| /* smp.c: Sparc64 SMP support. | 
 |  * | 
 |  * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net) | 
 |  */ | 
 |  | 
 | #include <linux/export.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/threads.h> | 
 | #include <linux/smp.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/kernel_stat.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/init.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/seq_file.h> | 
 | #include <linux/cache.h> | 
 | #include <linux/jiffies.h> | 
 | #include <linux/profile.h> | 
 | #include <linux/bootmem.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/ftrace.h> | 
 | #include <linux/cpu.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/kgdb.h> | 
 |  | 
 | #include <asm/head.h> | 
 | #include <asm/ptrace.h> | 
 | #include <linux/atomic.h> | 
 | #include <asm/tlbflush.h> | 
 | #include <asm/mmu_context.h> | 
 | #include <asm/cpudata.h> | 
 | #include <asm/hvtramp.h> | 
 | #include <asm/io.h> | 
 | #include <asm/timer.h> | 
 | #include <asm/setup.h> | 
 |  | 
 | #include <asm/irq.h> | 
 | #include <asm/irq_regs.h> | 
 | #include <asm/page.h> | 
 | #include <asm/pgtable.h> | 
 | #include <asm/oplib.h> | 
 | #include <asm/uaccess.h> | 
 | #include <asm/starfire.h> | 
 | #include <asm/tlb.h> | 
 | #include <asm/sections.h> | 
 | #include <asm/prom.h> | 
 | #include <asm/mdesc.h> | 
 | #include <asm/ldc.h> | 
 | #include <asm/hypervisor.h> | 
 | #include <asm/pcr.h> | 
 |  | 
 | #include "cpumap.h" | 
 | #include "kernel.h" | 
 |  | 
 | DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE; | 
 | cpumask_t cpu_core_map[NR_CPUS] __read_mostly = | 
 | 	{ [0 ... NR_CPUS-1] = CPU_MASK_NONE }; | 
 |  | 
 | cpumask_t cpu_core_sib_map[NR_CPUS] __read_mostly = { | 
 | 	[0 ... NR_CPUS-1] = CPU_MASK_NONE }; | 
 |  | 
 | EXPORT_PER_CPU_SYMBOL(cpu_sibling_map); | 
 | EXPORT_SYMBOL(cpu_core_map); | 
 | EXPORT_SYMBOL(cpu_core_sib_map); | 
 |  | 
 | static cpumask_t smp_commenced_mask; | 
 |  | 
 | void smp_info(struct seq_file *m) | 
 | { | 
 | 	int i; | 
 | 	 | 
 | 	seq_printf(m, "State:\n"); | 
 | 	for_each_online_cpu(i) | 
 | 		seq_printf(m, "CPU%d:\t\tonline\n", i); | 
 | } | 
 |  | 
 | void smp_bogo(struct seq_file *m) | 
 | { | 
 | 	int i; | 
 | 	 | 
 | 	for_each_online_cpu(i) | 
 | 		seq_printf(m, | 
 | 			   "Cpu%dClkTck\t: %016lx\n", | 
 | 			   i, cpu_data(i).clock_tick); | 
 | } | 
 |  | 
 | extern void setup_sparc64_timer(void); | 
 |  | 
 | static volatile unsigned long callin_flag = 0; | 
 |  | 
 | void smp_callin(void) | 
 | { | 
 | 	int cpuid = hard_smp_processor_id(); | 
 |  | 
 | 	__local_per_cpu_offset = __per_cpu_offset(cpuid); | 
 |  | 
 | 	if (tlb_type == hypervisor) | 
 | 		sun4v_ktsb_register(); | 
 |  | 
 | 	__flush_tlb_all(); | 
 |  | 
 | 	setup_sparc64_timer(); | 
 |  | 
 | 	if (cheetah_pcache_forced_on) | 
 | 		cheetah_enable_pcache(); | 
 |  | 
 | 	callin_flag = 1; | 
 | 	__asm__ __volatile__("membar #Sync\n\t" | 
 | 			     "flush  %%g6" : : : "memory"); | 
 |  | 
 | 	/* Clear this or we will die instantly when we | 
 | 	 * schedule back to this idler... | 
 | 	 */ | 
 | 	current_thread_info()->new_child = 0; | 
 |  | 
 | 	/* Attach to the address space of init_task. */ | 
 | 	atomic_inc(&init_mm.mm_count); | 
 | 	current->active_mm = &init_mm; | 
 |  | 
 | 	/* inform the notifiers about the new cpu */ | 
 | 	notify_cpu_starting(cpuid); | 
 |  | 
 | 	while (!cpumask_test_cpu(cpuid, &smp_commenced_mask)) | 
 | 		rmb(); | 
 |  | 
 | 	set_cpu_online(cpuid, true); | 
 |  | 
 | 	/* idle thread is expected to have preempt disabled */ | 
 | 	preempt_disable(); | 
 |  | 
 | 	local_irq_enable(); | 
 |  | 
 | 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); | 
 | } | 
 |  | 
 | void cpu_panic(void) | 
 | { | 
 | 	printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id()); | 
 | 	panic("SMP bolixed\n"); | 
 | } | 
 |  | 
 | /* This tick register synchronization scheme is taken entirely from | 
 |  * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit. | 
 |  * | 
 |  * The only change I've made is to rework it so that the master | 
 |  * initiates the synchonization instead of the slave. -DaveM | 
 |  */ | 
 |  | 
 | #define MASTER	0 | 
 | #define SLAVE	(SMP_CACHE_BYTES/sizeof(unsigned long)) | 
 |  | 
 | #define NUM_ROUNDS	64	/* magic value */ | 
 | #define NUM_ITERS	5	/* likewise */ | 
 |  | 
 | static DEFINE_RAW_SPINLOCK(itc_sync_lock); | 
 | static unsigned long go[SLAVE + 1]; | 
 |  | 
 | #define DEBUG_TICK_SYNC	0 | 
 |  | 
 | static inline long get_delta (long *rt, long *master) | 
 | { | 
 | 	unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0; | 
 | 	unsigned long tcenter, t0, t1, tm; | 
 | 	unsigned long i; | 
 |  | 
 | 	for (i = 0; i < NUM_ITERS; i++) { | 
 | 		t0 = tick_ops->get_tick(); | 
 | 		go[MASTER] = 1; | 
 | 		membar_safe("#StoreLoad"); | 
 | 		while (!(tm = go[SLAVE])) | 
 | 			rmb(); | 
 | 		go[SLAVE] = 0; | 
 | 		wmb(); | 
 | 		t1 = tick_ops->get_tick(); | 
 |  | 
 | 		if (t1 - t0 < best_t1 - best_t0) | 
 | 			best_t0 = t0, best_t1 = t1, best_tm = tm; | 
 | 	} | 
 |  | 
 | 	*rt = best_t1 - best_t0; | 
 | 	*master = best_tm - best_t0; | 
 |  | 
 | 	/* average best_t0 and best_t1 without overflow: */ | 
 | 	tcenter = (best_t0/2 + best_t1/2); | 
 | 	if (best_t0 % 2 + best_t1 % 2 == 2) | 
 | 		tcenter++; | 
 | 	return tcenter - best_tm; | 
 | } | 
 |  | 
 | void smp_synchronize_tick_client(void) | 
 | { | 
 | 	long i, delta, adj, adjust_latency = 0, done = 0; | 
 | 	unsigned long flags, rt, master_time_stamp; | 
 | #if DEBUG_TICK_SYNC | 
 | 	struct { | 
 | 		long rt;	/* roundtrip time */ | 
 | 		long master;	/* master's timestamp */ | 
 | 		long diff;	/* difference between midpoint and master's timestamp */ | 
 | 		long lat;	/* estimate of itc adjustment latency */ | 
 | 	} t[NUM_ROUNDS]; | 
 | #endif | 
