddev->queue->backing_dev_info.congested_data = mddev; |
| mddev->queue->backing_dev_info.congested_fn = raid5_congested; |
| |
| chunk_size = mddev->chunk_sectors << 9; |
| blk_queue_io_min(mddev->queue, chunk_size); |
| blk_queue_io_opt(mddev->queue, chunk_size * |
| (conf->raid_disks - conf->max_degraded)); |
| |
| list_for_each_entry(rdev, &mddev->disks, same_set) |
| disk_stack_limits(mddev->gendisk, rdev->bdev, |
| rdev->data_offset << 9); |
| } |
| |
| return 0; |
| abort: |
| md_unregister_thread(&mddev->thread); |
| print_raid5_conf(conf); |
| free_conf(conf); |
| mddev->private = NULL; |
| printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev)); |
| return -EIO; |
| } |
| |
| static int stop(struct mddev *mddev) |
| { |
| struct r5conf *conf = mddev->private; |
| |
| md_unregister_thread(&mddev->thread); |
| if (mddev->queue) |
| mddev->queue->backing_dev_info.congested_fn = NULL; |
| free_conf(conf); |
| mddev->private = NULL; |
| mddev->to_remove = &raid5_attrs_group; |
| return 0; |
| } |
| |
| static void status(struct seq_file *seq, struct mddev *mddev) |
| { |
| struct r5conf *conf = mddev->private; |
| int i; |
| |
| seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level, |
| mddev->chunk_sectors / 2, mddev->layout); |
| seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded); |
| for (i = 0; i < conf->raid_disks; i++) |
| seq_printf (seq, "%s", |
| conf->disks[i].rdev && |
| test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_"); |
| seq_printf (seq, "]"); |
| } |
| |
| static void print_raid5_conf (struct r5conf *conf) |
| { |
| int i; |
| struct disk_info *tmp; |
| |
| printk(KERN_DEBUG "RAID conf printout:\n"); |
| if (!conf) { |
| printk("(conf==NULL)\n"); |
| return; |
| } |
| printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level, |
| conf->raid_disks, |
| conf->raid_disks - conf->mddev->degraded); |
| |
| for (i = 0; i < conf->raid_disks; i++) { |
| char b[BDEVNAME_SIZE]; |
| tmp = conf->disks + i; |
| if (tmp->rdev) |
| printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n", |
| i, !test_bit(Faulty, &tmp->rdev->flags), |
| bdevname(tmp->rdev->bdev, b)); |
| } |
| } |
| |
| static int raid5_spare_active(struct mddev *mddev) |
| { |
| int i; |
| struct r5conf *conf = mddev->private; |
| struct disk_info *tmp; |
| int count = 0; |
| unsigned long flags; |
| |
| for (i = 0; i < conf->raid_disks; i++) { |
| tmp = conf->disks + i; |
| if (tmp->rdev |
| && tmp->rdev->recovery_offset == MaxSector |
| && !test_bit(Faulty, &tmp->rdev->flags) |
| && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { |
| count++; |
| sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); |
| } |
| } |
| spin_lock_irqsave(&conf->device_lock, flags); |
| mddev->degraded -= count; |
| spin_unlock_irqrestore(&conf->device_lock, flags); |
| print_raid5_conf(conf); |
| return count; |
| } |
| |
| static int raid5_remove_disk(struct mddev *mddev, int number) |
| { |
| struct r5conf *conf = mddev->private; |
| int err = 0; |
| struct md_rdev *rdev; |
| struct disk_info *p = conf->disks + number; |
| |
| print_raid5_conf(conf); |
| rdev = p->rdev; |
| if (rdev) { |
| if (number >= conf->raid_disks && |
| conf->reshape_progress == MaxSector) |
| clear_bit(In_sync, &rdev->flags); |
| |
| if (test_bit(In_sync, &rdev->flags) || |
| atomic_read(&rdev->nr_pending)) { |
| err = -EBUSY; |
| goto abort; |
| } |
| /* Only remove non-faulty devices if recovery |
| * isn't possible. |
