| /* bnx2x_cmn.c: Broadcom Everest network driver. |
| * |
| * Copyright (c) 2007-2013 Broadcom Corporation |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation. |
| * |
| * Maintained by: Eilon Greenstein <eilong@broadcom.com> |
| * Written by: Eliezer Tamir |
| * Based on code from Michael Chan's bnx2 driver |
| * UDP CSUM errata workaround by Arik Gendelman |
| * Slowpath and fastpath rework by Vladislav Zolotarov |
| * Statistics and Link management by Yitchak Gertner |
| * |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/etherdevice.h> |
| #include <linux/if_vlan.h> |
| #include <linux/interrupt.h> |
| #include <linux/ip.h> |
| #include <net/tcp.h> |
| #include <net/ipv6.h> |
| #include <net/ip6_checksum.h> |
| #include <net/ll_poll.h> |
| #include <linux/prefetch.h> |
| #include "bnx2x_cmn.h" |
| #include "bnx2x_init.h" |
| #include "bnx2x_sp.h" |
| |
| /** |
| * bnx2x_move_fp - move content of the fastpath structure. |
| * |
| * @bp: driver handle |
| * @from: source FP index |
| * @to: destination FP index |
| * |
| * Makes sure the contents of the bp->fp[to].napi is kept |
| * intact. This is done by first copying the napi struct from |
| * the target to the source, and then mem copying the entire |
| * source onto the target. Update txdata pointers and related |
| * content. |
| */ |
| static inline void bnx2x_move_fp(struct bnx2x *bp, int from, int to) |
| { |
| struct bnx2x_fastpath *from_fp = &bp->fp[from]; |
| struct bnx2x_fastpath *to_fp = &bp->fp[to]; |
| struct bnx2x_sp_objs *from_sp_objs = &bp->sp_objs[from]; |
| struct bnx2x_sp_objs *to_sp_objs = &bp->sp_objs[to]; |
| struct bnx2x_fp_stats *from_fp_stats = &bp->fp_stats[from]; |
| struct bnx2x_fp_stats *to_fp_stats = &bp->fp_stats[to]; |
| int old_max_eth_txqs, new_max_eth_txqs; |
| int old_txdata_index = 0, new_txdata_index = 0; |
| |
| /* Copy the NAPI object as it has been already initialized */ |
| from_fp->napi = to_fp->napi; |
| |
| /* Move bnx2x_fastpath contents */ |
| memcpy(to_fp, from_fp, sizeof(*to_fp)); |
| to_fp->index = to; |
| |
| /* move sp_objs contents as well, as their indices match fp ones */ |
| memcpy(to_sp_objs, from_sp_objs, sizeof(*to_sp_objs)); |
| |
| /* move fp_stats contents as well, as their indices match fp ones */ |
| memcpy(to_fp_stats, from_fp_stats, sizeof(*to_fp_stats)); |
| |
| /* Update txdata pointers in fp and move txdata content accordingly: |
| * Each fp consumes 'max_cos' txdata structures, so the index should be |
| * decremented by max_cos x delta. |
| */ |
| |
| old_max_eth_txqs = BNX2X_NUM_ETH_QUEUES(bp) * (bp)->max_cos; |
| new_max_eth_txqs = (BNX2X_NUM_ETH_QUEUES(bp) - from + to) * |
| (bp)->max_cos; |
| if (from == FCOE_IDX(bp)) { |
| old_txdata_index = old_max_eth_txqs + FCOE_TXQ_IDX_OFFSET; |
| new_txdata_index = new_max_eth_txqs + FCOE_TXQ_IDX_OFFSET; |
| } |
| |
| memcpy(&bp->bnx2x_txq[new_txdata_index], |
| &bp->bnx2x_txq[old_txdata_index], |
| sizeof(struct bnx2x_fp_txdata)); |
| to_fp->txdata_ptr[0] = &bp->bnx2x_txq[new_txdata_index]; |
| } |
| |
| /** |
| * bnx2x_fill_fw_str - Fill buffer with FW version string. |
| * |
| * @bp: driver handle |
| * @buf: character buffer to fill with the fw name |
| * @buf_len: length of the above buffer |
| * |
| */ |
| void bnx2x_fill_fw_str(struct bnx2x *bp, char *buf, size_t buf_len) |
| { |
| if (IS_PF(bp)) { |
| u8 phy_fw_ver[PHY_FW_VER_LEN]; |
| |
| phy_fw_ver[0] = '\0'; |
| bnx2x_get_ext_phy_fw_version(&bp->link_params, |
| phy_fw_ver, PHY_FW_VER_LEN); |
| strlcpy(buf, bp->fw_ver, buf_len); |
| snprintf(buf + strlen(bp->fw_ver), 32 - strlen(bp->fw_ver), |
| "bc %d.%d.%d%s%s", |
| (bp->common.bc_ver & 0xff0000) >> 16, |
| (bp->common.bc_ver & 0xff00) >> 8, |
| (bp->common.bc_ver & 0xff), |
| ((phy_fw_ver[0] != '\0') ? " phy " : ""), phy_fw_ver); |
| } else { |
| bnx2x_vf_fill_fw_str(bp, buf, buf_len); |
| } |
| } |
| |
| /** |
| * bnx2x_shrink_eth_fp - guarantees fastpath structures stay intact |
| * |
| * @bp: driver handle |
| * @delta: number of eth queues which were not allocated |
| */ |
| static void bnx2x_shrink_eth_fp(struct bnx2x *bp, int delta) |
| { |
| int i, cos, old_eth_num = BNX2X_NUM_ETH_QUEUES(bp); |
| |
| /* Queue pointer cannot be re-set on an fp-basis, as moving pointer |
| * backward along the array could cause memory to be overridden |
| */ |
| for (cos = 1; cos < bp->max_cos; cos++) { |
| for (i = 0; i < old_eth_num - delta; i++) { |
| struct bnx2x_fastpath *fp = &bp->fp[i]; |
| int new_idx = cos * (old_eth_num - delta) + i; |
| |
| memcpy(&bp->bnx2x_txq[new_idx], fp->txdata_ptr[cos], |
| sizeof(struct bnx2x_fp_txdata)); |
| fp->txdata_ptr[cos] = &bp->bnx2x_txq[new_idx]; |
| } |
| } |
| } |
| |
| int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */ |
| |
| /* free skb in the packet ring at pos idx |
| * return idx of last bd freed |
| */ |
| static u16 bnx2x_free_tx_pkt(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata, |
| u16 idx, unsigned int *pkts_compl, |
| unsigned int *bytes_compl) |
| { |
| struct sw_tx_bd *tx_buf = &txdata->tx_buf_ring[idx]; |
| struct eth_tx_start_bd *tx_start_bd; |
| struct eth_tx_bd *tx_data_bd; |
| struct sk_buff *skb = tx_buf->skb; |
| u16 bd_idx = TX_BD(tx_buf->first_bd), new_cons; |
| int nbd; |
| |
| /* prefetch skb end pointer to speedup dev_kfree_skb() */ |
| prefetch(&skb->end); |
| |
| DP(NETIF_MSG_TX_DONE, "fp[%d]: pkt_idx %d buff @(%p)->skb %p\n", |
| txdata->txq_index, idx, tx_buf, skb); |
| |
| /* unmap first bd */ |
| tx_start_bd = &txdata->tx_desc_ring[bd_idx].start_bd; |
| dma_unmap_single(&bp->pdev->dev, BD_UNMAP_ADDR(tx_start_bd), |
| BD_UNMAP_LEN(tx_start_bd), DMA_TO_DEVICE); |
| |
| nbd = le16_to_cpu(tx_start_bd->nbd) - 1; |
| #ifdef BNX2X_STOP_ON_ERROR |
| if ((nbd - 1) > (MAX_SKB_FRAGS + 2)) { |
| BNX2X_ERR("BAD nbd!\n"); |
| bnx2x_panic(); |
| } |
| #endif |
| new_cons = nbd + tx_buf->first_bd; |
| |
| /* Get the next bd */ |
| bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); |
| |
| /* Skip a parse bd... */ |
| --nbd; |
| bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); |
| |
| /* ...and the TSO split header bd since they have no mapping */ |
| if (tx_buf->flags & BNX2X_TSO_SPLIT_BD) { |
| --nbd; |
| bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); |
| } |
| |
| /* now free frags */ |
| while (nbd > 0) { |
| |
| tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd; |
| dma_unmap_page(&bp->pdev->dev, BD_UNMAP_ADDR(tx_data_bd), |
| BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE); |
| if (--nbd) |
| bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); |
| } |
| |
| /* release skb */ |
| WARN_ON(!skb); |
| if (likely(skb)) { |
| (*pkts_compl)++; |
| (*bytes_compl) += skb->len; |
| } |
| |
| dev_kfree_skb_any(skb); |
| tx_buf->first_bd = 0; |
| tx_buf->skb = NULL; |
| |
| return new_cons; |
| } |
| |
| int bnx2x_tx_int(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata) |
| { |
| struct netdev_queue *txq; |
| u16 hw_cons, sw_cons, bd_cons = txdata->tx_bd_cons; |
| unsigned int pkts_compl = 0, bytes_compl = 0; |
| |
| #ifdef BNX2X_STOP_ON_ERROR |
| if (unlikely(bp->panic)) |
| return -1; |
| #endif |
| |
| txq = netdev_get_tx_queue(bp->dev, txdata->txq_index); |
| hw_cons = le16_to_cpu(*txdata->tx_cons_sb); |
| sw_cons = txdata->tx_pkt_cons; |
| |
| while (sw_cons != hw_cons) { |
| u16 pkt_cons; |
| |
| pkt_cons = TX_BD(sw_cons); |
| |
| DP(NETIF_MSG_TX_DONE, |
| "queue[%d]: hw_cons %u sw_cons %u pkt_cons %u\n", |
| txdata->txq_index, hw_cons, sw_cons, pkt_cons); |
| |
| bd_cons = bnx2x_free_tx_pkt(bp, txdata, pkt_cons, |
| &pkts_compl, &bytes_compl); |
| |
| sw_cons++; |
| } |
| |
| netdev_tx_completed_queue(txq, pkts_compl, bytes_compl); |
| |
| txdata->tx_pkt_cons = sw_cons; |
| txdata->tx_bd_cons = bd_cons; |
| |
| /* Need to make the tx_bd_cons update visible to start_xmit() |
| * before checking for netif_tx_queue_stopped(). Without the |
| * memory barrier, there is a small possibility that |
| * start_xmit() will miss it and cause the queue to be stopped |
| * forever. |
| * On the other hand we need an rmb() here to ensure the proper |
| * ordering of bit testing in the following |
| * netif_tx_queue_stopped(txq) call. |
| */ |
| smp_mb(); |
| |
| if (unlikely(netif_tx_queue_stopped(txq))) { |
| /* Taking tx_lock() is needed to prevent re-enabling the queue |
| * while it's empty. This could have happen if rx_action() gets |
| * suspended in bnx2x_tx_int() after the condition before |
| * netif_tx_wake_queue(), while tx_action (bnx2x_start_xmit()): |
| * |
| * stops the queue->sees fresh tx_bd_cons->releases the queue-> |
| * sends some packets consuming the whole queue again-> |
| * stops the queue |
| */ |
| |
| __netif_tx_lock(txq, smp_processor_id()); |
| |
| if ((netif_tx_queue_stopped(txq)) && |
| (bp->state == BNX2X_STATE_OPEN) && |
| (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT)) |
| netif_tx_wake_queue(txq); |
| |
| __netif_tx_unlock(txq); |
| } |
| return 0; |
| } |
| |
| static inline void bnx2x_update_last_max_sge(struct bnx2x_fastpath *fp, |
| u16 idx) |
| { |
| u16 last_max = fp->last_max_sge; |
| |
| if (SUB_S16(idx, last_max) > 0) |
| fp->last_max_sge = idx; |
| } |
| |
| static inline void bnx2x_update_sge_prod(struct bnx2x_fastpath *fp, |
| u16 sge_len, |
| struct eth_end_agg_rx_cqe *cqe) |
| { |
| struct bnx2x *bp = fp->bp; |
| u16 last_max, last_elem, first_elem; |
| u16 delta = 0; |
| u16 i; |
| |
| if (!sge_len) |
| return; |
| |
| /* First mark all used pages */ |
| for (i = 0; i < sge_len; i++) |
| BIT_VEC64_CLEAR_BIT(fp->sge_mask, |
| RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[i]))); |
| |
| DP(NETIF_MSG_RX_STATUS, "fp_cqe->sgl[%d] = %d\n", |
| sge_len - 1, le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1])); |
| |
| /* Here we assume that the last SGE index is the biggest */ |
| prefetch((void *)(fp->sge_mask)); |
| bnx2x_update_last_max_sge(fp, |
| le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1])); |
| |
| last_max = RX_SGE(fp->last_max_sge); |
| last_elem = last_max >> BIT_VEC64_ELEM_SHIFT; |
| first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT; |
| |
| /* If ring is not full */ |
| if (last_elem + 1 != first_elem) |
| last_elem++; |
| |
| /* Now update the prod */ |
| for (i = first_elem; i != last_elem; i = NEXT_SGE_MASK_ELEM(i)) { |
| if (likely(fp->sge_mask[i])) |
| break; |
| |
| fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK; |
| delta += BIT_VEC64_ELEM_SZ; |
| } |
| |
| if (delta > 0) { |
| fp->rx_sge_prod += delta; |
| /* clear page-end entries */ |
| bnx2x_clear_sge_mask_next_elems(fp); |
| } |
| |
| DP(NETIF_MSG_RX_STATUS, |
| "fp->last_max_sge = %d fp->rx_sge_prod = %d\n", |
| fp->last_max_sge, fp->rx_sge_prod); |
| } |
| |
| /* Get Toeplitz hash value in the skb using the value from the |
| * CQE (calculated by HW). |
| */ |
| static u32 bnx2x_get_rxhash(const struct bnx2x *bp, |
| const struct eth_fast_path_rx_cqe *cqe, |
| bool *l4_rxhash) |
| { |
| /* Get Toeplitz hash from CQE */ |
| if ((bp->dev->features & NETIF_F_RXHASH) && |
| (cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_FLG)) { |
| enum eth_rss_hash_type htype; |
| |
| htype = cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_TYPE; |
| *l4_rxhash = (htype == TCP_IPV4_HASH_TYPE) || |
| (htype == TCP_IPV6_HASH_TYPE); |
| return le32_to_cpu(cqe->rss_hash_result); |
| } |
| *l4_rxhash = false; |
| return 0; |