 |  | 
 | 	go[MASTER] = 1; | 
 |  | 
 | 	while (go[MASTER]) | 
 | 		rmb(); | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	{ | 
 | 		for (i = 0; i < NUM_ROUNDS; i++) { | 
 | 			delta = get_delta(&rt, &master_time_stamp); | 
 | 			if (delta == 0) | 
 | 				done = 1;	/* let's lock on to this... */ | 
 |  | 
 | 			if (!done) { | 
 | 				if (i > 0) { | 
 | 					adjust_latency += -delta; | 
 | 					adj = -delta + adjust_latency/4; | 
 | 				} else | 
 | 					adj = -delta; | 
 |  | 
 | 				tick_ops->add_tick(adj); | 
 | 			} | 
 | #if DEBUG_TICK_SYNC | 
 | 			t[i].rt = rt; | 
 | 			t[i].master = master_time_stamp; | 
 | 			t[i].diff = delta; | 
 | 			t[i].lat = adjust_latency/4; | 
 | #endif | 
 | 		} | 
 | 	} | 
 | 	local_irq_restore(flags); | 
 |  | 
 | #if DEBUG_TICK_SYNC | 
 | 	for (i = 0; i < NUM_ROUNDS; i++) | 
 | 		printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n", | 
 | 		       t[i].rt, t[i].master, t[i].diff, t[i].lat); | 
 | #endif | 
 |  | 
 | 	printk(KERN_INFO "CPU %d: synchronized TICK with master CPU " | 
 | 	       "(last diff %ld cycles, maxerr %lu cycles)\n", | 
 | 	       smp_processor_id(), delta, rt); | 
 | } | 
 |  | 
 | static void smp_start_sync_tick_client(int cpu); | 
 |  | 
 | static void smp_synchronize_one_tick(int cpu) | 
 | { | 
 | 	unsigned long flags, i; | 
 |  | 
 | 	go[MASTER] = 0; | 
 |  | 
 | 	smp_start_sync_tick_client(cpu); | 
 |  | 
 | 	/* wait for client to be ready */ | 
 | 	while (!go[MASTER]) | 
 | 		rmb(); | 
 |  | 
 | 	/* now let the client proceed into his loop */ | 
 | 	go[MASTER] = 0; | 
 | 	membar_safe("#StoreLoad"); | 
 |  | 
 | 	raw_spin_lock_irqsave(&itc_sync_lock, flags); | 
 | 	{ | 
 | 		for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) { | 
 | 			while (!go[MASTER]) | 
 | 				rmb(); | 
 | 			go[MASTER] = 0; | 
 | 			wmb(); | 
 | 			go[SLAVE] = tick_ops->get_tick(); | 
 | 			membar_safe("#StoreLoad"); | 
 | 		} | 
 | 	} | 
 | 	raw_spin_unlock_irqrestore(&itc_sync_lock, flags); | 
 | } | 
 |  | 
 | #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU) | 
 | static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg, | 
 | 				void **descrp) | 
 | { | 
 | 	extern unsigned long sparc64_ttable_tl0; | 
 | 	extern unsigned long kern_locked_tte_data; | 
 | 	struct hvtramp_descr *hdesc; | 
 | 	unsigned long trampoline_ra; | 
 | 	struct trap_per_cpu *tb; | 
 | 	u64 tte_vaddr, tte_data; | 
 | 	unsigned long hv_err; | 
 | 	int i; | 
 |  | 
 | 	hdesc = kzalloc(sizeof(*hdesc) + | 
 | 			(sizeof(struct hvtramp_mapping) * | 
 | 			 num_kernel_image_mappings - 1), | 
 | 			GFP_KERNEL); | 
 | 	if (!hdesc) { | 
 | 		printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate " | 
 | 		       "hvtramp_descr.\n"); | 
 | 		return; | 
 | 	} | 
 | 	*descrp = hdesc; | 
 |  | 
 | 	hdesc->cpu = cpu; | 
 | 	hdesc->num_mappings = num_kernel_image_mappings; | 
 |  | 
 | 	tb = &trap_block[cpu]; | 
 |  | 
 | 	hdesc->fault_info_va = (unsigned long) &tb->fault_info; | 
 | 	hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info); | 
 |  | 
 | 	hdesc->thread_reg = thread_reg; | 
 |  | 
 | 	tte_vaddr = (unsigned long) KERNBASE; | 
 | 	tte_data = kern_locked_tte_data; | 
 |  | 
 | 	for (i = 0; i < hdesc->num_mappings; i++) { | 
 | 		hdesc->maps[i].vaddr = tte_vaddr; | 
 | 		hdesc->maps[i].tte   = tte_data; | 
 | 		tte_vaddr += 0x400000; | 
 | 		tte_data  += 0x400000; | 
 | 	} | 
 |  | 
 | 	trampoline_ra = kimage_addr_to_ra(hv_cpu_startup); | 
 |  | 
 | 	hv_err = sun4v_cpu_start(cpu, trampoline_ra, | 
 | 				 kimage_addr_to_ra(&sparc64_ttable_tl0), | 
 | 				 __pa(hdesc)); | 
 | 	if (hv_err) | 
 | 		printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() " | 
 | 		       "gives error %lu\n", hv_err); | 
 | } | 
 | #endif | 
 |  | 
 | extern unsigned long sparc64_cpu_startup; | 
 |  | 
 | /* The OBP cpu startup callback truncates the 3rd arg cookie to | 
 |  * 32-bits (I think) so to be safe we have it read the pointer | 
 |  * contained here so we work on >4GB machines. -DaveM | 
 |  */ | 
 | static struct thread_info *cpu_new_thread = NULL; | 
 |  | 
 | static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle) | 
 | { | 
 | 	unsigned long entry = | 
 | 		(unsigned long)(&sparc64_cpu_startup); | 
 | 	unsigned long cookie = | 
 | 		(unsigned long)(&cpu_new_thread); | 
 | 	void *descr = NULL; | 
 | 	int timeout, ret; | 
 |  | 
 | 	callin_flag = 0; | 
 | 	cpu_new_thread = task_thread_info(idle); | 
 |  | 
 | 	if (tlb_type == hypervisor) { | 
 | #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU) | 
 | 		if (ldom_domaining_enabled) | 
 | 			ldom_startcpu_cpuid(cpu, | 
 | 					    (unsigned long) cpu_new_thread, | 
 | 					    &descr); | 
 | 		else | 
 | #endif | 
 | 			prom_startcpu_cpuid(cpu, entry, cookie); | 
 | 	} else { | 
 | 		struct device_node *dp = of_find_node_by_cpuid(cpu); | 
 |  | 
 | 		prom_startcpu(dp->phandle, entry, cookie); | 
 | 	} | 
 |  | 
 | 	for (timeout = 0; timeout < 50000; timeout++) { | 
 | 		if (callin_flag) | 
 | 			break; | 
 | 		udelay(100); | 
 | 	} | 
 |  | 
 | 	if (callin_flag) { | 
 | 		ret = 0; | 
 | 	} else { | 
 | 		printk("Processor %d is stuck.\n", cpu); | 
 | 		ret = -ENODEV; | 
 | 	} | 
 | 	cpu_new_thread = NULL; | 
 |  | 
 | 	kfree(descr); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu) | 
 | { | 
 | 	u64 result, target; | 
 | 	int stuck, tmp; | 
 |  | 
 | 	if (this_is_starfire) { | 
 | 		/* map to real upaid */ | 
 | 		cpu = (((cpu & 0x3c) << 1) | | 
 | 			((cpu & 0x40) >> 4) | | 
 | 			(cpu & 0x3)); | 
 | 	} | 
 |  | 
 | 	target = (cpu << 14) | 0x70; | 
 | again: | 
 | 	/* Ok, this is the real Spitfire Errata #54. | 
 | 	 * One must read back from a UDB internal register | 
 | 	 * after writes to the UDB interrupt dispatch, but | 
 | 	 * before the membar Sync for that write. | 