| */ |
| if (!test_bit(Faulty, &rdev->flags) && |
| mddev->recovery_disabled != conf->recovery_disabled && |
| !has_failed(conf) && |
| number < conf->raid_disks) { |
| err = -EBUSY; |
| goto abort; |
| } |
| p->rdev = NULL; |
| synchronize_rcu(); |
| if (atomic_read(&rdev->nr_pending)) { |
| /* lost the race, try later */ |
| err = -EBUSY; |
| p->rdev = rdev; |
| } |
| } |
| abort: |
| |
| print_raid5_conf(conf); |
| return err; |
| } |
| |
| static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev) |
| { |
| struct r5conf *conf = mddev->private; |
| int err = -EEXIST; |
| int disk; |
| struct disk_info *p; |
| int first = 0; |
| int last = conf->raid_disks - 1; |
| |
| if (mddev->recovery_disabled == conf->recovery_disabled) |
| return -EBUSY; |
| |
| if (has_failed(conf)) |
| /* no point adding a device */ |
| return -EINVAL; |
| |
| if (rdev->raid_disk >= 0) |
| first = last = rdev->raid_disk; |
| |
| /* |
| * find the disk ... but prefer rdev->saved_raid_disk |
| * if possible. |
| */ |
| if (rdev->saved_raid_disk >= 0 && |
| rdev->saved_raid_disk >= first && |
| conf->disks[rdev->saved_raid_disk].rdev == NULL) |
| disk = rdev->saved_raid_disk; |
| else |
| disk = first; |
| for ( ; disk <= last ; disk++) |
| if ((p=conf->disks + disk)->rdev == NULL) { |
| clear_bit(In_sync, &rdev->flags); |
| rdev->raid_disk = disk; |
| err = 0; |
| if (rdev->saved_raid_disk != disk) |
| conf->fullsync = 1; |
| rcu_assign_pointer(p->rdev, rdev); |
| break; |
| } |
| print_raid5_conf(conf); |
| return err; |
| } |
| |
| static int raid5_resize(struct mddev *mddev, sector_t sectors) |
| { |
| /* no resync is happening, and there is enough space |
| * on all devices, so we can resize. |
| * We need to make sure resync covers any new space. |
| * If the array is shrinking we should possibly wait until |
| * any io in the removed space completes, but it hardly seems |
| * worth it. |
| */ |
| sectors &= ~((sector_t)mddev->chunk_sectors - 1); |
| md_set_array_sectors(mddev, raid5_size(mddev, sectors, |
| mddev->raid_disks)); |
| if (mddev->array_sectors > |
| raid5_size(mddev, sectors, mddev->raid_disks)) |
| return -EINVAL; |
| set_capacity(mddev->gendisk, mddev->array_sectors); |
| revalidate_disk(mddev->gendisk); |
| if (sectors > mddev->dev_sectors && |
| mddev->recovery_cp > mddev->dev_sectors) { |
| mddev->recovery_cp = mddev->dev_sectors; |
| set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); |
| } |
| mddev->dev_sectors = sectors; |
| mddev->resync_max_sectors = sectors; |
| return 0; |
| } |
| |
| static int check_stripe_cache(struct mddev *mddev) |
| { |
| /* Can only proceed if there are plenty of stripe_heads. |
| * We need a minimum of one full stripe,, and for sensible progress |
| * it is best to have about 4 times that. |
| * If we require 4 times, then the default 256 4K stripe_heads will |
| * allow for chunk sizes up to 256K, which is probably OK. |
| * If the chunk size is greater, user-space should request more |
| * stripe_heads first. |
| */ |
| struct r5conf *conf = mddev->private; |
| if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4 |
| > conf->max_nr_stripes || |
| ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4 |
| > conf->max_nr_stripes) { |
| printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n", |
| mdname(mddev), |
| ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9) |
| / STRIPE_SIZE)*4); |
| return 0; |
| } |
| return 1; |
| } |
| |