| } |
| |
| static void bnx2x_tpa_start(struct bnx2x_fastpath *fp, u16 queue, |
| u16 cons, u16 prod, |
| struct eth_fast_path_rx_cqe *cqe) |
| { |
| struct bnx2x *bp = fp->bp; |
| struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons]; |
| struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod]; |
| struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod]; |
| dma_addr_t mapping; |
| struct bnx2x_agg_info *tpa_info = &fp->tpa_info[queue]; |
| struct sw_rx_bd *first_buf = &tpa_info->first_buf; |
| |
| /* print error if current state != stop */ |
| if (tpa_info->tpa_state != BNX2X_TPA_STOP) |
| BNX2X_ERR("start of bin not in stop [%d]\n", queue); |
| |
| /* Try to map an empty data buffer from the aggregation info */ |
| mapping = dma_map_single(&bp->pdev->dev, |
| first_buf->data + NET_SKB_PAD, |
| fp->rx_buf_size, DMA_FROM_DEVICE); |
| /* |
| * ...if it fails - move the skb from the consumer to the producer |
| * and set the current aggregation state as ERROR to drop it |
| * when TPA_STOP arrives. |
| */ |
| |
| if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { |
| /* Move the BD from the consumer to the producer */ |
| bnx2x_reuse_rx_data(fp, cons, prod); |
| tpa_info->tpa_state = BNX2X_TPA_ERROR; |
| return; |
| } |
| |
| /* move empty data from pool to prod */ |
| prod_rx_buf->data = first_buf->data; |
| dma_unmap_addr_set(prod_rx_buf, mapping, mapping); |
| /* point prod_bd to new data */ |
| prod_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); |
| prod_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); |
| |
| /* move partial skb from cons to pool (don't unmap yet) */ |
| *first_buf = *cons_rx_buf; |
| |
| /* mark bin state as START */ |
| tpa_info->parsing_flags = |
| le16_to_cpu(cqe->pars_flags.flags); |
| tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag); |
| tpa_info->tpa_state = BNX2X_TPA_START; |
| tpa_info->len_on_bd = le16_to_cpu(cqe->len_on_bd); |
| tpa_info->placement_offset = cqe->placement_offset; |
| tpa_info->rxhash = bnx2x_get_rxhash(bp, cqe, &tpa_info->l4_rxhash); |
| if (fp->mode == TPA_MODE_GRO) { |
| u16 gro_size = le16_to_cpu(cqe->pkt_len_or_gro_seg_len); |
| tpa_info->full_page = SGE_PAGES / gro_size * gro_size; |
| tpa_info->gro_size = gro_size; |
| } |
| |
| #ifdef BNX2X_STOP_ON_ERROR |
| fp->tpa_queue_used |= (1 << queue); |
| #ifdef _ASM_GENERIC_INT_L64_H |
| DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%lx\n", |
| #else |
| DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%llx\n", |
| #endif |
| fp->tpa_queue_used); |
| #endif |
| } |
| |
| /* Timestamp option length allowed for TPA aggregation: |
| * |
| * nop nop kind length echo val |
| */ |
| #define TPA_TSTAMP_OPT_LEN 12 |
| /** |
| * bnx2x_set_gro_params - compute GRO values |
| * |
| * @skb: packet skb |
| * @parsing_flags: parsing flags from the START CQE |
| * @len_on_bd: total length of the first packet for the |
| * aggregation. |
| * @pkt_len: length of all segments |
| * |
| * Approximate value of the MSS for this aggregation calculated using |
| * the first packet of it. |
| * Compute number of aggregated segments, and gso_type. |
| */ |
| static void bnx2x_set_gro_params(struct sk_buff *skb, u16 parsing_flags, |
| u16 len_on_bd, unsigned int pkt_len, |
| u16 num_of_coalesced_segs) |
| { |
| /* TPA aggregation won't have either IP options or TCP options |
| * other than timestamp or IPv6 extension headers. |
| */ |
| u16 hdrs_len = ETH_HLEN + sizeof(struct tcphdr); |
| |
| if (GET_FLAG(parsing_flags, PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) == |
| PRS_FLAG_OVERETH_IPV6) { |
| hdrs_len += sizeof(struct ipv6hdr); |
| skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6; |
| } else { |
| hdrs_len += sizeof(struct iphdr); |
| skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4; |
| } |
| |
| /* Check if there was a TCP timestamp, if there is it's will |
| * always be 12 bytes length: nop nop kind length echo val. |
| * |
| * Otherwise FW would close the aggregation. |
| */ |
| if (parsing_flags & PARSING_FLAGS_TIME_STAMP_EXIST_FLAG) |
| hdrs_len += TPA_TSTAMP_OPT_LEN; |
| |
| skb_shinfo(skb)->gso_size = len_on_bd - hdrs_len; |
| |
| /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count |
| * to skb_shinfo(skb)->gso_segs |
| */ |
| NAPI_GRO_CB(skb)->count = num_of_coalesced_segs; |
| } |
| |
| static int bnx2x_alloc_rx_sge(struct bnx2x *bp, |
| struct bnx2x_fastpath *fp, u16 index) |
| { |
| struct page *page = alloc_pages(GFP_ATOMIC, PAGES_PER_SGE_SHIFT); |
| struct sw_rx_page *sw_buf = &fp->rx_page_ring[index]; |
| struct eth_rx_sge *sge = &fp->rx_sge_ring[index]; |
| dma_addr_t mapping; |
| |
| if (unlikely(page == NULL)) { |
| BNX2X_ERR("Can't alloc sge\n"); |
| return -ENOMEM; |
| } |
| |
| mapping = dma_map_page(&bp->pdev->dev, page, 0, |
| SGE_PAGES, DMA_FROM_DEVICE); |
| if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { |
| __free_pages(page, PAGES_PER_SGE_SHIFT); |
| BNX2X_ERR("Can't map sge\n"); |
| return -ENOMEM; |
| } |
| |
| sw_buf->page = page; |
| dma_unmap_addr_set(sw_buf, mapping, mapping); |
| |
| sge->addr_hi = cpu_to_le32(U64_HI(mapping)); |
| sge->addr_lo = cpu_to_le32(U64_LO(mapping)); |
| |
| return 0; |
| } |
| |
| static int bnx2x_fill_frag_skb(struct bnx2x *bp, struct bnx2x_fastpath *fp, |
| struct bnx2x_agg_info *tpa_info, |
| u16 pages, |
| struct sk_buff *skb, |
| struct eth_end_agg_rx_cqe *cqe, |
| u16 cqe_idx) |
| { |
| struct sw_rx_page *rx_pg, old_rx_pg; |
| u32 i, frag_len, frag_size; |
| int err, j, frag_id = 0; |
| u16 len_on_bd = tpa_info->len_on_bd; |
| u16 full_page = 0, gro_size = 0; |
| |
| frag_size = le16_to_cpu(cqe->pkt_len) - len_on_bd; |
| |
| if (fp->mode == TPA_MODE_GRO) { |
| gro_size = tpa_info->gro_size; |
| full_page = tpa_info->full_page; |
| } |
| |
| /* This is needed in order to enable forwarding support */ |
| if (frag_size) |
| bnx2x_set_gro_params(skb, tpa_info->parsing_flags, len_on_bd, |
| le16_to_cpu(cqe->pkt_len), |
| le16_to_cpu(cqe->num_of_coalesced_segs)); |
| |
| #ifdef BNX2X_STOP_ON_ERROR |
| if (pages > min_t(u32, 8, MAX_SKB_FRAGS) * SGE_PAGES) { |
| BNX2X_ERR("SGL length is too long: %d. CQE index is %d\n", |
| pages, cqe_idx); |
| BNX2X_ERR("cqe->pkt_len = %d\n", cqe->pkt_len); |
| bnx2x_panic(); |
| return -EINVAL; |
| } |
| #endif |
| |
| /* Run through the SGL and compose the fragmented skb */ |
| for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) { |
| u16 sge_idx = RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[j])); |
| |
| /* FW gives the indices of the SGE as if the ring is an array |
| (meaning that "next" element will consume 2 indices) */ |
| if (fp->mode == TPA_MODE_GRO) |
| frag_len = min_t(u32, frag_size, (u32)full_page); |
| else /* LRO */ |
| frag_len = min_t(u32, frag_size, (u32)SGE_PAGES); |
| |
| rx_pg = &fp->rx_page_ring[sge_idx]; |
| old_rx_pg = *rx_pg; |
| |
| /* If we fail to allocate a substitute page, we simply stop |
| where we are and drop the whole packet */ |
| err = bnx2x_alloc_rx_sge(bp, fp, sge_idx); |
| if (unlikely(err)) { |
| bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++; |
| return err; |
| } |
| |
| /* Unmap the page as we're going to pass it to the stack */ |
| dma_unmap_page(&bp->pdev->dev, |
| dma_unmap_addr(&old_rx_pg, mapping), |
| SGE_PAGES, DMA_FROM_DEVICE); |
| /* Add one frag and update the appropriate fields in the skb */ |
| if (fp->mode == TPA_MODE_LRO) |
| skb_fill_page_desc(skb, j, old_rx_pg.page, 0, frag_len); |
| else { /* GRO */ |
| int rem; |
| int offset = 0; |
| for (rem = frag_len; rem > 0; rem -= gro_size) { |
| int len = rem > gro_size ? gro_size : rem; |
| skb_fill_page_desc(skb, frag_id++, |
| old_rx_pg.page, offset, len); |
| if (offset) |
| get_page(old_rx_pg.page); |
| offset += len; |
| } |
| } |
| |
| skb->data_len += frag_len; |
| skb->truesize += SGE_PAGES; |
| skb->len += frag_len; |
| |
| frag_size -= frag_len; |
| } |
| |
| return 0; |
| } |
| |
| static void bnx2x_frag_free(const struct bnx2x_fastpath *fp, void *data) |
| { |
| if (fp->rx_frag_size) |
| put_page(virt_to_head_page(data)); |
| else |
| kfree(data); |
| } |
| |
| static void *bnx2x_frag_alloc(const struct bnx2x_fastpath *fp) |
| { |
| if (fp->rx_frag_size) |
| return netdev_alloc_frag(fp->rx_frag_size); |
| |
| return kmalloc(fp->rx_buf_size + NET_SKB_PAD, GFP_ATOMIC); |
| } |
| |
| #ifdef CONFIG_INET |
| static void bnx2x_gro_ip_csum(struct bnx2x *bp, struct sk_buff *skb) |
| { |
| const struct iphdr *iph = ip_hdr(skb); |
| struct tcphdr *th; |
| |
| skb_set_transport_header(skb, sizeof(struct iphdr)); |
| th = tcp_hdr(skb); |
| |
| th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb), |
| iph->saddr, iph->daddr, 0); |
| } |
| |
| static void bnx2x_gro_ipv6_csum(struct bnx2x *bp, struct sk_buff *skb) |
| { |
| struct ipv6hdr *iph = ipv6_hdr(skb); |
| struct tcphdr *th; |
| |
| skb_set_transport_header(skb, sizeof(struct ipv6hdr)); |
| th = tcp_hdr(skb); |
| |
| th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb), |
| &iph->saddr, &iph->daddr, 0); |
| } |
| |
| static void bnx2x_gro_csum(struct bnx2x *bp, struct sk_buff *skb, |
| void (*gro_func)(struct bnx2x*, struct sk_buff*)) |
| { |
| skb_set_network_header(skb, 0); |
| gro_func(bp, skb); |
| tcp_gro_complete(skb); |
| } |
| #endif |
| |
| static void bnx2x_gro_receive(struct bnx2x *bp, struct bnx2x_fastpath *fp, |
| struct sk_buff *skb) |
| { |
| #ifdef CONFIG_INET |
| if (skb_shinfo(skb)->gso_size) { |
| switch (be16_to_cpu(skb->protocol)) { |
| case ETH_P_IP: |
| bnx2x_gro_csum(bp, skb, bnx2x_gro_ip_csum); |
| break; |
| case ETH_P_IPV6: |
| bnx2x_gro_csum(bp, skb, bnx2x_gro_ipv6_csum); |
| break; |
| default: |
| BNX2X_ERR("Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n", |
| be16_to_cpu(skb->protocol)); |
| } |
| } |
| #endif |
| napi_gro_receive(&fp->napi, skb); |
| } |
| |
| static void bnx2x_tpa_stop(struct bnx2x *bp, struct bnx2x_fastpath *fp, |
| struct bnx2x_agg_info *tpa_info, |
| u16 pages, |
| struct eth_end_agg_rx_cqe *cqe, |
| u16 cqe_idx) |
| { |
| struct sw_rx_bd *rx_buf = &tpa_info->first_buf; |
| u8 pad = tpa_info->placement_offset; |
| u16 len = tpa_info->len_on_bd; |
| struct sk_buff *skb = NULL; |
| u8 *new_data, *data = rx_buf->data; |
| u8 old_tpa_state = tpa_info->tpa_state; |
| |
| tpa_info->tpa_state = BNX2X_TPA_STOP; |
| |
| /* If we there was an error during the handling of the TPA_START - |
| * drop this aggregation. |
| */ |
| if (old_tpa_state == BNX2X_TPA_ERROR) |
| goto drop; |
| |
| /* Try to allocate the new data */ |
| new_data = bnx2x_frag_alloc(fp); |
| /* Unmap skb in the pool anyway, as we are going to change |
| pool entry status to BNX2X_TPA_STOP even if new skb allocation |
| fails. */ |
| dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(rx_buf, mapping), |
| fp->rx_buf_size, DMA_FROM_DEVICE); |
| if (likely(new_data)) |
| skb = build_skb(data, fp->rx_frag_size); |
| |
| if (likely(skb)) { |
| #ifdef BNX2X_STOP_ON_ERROR |
| if (pad + len > fp->rx_buf_size) { |
| BNX2X_ERR("skb_put is about to fail... pad %d len %d rx_buf_size %d\n", |
| pad, len, fp->rx_buf_size); |
| bnx2x_panic(); |
| return; |
| } |
| #endif |
| |
| skb_reserve(skb, pad + NET_SKB_PAD); |
| skb_put(skb, len); |
| skb->rxhash = tpa_info->rxhash; |
| skb->l4_rxhash = tpa_info->l4_rxhash; |
| |
| skb->protocol = eth_type_trans(skb, bp->dev); |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| |