 | 	 * So we use the high UDB control register (ASI 0x7f, | 
 | 	 * ADDR 0x20) for the dummy read. -DaveM | 
 | 	 */ | 
 | 	tmp = 0x40; | 
 | 	__asm__ __volatile__( | 
 | 	"wrpr	%1, %2, %%pstate\n\t" | 
 | 	"stxa	%4, [%0] %3\n\t" | 
 | 	"stxa	%5, [%0+%8] %3\n\t" | 
 | 	"add	%0, %8, %0\n\t" | 
 | 	"stxa	%6, [%0+%8] %3\n\t" | 
 | 	"membar	#Sync\n\t" | 
 | 	"stxa	%%g0, [%7] %3\n\t" | 
 | 	"membar	#Sync\n\t" | 
 | 	"mov	0x20, %%g1\n\t" | 
 | 	"ldxa	[%%g1] 0x7f, %%g0\n\t" | 
 | 	"membar	#Sync" | 
 | 	: "=r" (tmp) | 
 | 	: "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W), | 
 | 	  "r" (data0), "r" (data1), "r" (data2), "r" (target), | 
 | 	  "r" (0x10), "0" (tmp) | 
 |         : "g1"); | 
 |  | 
 | 	/* NOTE: PSTATE_IE is still clear. */ | 
 | 	stuck = 100000; | 
 | 	do { | 
 | 		__asm__ __volatile__("ldxa [%%g0] %1, %0" | 
 | 			: "=r" (result) | 
 | 			: "i" (ASI_INTR_DISPATCH_STAT)); | 
 | 		if (result == 0) { | 
 | 			__asm__ __volatile__("wrpr %0, 0x0, %%pstate" | 
 | 					     : : "r" (pstate)); | 
 | 			return; | 
 | 		} | 
 | 		stuck -= 1; | 
 | 		if (stuck == 0) | 
 | 			break; | 
 | 	} while (result & 0x1); | 
 | 	__asm__ __volatile__("wrpr %0, 0x0, %%pstate" | 
 | 			     : : "r" (pstate)); | 
 | 	if (stuck == 0) { | 
 | 		printk("CPU[%d]: mondo stuckage result[%016llx]\n", | 
 | 		       smp_processor_id(), result); | 
 | 	} else { | 
 | 		udelay(2); | 
 | 		goto again; | 
 | 	} | 
 | } | 
 |  | 
 | static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt) | 
 | { | 
 | 	u64 *mondo, data0, data1, data2; | 
 | 	u16 *cpu_list; | 
 | 	u64 pstate; | 
 | 	int i; | 
 |  | 
 | 	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate)); | 
 | 	cpu_list = __va(tb->cpu_list_pa); | 
 | 	mondo = __va(tb->cpu_mondo_block_pa); | 
 | 	data0 = mondo[0]; | 
 | 	data1 = mondo[1]; | 
 | 	data2 = mondo[2]; | 
 | 	for (i = 0; i < cnt; i++) | 
 | 		spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]); | 
 | } | 
 |  | 
 | /* Cheetah now allows to send the whole 64-bytes of data in the interrupt | 
 |  * packet, but we have no use for that.  However we do take advantage of | 
 |  * the new pipelining feature (ie. dispatch to multiple cpus simultaneously). | 
 |  */ | 
 | static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt) | 
 | { | 
 | 	int nack_busy_id, is_jbus, need_more; | 
 | 	u64 *mondo, pstate, ver, busy_mask; | 
 | 	u16 *cpu_list; | 
 |  | 
 | 	cpu_list = __va(tb->cpu_list_pa); | 
 | 	mondo = __va(tb->cpu_mondo_block_pa); | 
 |  | 
 | 	/* Unfortunately, someone at Sun had the brilliant idea to make the | 
 | 	 * busy/nack fields hard-coded by ITID number for this Ultra-III | 
 | 	 * derivative processor. | 
 | 	 */ | 
 | 	__asm__ ("rdpr %%ver, %0" : "=r" (ver)); | 
 | 	is_jbus = ((ver >> 32) == __JALAPENO_ID || | 
 | 		   (ver >> 32) == __SERRANO_ID); | 
 |  | 
 | 	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate)); | 
 |  | 
 | retry: | 
 | 	need_more = 0; | 
 | 	__asm__ __volatile__("wrpr %0, %1, %%pstate\n\t" | 
 | 			     : : "r" (pstate), "i" (PSTATE_IE)); | 
 |  | 
 | 	/* Setup the dispatch data registers. */ | 
 | 	__asm__ __volatile__("stxa	%0, [%3] %6\n\t" | 
 | 			     "stxa	%1, [%4] %6\n\t" | 
 | 			     "stxa	%2, [%5] %6\n\t" | 
 | 			     "membar	#Sync\n\t" | 
 | 			     : /* no outputs */ | 
 | 			     : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]), | 
 | 			       "r" (0x40), "r" (0x50), "r" (0x60), | 
 | 			       "i" (ASI_INTR_W)); | 
 |  | 
 | 	nack_busy_id = 0; | 
 | 	busy_mask = 0; | 
 | 	{ | 
 | 		int i; | 
 |  | 
 | 		for (i = 0; i < cnt; i++) { | 
 | 			u64 target, nr; | 
 |  | 
 | 			nr = cpu_list[i]; | 
 | 			if (nr == 0xffff) | 
 | 				continue; | 
 |  | 
 | 			target = (nr << 14) | 0x70; | 
 | 			if (is_jbus) { | 
 | 				busy_mask |= (0x1UL << (nr * 2)); | 
 | 			} else { | 
 | 				target |= (nack_busy_id << 24); | 
 | 				busy_mask |= (0x1UL << | 
 | 					      (nack_busy_id * 2)); | 
 | 			} | 
 | 			__asm__ __volatile__( | 
 | 				"stxa	%%g0, [%0] %1\n\t" | 
 | 				"membar	#Sync\n\t" | 
 | 				: /* no outputs */ | 
 | 				: "r" (target), "i" (ASI_INTR_W)); | 
 | 			nack_busy_id++; | 
 | 			if (nack_busy_id == 32) { | 
 | 				need_more = 1; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Now, poll for completion. */ | 
 | 	{ | 
 | 		u64 dispatch_stat, nack_mask; | 
 | 		long stuck; | 
 |  | 
 | 		stuck = 100000 * nack_busy_id; | 
 | 		nack_mask = busy_mask << 1; | 
 | 		do { | 
 | 			__asm__ __volatile__("ldxa	[%%g0] %1, %0" | 
 | 					     : "=r" (dispatch_stat) | 
 | 					     : "i" (ASI_INTR_DISPATCH_STAT)); | 
 | 			if (!(dispatch_stat & (busy_mask | nack_mask))) { | 
 | 				__asm__ __volatile__("wrpr %0, 0x0, %%pstate" | 
 | 						     : : "r" (pstate)); | 
 | 				if (unlikely(need_more)) { | 
 | 					int i, this_cnt = 0; | 
 | 					for (i = 0; i < cnt; i++) { | 
 | 						if (cpu_list[i] == 0xffff) | 
 | 							continue; | 
 | 						cpu_list[i] = 0xffff; | 
 | 						this_cnt++; | 
 | 						if (this_cnt == 32) | 
 | 							break; | 
 | 					} | 
 | 					goto retry; | 
 | 				} | 
 | 				return; | 
 | 			} | 
 | 			if (!--stuck) | 
 | 				break; | 
 | 		} while (dispatch_stat & busy_mask); | 
 |  | 
 | 		__asm__ __volatile__("wrpr %0, 0x0, %%pstate" | 
 | 				     : : "r" (pstate)); | 
 |  | 
 | 		if (dispatch_stat & busy_mask) { | 
 | 			/* Busy bits will not clear, continue instead | 
 | 			 * of freezing up on this cpu. | 
 | 			 */ | 
 | 			printk("CPU[%d]: mondo stuckage result[%016llx]\n", | 
 | 			       smp_processor_id(), dispatch_stat); | 
 | 		} else { | 
 | 			int i, this_busy_nack = 0; | 
 |  | 
 | 			/* Delay some random time with interrupts enabled | 
 | 			 * to prevent deadlock. | 
 | 			 */ | 
 | 			udelay(2 * nack_busy_id); | 
 |  | 
 | 			/* Clear out the mask bits for cpus which did not | 
 | 			 * NACK us. | 
 | 			 */ | 