| static int check_reshape(struct mddev *mddev) |
| { |
| struct r5conf *conf = mddev->private; |
| |
| if (mddev->delta_disks == 0 && |
| mddev->new_layout == mddev->layout && |
| mddev->new_chunk_sectors == mddev->chunk_sectors) |
| return 0; /* nothing to do */ |
| if (mddev->bitmap) |
| /* Cannot grow a bitmap yet */ |
| return -EBUSY; |
| if (has_failed(conf)) |
| return -EINVAL; |
| if (mddev->delta_disks < 0) { |
| /* We might be able to shrink, but the devices must |
| * be made bigger first. |
| * For raid6, 4 is the minimum size. |
| * Otherwise 2 is the minimum |
| */ |
| int min = 2; |
| if (mddev->level == 6) |
| min = 4; |
| if (mddev->raid_disks + mddev->delta_disks < min) |
| return -EINVAL; |
| } |
| |
| if (!check_stripe_cache(mddev)) |
| return -ENOSPC; |
| |
| return resize_stripes(conf, conf->raid_disks + mddev->delta_disks); |
| } |
| |
| static int raid5_start_reshape(struct mddev *mddev) |
| { |
| struct r5conf *conf = mddev->private; |
| struct md_rdev *rdev; |
| int spares = 0; |
| unsigned long flags; |
| |
| if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) |
| return -EBUSY; |
| |
| if (!check_stripe_cache(mddev)) |
| return -ENOSPC; |
| |
| list_for_each_entry(rdev, &mddev->disks, same_set) |
| if (!test_bit(In_sync, &rdev->flags) |
| && !test_bit(Faulty, &rdev->flags)) |
| spares++; |
| |
| if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded) |
| /* Not enough devices even to make a degraded array |
| * of that size |
| */ |
| return -EINVAL; |
| |
| /* Refuse to reduce size of the array. Any reductions in |
| * array size must be through explicit setting of array_size |
| * attribute. |
| */ |
| if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks) |
| < mddev->array_sectors) { |
| printk(KERN_ERR "md/raid:%s: array size must be reduced " |
| "before number of disks\n", mdname(mddev)); |
| return -EINVAL; |
| } |
| |
| atomic_set(&conf->reshape_stripes, 0); |
| spin_lock_irq(&conf->device_lock); |
| conf->previous_raid_disks = conf->raid_disks; |
| conf->raid_disks += mddev->delta_disks; |
| conf->prev_chunk_sectors = conf->chunk_sectors; |
| conf->chunk_sectors = mddev->new_chunk_sectors; |
| conf->prev_algo = conf->algorithm; |
| conf->algorithm = mddev->new_layout; |
| if (mddev->delta_disks < 0) |
| conf->reshape_progress = raid5_size(mddev, 0, 0); |
| else |
| conf->reshape_progress = 0; |
| conf->reshape_safe = conf->reshape_progress; |
| conf->generation++; |
| spin_unlock_irq(&conf->device_lock); |
| |
| /* Add some new drives, as many as will fit. |
| * We know there are enough to make the newly sized array work. |
| * Don't add devices if we are reducing the number of |
| * devices in the array. This is because it is not possible |
| * to correctly record the "partially reconstructed" state of |
| * such devices during the reshape and confusion could result. |
| */ |
| if (mddev->delta_disks >= 0) { |
| int added_devices = 0; |
| list_for_each_entry(rdev, &mddev->disks, same_set) |
| if (rdev->raid_disk < 0 && |
| !test_bit(Faulty, &rdev->flags)) { |
| if (raid5_add_disk(mddev, rdev) == 0) { |
| if (rdev->raid_disk |
| >= conf->previous_raid_disks) { |
| set_bit(In_sync, &rdev->flags); |
| added_devices++; |
| } else |
| rdev->recovery_offset = 0; |
| |
| if (sysfs_link_rdev(mddev, rdev)) |
| /* Failure here is OK */; |
| } |
| } else if (rdev->raid_disk >= conf->previous_raid_disks |
| && !test_bit(Faulty, &rdev->flags)) { |
| /* This is a spare that was manually added */ |