| if (!bnx2x_fill_frag_skb(bp, fp, tpa_info, pages, |
| skb, cqe, cqe_idx)) { |
| if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN) |
| __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tpa_info->vlan_tag); |
| bnx2x_gro_receive(bp, fp, skb); |
| } else { |
| DP(NETIF_MSG_RX_STATUS, |
| "Failed to allocate new pages - dropping packet!\n"); |
| dev_kfree_skb_any(skb); |
| } |
| |
| /* put new data in bin */ |
| rx_buf->data = new_data; |
| |
| return; |
| } |
| bnx2x_frag_free(fp, new_data); |
| drop: |
| /* drop the packet and keep the buffer in the bin */ |
| DP(NETIF_MSG_RX_STATUS, |
| "Failed to allocate or map a new skb - dropping packet!\n"); |
| bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed++; |
| } |
| |
| static int bnx2x_alloc_rx_data(struct bnx2x *bp, |
| struct bnx2x_fastpath *fp, u16 index) |
| { |
| u8 *data; |
| struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[index]; |
| struct eth_rx_bd *rx_bd = &fp->rx_desc_ring[index]; |
| dma_addr_t mapping; |
| |
| data = bnx2x_frag_alloc(fp); |
| if (unlikely(data == NULL)) |
| return -ENOMEM; |
| |
| mapping = dma_map_single(&bp->pdev->dev, data + NET_SKB_PAD, |
| fp->rx_buf_size, |
| DMA_FROM_DEVICE); |
| if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { |
| bnx2x_frag_free(fp, data); |
| BNX2X_ERR("Can't map rx data\n"); |
| return -ENOMEM; |
| } |
| |
| rx_buf->data = data; |
| dma_unmap_addr_set(rx_buf, mapping, mapping); |
| |
| rx_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); |
| rx_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); |
| |
| return 0; |
| } |
| |
| static |
| void bnx2x_csum_validate(struct sk_buff *skb, union eth_rx_cqe *cqe, |
| struct bnx2x_fastpath *fp, |
| struct bnx2x_eth_q_stats *qstats) |
| { |
| /* Do nothing if no L4 csum validation was done. |
| * We do not check whether IP csum was validated. For IPv4 we assume |
| * that if the card got as far as validating the L4 csum, it also |
| * validated the IP csum. IPv6 has no IP csum. |
| */ |
| if (cqe->fast_path_cqe.status_flags & |
| ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG) |
| return; |
| |
| /* If L4 validation was done, check if an error was found. */ |
| |
| if (cqe->fast_path_cqe.type_error_flags & |
| (ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG | |
| ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) |
| qstats->hw_csum_err++; |
| else |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| } |
| |
| int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget) |
| { |
| struct bnx2x *bp = fp->bp; |
| u16 bd_cons, bd_prod, bd_prod_fw, comp_ring_cons; |
| u16 sw_comp_cons, sw_comp_prod; |
| int rx_pkt = 0; |
| union eth_rx_cqe *cqe; |
| struct eth_fast_path_rx_cqe *cqe_fp; |
| |
| #ifdef BNX2X_STOP_ON_ERROR |
| if (unlikely(bp->panic)) |
| return 0; |
| #endif |
| |
| bd_cons = fp->rx_bd_cons; |
| bd_prod = fp->rx_bd_prod; |
| bd_prod_fw = bd_prod; |
| sw_comp_cons = fp->rx_comp_cons; |
| sw_comp_prod = fp->rx_comp_prod; |
| |
| comp_ring_cons = RCQ_BD(sw_comp_cons); |
| cqe = &fp->rx_comp_ring[comp_ring_cons]; |
| cqe_fp = &cqe->fast_path_cqe; |
| |
| DP(NETIF_MSG_RX_STATUS, |
| "queue[%d]: sw_comp_cons %u\n", fp->index, sw_comp_cons); |
| |
| while (BNX2X_IS_CQE_COMPLETED(cqe_fp)) { |
| struct sw_rx_bd *rx_buf = NULL; |
| struct sk_buff *skb; |
| u8 cqe_fp_flags; |
| enum eth_rx_cqe_type cqe_fp_type; |
| u16 len, pad, queue; |
| u8 *data; |
| bool l4_rxhash; |
| |
| #ifdef BNX2X_STOP_ON_ERROR |
| if (unlikely(bp->panic)) |
| return 0; |
| #endif |
| |
| bd_prod = RX_BD(bd_prod); |
| bd_cons = RX_BD(bd_cons); |
| |
| cqe_fp_flags = cqe_fp->type_error_flags; |
| cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE; |
| |
| DP(NETIF_MSG_RX_STATUS, |
| "CQE type %x err %x status %x queue %x vlan %x len %u\n", |
| CQE_TYPE(cqe_fp_flags), |
| cqe_fp_flags, cqe_fp->status_flags, |
| le32_to_cpu(cqe_fp->rss_hash_result), |
| le16_to_cpu(cqe_fp->vlan_tag), |
| le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len)); |
| |
| /* is this a slowpath msg? */ |
| if (unlikely(CQE_TYPE_SLOW(cqe_fp_type))) { |
| bnx2x_sp_event(fp, cqe); |
| goto next_cqe; |
| } |
| |
| rx_buf = &fp->rx_buf_ring[bd_cons]; |
| data = rx_buf->data; |
| |
| if (!CQE_TYPE_FAST(cqe_fp_type)) { |
| struct bnx2x_agg_info *tpa_info; |
| u16 frag_size, pages; |
| #ifdef BNX2X_STOP_ON_ERROR |
| /* sanity check */ |
| if (fp->disable_tpa && |
| (CQE_TYPE_START(cqe_fp_type) || |
| CQE_TYPE_STOP(cqe_fp_type))) |
| BNX2X_ERR("START/STOP packet while disable_tpa type %x\n", |
| CQE_TYPE(cqe_fp_type)); |
| #endif |
| |
| if (CQE_TYPE_START(cqe_fp_type)) { |
| u16 queue = cqe_fp->queue_index; |
| DP(NETIF_MSG_RX_STATUS, |
| "calling tpa_start on queue %d\n", |
| queue); |
| |
| bnx2x_tpa_start(fp, queue, |
| bd_cons, bd_prod, |
| cqe_fp); |
| |
| goto next_rx; |
| } |
| queue = cqe->end_agg_cqe.queue_index; |
| tpa_info = &fp->tpa_info[queue]; |
| DP(NETIF_MSG_RX_STATUS, |
| "calling tpa_stop on queue %d\n", |
| queue); |
| |
| frag_size = le16_to_cpu(cqe->end_agg_cqe.pkt_len) - |
| tpa_info->len_on_bd; |
| |
| if (fp->mode == TPA_MODE_GRO) |
| pages = (frag_size + tpa_info->full_page - 1) / |
| tpa_info->full_page; |
| else |
| pages = SGE_PAGE_ALIGN(frag_size) >> |
| SGE_PAGE_SHIFT; |
| |
| bnx2x_tpa_stop(bp, fp, tpa_info, pages, |
| &cqe->end_agg_cqe, comp_ring_cons); |
| #ifdef BNX2X_STOP_ON_ERROR |
| if (bp->panic) |
| return 0; |
| #endif |
| |
| bnx2x_update_sge_prod(fp, pages, &cqe->end_agg_cqe); |
| goto next_cqe; |
| } |
| /* non TPA */ |
| len = le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len); |
| pad = cqe_fp->placement_offset; |
| dma_sync_single_for_cpu(&bp->pdev->dev, |
| dma_unmap_addr(rx_buf, mapping), |
| pad + RX_COPY_THRESH, |
| DMA_FROM_DEVICE); |
| pad += NET_SKB_PAD; |
| prefetch(data + pad); /* speedup eth_type_trans() */ |
| /* is this an error packet? */ |
| if (unlikely(cqe_fp_flags & ETH_RX_ERROR_FALGS)) { |
| DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS, |
| "ERROR flags %x rx packet %u\n", |
| cqe_fp_flags, sw_comp_cons); |
| bnx2x_fp_qstats(bp, fp)->rx_err_discard_pkt++; |
| goto reuse_rx; |
| } |
| |
| /* Since we don't have a jumbo ring |
| * copy small packets if mtu > 1500 |
| */ |
| if ((bp->dev->mtu > ETH_MAX_PACKET_SIZE) && |
| (len <= RX_COPY_THRESH)) { |
| skb = netdev_alloc_skb_ip_align(bp->dev, len); |
| if (skb == NULL) { |
| DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS, |
| "ERROR packet dropped because of alloc failure\n"); |
| bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++; |
| goto reuse_rx; |
| } |
| memcpy(skb->data, data + pad, len); |
| bnx2x_reuse_rx_data(fp, bd_cons, bd_prod); |
| } else { |
| if (likely(bnx2x_alloc_rx_data(bp, fp, bd_prod) == 0)) { |
| dma_unmap_single(&bp->pdev->dev, |
| dma_unmap_addr(rx_buf, mapping), |
| fp->rx_buf_size, |
| DMA_FROM_DEVICE); |
| skb = build_skb(data, fp->rx_frag_size); |
| if (unlikely(!skb)) { |
| bnx2x_frag_free(fp, data); |
| bnx2x_fp_qstats(bp, fp)-> |
| rx_skb_alloc_failed++; |
| goto next_rx; |
| } |
| skb_reserve(skb, pad); |
| } else { |
| DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS, |
| "ERROR packet dropped because of alloc failure\n"); |
| bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++; |
| reuse_rx: |
| bnx2x_reuse_rx_data(fp, bd_cons, bd_prod); |
| goto next_rx; |
| } |
| } |
| |
| skb_put(skb, len); |
| skb->protocol = eth_type_trans(skb, bp->dev); |
| |
| /* Set Toeplitz hash for a none-LRO skb */ |
| skb->rxhash = bnx2x_get_rxhash(bp, cqe_fp, &l4_rxhash); |
| skb->l4_rxhash = l4_rxhash; |
| |
| skb_checksum_none_assert(skb); |
| |
| if (bp->dev->features & NETIF_F_RXCSUM) |
| bnx2x_csum_validate(skb, cqe, fp, |
| bnx2x_fp_qstats(bp, fp)); |
| |
| skb_record_rx_queue(skb, fp->rx_queue); |
| |
| if (le16_to_cpu(cqe_fp->pars_flags.flags) & |
| PARSING_FLAGS_VLAN) |
| __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), |
| le16_to_cpu(cqe_fp->vlan_tag)); |
| |
| skb_mark_ll(skb, &fp->napi); |
| |
| if (bnx2x_fp_ll_polling(fp)) |
| netif_receive_skb(skb); |
| else |
| napi_gro_receive(&fp->napi, skb); |
| next_rx: |
| rx_buf->data = NULL; |
| |
| bd_cons = NEXT_RX_IDX(bd_cons); |
| bd_prod = NEXT_RX_IDX(bd_prod); |
| bd_prod_fw = NEXT_RX_IDX(bd_prod_fw); |
| rx_pkt++; |
| next_cqe: |
| sw_comp_prod = NEXT_RCQ_IDX(sw_comp_prod); |
| sw_comp_cons = NEXT_RCQ_IDX(sw_comp_cons); |
| |
| /* mark CQE as free */ |
| BNX2X_SEED_CQE(cqe_fp); |
| |
| if (rx_pkt == budget) |
| break; |
| |
| comp_ring_cons = RCQ_BD(sw_comp_cons); |
| cqe = &fp->rx_comp_ring[comp_ring_cons]; |
| cqe_fp = &cqe->fast_path_cqe; |
| } /* while */ |
| |
| fp->rx_bd_cons = bd_cons; |
| fp->rx_bd_prod = bd_prod_fw; |
| fp->rx_comp_cons = sw_comp_cons; |
| fp->rx_comp_prod = sw_comp_prod; |
| |
| /* Update producers */ |
| bnx2x_update_rx_prod(bp, fp, bd_prod_fw, sw_comp_prod, |
| fp->rx_sge_prod); |
| |
| fp->rx_pkt += rx_pkt; |
| fp->rx_calls++; |
| |
| return rx_pkt; |
| } |
| |
| static irqreturn_t bnx2x_msix_fp_int(int irq, void *fp_cookie) |
| { |
| struct bnx2x_fastpath *fp = fp_cookie; |
| struct bnx2x *bp = fp->bp; |
| u8 cos; |
| |
| DP(NETIF_MSG_INTR, |
| "got an MSI-X interrupt on IDX:SB [fp %d fw_sd %d igusb %d]\n", |
| fp->index, fp->fw_sb_id, fp->igu_sb_id); |
| |
| bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); |
| |
| #ifdef BNX2X_STOP_ON_ERROR |
| if (unlikely(bp->panic)) |
| return IRQ_HANDLED; |
| #endif |
| |
| /* Handle Rx and Tx according to MSI-X vector */ |
| for_each_cos_in_tx_queue(fp, cos) |
| prefetch(fp->txdata_ptr[cos]->tx_cons_sb); |
| |
| prefetch(&fp->sb_running_index[SM_RX_ID]); |
| napi_schedule(&bnx2x_fp(bp, fp->index, napi)); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* HW Lock for shared dual port PHYs */ |
| void bnx2x_acquire_phy_lock(struct bnx2x *bp) |
| { |
| mutex_lock(&bp->port.phy_mutex); |
| |
| bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_MDIO); |
| } |
| |
| void bnx2x_release_phy_lock(struct bnx2x *bp) |
| { |
| bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_MDIO); |
| |
| mutex_unlock(&bp->port.phy_mutex); |
| } |
| |
| /* calculates MF speed according to current linespeed and MF configuration */ |
| u16 bnx2x_get_mf_speed(struct bnx2x *bp) |
| { |
| u16 line_speed = bp->link_vars.line_speed; |
| if (IS_MF(bp)) { |
| u16 maxCfg = bnx2x_extract_max_cfg(bp, |
| bp->mf_config[BP_VN(bp)]); |
| |
| /* Calculate the current MAX line speed limit for the MF |
| * devices |
| */ |
| if (IS_MF_SI(bp)) |
| line_speed = (line_speed * maxCfg) / 100; |
| else { /* SD mode */ |
| u16 vn_max_rate = maxCfg * 100; |
| |
| if (vn_max_rate < line_speed) |
| line_speed = vn_max_rate; |
| } |
| } |
| |
| return line_speed; |
| } |
| |
| /** |
| * bnx2x_fill_report_data - fill link report data to report |
| * |
| * @bp: driver handle |
| * @data: link state to update |
| * |
| * It uses a none-atomic bit operations because is called under the mutex. |
| */ |
| static void bnx2x_fill_report_data(struct bnx2x *bp, |
| struct bnx2x_link_report_data *data) |
| { |
| u16 line_speed = bnx2x_get_mf_speed(bp); |
| |
| memset(data, 0, sizeof(*data)); |
| |
| /* Fill the report data: effective line speed */ |
| data->line_speed = line_speed; |
| |
| /* Link is down */ |
| if (!bp->link_vars.link_up || (bp->flags & MF_FUNC_DIS)) |
| __set_bit(BNX2X_LINK_REPORT_LINK_DOWN, |
| &data->link_report_flags); |