 | 			for (i = 0; i < cnt; i++) { | 
 | 				u64 check_mask, nr; | 
 |  | 
 | 				nr = cpu_list[i]; | 
 | 				if (nr == 0xffff) | 
 | 					continue; | 
 |  | 
 | 				if (is_jbus) | 
 | 					check_mask = (0x2UL << (2*nr)); | 
 | 				else | 
 | 					check_mask = (0x2UL << | 
 | 						      this_busy_nack); | 
 | 				if ((dispatch_stat & check_mask) == 0) | 
 | 					cpu_list[i] = 0xffff; | 
 | 				this_busy_nack += 2; | 
 | 				if (this_busy_nack == 64) | 
 | 					break; | 
 | 			} | 
 |  | 
 | 			goto retry; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* Multi-cpu list version.  */ | 
 | static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt) | 
 | { | 
 | 	int retries, this_cpu, prev_sent, i, saw_cpu_error; | 
 | 	unsigned long status; | 
 | 	u16 *cpu_list; | 
 |  | 
 | 	this_cpu = smp_processor_id(); | 
 |  | 
 | 	cpu_list = __va(tb->cpu_list_pa); | 
 |  | 
 | 	saw_cpu_error = 0; | 
 | 	retries = 0; | 
 | 	prev_sent = 0; | 
 | 	do { | 
 | 		int forward_progress, n_sent; | 
 |  | 
 | 		status = sun4v_cpu_mondo_send(cnt, | 
 | 					      tb->cpu_list_pa, | 
 | 					      tb->cpu_mondo_block_pa); | 
 |  | 
 | 		/* HV_EOK means all cpus received the xcall, we're done.  */ | 
 | 		if (likely(status == HV_EOK)) | 
 | 			break; | 
 |  | 
 | 		/* First, see if we made any forward progress. | 
 | 		 * | 
 | 		 * The hypervisor indicates successful sends by setting | 
 | 		 * cpu list entries to the value 0xffff. | 
 | 		 */ | 
 | 		n_sent = 0; | 
 | 		for (i = 0; i < cnt; i++) { | 
 | 			if (likely(cpu_list[i] == 0xffff)) | 
 | 				n_sent++; | 
 | 		} | 
 |  | 
 | 		forward_progress = 0; | 
 | 		if (n_sent > prev_sent) | 
 | 			forward_progress = 1; | 
 |  | 
 | 		prev_sent = n_sent; | 
 |  | 
 | 		/* If we get a HV_ECPUERROR, then one or more of the cpus | 
 | 		 * in the list are in error state.  Use the cpu_state() | 
 | 		 * hypervisor call to find out which cpus are in error state. | 
 | 		 */ | 
 | 		if (unlikely(status == HV_ECPUERROR)) { | 
 | 			for (i = 0; i < cnt; i++) { | 
 | 				long err; | 
 | 				u16 cpu; | 
 |  | 
 | 				cpu = cpu_list[i]; | 
 | 				if (cpu == 0xffff) | 
 | 					continue; | 
 |  | 
 | 				err = sun4v_cpu_state(cpu); | 
 | 				if (err == HV_CPU_STATE_ERROR) { | 
 | 					saw_cpu_error = (cpu + 1); | 
 | 					cpu_list[i] = 0xffff; | 
 | 				} | 
 | 			} | 
 | 		} else if (unlikely(status != HV_EWOULDBLOCK)) | 
 | 			goto fatal_mondo_error; | 
 |  | 
 | 		/* Don't bother rewriting the CPU list, just leave the | 
 | 		 * 0xffff and non-0xffff entries in there and the | 
 | 		 * hypervisor will do the right thing. | 
 | 		 * | 
 | 		 * Only advance timeout state if we didn't make any | 
 | 		 * forward progress. | 
 | 		 */ | 
 | 		if (unlikely(!forward_progress)) { | 
 | 			if (unlikely(++retries > 10000)) | 
 | 				goto fatal_mondo_timeout; | 
 |  | 
 | 			/* Delay a little bit to let other cpus catch up | 
 | 			 * on their cpu mondo queue work. | 
 | 			 */ | 
 | 			udelay(2 * cnt); | 
 | 		} | 
 | 	} while (1); | 
 |  | 
 | 	if (unlikely(saw_cpu_error)) | 
 | 		goto fatal_mondo_cpu_error; | 
 |  | 
 | 	return; | 
 |  | 
 | fatal_mondo_cpu_error: | 
 | 	printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus " | 
 | 	       "(including %d) were in error state\n", | 
 | 	       this_cpu, saw_cpu_error - 1); | 
 | 	return; | 
 |  | 
 | fatal_mondo_timeout: | 
 | 	printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward " | 
 | 	       " progress after %d retries.\n", | 
 | 	       this_cpu, retries); | 
 | 	goto dump_cpu_list_and_out; | 
 |  | 
 | fatal_mondo_error: | 
 | 	printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n", | 
 | 	       this_cpu, status); | 
 | 	printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) " | 
 | 	       "mondo_block_pa(%lx)\n", | 
 | 	       this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa); | 
 |  | 
 | dump_cpu_list_and_out: | 
 | 	printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu); | 
 | 	for (i = 0; i < cnt; i++) | 
 | 		printk("%u ", cpu_list[i]); | 
 | 	printk("]\n"); | 
 | } | 
 |  | 
 | static void (*xcall_deliver_impl)(struct trap_per_cpu *, int); | 
 |  | 
 | static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask) | 
 | { | 
 | 	struct trap_per_cpu *tb; | 
 | 	int this_cpu, i, cnt; | 
 | 	unsigned long flags; | 
 | 	u16 *cpu_list; | 
 | 	u64 *mondo; | 
 |  | 
 | 	/* We have to do this whole thing with interrupts fully disabled. | 
 | 	 * Otherwise if we send an xcall from interrupt context it will | 
 | 	 * corrupt both our mondo block and cpu list state. | 
 | 	 * | 
 | 	 * One consequence of this is that we cannot use timeout mechanisms | 
 | 	 * that depend upon interrupts being delivered locally.  So, for | 
 | 	 * example, we cannot sample jiffies and expect it to advance. | 
 | 	 * | 
 | 	 * Fortunately, udelay() uses %stick/%tick so we can use that. | 
 | 	 */ | 
 | 	local_irq_save(flags); | 
 |  | 
 | 	this_cpu = smp_processor_id(); | 
 | 	tb = &trap_block[this_cpu]; | 
 |  | 
 | 	mondo = __va(tb->cpu_mondo_block_pa); | 
 | 	mondo[0] = data0; | 
 | 	mondo[1] = data1; | 
 | 	mondo[2] = data2; | 
 | 	wmb(); | 
 |  | 
 | 	cpu_list = __va(tb->cpu_list_pa); | 
 |  | 
 | 	/* Setup the initial cpu list.  */ | 
 | 	cnt = 0; | 
 | 	for_each_cpu(i, mask) { | 
 | 		if (i == this_cpu || !cpu_online(i)) | 
 | 			continue; | 
 | 		cpu_list[cnt++] = i; | 
 | 	} | 
 |  | 
 | 	if (cnt) | 
 | 		xcall_deliver_impl(tb, cnt); | 
 |  | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | /* Send cross call to all processors mentioned in MASK_P | 
 |  * except self.  Really, there are only two cases currently, | 
 |  * "cpu_online_mask" and "mm_cpumask(mm)". | 
 |  */ | 
 | static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask) | 
 | { | 
 | 	u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff)); | 