| set_bit(In_sync, &rdev->flags); |
| added_devices++; |
| } |
| |
| /* When a reshape changes the number of devices, |
| * ->degraded is measured against the larger of the |
| * pre and post number of devices. |
| */ |
| spin_lock_irqsave(&conf->device_lock, flags); |
| mddev->degraded += (conf->raid_disks - conf->previous_raid_disks) |
| - added_devices; |
| spin_unlock_irqrestore(&conf->device_lock, flags); |
| } |
| mddev->raid_disks = conf->raid_disks; |
| mddev->reshape_position = conf->reshape_progress; |
| set_bit(MD_CHANGE_DEVS, &mddev->flags); |
| |
| clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); |
| clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); |
| set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); |
| set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); |
| mddev->sync_thread = md_register_thread(md_do_sync, mddev, |
| "reshape"); |
| if (!mddev->sync_thread) { |
| mddev->recovery = 0; |
| spin_lock_irq(&conf->device_lock); |
| mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks; |
| conf->reshape_progress = MaxSector; |
| spin_unlock_irq(&conf->device_lock); |
| return -EAGAIN; |
| } |
| conf->reshape_checkpoint = jiffies; |
| md_wakeup_thread(mddev->sync_thread); |
| md_new_event(mddev); |
| return 0; |
| } |
| |
| /* This is called from the reshape thread and should make any |
| * changes needed in 'conf' |
| */ |
| static void end_reshape(struct r5conf *conf) |
| { |
| |
| if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { |
| |
| spin_lock_irq(&conf->device_lock); |
| conf->previous_raid_disks = conf->raid_disks; |
| conf->reshape_progress = MaxSector; |
| spin_unlock_irq(&conf->device_lock); |
| wake_up(&conf->wait_for_overlap); |
| |
| /* read-ahead size must cover two whole stripes, which is |
| * 2 * (datadisks) * chunksize where 'n' is the number of raid devices |
| */ |
| if (conf->mddev->queue) { |
| int data_disks = conf->raid_disks - conf->max_degraded; |
| int stripe = data_disks * ((conf->chunk_sectors << 9) |
| / PAGE_SIZE); |
| if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe) |
| conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe; |
| } |
| } |
| } |
| |
| /* This is called from the raid5d thread with mddev_lock held. |
| * It makes config changes to the device. |
| */ |
| static void raid5_finish_reshape(struct mddev *mddev) |
| { |
| struct r5conf *conf = mddev->private; |
| |
| if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { |
| |
| if (mddev->delta_disks > 0) { |
| md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); |
| set_capacity(mddev->gendisk, mddev->array_sectors); |
| revalidate_disk(mddev->gendisk); |
| } else { |
| int d; |
| mddev->degraded = conf->raid_disks; |
| for (d = 0; d < conf->raid_disks ; d++) |
| if (conf->disks[d].rdev && |
| test_bit(In_sync, |
| &conf->disks[d].rdev->flags)) |
| mddev->degraded--; |
| for (d = conf->raid_disks ; |
| d < conf->raid_disks - mddev->delta_disks; |
| d++) { |
| struct md_rdev *rdev = conf->disks[d].rdev; |
| if (rdev && raid5_remove_disk(mddev, d) == 0) { |
| sysfs_unlink_rdev(mddev, rdev); |
| rdev->raid_disk = -1; |
| } |
| } |
| } |
| mddev->layout = conf->algorithm; |
| mddev->chunk_sectors = conf->chunk_sectors; |
| mddev->reshape_position = MaxSector; |
| mddev->delta_disks = 0; |
| } |
| } |
| |
| static void raid5_quiesce(struct mddev *mddev, int state) |
| { |
| struct r5conf *conf = mddev->private; |
| |