| |
| /* Full DUPLEX */ |
| if (bp->link_vars.duplex == DUPLEX_FULL) |
| __set_bit(BNX2X_LINK_REPORT_FD, &data->link_report_flags); |
| |
| /* Rx Flow Control is ON */ |
| if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_RX) |
| __set_bit(BNX2X_LINK_REPORT_RX_FC_ON, &data->link_report_flags); |
| |
| /* Tx Flow Control is ON */ |
| if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX) |
| __set_bit(BNX2X_LINK_REPORT_TX_FC_ON, &data->link_report_flags); |
| } |
| |
| /** |
| * bnx2x_link_report - report link status to OS. |
| * |
| * @bp: driver handle |
| * |
| * Calls the __bnx2x_link_report() under the same locking scheme |
| * as a link/PHY state managing code to ensure a consistent link |
| * reporting. |
| */ |
| |
| void bnx2x_link_report(struct bnx2x *bp) |
| { |
| bnx2x_acquire_phy_lock(bp); |
| __bnx2x_link_report(bp); |
| bnx2x_release_phy_lock(bp); |
| } |
| |
| /** |
| * __bnx2x_link_report - report link status to OS. |
| * |
| * @bp: driver handle |
| * |
| * None atomic implementation. |
| * Should be called under the phy_lock. |
| */ |
| void __bnx2x_link_report(struct bnx2x *bp) |
| { |
| struct bnx2x_link_report_data cur_data; |
| |
| /* reread mf_cfg */ |
| if (IS_PF(bp) && !CHIP_IS_E1(bp)) |
| bnx2x_read_mf_cfg(bp); |
| |
| /* Read the current link report info */ |
| bnx2x_fill_report_data(bp, &cur_data); |
| |
| /* Don't report link down or exactly the same link status twice */ |
| if (!memcmp(&cur_data, &bp->last_reported_link, sizeof(cur_data)) || |
| (test_bit(BNX2X_LINK_REPORT_LINK_DOWN, |
| &bp->last_reported_link.link_report_flags) && |
| test_bit(BNX2X_LINK_REPORT_LINK_DOWN, |
| &cur_data.link_report_flags))) |
| return; |
| |
| bp->link_cnt++; |
| |
| /* We are going to report a new link parameters now - |
| * remember the current data for the next time. |
| */ |
| memcpy(&bp->last_reported_link, &cur_data, sizeof(cur_data)); |
| |
| if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN, |
| &cur_data.link_report_flags)) { |
| netif_carrier_off(bp->dev); |
| netdev_err(bp->dev, "NIC Link is Down\n"); |
| return; |
| } else { |
| const char *duplex; |
| const char *flow; |
| |
| netif_carrier_on(bp->dev); |
| |
| if (test_and_clear_bit(BNX2X_LINK_REPORT_FD, |
| &cur_data.link_report_flags)) |
| duplex = "full"; |
| else |
| duplex = "half"; |
| |
| /* Handle the FC at the end so that only these flags would be |
| * possibly set. This way we may easily check if there is no FC |
| * enabled. |
| */ |
| if (cur_data.link_report_flags) { |
| if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON, |
| &cur_data.link_report_flags)) { |
| if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON, |
| &cur_data.link_report_flags)) |
| flow = "ON - receive & transmit"; |
| else |
| flow = "ON - receive"; |
| } else { |
| flow = "ON - transmit"; |
| } |
| } else { |
| flow = "none"; |
| } |
| netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n", |
| cur_data.line_speed, duplex, flow); |
| } |
| } |
| |
| static void bnx2x_set_next_page_sgl(struct bnx2x_fastpath *fp) |
| { |
| int i; |
| |
| for (i = 1; i <= NUM_RX_SGE_PAGES; i++) { |
| struct eth_rx_sge *sge; |
| |
| sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2]; |
| sge->addr_hi = |
| cpu_to_le32(U64_HI(fp->rx_sge_mapping + |
| BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES))); |
| |
| sge->addr_lo = |
| cpu_to_le32(U64_LO(fp->rx_sge_mapping + |
| BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES))); |
| } |
| } |
| |
| static void bnx2x_free_tpa_pool(struct bnx2x *bp, |
| struct bnx2x_fastpath *fp, int last) |
| { |
| int i; |
| |
| for (i = 0; i < last; i++) { |
| struct bnx2x_agg_info *tpa_info = &fp->tpa_info[i]; |
| struct sw_rx_bd *first_buf = &tpa_info->first_buf; |
| u8 *data = first_buf->data; |
| |
| if (data == NULL) { |
| DP(NETIF_MSG_IFDOWN, "tpa bin %d empty on free\n", i); |
| continue; |
| } |
| if (tpa_info->tpa_state == BNX2X_TPA_START) |
| dma_unmap_single(&bp->pdev->dev, |
| dma_unmap_addr(first_buf, mapping), |
| fp->rx_buf_size, DMA_FROM_DEVICE); |
| bnx2x_frag_free(fp, data); |
| first_buf->data = NULL; |
| } |
| } |
| |
| void bnx2x_init_rx_rings_cnic(struct bnx2x *bp) |
| { |
| int j; |
| |
| for_each_rx_queue_cnic(bp, j) { |
| struct bnx2x_fastpath *fp = &bp->fp[j]; |
| |
| fp->rx_bd_cons = 0; |
| |
| /* Activate BD ring */ |
| /* Warning! |
| * this will generate an interrupt (to the TSTORM) |
| * must only be done after chip is initialized |
| */ |
| bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod, |
| fp->rx_sge_prod); |
| } |
| } |
| |
| void bnx2x_init_rx_rings(struct bnx2x *bp) |
| { |
| int func = BP_FUNC(bp); |
| u16 ring_prod; |
| int i, j; |
| |
| /* Allocate TPA resources */ |
| for_each_eth_queue(bp, j) { |
| struct bnx2x_fastpath *fp = &bp->fp[j]; |
| |
| DP(NETIF_MSG_IFUP, |
| "mtu %d rx_buf_size %d\n", bp->dev->mtu, fp->rx_buf_size); |
| |
| if (!fp->disable_tpa) { |
| /* Fill the per-aggregation pool */ |
| for (i = 0; i < MAX_AGG_QS(bp); i++) { |
| struct bnx2x_agg_info *tpa_info = |
| &fp->tpa_info[i]; |
| struct sw_rx_bd *first_buf = |
| &tpa_info->first_buf; |
| |
| first_buf->data = bnx2x_frag_alloc(fp); |
| if (!first_buf->data) { |
| BNX2X_ERR("Failed to allocate TPA skb pool for queue[%d] - disabling TPA on this queue!\n", |
| j); |
| bnx2x_free_tpa_pool(bp, fp, i); |
| fp->disable_tpa = 1; |
| break; |
| } |
| dma_unmap_addr_set(first_buf, mapping, 0); |
| tpa_info->tpa_state = BNX2X_TPA_STOP; |
| } |
| |
| /* "next page" elements initialization */ |
| bnx2x_set_next_page_sgl(fp); |
| |
| /* set SGEs bit mask */ |
| bnx2x_init_sge_ring_bit_mask(fp); |
| |
| /* Allocate SGEs and initialize the ring elements */ |
| for (i = 0, ring_prod = 0; |
| i < MAX_RX_SGE_CNT*NUM_RX_SGE_PAGES; i++) { |
| |
| if (bnx2x_alloc_rx_sge(bp, fp, ring_prod) < 0) { |
| BNX2X_ERR("was only able to allocate %d rx sges\n", |
| i); |
| BNX2X_ERR("disabling TPA for queue[%d]\n", |
| j); |
| /* Cleanup already allocated elements */ |
| bnx2x_free_rx_sge_range(bp, fp, |
| ring_prod); |
| bnx2x_free_tpa_pool(bp, fp, |
| MAX_AGG_QS(bp)); |
| fp->disable_tpa = 1; |
| ring_prod = 0; |
| break; |
| } |
| ring_prod = NEXT_SGE_IDX(ring_prod); |
| } |
| |
| fp->rx_sge_prod = ring_prod; |
| } |
| } |
| |
| for_each_eth_queue(bp, j) { |
| struct bnx2x_fastpath *fp = &bp->fp[j]; |
| |
| fp->rx_bd_cons = 0; |
| |
| /* Activate BD ring */ |
| /* Warning! |
| * this will generate an interrupt (to the TSTORM) |
| * must only be done after chip is initialized |
| */ |
| bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod, |
| fp->rx_sge_prod); |
| |
| if (j != 0) |
| continue; |
| |
| if (CHIP_IS_E1(bp)) { |
| REG_WR(bp, BAR_USTRORM_INTMEM + |
| USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func), |
| U64_LO(fp->rx_comp_mapping)); |
| REG_WR(bp, BAR_USTRORM_INTMEM + |
| USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func) + 4, |
| U64_HI(fp->rx_comp_mapping)); |
| } |
| } |
| } |
| |
| static void bnx2x_free_tx_skbs_queue(struct bnx2x_fastpath *fp) |
| { |
| u8 cos; |
| struct bnx2x *bp = fp->bp; |
| |
| for_each_cos_in_tx_queue(fp, cos) { |
| struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; |
| unsigned pkts_compl = 0, bytes_compl = 0; |
| |
| u16 sw_prod = txdata->tx_pkt_prod; |
| u16 sw_cons = txdata->tx_pkt_cons; |
| |
| while (sw_cons != sw_prod) { |
| bnx2x_free_tx_pkt(bp, txdata, TX_BD(sw_cons), |
| &pkts_compl, &bytes_compl); |
| sw_cons++; |
| } |
| |
| netdev_tx_reset_queue( |
| netdev_get_tx_queue(bp->dev, |
| txdata->txq_index)); |
| } |
| } |
| |
| static void bnx2x_free_tx_skbs_cnic(struct bnx2x *bp) |
| { |
| int i; |
| |
| for_each_tx_queue_cnic(bp, i) { |
| bnx2x_free_tx_skbs_queue(&bp->fp[i]); |
| } |
| } |
| |
| static void bnx2x_free_tx_skbs(struct bnx2x *bp) |
| { |
| int i; |
| |
| for_each_eth_queue(bp, i) { |
| bnx2x_free_tx_skbs_queue(&bp->fp[i]); |
| } |
| } |
| |
| static void bnx2x_free_rx_bds(struct bnx2x_fastpath *fp) |
| { |
| struct bnx2x *bp = fp->bp; |
| int i; |
| |
| /* ring wasn't allocated */ |
| if (fp->rx_buf_ring == NULL) |
| return; |
| |
| for (i = 0; i < NUM_RX_BD; i++) { |
| struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[i]; |
| u8 *data = rx_buf->data; |
| |
| if (data == NULL) |
| continue; |
| dma_unmap_single(&bp->pdev->dev, |
| dma_unmap_addr(rx_buf, mapping), |
| fp->rx_buf_size, DMA_FROM_DEVICE); |
| |
| rx_buf->data = NULL; |
| bnx2x_frag_free(fp, data); |
| } |
| } |
| |
| static void bnx2x_free_rx_skbs_cnic(struct bnx2x *bp) |
| { |
| int j; |
| |
| for_each_rx_queue_cnic(bp, j) { |
| bnx2x_free_rx_bds(&bp->fp[j]); |
| } |
| } |
| |
| static void bnx2x_free_rx_skbs(struct bnx2x *bp) |
| { |
| int j; |
| |
| for_each_eth_queue(bp, j) { |
| struct bnx2x_fastpath *fp = &bp->fp[j]; |
| |
| bnx2x_free_rx_bds(fp); |
| |
| if (!fp->disable_tpa) |
| bnx2x_free_tpa_pool(bp, fp, MAX_AGG_QS(bp)); |
| } |
| } |
| |
| void bnx2x_free_skbs_cnic(struct bnx2x *bp) |
| { |
| bnx2x_free_tx_skbs_cnic(bp); |
| bnx2x_free_rx_skbs_cnic(bp); |
| } |
| |
| void bnx2x_free_skbs(struct bnx2x *bp) |
| { |
| bnx2x_free_tx_skbs(bp); |
| bnx2x_free_rx_skbs(bp); |
| } |
| |
| void bnx2x_update_max_mf_config(struct bnx2x *bp, u32 value) |
| { |
| /* load old values */ |
| u32 mf_cfg = bp->mf_config[BP_VN(bp)]; |
| |
| if (value != bnx2x_extract_max_cfg(bp, mf_cfg)) { |
| /* leave all but MAX value */ |
| mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK; |
| |
| /* set new MAX value */ |
| mf_cfg |= (value << FUNC_MF_CFG_MAX_BW_SHIFT) |
| & FUNC_MF_CFG_MAX_BW_MASK; |
| |
| bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW, mf_cfg); |
| } |
| } |
| |
| /** |
| * bnx2x_free_msix_irqs - free previously requested MSI-X IRQ vectors |
| * |
| * @bp: driver handle |
| * @nvecs: number of vectors to be released |
| */ |
| static void bnx2x_free_msix_irqs(struct bnx2x *bp, int nvecs) |
| { |
| int i, offset = 0; |
| |
| if (nvecs == offset) |
| return; |
| |
| /* VFs don't have a default SB */ |
| if (IS_PF(bp)) { |
| free_irq(bp->msix_table[offset].vector, bp->dev); |
| DP(NETIF_MSG_IFDOWN, "released sp irq (%d)\n", |
| bp->msix_table[offset].vector); |
| offset++; |
| } |
| |
| if (CNIC_SUPPORT(bp)) { |
| if (nvecs == offset) |
| return; |
| offset++; |
| } |
| |
| for_each_eth_queue(bp, i) { |
| if (nvecs == offset) |
| return; |
| DP(NETIF_MSG_IFDOWN, "about to release fp #%d->%d irq\n", |
| i, bp->msix_table[offset].vector); |
| |
| free_irq(bp->msix_table[offset++].vector, &bp->fp[i]); |
| } |
| } |
| |
| void bnx2x_free_irq(struct bnx2x *bp) |
| { |
| if (bp->flags & USING_MSIX_FLAG && |
| !(bp->flags & USING_SINGLE_MSIX_FLAG)) { |
| int nvecs = BNX2X_NUM_ETH_QUEUES(bp) + CNIC_SUPPORT(bp); |
| |
| /* vfs don't have a default status block */ |
| if (IS_PF(bp)) |
| nvecs++; |
| |
| bnx2x_free_msix_irqs(bp, nvecs); |
| } else { |
| free_irq(bp->dev->irq, bp->dev); |
| } |
| } |
| |
| int bnx2x_enable_msix(struct bnx2x *bp) |
| { |
| int msix_vec = 0, i, rc; |
| |
| /* VFs don't have a default status block */ |
| if (IS_PF(bp)) { |
| bp->msix_table[msix_vec].entry = msix_vec; |
| BNX2X_DEV_INFO("msix_table[0].entry = %d (slowpath)\n", |
| bp->msix_table[0].entry); |
| msix_vec++; |
| } |
| |
| /* Cnic requires an msix vector for itself */ |
| if (CNIC_SUPPORT(bp)) { |
| bp->msix_table[msix_vec].entry = msix_vec; |
| BNX2X_DEV_INFO("msix_table[%d].entry = %d (CNIC)\n", |