 |  | 
 | 	xcall_deliver(data0, data1, data2, mask); | 
 | } | 
 |  | 
 | /* Send cross call to all processors except self. */ | 
 | static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2) | 
 | { | 
 | 	smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask); | 
 | } | 
 |  | 
 | extern unsigned long xcall_sync_tick; | 
 |  | 
 | static void smp_start_sync_tick_client(int cpu) | 
 | { | 
 | 	xcall_deliver((u64) &xcall_sync_tick, 0, 0, | 
 | 		      cpumask_of(cpu)); | 
 | } | 
 |  | 
 | extern unsigned long xcall_call_function; | 
 |  | 
 | void arch_send_call_function_ipi_mask(const struct cpumask *mask) | 
 | { | 
 | 	xcall_deliver((u64) &xcall_call_function, 0, 0, mask); | 
 | } | 
 |  | 
 | extern unsigned long xcall_call_function_single; | 
 |  | 
 | void arch_send_call_function_single_ipi(int cpu) | 
 | { | 
 | 	xcall_deliver((u64) &xcall_call_function_single, 0, 0, | 
 | 		      cpumask_of(cpu)); | 
 | } | 
 |  | 
 | void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs) | 
 | { | 
 | 	clear_softint(1 << irq); | 
 | 	irq_enter(); | 
 | 	generic_smp_call_function_interrupt(); | 
 | 	irq_exit(); | 
 | } | 
 |  | 
 | void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs) | 
 | { | 
 | 	clear_softint(1 << irq); | 
 | 	irq_enter(); | 
 | 	generic_smp_call_function_single_interrupt(); | 
 | 	irq_exit(); | 
 | } | 
 |  | 
 | static void tsb_sync(void *info) | 
 | { | 
 | 	struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()]; | 
 | 	struct mm_struct *mm = info; | 
 |  | 
 | 	/* It is not valid to test "current->active_mm == mm" here. | 
 | 	 * | 
 | 	 * The value of "current" is not changed atomically with | 
 | 	 * switch_mm().  But that's OK, we just need to check the | 
 | 	 * current cpu's trap block PGD physical address. | 
 | 	 */ | 
 | 	if (tp->pgd_paddr == __pa(mm->pgd)) | 
 | 		tsb_context_switch(mm); | 
 | } | 
 |  | 
 | void smp_tsb_sync(struct mm_struct *mm) | 
 | { | 
 | 	smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1); | 
 | } | 
 |  | 
 | extern unsigned long xcall_flush_tlb_mm; | 
 | extern unsigned long xcall_flush_tlb_page; | 
 | extern unsigned long xcall_flush_tlb_kernel_range; | 
 | extern unsigned long xcall_fetch_glob_regs; | 
 | extern unsigned long xcall_fetch_glob_pmu; | 
 | extern unsigned long xcall_fetch_glob_pmu_n4; | 
 | extern unsigned long xcall_receive_signal; | 
 | extern unsigned long xcall_new_mmu_context_version; | 
 | #ifdef CONFIG_KGDB | 
 | extern unsigned long xcall_kgdb_capture; | 
 | #endif | 
 |  | 
 | #ifdef DCACHE_ALIASING_POSSIBLE | 
 | extern unsigned long xcall_flush_dcache_page_cheetah; | 
 | #endif | 
 | extern unsigned long xcall_flush_dcache_page_spitfire; | 
 |  | 
 | static inline void __local_flush_dcache_page(struct page *page) | 
 | { | 
 | #ifdef DCACHE_ALIASING_POSSIBLE | 
 | 	__flush_dcache_page(page_address(page), | 
 | 			    ((tlb_type == spitfire) && | 
 | 			     page_mapping(page) != NULL)); | 
 | #else | 
 | 	if (page_mapping(page) != NULL && | 
 | 	    tlb_type == spitfire) | 
 | 		__flush_icache_page(__pa(page_address(page))); | 
 | #endif | 
 | } | 
 |  | 
 | void smp_flush_dcache_page_impl(struct page *page, int cpu) | 
 | { | 
 | 	int this_cpu; | 
 |  | 
 | 	if (tlb_type == hypervisor) | 
 | 		return; | 
 |  | 
 | #ifdef CONFIG_DEBUG_DCFLUSH | 
 | 	atomic_inc(&dcpage_flushes); | 
 | #endif | 
 |  | 
 | 	this_cpu = get_cpu(); | 
 |  | 
 | 	if (cpu == this_cpu) { | 
 | 		__local_flush_dcache_page(page); | 
 | 	} else if (cpu_online(cpu)) { | 
 | 		void *pg_addr = page_address(page); | 
 | 		u64 data0 = 0; | 
 |  | 
 | 		if (tlb_type == spitfire) { | 
 | 			data0 = ((u64)&xcall_flush_dcache_page_spitfire); | 
 | 			if (page_mapping(page) != NULL) | 
 | 				data0 |= ((u64)1 << 32); | 
 | 		} else if (tlb_type == cheetah || tlb_type == cheetah_plus) { | 
 | #ifdef DCACHE_ALIASING_POSSIBLE | 
 | 			data0 =	((u64)&xcall_flush_dcache_page_cheetah); | 
 | #endif | 
 | 		} | 
 | 		if (data0) { | 
 | 			xcall_deliver(data0, __pa(pg_addr), | 
 | 				      (u64) pg_addr, cpumask_of(cpu)); | 
 | #ifdef CONFIG_DEBUG_DCFLUSH | 
 | 			atomic_inc(&dcpage_flushes_xcall); | 
 | #endif | 
 | 		} | 
 | 	} | 
 |  | 
 | 	put_cpu(); | 
 | } | 
 |  | 
 | void flush_dcache_page_all(struct mm_struct *mm, struct page *page) | 
 | { | 
 | 	void *pg_addr; | 
 | 	u64 data0; | 
 |  | 
 | 	if (tlb_type == hypervisor) | 
 | 		return; | 
 |  | 
 | 	preempt_disable(); | 
 |  | 
 | #ifdef CONFIG_DEBUG_DCFLUSH | 
 | 	atomic_inc(&dcpage_flushes); | 
 | #endif | 
 | 	data0 = 0; | 
 | 	pg_addr = page_address(page); | 
 | 	if (tlb_type == spitfire) { | 
 | 		data0 = ((u64)&xcall_flush_dcache_page_spitfire); | 
 | 		if (page_mapping(page) != NULL) | 
 | 			data0 |= ((u64)1 << 32); | 
 | 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) { | 
 | #ifdef DCACHE_ALIASING_POSSIBLE | 
 | 		data0 = ((u64)&xcall_flush_dcache_page_cheetah); | 
 | #endif | 
 | 	} | 
 | 	if (data0) { | 
 | 		xcall_deliver(data0, __pa(pg_addr), | 
 | 			      (u64) pg_addr, cpu_online_mask); | 
 | #ifdef CONFIG_DEBUG_DCFLUSH | 
 | 		atomic_inc(&dcpage_flushes_xcall); | 
 | #endif | 
 | 	} | 
 | 	__local_flush_dcache_page(page); | 
 |  | 
 | 	preempt_enable(); | 
 | } | 
 |  | 
 | void __irq_entry smp_new_mmu_context_version_client(int irq, struct pt_regs *regs) | 
 | { | 
 | 	struct mm_struct *mm; | 
 | 	unsigned long flags; | 
 |  | 
 | 	clear_softint(1 << irq); | 
 |  | 
 | 	/* See if we need to allocate a new TLB context because | 
 | 	 * the version of the one we are using is now out of date. | 
 | 	 */ | 
 | 	mm = current->active_mm; | 
 | 	if (unlikely(!mm || (mm == &init_mm))) | 
 | 		return; | 
 |  | 
 | 	spin_lock_irqsave(&mm->context.lock, flags); | 
 |  | 
 | 	if (unlikely(!CTX_VALID(mm->context))) | 
 | 		get_new_mmu_context(mm); | 
 |  | 