| switch(state) { |
| case 2: /* resume for a suspend */ |
| wake_up(&conf->wait_for_overlap); |
| break; |
| |
| case 1: /* stop all writes */ |
| spin_lock_irq(&conf->device_lock); |
| /* '2' tells resync/reshape to pause so that all |
| * active stripes can drain |
| */ |
| conf->quiesce = 2; |
| wait_event_lock_irq(conf->wait_for_stripe, |
| atomic_read(&conf->active_stripes) == 0 && |
| atomic_read(&conf->active_aligned_reads) == 0, |
| conf->device_lock, /* nothing */); |
| conf->quiesce = 1; |
| spin_unlock_irq(&conf->device_lock); |
| /* allow reshape to continue */ |
| wake_up(&conf->wait_for_overlap); |
| break; |
| |
| case 0: /* re-enable writes */ |
| spin_lock_irq(&conf->device_lock); |
| conf->quiesce = 0; |
| wake_up(&conf->wait_for_stripe); |
| wake_up(&conf->wait_for_overlap); |
| spin_unlock_irq(&conf->device_lock); |
| break; |
| } |
| } |
| |
| |
| static void *raid45_takeover_raid0(struct mddev *mddev, int level) |
| { |
| struct r0conf *raid0_conf = mddev->private; |
| sector_t sectors; |
| |
| /* for raid0 takeover only one zone is supported */ |
| if (raid0_conf->nr_strip_zones > 1) { |
| printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n", |
| mdname(mddev)); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| sectors = raid0_conf->strip_zone[0].zone_end; |
| sector_div(sectors, raid0_conf->strip_zone[0].nb_dev); |
| mddev->dev_sectors = sectors; |
| mddev->new_level = level; |
| mddev->new_layout = ALGORITHM_PARITY_N; |
| mddev->new_chunk_sectors = mddev->chunk_sectors; |
| mddev->raid_disks += 1; |
| mddev->delta_disks = 1; |
| /* make sure it will be not marked as dirty */ |
| mddev->recovery_cp = MaxSector; |
| |
| return setup_conf(mddev); |
| } |
| |
| |
| static void *raid5_takeover_raid1(struct mddev *mddev) |
| { |
| int chunksect; |
| |
| if (mddev->raid_disks != 2 || |
| mddev->degraded > 1) |
| return ERR_PTR(-EINVAL); |
| |
| /* Should check if there are write-behind devices? */ |
| |
| chunksect = 64*2; /* 64K by default */ |
| |
| /* The array must be an exact multiple of chunksize */ |
| while (chunksect && (mddev->array_sectors & (chunksect-1))) |
| chunksect >>= 1; |
| |
| if ((chunksect<<9) < STRIPE_SIZE) |
| /* array size does not allow a suitable chunk size */ |
| return ERR_PTR(-EINVAL); |
| |
| mddev->new_level = 5; |
| mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC; |
| mddev->new_chunk_sectors = chunksect; |
| |
| return setup_conf(mddev); |
| } |
| |
| static void *raid5_takeover_raid6(struct mddev *mddev) |
| { |
| int new_layout; |
| |
| switch (mddev->layout) { |
| case ALGORITHM_LEFT_ASYMMETRIC_6: |
| new_layout = ALGORITHM_LEFT_ASYMMETRIC; |
| break; |
| case ALGORITHM_RIGHT_ASYMMETRIC_6: |
| new_layout = ALGORITHM_RIGHT_ASYMMETRIC; |
| break; |
| case ALGORITHM_LEFT_SYMMETRIC_6: |
| new_layout = ALGORITHM_LEFT_SYMMETRIC; |
| break; |
| case ALGORITHM_RIGHT_SYMMETRIC_6: |
| new_layout = ALGORITHM_RIGHT_SYMMETRIC; |
| break; |
| case ALGORITHM_PARITY_0_6: |
| new_layout = ALGORITHM_PARITY_0; |
| break; |
| case ALGORITHM_PARITY_N: |
| new_layout = ALGORITHM_PARITY_N; |
| break; |
| default: |
| return ERR_PTR(-EINVAL); |
| } |
| mddev->new_level = 5; |
| mddev->new_layout = new_layout; |
| mddev->delta_disks = -1; |
| mddev->raid_disks -= 1; |
| return setup_conf(mddev); |
| } |
| |
| |
| static int raid5_check_reshape(struct mddev *mddev) |
| { |
| /* For a 2-drive array, the layout and chunk size can be changed |