| msix_vec, bp->msix_table[msix_vec].entry); |
| msix_vec++; |
| } |
| |
| /* We need separate vectors for ETH queues only (not FCoE) */ |
| for_each_eth_queue(bp, i) { |
| bp->msix_table[msix_vec].entry = msix_vec; |
| BNX2X_DEV_INFO("msix_table[%d].entry = %d (fastpath #%u)\n", |
| msix_vec, msix_vec, i); |
| msix_vec++; |
| } |
| |
| DP(BNX2X_MSG_SP, "about to request enable msix with %d vectors\n", |
| msix_vec); |
| |
| rc = pci_enable_msix(bp->pdev, &bp->msix_table[0], msix_vec); |
| |
| /* |
| * reconfigure number of tx/rx queues according to available |
| * MSI-X vectors |
| */ |
| if (rc >= BNX2X_MIN_MSIX_VEC_CNT(bp)) { |
| /* how less vectors we will have? */ |
| int diff = msix_vec - rc; |
| |
| BNX2X_DEV_INFO("Trying to use less MSI-X vectors: %d\n", rc); |
| |
| rc = pci_enable_msix(bp->pdev, &bp->msix_table[0], rc); |
| |
| if (rc) { |
| BNX2X_DEV_INFO("MSI-X is not attainable rc %d\n", rc); |
| goto no_msix; |
| } |
| /* |
| * decrease number of queues by number of unallocated entries |
| */ |
| bp->num_ethernet_queues -= diff; |
| bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; |
| |
| BNX2X_DEV_INFO("New queue configuration set: %d\n", |
| bp->num_queues); |
| } else if (rc > 0) { |
| /* Get by with single vector */ |
| rc = pci_enable_msix(bp->pdev, &bp->msix_table[0], 1); |
| if (rc) { |
| BNX2X_DEV_INFO("Single MSI-X is not attainable rc %d\n", |
| rc); |
| goto no_msix; |
| } |
| |
| BNX2X_DEV_INFO("Using single MSI-X vector\n"); |
| bp->flags |= USING_SINGLE_MSIX_FLAG; |
| |
| BNX2X_DEV_INFO("set number of queues to 1\n"); |
| bp->num_ethernet_queues = 1; |
| bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; |
| } else if (rc < 0) { |
| BNX2X_DEV_INFO("MSI-X is not attainable rc %d\n", rc); |
| goto no_msix; |
| } |
| |
| bp->flags |= USING_MSIX_FLAG; |
| |
| return 0; |
| |
| no_msix: |
| /* fall to INTx if not enough memory */ |
| if (rc == -ENOMEM) |
| bp->flags |= DISABLE_MSI_FLAG; |
| |
| return rc; |
| } |
| |
| static int bnx2x_req_msix_irqs(struct bnx2x *bp) |
| { |
| int i, rc, offset = 0; |
| |
| /* no default status block for vf */ |
| if (IS_PF(bp)) { |
| rc = request_irq(bp->msix_table[offset++].vector, |
| bnx2x_msix_sp_int, 0, |
| bp->dev->name, bp->dev); |
| if (rc) { |
| BNX2X_ERR("request sp irq failed\n"); |
| return -EBUSY; |
| } |
| } |
| |
| if (CNIC_SUPPORT(bp)) |
| offset++; |
| |
| for_each_eth_queue(bp, i) { |
| struct bnx2x_fastpath *fp = &bp->fp[i]; |
| snprintf(fp->name, sizeof(fp->name), "%s-fp-%d", |
| bp->dev->name, i); |
| |
| rc = request_irq(bp->msix_table[offset].vector, |
| bnx2x_msix_fp_int, 0, fp->name, fp); |
| if (rc) { |
| BNX2X_ERR("request fp #%d irq (%d) failed rc %d\n", i, |
| bp->msix_table[offset].vector, rc); |
| bnx2x_free_msix_irqs(bp, offset); |
| return -EBUSY; |
| } |
| |
| offset++; |
| } |
| |
| i = BNX2X_NUM_ETH_QUEUES(bp); |
| if (IS_PF(bp)) { |
| offset = 1 + CNIC_SUPPORT(bp); |
| netdev_info(bp->dev, |
| "using MSI-X IRQs: sp %d fp[%d] %d ... fp[%d] %d\n", |
| bp->msix_table[0].vector, |
| 0, bp->msix_table[offset].vector, |
| i - 1, bp->msix_table[offset + i - 1].vector); |
| } else { |
| offset = CNIC_SUPPORT(bp); |
| netdev_info(bp->dev, |
| "using MSI-X IRQs: fp[%d] %d ... fp[%d] %d\n", |
| 0, bp->msix_table[offset].vector, |
| i - 1, bp->msix_table[offset + i - 1].vector); |
| } |
| return 0; |
| } |
| |
| int bnx2x_enable_msi(struct bnx2x *bp) |
| { |
| int rc; |
| |
| rc = pci_enable_msi(bp->pdev); |
| if (rc) { |
| BNX2X_DEV_INFO("MSI is not attainable\n"); |
| return -1; |
| } |
| bp->flags |= USING_MSI_FLAG; |
| |
| return 0; |
| } |
| |
| static int bnx2x_req_irq(struct bnx2x *bp) |
| { |
| unsigned long flags; |
| unsigned int irq; |
| |
| if (bp->flags & (USING_MSI_FLAG | USING_MSIX_FLAG)) |
| flags = 0; |
| else |
| flags = IRQF_SHARED; |
| |
| if (bp->flags & USING_MSIX_FLAG) |
| irq = bp->msix_table[0].vector; |
| else |
| irq = bp->pdev->irq; |
| |
| return request_irq(irq, bnx2x_interrupt, flags, bp->dev->name, bp->dev); |
| } |
| |
| int bnx2x_setup_irqs(struct bnx2x *bp) |
| { |
| int rc = 0; |
| if (bp->flags & USING_MSIX_FLAG && |
| !(bp->flags & USING_SINGLE_MSIX_FLAG)) { |
| rc = bnx2x_req_msix_irqs(bp); |
| if (rc) |
| return rc; |
| } else { |
| rc = bnx2x_req_irq(bp); |
| if (rc) { |
| BNX2X_ERR("IRQ request failed rc %d, aborting\n", rc); |
| return rc; |
| } |
| if (bp->flags & USING_MSI_FLAG) { |
| bp->dev->irq = bp->pdev->irq; |
| netdev_info(bp->dev, "using MSI IRQ %d\n", |
| bp->dev->irq); |
| } |
| if (bp->flags & USING_MSIX_FLAG) { |
| bp->dev->irq = bp->msix_table[0].vector; |
| netdev_info(bp->dev, "using MSIX IRQ %d\n", |
| bp->dev->irq); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void bnx2x_napi_enable_cnic(struct bnx2x *bp) |
| { |
| int i; |
| |
| for_each_rx_queue_cnic(bp, i) { |
| bnx2x_fp_init_lock(&bp->fp[i]); |
| napi_enable(&bnx2x_fp(bp, i, napi)); |
| } |
| } |
| |
| static void bnx2x_napi_enable(struct bnx2x *bp) |
| { |
| int i; |
| |
| for_each_eth_queue(bp, i) { |
| bnx2x_fp_init_lock(&bp->fp[i]); |
| napi_enable(&bnx2x_fp(bp, i, napi)); |
| } |
| } |
| |
| static void bnx2x_napi_disable_cnic(struct bnx2x *bp) |
| { |
| int i; |
| |
| local_bh_disable(); |
| for_each_rx_queue_cnic(bp, i) { |
| napi_disable(&bnx2x_fp(bp, i, napi)); |
| while (!bnx2x_fp_lock_napi(&bp->fp[i])) |
| mdelay(1); |
| } |
| local_bh_enable(); |
| } |
| |
| static void bnx2x_napi_disable(struct bnx2x *bp) |
| { |
| int i; |
| |
| local_bh_disable(); |
| for_each_eth_queue(bp, i) { |
| napi_disable(&bnx2x_fp(bp, i, napi)); |
| while (!bnx2x_fp_lock_napi(&bp->fp[i])) |
| mdelay(1); |
| } |
| local_bh_enable(); |
| } |
| |
| void bnx2x_netif_start(struct bnx2x *bp) |
| { |
| if (netif_running(bp->dev)) { |
| bnx2x_napi_enable(bp); |
| if (CNIC_LOADED(bp)) |
| bnx2x_napi_enable_cnic(bp); |
| bnx2x_int_enable(bp); |
| if (bp->state == BNX2X_STATE_OPEN) |
| netif_tx_wake_all_queues(bp->dev); |
| } |
| } |
| |
| void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw) |
| { |
| bnx2x_int_disable_sync(bp, disable_hw); |
| bnx2x_napi_disable(bp); |
| if (CNIC_LOADED(bp)) |
| bnx2x_napi_disable_cnic(bp); |
| } |
| |
| u16 bnx2x_select_queue(struct net_device *dev, struct sk_buff *skb) |
| { |
| struct bnx2x *bp = netdev_priv(dev); |
| |
| if (CNIC_LOADED(bp) && !NO_FCOE(bp)) { |
| struct ethhdr *hdr = (struct ethhdr *)skb->data; |
| u16 ether_type = ntohs(hdr->h_proto); |
| |
| /* Skip VLAN tag if present */ |
| if (ether_type == ETH_P_8021Q) { |
| struct vlan_ethhdr *vhdr = |
| (struct vlan_ethhdr *)skb->data; |
| |
| ether_type = ntohs(vhdr->h_vlan_encapsulated_proto); |
| } |
| |
| /* If ethertype is FCoE or FIP - use FCoE ring */ |
| if ((ether_type == ETH_P_FCOE) || (ether_type == ETH_P_FIP)) |
| return bnx2x_fcoe_tx(bp, txq_index); |
| } |
| |
| /* select a non-FCoE queue */ |
| return __netdev_pick_tx(dev, skb) % BNX2X_NUM_ETH_QUEUES(bp); |
| } |
| |
| void bnx2x_set_num_queues(struct bnx2x *bp) |
| { |
| /* RSS queues */ |
| bp->num_ethernet_queues = bnx2x_calc_num_queues(bp); |
| |
| /* override in STORAGE SD modes */ |
| if (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp)) |
| bp->num_ethernet_queues = 1; |
| |
| /* Add special queues */ |
| bp->num_cnic_queues = CNIC_SUPPORT(bp); /* For FCOE */ |
| bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; |
| |
| BNX2X_DEV_INFO("set number of queues to %d\n", bp->num_queues); |
| } |
| |
| /** |
| * bnx2x_set_real_num_queues - configure netdev->real_num_[tx,rx]_queues |
| * |
| * @bp: Driver handle |
| * |
| * We currently support for at most 16 Tx queues for each CoS thus we will |
| * allocate a multiple of 16 for ETH L2 rings according to the value of the |
| * bp->max_cos. |
| * |
| * If there is an FCoE L2 queue the appropriate Tx queue will have the next |
| * index after all ETH L2 indices. |
| * |
| * If the actual number of Tx queues (for each CoS) is less than 16 then there |
| * will be the holes at the end of each group of 16 ETh L2 indices (0..15, |
| * 16..31,...) with indices that are not coupled with any real Tx queue. |
| * |
| * The proper configuration of skb->queue_mapping is handled by |
| * bnx2x_select_queue() and __skb_tx_hash(). |
| * |
| * bnx2x_setup_tc() takes care of the proper TC mappings so that __skb_tx_hash() |
| * will return a proper Tx index if TC is enabled (netdev->num_tc > 0). |
| */ |
| static int bnx2x_set_real_num_queues(struct bnx2x *bp, int include_cnic) |
| { |
| int rc, tx, rx; |
| |
| tx = BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos; |
| rx = BNX2X_NUM_ETH_QUEUES(bp); |
| |
| /* account for fcoe queue */ |
| if (include_cnic && !NO_FCOE(bp)) { |
| rx++; |
| tx++; |
| } |
| |
| rc = netif_set_real_num_tx_queues(bp->dev, tx); |
| if (rc) { |
| BNX2X_ERR("Failed to set real number of Tx queues: %d\n", rc); |
| return rc; |
| } |
| rc = netif_set_real_num_rx_queues(bp->dev, rx); |
| if (rc) { |
| BNX2X_ERR("Failed to set real number of Rx queues: %d\n", rc); |
| return rc; |
| } |
| |
| DP(NETIF_MSG_IFUP, "Setting real num queues to (tx, rx) (%d, %d)\n", |
| tx, rx); |
| |
| return rc; |
| } |
| |
| static void bnx2x_set_rx_buf_size(struct bnx2x *bp) |
| { |
| int i; |
| |
| for_each_queue(bp, i) { |
| struct bnx2x_fastpath *fp = &bp->fp[i]; |
| u32 mtu; |
| |
| /* Always use a mini-jumbo MTU for the FCoE L2 ring */ |
| if (IS_FCOE_IDX(i)) |
| /* |
| * Although there are no IP frames expected to arrive to |
| * this ring we still want to add an |
| * IP_HEADER_ALIGNMENT_PADDING to prevent a buffer |
| * overrun attack. |
| */ |
| mtu = BNX2X_FCOE_MINI_JUMBO_MTU; |
| else |
| mtu = bp->dev->mtu; |
| fp->rx_buf_size = BNX2X_FW_RX_ALIGN_START + |
| IP_HEADER_ALIGNMENT_PADDING + |
| ETH_OVREHEAD + |
| mtu + |
| BNX2X_FW_RX_ALIGN_END; |
| /* Note : rx_buf_size doesn't take into account NET_SKB_PAD */ |
| if (fp->rx_buf_size + NET_SKB_PAD <= PAGE_SIZE) |
| fp->rx_frag_size = fp->rx_buf_size + NET_SKB_PAD; |
| else |
| fp->rx_frag_size = 0; |
| } |
| } |
| |
| static int bnx2x_init_rss_pf(struct bnx2x *bp) |
| { |
| int i; |
| u8 num_eth_queues = BNX2X_NUM_ETH_QUEUES(bp); |
| |
| /* Prepare the initial contents for the indirection table if RSS is |
| * enabled |
| */ |
| for (i = 0; i < sizeof(bp->rss_conf_obj.ind_table); i++) |
| bp->rss_conf_obj.ind_table[i] = |
| bp->fp->cl_id + |
| ethtool_rxfh_indir_default(i, num_eth_queues); |
| |
| /* |
| * For 57710 and 57711 SEARCHER configuration (rss_keys) is |
| * per-port, so if explicit configuration is needed , do it only |
| * for a PMF. |
| * |
| * For 57712 and newer on the other hand it's a per-function |
| * configuration. |
| */ |
| return bnx2x_config_rss_eth(bp, bp->port.pmf || !CHIP_IS_E1x(bp)); |
| } |
| |
| int bnx2x_config_rss_pf(struct bnx2x *bp, struct bnx2x_rss_config_obj *rss_obj, |
| bool config_hash) |
| { |
| struct bnx2x_config_rss_params params = {NULL}; |
| |
| /* Although RSS is meaningless when there is a single HW queue we |
| * still need it enabled in order to have HW Rx hash generated. |
| * |
| * if (!is_eth_multi(bp)) |
| * bp->multi_mode = ETH_RSS_MODE_DISABLED; |
| */ |
| |
| params.rss_obj = rss_obj; |
| |
| __set_bit(RAMROD_COMP_WAIT, ¶ms.ramrod_flags); |
| |
| __set_bit(BNX2X_RSS_MODE_REGULAR, ¶ms.rss_flags); |
| |
| /* RSS configuration */ |
| __set_bit(BNX2X_RSS_IPV4, ¶ms.rss_flags); |
| __set_bit(BNX2X_RSS_IPV4_TCP, ¶ms.rss_flags); |
| __set_bit(BNX2X_RSS_IPV6, ¶ms.rss_flags); |