 | 	spin_unlock_irqrestore(&mm->context.lock, flags); | 
 |  | 
 | 	load_secondary_context(mm); | 
 | 	__flush_tlb_mm(CTX_HWBITS(mm->context), | 
 | 		       SECONDARY_CONTEXT); | 
 | } | 
 |  | 
 | void smp_new_mmu_context_version(void) | 
 | { | 
 | 	smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0); | 
 | } | 
 |  | 
 | #ifdef CONFIG_KGDB | 
 | void kgdb_roundup_cpus(unsigned long flags) | 
 | { | 
 | 	smp_cross_call(&xcall_kgdb_capture, 0, 0, 0); | 
 | } | 
 | #endif | 
 |  | 
 | void smp_fetch_global_regs(void) | 
 | { | 
 | 	smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0); | 
 | } | 
 |  | 
 | void smp_fetch_global_pmu(void) | 
 | { | 
 | 	if (tlb_type == hypervisor && | 
 | 	    sun4v_chip_type >= SUN4V_CHIP_NIAGARA4) | 
 | 		smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0); | 
 | 	else | 
 | 		smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0); | 
 | } | 
 |  | 
 | /* We know that the window frames of the user have been flushed | 
 |  * to the stack before we get here because all callers of us | 
 |  * are flush_tlb_*() routines, and these run after flush_cache_*() | 
 |  * which performs the flushw. | 
 |  * | 
 |  * The SMP TLB coherency scheme we use works as follows: | 
 |  * | 
 |  * 1) mm->cpu_vm_mask is a bit mask of which cpus an address | 
 |  *    space has (potentially) executed on, this is the heuristic | 
 |  *    we use to avoid doing cross calls. | 
 |  * | 
 |  *    Also, for flushing from kswapd and also for clones, we | 
 |  *    use cpu_vm_mask as the list of cpus to make run the TLB. | 
 |  * | 
 |  * 2) TLB context numbers are shared globally across all processors | 
 |  *    in the system, this allows us to play several games to avoid | 
 |  *    cross calls. | 
 |  * | 
 |  *    One invariant is that when a cpu switches to a process, and | 
 |  *    that processes tsk->active_mm->cpu_vm_mask does not have the | 
 |  *    current cpu's bit set, that tlb context is flushed locally. | 
 |  * | 
 |  *    If the address space is non-shared (ie. mm->count == 1) we avoid | 
 |  *    cross calls when we want to flush the currently running process's | 
 |  *    tlb state.  This is done by clearing all cpu bits except the current | 
 |  *    processor's in current->mm->cpu_vm_mask and performing the | 
 |  *    flush locally only.  This will force any subsequent cpus which run | 
 |  *    this task to flush the context from the local tlb if the process | 
 |  *    migrates to another cpu (again). | 
 |  * | 
 |  * 3) For shared address spaces (threads) and swapping we bite the | 
 |  *    bullet for most cases and perform the cross call (but only to | 
 |  *    the cpus listed in cpu_vm_mask). | 
 |  * | 
 |  *    The performance gain from "optimizing" away the cross call for threads is | 
 |  *    questionable (in theory the big win for threads is the massive sharing of | 
 |  *    address space state across processors). | 
 |  */ | 
 |  | 
 | /* This currently is only used by the hugetlb arch pre-fault | 
 |  * hook on UltraSPARC-III+ and later when changing the pagesize | 
 |  * bits of the context register for an address space. | 
 |  */ | 
 | void smp_flush_tlb_mm(struct mm_struct *mm) | 
 | { | 
 | 	u32 ctx = CTX_HWBITS(mm->context); | 
 | 	int cpu = get_cpu(); | 
 |  | 
 | 	if (atomic_read(&mm->mm_users) == 1) { | 
 | 		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu)); | 
 | 		goto local_flush_and_out; | 
 | 	} | 
 |  | 
 | 	smp_cross_call_masked(&xcall_flush_tlb_mm, | 
 | 			      ctx, 0, 0, | 
 | 			      mm_cpumask(mm)); | 
 |  | 
 | local_flush_and_out: | 
 | 	__flush_tlb_mm(ctx, SECONDARY_CONTEXT); | 
 |  | 
 | 	put_cpu(); | 
 | } | 
 |  | 
 | struct tlb_pending_info { | 
 | 	unsigned long ctx; | 
 | 	unsigned long nr; | 
 | 	unsigned long *vaddrs; | 
 | }; | 
 |  | 
 | static void tlb_pending_func(void *info) | 
 | { | 
 | 	struct tlb_pending_info *t = info; | 
 |  | 
 | 	__flush_tlb_pending(t->ctx, t->nr, t->vaddrs); | 
 | } | 
 |  | 
 | void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs) | 
 | { | 
 | 	u32 ctx = CTX_HWBITS(mm->context); | 
 | 	struct tlb_pending_info info; | 
 | 	int cpu = get_cpu(); | 
 |  | 
 | 	info.ctx = ctx; | 
 | 	info.nr = nr; | 
 | 	info.vaddrs = vaddrs; | 
 |  | 
 | 	if (mm == current->mm && atomic_read(&mm->mm_users) == 1) | 
 | 		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu)); | 
 | 	else | 
 | 		smp_call_function_many(mm_cpumask(mm), tlb_pending_func, | 
 | 				       &info, 1); | 
 |  | 
 | 	__flush_tlb_pending(ctx, nr, vaddrs); | 
 |  | 
 | 	put_cpu(); | 
 | } | 
 |  | 
 | void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr) | 
 | { | 
 | 	unsigned long context = CTX_HWBITS(mm->context); | 
 | 	int cpu = get_cpu(); | 
 |  | 
 | 	if (mm == current->mm && atomic_read(&mm->mm_users) == 1) | 
 | 		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu)); | 
 | 	else | 
 | 		smp_cross_call_masked(&xcall_flush_tlb_page, | 
 | 				      context, vaddr, 0, | 
 | 				      mm_cpumask(mm)); | 
 | 	__flush_tlb_page(context, vaddr); | 
 |  | 
 | 	put_cpu(); | 
 | } | 
 |  | 
 | void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end) | 
 | { | 
 | 	start &= PAGE_MASK; | 
 | 	end    = PAGE_ALIGN(end); | 
 | 	if (start != end) { | 
 | 		smp_cross_call(&xcall_flush_tlb_kernel_range, | 
 | 			       0, start, end); | 
 |  | 
 | 		__flush_tlb_kernel_range(start, end); | 
 | 	} | 
 | } | 
 |  | 
 | /* CPU capture. */ | 
 | /* #define CAPTURE_DEBUG */ | 
 | extern unsigned long xcall_capture; | 
 |  | 
 | static atomic_t smp_capture_depth = ATOMIC_INIT(0); | 
 | static atomic_t smp_capture_registry = ATOMIC_INIT(0); | 
 | static unsigned long penguins_are_doing_time; | 
 |  | 
 | void smp_capture(void) | 
 | { | 
 | 	int result = atomic_add_return(1, &smp_capture_depth); | 
 |  | 