| * immediately as not restriping is needed. |
| * For larger arrays we record the new value - after validation |
| * to be used by a reshape pass. |
| */ |
| struct r5conf *conf = mddev->private; |
| int new_chunk = mddev->new_chunk_sectors; |
| |
| if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout)) |
| return -EINVAL; |
| if (new_chunk > 0) { |
| if (!is_power_of_2(new_chunk)) |
| return -EINVAL; |
| if (new_chunk < (PAGE_SIZE>>9)) |
| return -EINVAL; |
| if (mddev->array_sectors & (new_chunk-1)) |
| /* not factor of array size */ |
| return -EINVAL; |
| } |
| |
| /* They look valid */ |
| |
| if (mddev->raid_disks == 2) { |
| /* can make the change immediately */ |
| if (mddev->new_layout >= 0) { |
| conf->algorithm = mddev->new_layout; |
| mddev->layout = mddev->new_layout; |
| } |
| if (new_chunk > 0) { |
| conf->chunk_sectors = new_chunk ; |
| mddev->chunk_sectors = new_chunk; |
| } |
| set_bit(MD_CHANGE_DEVS, &mddev->flags); |
| md_wakeup_thread(mddev->thread); |
| } |
| return check_reshape(mddev); |
| } |
| |
| static int raid6_check_reshape(struct mddev *mddev) |
| { |
| int new_chunk = mddev->new_chunk_sectors; |
| |
| if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout)) |
| return -EINVAL; |
| if (new_chunk > 0) { |
| if (!is_power_of_2(new_chunk)) |
| return -EINVAL; |
| if (new_chunk < (PAGE_SIZE >> 9)) |
| return -EINVAL; |
| if (mddev->array_sectors & (new_chunk-1)) |
| /* not factor of array size */ |
| return -EINVAL; |
| } |
| |
| /* They look valid */ |
| return check_reshape(mddev); |
| } |
| |
| static void *raid5_takeover(struct mddev *mddev) |
| { |
| /* raid5 can take over: |
| * raid0 - if there is only one strip zone - make it a raid4 layout |
| * raid1 - if there are two drives. We need to know the chunk size |
| * raid4 - trivial - just use a raid4 layout. |
| * raid6 - Providing it is a *_6 layout |
| */ |
| if (mddev->level == 0) |
| return raid45_takeover_raid0(mddev, 5); |
| if (mddev->level == 1) |
| return raid5_takeover_raid1(mddev); |
| if (mddev->level == 4) { |
| mddev->new_layout = ALGORITHM_PARITY_N; |
| mddev->new_level = 5; |
| return setup_conf(mddev); |
| } |
| if (mddev->level == 6) |
| return raid5_takeover_raid6(mddev); |
| |
| return ERR_PTR(-EINVAL); |
| } |
| |
| static void *raid4_takeover(struct mddev *mddev) |
| { |
| /* raid4 can take over: |
| * raid0 - if there is only one strip zone |
| * raid5 - if layout is right |
| */ |
| if (mddev->level == 0) |
| return raid45_takeover_raid0(mddev, 4); |
| if (mddev->level == 5 && |
| mddev->layout == ALGORITHM_PARITY_N) { |
| mddev->new_layout = 0; |
| mddev->new_level = 4; |
| return setup_conf(mddev); |
| } |
| return ERR_PTR(-EINVAL); |
| } |
| |
| static struct md_personality raid5_personality; |
| |
| static void *raid6_takeover(struct mddev *mddev) |
| { |
| /* Currently can only take over a raid5. We map the |
| * personality to an equivalent raid6 personality |
| * with the Q block at the end. |
| */ |
| int new_layout; |
| |
| if (mddev->pers != &raid5_personality) |
| return ERR_PTR(-EINVAL); |
| if (mddev->degraded > 1) |
| return ERR_PTR(-EINVAL); |
| if (mddev->raid_disks > 253) |
| return ERR_PTR(-EINVAL); |
| if (mddev->raid_disks < 3) |
| return ERR_PTR(-EINVAL); |
| |
| switch (mddev->layout) { |
| case ALGORITHM_LEFT_ASYMMETRIC: |
| new_layout = ALGORITHM_LEFT_ASYMMETRIC_6; |
| break; |
| case ALGORITHM_RIGHT_ASYMMETRIC: |
| new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6; |