| __set_bit(BNX2X_RSS_IPV6_TCP, ¶ms.rss_flags); |
| if (rss_obj->udp_rss_v4) |
| __set_bit(BNX2X_RSS_IPV4_UDP, ¶ms.rss_flags); |
| if (rss_obj->udp_rss_v6) |
| __set_bit(BNX2X_RSS_IPV6_UDP, ¶ms.rss_flags); |
| |
| /* Hash bits */ |
| params.rss_result_mask = MULTI_MASK; |
| |
| memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table)); |
| |
| if (config_hash) { |
| /* RSS keys */ |
| prandom_bytes(params.rss_key, sizeof(params.rss_key)); |
| __set_bit(BNX2X_RSS_SET_SRCH, ¶ms.rss_flags); |
| } |
| |
| return bnx2x_config_rss(bp, ¶ms); |
| } |
| |
| static int bnx2x_init_hw(struct bnx2x *bp, u32 load_code) |
| { |
| struct bnx2x_func_state_params func_params = {NULL}; |
| |
| /* Prepare parameters for function state transitions */ |
| __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); |
| |
| func_params.f_obj = &bp->func_obj; |
| func_params.cmd = BNX2X_F_CMD_HW_INIT; |
| |
| func_params.params.hw_init.load_phase = load_code; |
| |
| return bnx2x_func_state_change(bp, &func_params); |
| } |
| |
| /* |
| * Cleans the object that have internal lists without sending |
| * ramrods. Should be run when interrupts are disabled. |
| */ |
| void bnx2x_squeeze_objects(struct bnx2x *bp) |
| { |
| int rc; |
| unsigned long ramrod_flags = 0, vlan_mac_flags = 0; |
| struct bnx2x_mcast_ramrod_params rparam = {NULL}; |
| struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj; |
| |
| /***************** Cleanup MACs' object first *************************/ |
| |
| /* Wait for completion of requested */ |
| __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); |
| /* Perform a dry cleanup */ |
| __set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags); |
| |
| /* Clean ETH primary MAC */ |
| __set_bit(BNX2X_ETH_MAC, &vlan_mac_flags); |
| rc = mac_obj->delete_all(bp, &bp->sp_objs->mac_obj, &vlan_mac_flags, |
| &ramrod_flags); |
| if (rc != 0) |
| BNX2X_ERR("Failed to clean ETH MACs: %d\n", rc); |
| |
| /* Cleanup UC list */ |
| vlan_mac_flags = 0; |
| __set_bit(BNX2X_UC_LIST_MAC, &vlan_mac_flags); |
| rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, |
| &ramrod_flags); |
| if (rc != 0) |
| BNX2X_ERR("Failed to clean UC list MACs: %d\n", rc); |
| |
| /***************** Now clean mcast object *****************************/ |
| rparam.mcast_obj = &bp->mcast_obj; |
| __set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags); |
| |
| /* Add a DEL command... */ |
| rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL); |
| if (rc < 0) |
| BNX2X_ERR("Failed to add a new DEL command to a multi-cast object: %d\n", |
| rc); |
| |
| /* ...and wait until all pending commands are cleared */ |
| rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT); |
| while (rc != 0) { |
| if (rc < 0) { |
| BNX2X_ERR("Failed to clean multi-cast object: %d\n", |
| rc); |
| return; |
| } |
| |
| rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT); |
| } |
| } |
| |
| #ifndef BNX2X_STOP_ON_ERROR |
| #define LOAD_ERROR_EXIT(bp, label) \ |
| do { \ |
| (bp)->state = BNX2X_STATE_ERROR; \ |
| goto label; \ |
| } while (0) |
| |
| #define LOAD_ERROR_EXIT_CNIC(bp, label) \ |
| do { \ |
| bp->cnic_loaded = false; \ |
| goto label; \ |
| } while (0) |
| #else /*BNX2X_STOP_ON_ERROR*/ |
| #define LOAD_ERROR_EXIT(bp, label) \ |
| do { \ |
| (bp)->state = BNX2X_STATE_ERROR; \ |
| (bp)->panic = 1; \ |
| return -EBUSY; \ |
| } while (0) |
| #define LOAD_ERROR_EXIT_CNIC(bp, label) \ |
| do { \ |
| bp->cnic_loaded = false; \ |
| (bp)->panic = 1; \ |
| return -EBUSY; \ |
| } while (0) |
| #endif /*BNX2X_STOP_ON_ERROR*/ |
| |
| static void bnx2x_free_fw_stats_mem(struct bnx2x *bp) |
| { |
| BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping, |
| bp->fw_stats_data_sz + bp->fw_stats_req_sz); |
| return; |
| } |
| |
| static int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp) |
| { |
| int num_groups, vf_headroom = 0; |
| int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1; |
| |
| /* number of queues for statistics is number of eth queues + FCoE */ |
| u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats; |
| |
| /* Total number of FW statistics requests = |
| * 1 for port stats + 1 for PF stats + potential 2 for FCoE (fcoe proper |
| * and fcoe l2 queue) stats + num of queues (which includes another 1 |
| * for fcoe l2 queue if applicable) |
| */ |
| bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats; |
| |
| /* vf stats appear in the request list, but their data is allocated by |
| * the VFs themselves. We don't include them in the bp->fw_stats_num as |
| * it is used to determine where to place the vf stats queries in the |
| * request struct |
| */ |
| if (IS_SRIOV(bp)) |
| vf_headroom = bnx2x_vf_headroom(bp); |
| |
| /* Request is built from stats_query_header and an array of |
| * stats_query_cmd_group each of which contains |
| * STATS_QUERY_CMD_COUNT rules. The real number or requests is |
| * configured in the stats_query_header. |
| */ |
| num_groups = |
| (((bp->fw_stats_num + vf_headroom) / STATS_QUERY_CMD_COUNT) + |
| (((bp->fw_stats_num + vf_headroom) % STATS_QUERY_CMD_COUNT) ? |
| 1 : 0)); |
| |
| DP(BNX2X_MSG_SP, "stats fw_stats_num %d, vf headroom %d, num_groups %d\n", |
| bp->fw_stats_num, vf_headroom, num_groups); |
| bp->fw_stats_req_sz = sizeof(struct stats_query_header) + |
| num_groups * sizeof(struct stats_query_cmd_group); |
| |
| /* Data for statistics requests + stats_counter |
| * stats_counter holds per-STORM counters that are incremented |
| * when STORM has finished with the current request. |
| * memory for FCoE offloaded statistics are counted anyway, |
| * even if they will not be sent. |
| * VF stats are not accounted for here as the data of VF stats is stored |
| * in memory allocated by the VF, not here. |
| */ |
| bp->fw_stats_data_sz = sizeof(struct per_port_stats) + |
| sizeof(struct per_pf_stats) + |
| sizeof(struct fcoe_statistics_params) + |
| sizeof(struct per_queue_stats) * num_queue_stats + |
| sizeof(struct stats_counter); |
| |
| BNX2X_PCI_ALLOC(bp->fw_stats, &bp->fw_stats_mapping, |
| bp->fw_stats_data_sz + bp->fw_stats_req_sz); |
| |
| /* Set shortcuts */ |
| bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats; |
| bp->fw_stats_req_mapping = bp->fw_stats_mapping; |
| bp->fw_stats_data = (struct bnx2x_fw_stats_data *) |
| ((u8 *)bp->fw_stats + bp->fw_stats_req_sz); |
| bp->fw_stats_data_mapping = bp->fw_stats_mapping + |
| bp->fw_stats_req_sz; |
| |
| DP(BNX2X_MSG_SP, "statistics request base address set to %x %x\n", |
| U64_HI(bp->fw_stats_req_mapping), |
| U64_LO(bp->fw_stats_req_mapping)); |
| DP(BNX2X_MSG_SP, "statistics data base address set to %x %x\n", |
| U64_HI(bp->fw_stats_data_mapping), |
| U64_LO(bp->fw_stats_data_mapping)); |
| return 0; |
| |
| alloc_mem_err: |
| bnx2x_free_fw_stats_mem(bp); |
| BNX2X_ERR("Can't allocate FW stats memory\n"); |
| return -ENOMEM; |
| } |
| |
| /* send load request to mcp and analyze response */ |
| static int bnx2x_nic_load_request(struct bnx2x *bp, u32 *load_code) |
| { |
| u32 param; |
| |
| /* init fw_seq */ |
| bp->fw_seq = |
| (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) & |
| DRV_MSG_SEQ_NUMBER_MASK); |
| BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq); |
| |
| /* Get current FW pulse sequence */ |
| bp->fw_drv_pulse_wr_seq = |
| (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb) & |
| DRV_PULSE_SEQ_MASK); |
| BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq); |
| |
| param = DRV_MSG_CODE_LOAD_REQ_WITH_LFA; |
| |
| if (IS_MF_SD(bp) && bnx2x_port_after_undi(bp)) |
| param |= DRV_MSG_CODE_LOAD_REQ_FORCE_LFA; |
| |
| /* load request */ |
| (*load_code) = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, param); |
| |
| /* if mcp fails to respond we must abort */ |
| if (!(*load_code)) { |
| BNX2X_ERR("MCP response failure, aborting\n"); |
| return -EBUSY; |
| } |
| |
| /* If mcp refused (e.g. other port is in diagnostic mode) we |
| * must abort |
| */ |
| if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) { |
| BNX2X_ERR("MCP refused load request, aborting\n"); |
| return -EBUSY; |
| } |
| return 0; |
| } |
| |
| /* check whether another PF has already loaded FW to chip. In |
| * virtualized environments a pf from another VM may have already |
| * initialized the device including loading FW |
| */ |
| int bnx2x_nic_load_analyze_req(struct bnx2x *bp, u32 load_code) |
| { |
| /* is another pf loaded on this engine? */ |
| if (load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP && |
| load_code != FW_MSG_CODE_DRV_LOAD_COMMON) { |
| /* build my FW version dword */ |
| u32 my_fw = (BCM_5710_FW_MAJOR_VERSION) + |
| (BCM_5710_FW_MINOR_VERSION << 8) + |
| (BCM_5710_FW_REVISION_VERSION << 16) + |
| (BCM_5710_FW_ENGINEERING_VERSION << 24); |
| |
| /* read loaded FW from chip */ |
| u32 loaded_fw = REG_RD(bp, XSEM_REG_PRAM); |
| |
| DP(BNX2X_MSG_SP, "loaded fw %x, my fw %x\n", |
| loaded_fw, my_fw); |
| |
| /* abort nic load if version mismatch */ |
| if (my_fw != loaded_fw) { |
| BNX2X_ERR("bnx2x with FW %x was already loaded which mismatches my %x FW. Aborting\n", |
| loaded_fw, my_fw); |
| return -EBUSY; |
| } |
| } |
| return 0; |
| } |
| |
| /* returns the "mcp load_code" according to global load_count array */ |
| static int bnx2x_nic_load_no_mcp(struct bnx2x *bp, int port) |
| { |
| int path = BP_PATH(bp); |
| |
| DP(NETIF_MSG_IFUP, "NO MCP - load counts[%d] %d, %d, %d\n", |
| path, load_count[path][0], load_count[path][1], |
| load_count[path][2]); |
| load_count[path][0]++; |
| load_count[path][1 + port]++; |
| DP(NETIF_MSG_IFUP, "NO MCP - new load counts[%d] %d, %d, %d\n", |
| path, load_count[path][0], load_count[path][1], |
| load_count[path][2]); |
| if (load_count[path][0] == 1) |
| return FW_MSG_CODE_DRV_LOAD_COMMON; |
| else if (load_count[path][1 + port] == 1) |
| return FW_MSG_CODE_DRV_LOAD_PORT; |
| else |
| return FW_MSG_CODE_DRV_LOAD_FUNCTION; |
| } |
| |
| /* mark PMF if applicable */ |
| static void bnx2x_nic_load_pmf(struct bnx2x *bp, u32 load_code) |
| { |
| if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || |
| (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) || |
| (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) { |
| bp->port.pmf = 1; |
| /* We need the barrier to ensure the ordering between the |
| * writing to bp->port.pmf here and reading it from the |
| * bnx2x_periodic_task(). |
| */ |
| smp_mb(); |
| } else { |
| bp->port.pmf = 0; |
| } |
| |
| DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf); |
| } |
| |
| static void bnx2x_nic_load_afex_dcc(struct bnx2x *bp, int load_code) |
| { |
| if (((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || |
| (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP)) && |
| (bp->common.shmem2_base)) { |
| if (SHMEM2_HAS(bp, dcc_support)) |
| SHMEM2_WR(bp, dcc_support, |
| (SHMEM_DCC_SUPPORT_DISABLE_ENABLE_PF_TLV | |
| SHMEM_DCC_SUPPORT_BANDWIDTH_ALLOCATION_TLV)); |
| if (SHMEM2_HAS(bp, afex_driver_support)) |
| SHMEM2_WR(bp, afex_driver_support, |
| SHMEM_AFEX_SUPPORTED_VERSION_ONE); |
| } |
| |
| /* Set AFEX default VLAN tag to an invalid value */ |
| bp->afex_def_vlan_tag = -1; |
| } |
| |
| /** |
| * bnx2x_bz_fp - zero content of the fastpath structure. |
| * |
| * @bp: driver handle |
| * @index: fastpath index to be zeroed |
| * |
| * Makes sure the contents of the bp->fp[index].napi is kept |
| * intact. |
| */ |