 | 	if (result == 1) { | 
 | 		int ncpus = num_online_cpus(); | 
 |  | 
 | #ifdef CAPTURE_DEBUG | 
 | 		printk("CPU[%d]: Sending penguins to jail...", | 
 | 		       smp_processor_id()); | 
 | #endif | 
 | 		penguins_are_doing_time = 1; | 
 | 		atomic_inc(&smp_capture_registry); | 
 | 		smp_cross_call(&xcall_capture, 0, 0, 0); | 
 | 		while (atomic_read(&smp_capture_registry) != ncpus) | 
 | 			rmb(); | 
 | #ifdef CAPTURE_DEBUG | 
 | 		printk("done\n"); | 
 | #endif | 
 | 	} | 
 | } | 
 |  | 
 | void smp_release(void) | 
 | { | 
 | 	if (atomic_dec_and_test(&smp_capture_depth)) { | 
 | #ifdef CAPTURE_DEBUG | 
 | 		printk("CPU[%d]: Giving pardon to " | 
 | 		       "imprisoned penguins\n", | 
 | 		       smp_processor_id()); | 
 | #endif | 
 | 		penguins_are_doing_time = 0; | 
 | 		membar_safe("#StoreLoad"); | 
 | 		atomic_dec(&smp_capture_registry); | 
 | 	} | 
 | } | 
 |  | 
 | /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE | 
 |  * set, so they can service tlb flush xcalls... | 
 |  */ | 
 | extern void prom_world(int); | 
 |  | 
 | void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs) | 
 | { | 
 | 	clear_softint(1 << irq); | 
 |  | 
 | 	preempt_disable(); | 
 |  | 
 | 	__asm__ __volatile__("flushw"); | 
 | 	prom_world(1); | 
 | 	atomic_inc(&smp_capture_registry); | 
 | 	membar_safe("#StoreLoad"); | 
 | 	while (penguins_are_doing_time) | 
 | 		rmb(); | 
 | 	atomic_dec(&smp_capture_registry); | 
 | 	prom_world(0); | 
 |  | 
 | 	preempt_enable(); | 
 | } | 
 |  | 
 | /* /proc/profile writes can call this, don't __init it please. */ | 
 | int setup_profiling_timer(unsigned int multiplier) | 
 | { | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | void __init smp_prepare_cpus(unsigned int max_cpus) | 
 | { | 
 | } | 
 |  | 
 | void smp_prepare_boot_cpu(void) | 
 | { | 
 | } | 
 |  | 
 | void __init smp_setup_processor_id(void) | 
 | { | 
 | 	if (tlb_type == spitfire) | 
 | 		xcall_deliver_impl = spitfire_xcall_deliver; | 
 | 	else if (tlb_type == cheetah || tlb_type == cheetah_plus) | 
 | 		xcall_deliver_impl = cheetah_xcall_deliver; | 
 | 	else | 
 | 		xcall_deliver_impl = hypervisor_xcall_deliver; | 
 | } | 
 |  | 
 | void smp_fill_in_sib_core_maps(void) | 
 | { | 
 | 	unsigned int i; | 
 |  | 
 | 	for_each_present_cpu(i) { | 
 | 		unsigned int j; | 
 |  | 
 | 		cpumask_clear(&cpu_core_map[i]); | 
 | 		if (cpu_data(i).core_id == 0) { | 
 | 			cpumask_set_cpu(i, &cpu_core_map[i]); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		for_each_present_cpu(j) { | 
 | 			if (cpu_data(i).core_id == | 
 | 			    cpu_data(j).core_id) | 
 | 				cpumask_set_cpu(j, &cpu_core_map[i]); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	for_each_present_cpu(i)  { | 
 | 		unsigned int j; | 
 |  | 
 | 		for_each_present_cpu(j)  { | 
 | 			if (cpu_data(i).sock_id == cpu_data(j).sock_id) | 
 | 				cpumask_set_cpu(j, &cpu_core_sib_map[i]); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	for_each_present_cpu(i) { | 
 | 		unsigned int j; | 
 |  | 
 | 		cpumask_clear(&per_cpu(cpu_sibling_map, i)); | 
 | 		if (cpu_data(i).proc_id == -1) { | 
 | 			cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i)); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		for_each_present_cpu(j) { | 
 | 			if (cpu_data(i).proc_id == | 
 | 			    cpu_data(j).proc_id) | 
 | 				cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i)); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | int __cpu_up(unsigned int cpu, struct task_struct *tidle) | 
 | { | 
 | 	int ret = smp_boot_one_cpu(cpu, tidle); | 
 |  | 
 | 	if (!ret) { | 
 | 		cpumask_set_cpu(cpu, &smp_commenced_mask); | 
 | 		while (!cpu_online(cpu)) | 
 | 			mb(); | 
 | 		if (!cpu_online(cpu)) { | 
 | 			ret = -ENODEV; | 
 | 		} else { | 
 | 			/* On SUN4V, writes to %tick and %stick are | 
 | 			 * not allowed. | 
 | 			 */ | 
 | 			if (tlb_type != hypervisor) | 
 | 				smp_synchronize_one_tick(cpu); | 
 | 		} | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | #ifdef CONFIG_HOTPLUG_CPU | 
 | void cpu_play_dead(void) | 
 | { | 
 | 	int cpu = smp_processor_id(); | 
 | 	unsigned long pstate; | 
 |  | 
 | 	idle_task_exit(); | 
 |  | 
 | 	if (tlb_type == hypervisor) { | 
 | 		struct trap_per_cpu *tb = &trap_block[cpu]; | 
 |  | 
 | 		sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO, | 
 | 				tb->cpu_mondo_pa, 0); | 
 | 		sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO, | 
 | 				tb->dev_mondo_pa, 0); | 
 | 		sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR, | 
 | 				tb->resum_mondo_pa, 0); | 
 | 		sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR, | 
 | 				tb->nonresum_mondo_pa, 0); | 
 | 	} | 
 |  | 
 | 	cpumask_clear_cpu(cpu, &smp_commenced_mask); | 
 | 	membar_safe("#Sync"); | 
 |  | 
 | 	local_irq_disable(); | 
 |  | 
 | 	__asm__ __volatile__( | 
 | 		"rdpr	%%pstate, %0\n\t" | 
 | 		"wrpr	%0, %1, %%pstate" | 
 | 		: "=r" (pstate) | 
 | 		: "i" (PSTATE_IE)); | 
 |  | 
 | 	while (1) | 
 | 		barrier(); | 
 | } | 
 |  | 
 | int __cpu_disable(void) | 
 | { | 
 | 	int cpu = smp_processor_id(); | 
 | 	cpuinfo_sparc *c; | 
 | 	int i; | 
 |  | 
 | 	for_each_cpu(i, &cpu_core_map[cpu]) | 
 | 		cpumask_clear_cpu(cpu, &cpu_core_map[i]); | 
 | 	cpumask_clear(&cpu_core_map[cpu]); | 
 |  | 
 | 	for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu)) | 
 | 		cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i)); | 
 | 	cpumask_clear(&per_cpu(cpu_sibling_map, cpu)); | 
 |  | 
 | 	c = &cpu_data(cpu); | 
 |  | 
 | 	c->core_id = 0; | 
 | 	c->proc_id = -1; | 
 |  | 
 | 	smp_wmb(); | 
 |  | 
 | 	/* Make sure no interrupts point to this cpu.  */ | 
 | 	fixup_irqs(); | 
 |  | 
 | 	local_irq_enable(); | 
 | 	mdelay(1); | 
 | 	local_irq_disable(); | 
 |  | 
 | 	set_cpu_online(cpu, false); | 
 |  | 