| break; |
| case ALGORITHM_LEFT_SYMMETRIC: |
| new_layout = ALGORITHM_LEFT_SYMMETRIC_6; |
| break; |
| case ALGORITHM_RIGHT_SYMMETRIC: |
| new_layout = ALGORITHM_RIGHT_SYMMETRIC_6; |
| break; |
| case ALGORITHM_PARITY_0: |
| new_layout = ALGORITHM_PARITY_0_6; |
| break; |
| case ALGORITHM_PARITY_N: |
| new_layout = ALGORITHM_PARITY_N; |
| break; |
| default: |
| return ERR_PTR(-EINVAL); |
| } |
| mddev->new_level = 6; |
| mddev->new_layout = new_layout; |
| mddev->delta_disks = 1; |
| mddev->raid_disks += 1; |
| return setup_conf(mddev); |
| } |
| |
| |
| static struct md_personality raid6_personality = |
| { |
| .name = "raid6", |
| .level = 6, |
| .owner = THIS_MODULE, |
| .make_request = make_request, |
| .run = run, |
| .stop = stop, |
| .status = status, |
| .error_handler = error, |
| .hot_add_disk = raid5_add_disk, |
| .hot_remove_disk= raid5_remove_disk, |
| .spare_active = raid5_spare_active, |
| .sync_request = sync_request, |
| .resize = raid5_resize, |
| .size = raid5_size, |
| .check_reshape = raid6_check_reshape, |
| .start_reshape = raid5_start_reshape, |
| .finish_reshape = raid5_finish_reshape, |
| .quiesce = raid5_quiesce, |
| .takeover = raid6_takeover, |
| }; |
| static struct md_personality raid5_personality = |
| { |
| .name = "raid5", |
| .level = 5, |
| .owner = THIS_MODULE, |
| .make_request = make_request, |
| .run = run, |
| .stop = stop, |
| .status = status, |
| .error_handler = error, |
| .hot_add_disk = raid5_add_disk, |
| .hot_remove_disk= raid5_remove_disk, |
| .spare_active = raid5_spare_active, |
| .sync_request = sync_request, |
| .resize = raid5_resize, |
| .size = raid5_size, |
| .check_reshape = raid5_check_reshape, |
| .start_reshape = raid5_start_reshape, |
| .finish_reshape = raid5_finish_reshape, |
| .quiesce = raid5_quiesce, |
| .takeover = raid5_takeover, |
| }; |
| |
| static struct md_personality raid4_personality = |
| { |
| .name = "raid4", |
| .level = 4, |
| .owner = THIS_MODULE, |
| .make_request = make_request, |
| .run = run, |
| .stop = stop, |
| .status = status, |
| .error_handler = error, |
| .hot_add_disk = raid5_add_disk, |
| .hot_remove_disk= raid5_remove_disk, |
| .spare_active = raid5_spare_active, |
| .sync_request = sync_request, |
| .resize = raid5_resize, |
| .size = raid5_size, |
| .check_reshape = raid5_check_reshape, |
| .start_reshape = raid5_start_reshape, |
| .finish_reshape = raid5_finish_reshape, |
| .quiesce = raid5_quiesce, |
| .takeover = raid4_takeover, |
| }; |
| |
| static int __init raid5_init(void) |
| { |
| register_md_personality(&raid6_personality); |
| register_md_personality(&raid5_personality); |
| register_md_personality(&raid4_personality); |
| return 0; |
| } |
| |
| static void raid5_exit(void) |
| { |
| unregister_md_personality(&raid6_personality); |
| unregister_md_personality(&raid5_personality); |
| unregister_md_personality(&raid4_personality); |
| } |
| |
| module_init(raid5_init); |
| module_exit(raid5_exit); |
| MODULE_LICENSE("GPL"); |
| MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD"); |
| MODULE_ALIAS("md-personality-4"); /* RAID5 */ |
| MODULE_ALIAS("md-raid5"); |
| MODULE_ALIAS("md-raid4"); |
| MODULE_ALIAS("md-level-5"); |
| MODULE_ALIAS("md-level-4"); |
| MODULE_ALIAS("md-personality-8"); /* RAID6 */ |
| MODULE_ALIAS("md-raid6"); |
| MODULE_ALIAS("md-level-6"); |
| |
| /* This used to be two separate modules, they were: */ |
| MODULE_ALIAS("raid5"); |
| MODULE_ALIAS("raid6"); |