| static void bnx2x_bz_fp(struct bnx2x *bp, int index) |
| { |
| struct bnx2x_fastpath *fp = &bp->fp[index]; |
| int cos; |
| struct napi_struct orig_napi = fp->napi; |
| struct bnx2x_agg_info *orig_tpa_info = fp->tpa_info; |
| |
| /* bzero bnx2x_fastpath contents */ |
| if (fp->tpa_info) |
| memset(fp->tpa_info, 0, ETH_MAX_AGGREGATION_QUEUES_E1H_E2 * |
| sizeof(struct bnx2x_agg_info)); |
| memset(fp, 0, sizeof(*fp)); |
| |
| /* Restore the NAPI object as it has been already initialized */ |
| fp->napi = orig_napi; |
| fp->tpa_info = orig_tpa_info; |
| fp->bp = bp; |
| fp->index = index; |
| if (IS_ETH_FP(fp)) |
| fp->max_cos = bp->max_cos; |
| else |
| /* Special queues support only one CoS */ |
| fp->max_cos = 1; |
| |
| /* Init txdata pointers */ |
| if (IS_FCOE_FP(fp)) |
| fp->txdata_ptr[0] = &bp->bnx2x_txq[FCOE_TXQ_IDX(bp)]; |
| if (IS_ETH_FP(fp)) |
| for_each_cos_in_tx_queue(fp, cos) |
| fp->txdata_ptr[cos] = &bp->bnx2x_txq[cos * |
| BNX2X_NUM_ETH_QUEUES(bp) + index]; |
| |
| /* set the tpa flag for each queue. The tpa flag determines the queue |
| * minimal size so it must be set prior to queue memory allocation |
| */ |
| fp->disable_tpa = !(bp->flags & TPA_ENABLE_FLAG || |
| (bp->flags & GRO_ENABLE_FLAG && |
| bnx2x_mtu_allows_gro(bp->dev->mtu))); |
| if (bp->flags & TPA_ENABLE_FLAG) |
| fp->mode = TPA_MODE_LRO; |
| else if (bp->flags & GRO_ENABLE_FLAG) |
| fp->mode = TPA_MODE_GRO; |
| |
| /* We don't want TPA on an FCoE L2 ring */ |
| if (IS_FCOE_FP(fp)) |
| fp->disable_tpa = 1; |
| } |
| |
| int bnx2x_load_cnic(struct bnx2x *bp) |
| { |
| int i, rc, port = BP_PORT(bp); |
| |
| DP(NETIF_MSG_IFUP, "Starting CNIC-related load\n"); |
| |
| mutex_init(&bp->cnic_mutex); |
| |
| if (IS_PF(bp)) { |
| rc = bnx2x_alloc_mem_cnic(bp); |
| if (rc) { |
| BNX2X_ERR("Unable to allocate bp memory for cnic\n"); |
| LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0); |
| } |
| } |
| |
| rc = bnx2x_alloc_fp_mem_cnic(bp); |
| if (rc) { |
| BNX2X_ERR("Unable to allocate memory for cnic fps\n"); |
| LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0); |
| } |
| |
| /* Update the number of queues with the cnic queues */ |
| rc = bnx2x_set_real_num_queues(bp, 1); |
| if (rc) { |
| BNX2X_ERR("Unable to set real_num_queues including cnic\n"); |
| LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0); |
| } |
| |
| /* Add all CNIC NAPI objects */ |
| bnx2x_add_all_napi_cnic(bp); |
| DP(NETIF_MSG_IFUP, "cnic napi added\n"); |
| bnx2x_napi_enable_cnic(bp); |
| |
| rc = bnx2x_init_hw_func_cnic(bp); |
| if (rc) |
| LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic1); |
| |
| bnx2x_nic_init_cnic(bp); |
| |
| if (IS_PF(bp)) { |
| /* Enable Timer scan */ |
| REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 1); |
| |
| /* setup cnic queues */ |
| for_each_cnic_queue(bp, i) { |
| rc = bnx2x_setup_queue(bp, &bp->fp[i], 0); |
| if (rc) { |
| BNX2X_ERR("Queue setup failed\n"); |
| LOAD_ERROR_EXIT(bp, load_error_cnic2); |
| } |
| } |
| } |
| |
| /* Initialize Rx filter. */ |
| netif_addr_lock_bh(bp->dev); |
| bnx2x_set_rx_mode(bp->dev); |
| netif_addr_unlock_bh(bp->dev); |
| |
| /* re-read iscsi info */ |
| bnx2x_get_iscsi_info(bp); |
| bnx2x_setup_cnic_irq_info(bp); |
| bnx2x_setup_cnic_info(bp); |
| bp->cnic_loaded = true; |
| if (bp->state == BNX2X_STATE_OPEN) |
| bnx2x_cnic_notify(bp, CNIC_CTL_START_CMD); |
| |
| DP(NETIF_MSG_IFUP, "Ending successfully CNIC-related load\n"); |
| |
| return 0; |
| |
| #ifndef BNX2X_STOP_ON_ERROR |
| load_error_cnic2: |
| /* Disable Timer scan */ |
| REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0); |
| |
| load_error_cnic1: |
| bnx2x_napi_disable_cnic(bp); |
| /* Update the number of queues without the cnic queues */ |
| rc = bnx2x_set_real_num_queues(bp, 0); |
| if (rc) |
| BNX2X_ERR("Unable to set real_num_queues not including cnic\n"); |
| load_error_cnic0: |
| BNX2X_ERR("CNIC-related load failed\n"); |
| bnx2x_free_fp_mem_cnic(bp); |
| bnx2x_free_mem_cnic(bp); |
| return rc; |
| #endif /* ! BNX2X_STOP_ON_ERROR */ |
| } |
| |
| /* must be called with rtnl_lock */ |
| int bnx2x_nic_load(struct bnx2x *bp, int load_mode) |
| { |
| int port = BP_PORT(bp); |
| int i, rc = 0, load_code = 0; |
| |
| DP(NETIF_MSG_IFUP, "Starting NIC load\n"); |
| DP(NETIF_MSG_IFUP, |
| "CNIC is %s\n", CNIC_ENABLED(bp) ? "enabled" : "disabled"); |
| |
| #ifdef BNX2X_STOP_ON_ERROR |
| if (unlikely(bp->panic)) { |
| BNX2X_ERR("Can't load NIC when there is panic\n"); |
| return -EPERM; |
| } |
| #endif |
| |
| bp->state = BNX2X_STATE_OPENING_WAIT4_LOAD; |
| |
| /* zero the structure w/o any lock, before SP handler is initialized */ |
| memset(&bp->last_reported_link, 0, sizeof(bp->last_reported_link)); |
| __set_bit(BNX2X_LINK_REPORT_LINK_DOWN, |
| &bp->last_reported_link.link_report_flags); |
| |
| if (IS_PF(bp)) |
| /* must be called before memory allocation and HW init */ |
| bnx2x_ilt_set_info(bp); |
| |
| /* |
| * Zero fastpath structures preserving invariants like napi, which are |
| * allocated only once, fp index, max_cos, bp pointer. |
| * Also set fp->disable_tpa and txdata_ptr. |
| */ |
| DP(NETIF_MSG_IFUP, "num queues: %d", bp->num_queues); |
| for_each_queue(bp, i) |
| bnx2x_bz_fp(bp, i); |
| memset(bp->bnx2x_txq, 0, (BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + |
| bp->num_cnic_queues) * |
| sizeof(struct bnx2x_fp_txdata)); |
| |
| bp->fcoe_init = false; |
| |
| /* Set the receive queues buffer size */ |
| bnx2x_set_rx_buf_size(bp); |
| |
| if (IS_PF(bp)) { |
| rc = bnx2x_alloc_mem(bp); |
| if (rc) { |
| BNX2X_ERR("Unable to allocate bp memory\n"); |
| return rc; |
| } |
| } |
| |
| /* Allocated memory for FW statistics */ |
| if (bnx2x_alloc_fw_stats_mem(bp)) |
| LOAD_ERROR_EXIT(bp, load_error0); |
| |
| /* need to be done after alloc mem, since it's self adjusting to amount |
| * of memory available for RSS queues |
| */ |
| rc = bnx2x_alloc_fp_mem(bp); |
| if (rc) { |
| BNX2X_ERR("Unable to allocate memory for fps\n"); |
| LOAD_ERROR_EXIT(bp, load_error0); |
| } |
| |
| /* request pf to initialize status blocks */ |
| if (IS_VF(bp)) { |
| rc = bnx2x_vfpf_init(bp); |
| if (rc) |
| LOAD_ERROR_EXIT(bp, load_error0); |
| } |
| |
| /* As long as bnx2x_alloc_mem() may possibly update |
| * bp->num_queues, bnx2x_set_real_num_queues() should always |
| * come after it. At this stage cnic queues are not counted. |
| */ |
| rc = bnx2x_set_real_num_queues(bp, 0); |
| if (rc) { |
| BNX2X_ERR("Unable to set real_num_queues\n"); |
| LOAD_ERROR_EXIT(bp, load_error0); |
| } |
| |
| /* configure multi cos mappings in kernel. |
| * this configuration may be overridden by a multi class queue |
| * discipline or by a dcbx negotiation result. |
| */ |
| bnx2x_setup_tc(bp->dev, bp->max_cos); |
| |
| /* Add all NAPI objects */ |
| bnx2x_add_all_napi(bp); |
| DP(NETIF_MSG_IFUP, "napi added\n"); |
| bnx2x_napi_enable(bp); |
| |
| if (IS_PF(bp)) { |
| /* set pf load just before approaching the MCP */ |
| bnx2x_set_pf_load(bp); |
| |
| /* if mcp exists send load request and analyze response */ |
| if (!BP_NOMCP(bp)) { |
| /* attempt to load pf */ |
| rc = bnx2x_nic_load_request(bp, &load_code); |
| if (rc) |
| LOAD_ERROR_EXIT(bp, load_error1); |
| |
| /* what did mcp say? */ |
| rc = bnx2x_nic_load_analyze_req(bp, load_code); |
| if (rc) { |
| bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); |
| LOAD_ERROR_EXIT(bp, load_error2); |
| } |
| } else { |
| load_code = bnx2x_nic_load_no_mcp(bp, port); |
| } |
| |
| /* mark pmf if applicable */ |
| bnx2x_nic_load_pmf(bp, load_code); |
| |
| /* Init Function state controlling object */ |
| bnx2x__init_func_obj(bp); |
| |
| /* Initialize HW */ |
| rc = bnx2x_init_hw(bp, load_code); |
| if (rc) { |
| BNX2X_ERR("HW init failed, aborting\n"); |
| bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); |
| LOAD_ERROR_EXIT(bp, load_error2); |
| } |
| } |
| |
| bnx2x_pre_irq_nic_init(bp); |
| |
| /* Connect to IRQs */ |
| rc = bnx2x_setup_irqs(bp); |
| if (rc) { |
| BNX2X_ERR("setup irqs failed\n"); |
| if (IS_PF(bp)) |
| bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); |
| LOAD_ERROR_EXIT(bp, load_error2); |
| } |
| |
| /* Init per-function objects */ |
| if (IS_PF(bp)) { |
| /* Setup NIC internals and enable interrupts */ |
| bnx2x_post_irq_nic_init(bp, load_code); |
| |
| bnx2x_init_bp_objs(bp); |
| bnx2x_iov_nic_init(bp); |
| |
| /* Set AFEX default VLAN tag to an invalid value */ |
| bp->afex_def_vlan_tag = -1; |
| bnx2x_nic_load_afex_dcc(bp, load_code); |
| bp->state = BNX2X_STATE_OPENING_WAIT4_PORT; |
| rc = bnx2x_func_start(bp); |
| if (rc) { |
| BNX2X_ERR("Function start failed!\n"); |
| bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); |
| |
| LOAD_ERROR_EXIT(bp, load_error3); |
| } |
| |
| /* Send LOAD_DONE command to MCP */ |
| if (!BP_NOMCP(bp)) { |
| load_code = bnx2x_fw_command(bp, |
| DRV_MSG_CODE_LOAD_DONE, 0); |
| if (!load_code) { |
| BNX2X_ERR("MCP response failure, aborting\n"); |
| rc = -EBUSY; |
| LOAD_ERROR_EXIT(bp, load_error3); |
| } |
| } |
| |
| /* initialize FW coalescing state machines in RAM */ |
| bnx2x_update_coalesce(bp); |
| |
| /* setup the leading queue */ |
| rc = bnx2x_setup_leading(bp); |
| if (rc) { |
| BNX2X_ERR("Setup leading failed!\n"); |
| LOAD_ERROR_EXIT(bp, load_error3); |
| } |
| |
| /* set up the rest of the queues */ |
| for_each_nondefault_eth_queue(bp, i) { |
| rc = bnx2x_setup_queue(bp, &bp->fp[i], 0); |
| if (rc) { |
| BNX2X_ERR("Queue setup failed\n"); |
| LOAD_ERROR_EXIT(bp, load_error3); |
| } |
| } |
| |
| /* setup rss */ |
| rc = bnx2x_init_rss_pf(bp); |
| if (rc) { |
| BNX2X_ERR("PF RSS init failed\n"); |
| LOAD_ERROR_EXIT(bp, load_error3); |
| } |
| |
| } else { /* vf */ |
| for_each_eth_queue(bp, i) { |
| rc = bnx2x_vfpf_setup_q(bp, i); |
| if (rc) { |
| BNX2X_ERR("Queue setup failed\n"); |
| LOAD_ERROR_EXIT(bp, load_error3); |
| } |
| } |
| } |
| |
| /* Now when Clients are configured we are ready to work */ |
| bp->state = BNX2X_STATE_OPEN; |
| |
| /* Configure a ucast MAC */ |
| if (IS_PF(bp)) |
| rc = bnx2x_set_eth_mac(bp, true); |
| else /* vf */ |
| rc = bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr, bp->fp->index, |
| true); |
| if (rc) { |
| BNX2X_ERR("Setting Ethernet MAC failed\n"); |
| LOAD_ERROR_EXIT(bp, load_error3); |
| } |
| |
| if (IS_PF(bp) && bp->pending_max) { |
| bnx2x_update_max_mf_config(bp, bp->pending_max); |
| bp->pending_max = 0; |
| } |
| |
| if (bp->port.pmf) { |
| rc = bnx2x_initial_phy_init(bp, load_mode); |
| if (rc) |
| LOAD_ERROR_EXIT(bp, load_error3); |
| } |
| bp->link_params.feature_config_flags &= ~FEATURE_CONFIG_BOOT_FROM_SAN; |
| |
| /* Start fast path */ |
| |
| /* Initialize Rx filter. */ |
| netif_addr_lock_bh(bp->dev); |
| bnx2x_set_rx_mode(bp->dev); |
| netif_addr_unlock_bh(bp->dev); |
| |
| /* Start the Tx */ |
| switch (load_mode) { |
| case LOAD_NORMAL: |
| /* Tx queue should be only re-enabled */ |
| netif_tx_wake_all_queues(bp->dev); |
| break; |
| |
| case LOAD_OPEN: |
| netif_tx_start_all_queues(bp->dev); |
| smp_mb__after_clear_bit(); |
| break; |
| |
| case LOAD_DIAG: |
| case LOAD_LOOPBACK_EXT: |
| bp->state = BNX2X_STATE_DIAG; |
| break; |
| |
| default: |
| break; |
| } |
| |
| if (bp->port.pmf) |
| bnx2x_update_drv_flags(bp, 1 << DRV_FLAGS_PORT_MASK, 0); |
| else |
| bnx2x__link_status_update(bp); |
| |
| /* start the timer */ |
| mod_timer(&bp->timer, jiffies + bp->current_interval); |
| |
| if (CNIC_ENABLED(bp)) |