 | 	cpu_map_rebuild(); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void __cpu_die(unsigned int cpu) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < 100; i++) { | 
 | 		smp_rmb(); | 
 | 		if (!cpumask_test_cpu(cpu, &smp_commenced_mask)) | 
 | 			break; | 
 | 		msleep(100); | 
 | 	} | 
 | 	if (cpumask_test_cpu(cpu, &smp_commenced_mask)) { | 
 | 		printk(KERN_ERR "CPU %u didn't die...\n", cpu); | 
 | 	} else { | 
 | #if defined(CONFIG_SUN_LDOMS) | 
 | 		unsigned long hv_err; | 
 | 		int limit = 100; | 
 |  | 
 | 		do { | 
 | 			hv_err = sun4v_cpu_stop(cpu); | 
 | 			if (hv_err == HV_EOK) { | 
 | 				set_cpu_present(cpu, false); | 
 | 				break; | 
 | 			} | 
 | 		} while (--limit > 0); | 
 | 		if (limit <= 0) { | 
 | 			printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n", | 
 | 			       hv_err); | 
 | 		} | 
 | #endif | 
 | 	} | 
 | } | 
 | #endif | 
 |  | 
 | void __init smp_cpus_done(unsigned int max_cpus) | 
 | { | 
 | } | 
 |  | 
 | void smp_send_reschedule(int cpu) | 
 | { | 
 | 	if (cpu == smp_processor_id()) { | 
 | 		WARN_ON_ONCE(preemptible()); | 
 | 		set_softint(1 << PIL_SMP_RECEIVE_SIGNAL); | 
 | 	} else { | 
 | 		xcall_deliver((u64) &xcall_receive_signal, | 
 | 			      0, 0, cpumask_of(cpu)); | 
 | 	} | 
 | } | 
 |  | 
 | void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs) | 
 | { | 
 | 	clear_softint(1 << irq); | 
 | 	scheduler_ipi(); | 
 | } | 
 |  | 
 | static void stop_this_cpu(void *dummy) | 
 | { | 
 | 	prom_stopself(); | 
 | } | 
 |  | 
 | void smp_send_stop(void) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	if (tlb_type == hypervisor) { | 
 | 		for_each_online_cpu(cpu) { | 
 | 			if (cpu == smp_processor_id()) | 
 | 				continue; | 
 | #ifdef CONFIG_SUN_LDOMS | 
 | 			if (ldom_domaining_enabled) { | 
 | 				unsigned long hv_err; | 
 | 				hv_err = sun4v_cpu_stop(cpu); | 
 | 				if (hv_err) | 
 | 					printk(KERN_ERR "sun4v_cpu_stop() " | 
 | 					       "failed err=%lu\n", hv_err); | 
 | 			} else | 
 | #endif | 
 | 				prom_stopcpu_cpuid(cpu); | 
 | 		} | 
 | 	} else | 
 | 		smp_call_function(stop_this_cpu, NULL, 0); | 
 | } | 
 |  | 
 | /** | 
 |  * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu | 
 |  * @cpu: cpu to allocate for | 
 |  * @size: size allocation in bytes | 
 |  * @align: alignment | 
 |  * | 
 |  * Allocate @size bytes aligned at @align for cpu @cpu.  This wrapper | 
 |  * does the right thing for NUMA regardless of the current | 
 |  * configuration. | 
 |  * | 
 |  * RETURNS: | 
 |  * Pointer to the allocated area on success, NULL on failure. | 
 |  */ | 
 | static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size, | 
 | 					size_t align) | 
 | { | 
 | 	const unsigned long goal = __pa(MAX_DMA_ADDRESS); | 
 | #ifdef CONFIG_NEED_MULTIPLE_NODES | 
 | 	int node = cpu_to_node(cpu); | 
 | 	void *ptr; | 
 |  | 
 | 	if (!node_online(node) || !NODE_DATA(node)) { | 
 | 		ptr = __alloc_bootmem(size, align, goal); | 
 | 		pr_info("cpu %d has no node %d or node-local memory\n", | 
 | 			cpu, node); | 
 | 		pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n", | 
 | 			 cpu, size, __pa(ptr)); | 
 | 	} else { | 
 | 		ptr = __alloc_bootmem_node(NODE_DATA(node), | 
 | 					   size, align, goal); | 
 | 		pr_debug("per cpu data for cpu%d %lu bytes on node%d at " | 
 | 			 "%016lx\n", cpu, size, node, __pa(ptr)); | 
 | 	} | 
 | 	return ptr; | 
 | #else | 
 | 	return __alloc_bootmem(size, align, goal); | 
 | #endif | 
 | } | 
 |  | 
 | static void __init pcpu_free_bootmem(void *ptr, size_t size) | 
 | { | 
 | 	free_bootmem(__pa(ptr), size); | 
 | } | 
 |  | 
 | static int __init pcpu_cpu_distance(unsigned int from, unsigned int to) | 
 | { | 
 | 	if (cpu_to_node(from) == cpu_to_node(to)) | 
 | 		return LOCAL_DISTANCE; | 
 | 	else | 
 | 		return REMOTE_DISTANCE; | 
 | } | 
 |  | 
 | static void __init pcpu_populate_pte(unsigned long addr) | 
 | { | 
 | 	pgd_t *pgd = pgd_offset_k(addr); | 
 | 	pud_t *pud; | 
 | 	pmd_t *pmd; | 
 |  | 
 | 	if (pgd_none(*pgd)) { | 
 | 		pud_t *new; | 
 |  | 
 | 		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); | 
 | 		pgd_populate(&init_mm, pgd, new); | 
 | 	} | 
 |  | 
 | 	pud = pud_offset(pgd, addr); | 
 | 	if (pud_none(*pud)) { | 
 | 		pmd_t *new; | 
 |  | 
 | 		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); | 
 | 		pud_populate(&init_mm, pud, new); | 
 | 	} | 
 |  | 
 | 	pmd = pmd_offset(pud, addr); | 
 | 	if (!pmd_present(*pmd)) { | 
 | 		pte_t *new; | 
 |  | 
 | 		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); | 
 | 		pmd_populate_kernel(&init_mm, pmd, new); | 
 | 	} | 
 | } | 
 |  | 
 | void __init setup_per_cpu_areas(void) | 
 | { | 
 | 	unsigned long delta; | 
 | 	unsigned int cpu; | 
 | 	int rc = -EINVAL; | 
 |  | 
 | 	if (pcpu_chosen_fc != PCPU_FC_PAGE) { | 
 | 		rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, | 
 | 					    PERCPU_DYNAMIC_RESERVE, 4 << 20, | 
 | 					    pcpu_cpu_distance, | 
 | 					    pcpu_alloc_bootmem, | 
 | 					    pcpu_free_bootmem); | 
 | 		if (rc) | 
 | 			pr_warning("PERCPU: %s allocator failed (%d), " | 
 | 				   "falling back to page size\n", | 
 | 				   pcpu_fc_names[pcpu_chosen_fc], rc); | 
 | 	} | 
 | 	if (rc < 0) | 
 | 		rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE, | 
 | 					   pcpu_alloc_bootmem, | 
 | 					   pcpu_free_bootmem, | 
 | 					   pcpu_populate_pte); | 
 | 	if (rc < 0) | 
 | 		panic("cannot initialize percpu area (err=%d)", rc); | 
 |  | 
 | 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; | 
 | 	for_each_possible_cpu(cpu) | 
 | 		__per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu]; | 
 |  | 
 | 	/* Setup %g5 for the boot cpu.  */ | 
 | 	__local_per_cpu_offset = __per_cpu_offset(smp_processor_id()); | 
 |  | 
 | 	of_fill_in_cpu_data(); | 
 | 	if (tlb_type == hypervisor) | 
 | 		mdesc_fill_in_cpu_data(cpu_all_mask); | 
 | } |