| bnx2x_load_cnic(bp); |
| |
| if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) { |
| /* mark driver is loaded in shmem2 */ |
| u32 val; |
| val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]); |
| SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)], |
| val | DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED | |
| DRV_FLAGS_CAPABILITIES_LOADED_L2); |
| } |
| |
| /* Wait for all pending SP commands to complete */ |
| if (IS_PF(bp) && !bnx2x_wait_sp_comp(bp, ~0x0UL)) { |
| BNX2X_ERR("Timeout waiting for SP elements to complete\n"); |
| bnx2x_nic_unload(bp, UNLOAD_CLOSE, false); |
| return -EBUSY; |
| } |
| |
| /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */ |
| if (bp->port.pmf && (bp->state != BNX2X_STATE_DIAG)) |
| bnx2x_dcbx_init(bp, false); |
| |
| DP(NETIF_MSG_IFUP, "Ending successfully NIC load\n"); |
| |
| return 0; |
| |
| #ifndef BNX2X_STOP_ON_ERROR |
| load_error3: |
| if (IS_PF(bp)) { |
| bnx2x_int_disable_sync(bp, 1); |
| |
| /* Clean queueable objects */ |
| bnx2x_squeeze_objects(bp); |
| } |
| |
| /* Free SKBs, SGEs, TPA pool and driver internals */ |
| bnx2x_free_skbs(bp); |
| for_each_rx_queue(bp, i) |
| bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE); |
| |
| /* Release IRQs */ |
| bnx2x_free_irq(bp); |
| load_error2: |
| if (IS_PF(bp) && !BP_NOMCP(bp)) { |
| bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); |
| bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0); |
| } |
| |
| bp->port.pmf = 0; |
| load_error1: |
| bnx2x_napi_disable(bp); |
| bnx2x_del_all_napi(bp); |
| |
| /* clear pf_load status, as it was already set */ |
| if (IS_PF(bp)) |
| bnx2x_clear_pf_load(bp); |
| load_error0: |
| bnx2x_free_fp_mem(bp); |
| bnx2x_free_fw_stats_mem(bp); |
| bnx2x_free_mem(bp); |
| |
| return rc; |
| #endif /* ! BNX2X_STOP_ON_ERROR */ |
| } |
| |
| int bnx2x_drain_tx_queues(struct bnx2x *bp) |
| { |
| u8 rc = 0, cos, i; |
| |
| /* Wait until tx fastpath tasks complete */ |
| for_each_tx_queue(bp, i) { |
| struct bnx2x_fastpath *fp = &bp->fp[i]; |
| |
| for_each_cos_in_tx_queue(fp, cos) |
| rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]); |
| if (rc) |
| return rc; |
| } |
| return 0; |
| } |
| |
| /* must be called with rtnl_lock */ |
| int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode, bool keep_link) |
| { |
| int i; |
| bool global = false; |
| |
| DP(NETIF_MSG_IFUP, "Starting NIC unload\n"); |
| |
| /* mark driver is unloaded in shmem2 */ |
| if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) { |
| u32 val; |
| val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]); |
| SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)], |
| val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2); |
| } |
| |
| if (IS_PF(bp) && bp->recovery_state != BNX2X_RECOVERY_DONE && |
| (bp->state == BNX2X_STATE_CLOSED || |
| bp->state == BNX2X_STATE_ERROR)) { |
| /* We can get here if the driver has been unloaded |
| * during parity error recovery and is either waiting for a |
| * leader to complete or for other functions to unload and |
| * then ifdown has been issued. In this case we want to |
| * unload and let other functions to complete a recovery |
| * process. |
| */ |
| bp->recovery_state = BNX2X_RECOVERY_DONE; |
| bp->is_leader = 0; |
| bnx2x_release_leader_lock(bp); |
| smp_mb(); |
| |
| DP(NETIF_MSG_IFDOWN, "Releasing a leadership...\n"); |
| BNX2X_ERR("Can't unload in closed or error state\n"); |
| return -EINVAL; |
| } |
| |
| /* Nothing to do during unload if previous bnx2x_nic_load() |
| * have not completed successfully - all resources are released. |
| * |
| * we can get here only after unsuccessful ndo_* callback, during which |
| * dev->IFF_UP flag is still on. |
| */ |
| if (bp->state == BNX2X_STATE_CLOSED || bp->state == BNX2X_STATE_ERROR) |
| return 0; |
| |
| /* It's important to set the bp->state to the value different from |
| * BNX2X_STATE_OPEN and only then stop the Tx. Otherwise bnx2x_tx_int() |
| * may restart the Tx from the NAPI context (see bnx2x_tx_int()). |
| */ |
| bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT; |
| smp_mb(); |
| |
| /* indicate to VFs that the PF is going down */ |
| bnx2x_iov_channel_down(bp); |
| |
| if (CNIC_LOADED(bp)) |
| bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD); |
| |
| /* Stop Tx */ |
| bnx2x_tx_disable(bp); |
| netdev_reset_tc(bp->dev); |
| |
| bp->rx_mode = BNX2X_RX_MODE_NONE; |
| |
| del_timer_sync(&bp->timer); |
| |
| if (IS_PF(bp)) { |
| /* Set ALWAYS_ALIVE bit in shmem */ |
| bp->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; |
| bnx2x_drv_pulse(bp); |
| bnx2x_stats_handle(bp, STATS_EVENT_STOP); |
| bnx2x_save_statistics(bp); |
| } |
| |
| /* wait till consumers catch up with producers in all queues */ |
| bnx2x_drain_tx_queues(bp); |
| |
| /* if VF indicate to PF this function is going down (PF will delete sp |
| * elements and clear initializations |
| */ |
| if (IS_VF(bp)) |
| bnx2x_vfpf_close_vf(bp); |
| else if (unload_mode != UNLOAD_RECOVERY) |
| /* if this is a normal/close unload need to clean up chip*/ |
| bnx2x_chip_cleanup(bp, unload_mode, keep_link); |
| else { |
| /* Send the UNLOAD_REQUEST to the MCP */ |
| bnx2x_send_unload_req(bp, unload_mode); |
| |
| /* Prevent transactions to host from the functions on the |
| * engine that doesn't reset global blocks in case of global |
| * attention once global blocks are reset and gates are opened |
| * (the engine which leader will perform the recovery |
| * last). |
| */ |
| if (!CHIP_IS_E1x(bp)) |
| bnx2x_pf_disable(bp); |
| |
| /* Disable HW interrupts, NAPI */ |
| bnx2x_netif_stop(bp, 1); |
| /* Delete all NAPI objects */ |
| bnx2x_del_all_napi(bp); |
| if (CNIC_LOADED(bp)) |
| bnx2x_del_all_napi_cnic(bp); |
| /* Release IRQs */ |
| bnx2x_free_irq(bp); |
| |
| /* Report UNLOAD_DONE to MCP */ |
| bnx2x_send_unload_done(bp, false); |
| } |
| |
| /* |
| * At this stage no more interrupts will arrive so we may safely clean |
| * the queueable objects here in case they failed to get cleaned so far. |
| */ |
| if (IS_PF(bp)) |
| bnx2x_squeeze_objects(bp); |
| |
| /* There should be no more pending SP commands at this stage */ |
| bp->sp_state = 0; |
| |
| bp->port.pmf = 0; |
| |
| /* Free SKBs, SGEs, TPA pool and driver internals */ |
| bnx2x_free_skbs(bp); |
| if (CNIC_LOADED(bp)) |
| bnx2x_free_skbs_cnic(bp); |
| for_each_rx_queue(bp, i) |
| bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE); |
| |
| bnx2x_free_fp_mem(bp); |
| if (CNIC_LOADED(bp)) |
| bnx2x_free_fp_mem_cnic(bp); |
| |
| if (IS_PF(bp)) { |
| if (CNIC_LOADED(bp)) |
| bnx2x_free_mem_cnic(bp); |
| bnx2x_free_mem(bp); |
| } |
| bp->state = BNX2X_STATE_CLOSED; |
| bp->cnic_loaded = false; |
| |
| /* Check if there are pending parity attentions. If there are - set |
| * RECOVERY_IN_PROGRESS. |
| */ |
| if (IS_PF(bp) && bnx2x_chk_parity_attn(bp, &global, false)) { |
| bnx2x_set_reset_in_progress(bp); |
| |
| /* Set RESET_IS_GLOBAL if needed */ |
| if (global) |
| bnx2x_set_reset_global(bp); |
| } |
| |
| /* The last driver must disable a "close the gate" if there is no |
| * parity attention or "process kill" pending. |
| */ |
| if (IS_PF(bp) && |
| !bnx2x_clear_pf_load(bp) && |
| bnx2x_reset_is_done(bp, BP_PATH(bp))) |
| bnx2x_disable_close_the_gate(bp); |
| |
| DP(NETIF_MSG_IFUP, "Ending NIC unload\n"); |
| |
| return 0; |
| } |
| |
| int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state) |
| { |
| u16 pmcsr; |
| |
| /* If there is no power capability, silently succeed */ |
| if (!bp->pm_cap) { |
| BNX2X_DEV_INFO("No power capability. Breaking.\n"); |
| return 0; |
| } |
| |
| pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr); |
| |
| switch (state) { |
| case PCI_D0: |
| pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, |
| ((pmcsr & ~PCI_PM_CTRL_STATE_MASK) | |
| PCI_PM_CTRL_PME_STATUS)); |
| |
| if (pmcsr & PCI_PM_CTRL_STATE_MASK) |
| /* delay required during transition out of D3hot */ |
| msleep(20); |
| break; |
| |
| case PCI_D3hot: |
| /* If there are other clients above don't |
| shut down the power */ |
| if (atomic_read(&bp->pdev->enable_cnt) != 1) |
| return 0; |
| /* Don't shut down the power for emulation and FPGA */ |
| if (CHIP_REV_IS_SLOW(bp)) |
| return 0; |
| |
| pmcsr &= ~PCI_PM_CTRL_STATE_MASK; |
| pmcsr |= 3; |
| |
| if (bp->wol) |
| pmcsr |= PCI_PM_CTRL_PME_ENABLE; |
| |
| pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, |
| pmcsr); |
| |
| /* No more memory access after this point until |
| * device is brought back to D0. |
| */ |
| break; |
| |
| default: |
| dev_err(&bp->pdev->dev, "Can't support state = %d\n", state); |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| /* |
| * net_device service functions |
| */ |
| int bnx2x_poll(struct napi_struct *napi, int budget) |
| { |
| int work_done = 0; |
| u8 cos; |
| struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath, |
| napi); |
| struct bnx2x *bp = fp->bp; |
| |
| while (1) { |
| #ifdef BNX2X_STOP_ON_ERROR |
| if (unlikely(bp->panic)) { |
| napi_complete(napi); |
| return 0; |
| } |
| #endif |
| if (!bnx2x_fp_lock_napi(fp)) |
| return work_done; |
| |
| for_each_cos_in_tx_queue(fp, cos) |
| if (bnx2x_tx_queue_has_work(fp->txdata_ptr[cos])) |
| bnx2x_tx_int(bp, fp->txdata_ptr[cos]); |
| |
| if (bnx2x_has_rx_work(fp)) { |
| work_done += bnx2x_rx_int(fp, budget - work_done); |
| |
| /* must not complete if we consumed full budget */ |
| if (work_done >= budget) { |
| bnx2x_fp_unlock_napi(fp); |
| break; |
| } |
| } |
| |
| /* Fall out from the NAPI loop if needed */ |
| if (!bnx2x_fp_unlock_napi(fp) && |
| !(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) { |
| |
| /* No need to update SB for FCoE L2 ring as long as |
| * it's connected to the default SB and the SB |
| * has been updated when NAPI was scheduled. |
| */ |
| if (IS_FCOE_FP(fp)) { |
| napi_complete(napi); |
| break; |
| } |
| bnx2x_update_fpsb_idx(fp); |
| /* bnx2x_has_rx_work() reads the status block, |
| * thus we need to ensure that status block indices |
| * have been actually read (bnx2x_update_fpsb_idx) |
| * prior to this check (bnx2x_has_rx_work) so that |
| * we won't write the "newer" value of the status block |
| * to IGU (if there was a DMA right after |
| * bnx2x_has_rx_work and if there is no rmb, the memory |
| * reading (bnx2x_update_fpsb_idx) may be postponed |
| * to right before bnx2x_ack_sb). In this case there |
| * will never be another interrupt until there is |
| * another update of the status block, while there |
| * is still unhandled work. |
| */ |
| rmb(); |
| |
| if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) { |
| napi_complete(napi); |
| /* Re-enable interrupts */ |
| DP(NETIF_MSG_RX_STATUS, |
| "Update index to %d\n", fp->fp_hc_idx); |
| bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, |
| le16_to_cpu(fp->fp_hc_idx), |
| IGU_INT_ENABLE, 1); |
| break; |
| } |
| } |
| } |
| |
| return work_done; |
| } |
| |
| #ifdef CONFIG_NET_LL_RX_POLL |
| /* must be called with local_bh_disable()d */ |
| int bnx2x_low_latency_recv(struct napi_struct *napi) |
| { |
| struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath, |
| napi); |
| struct bnx2x *bp = fp->bp; |
| int found = 0; |
| |
| if ((bp->state == BNX2X_STATE_CLOSED) || |
| (bp->state == BNX2X_STATE_ERROR) || |
| (bp->flags & (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG))) |
| return LL_FLUSH_FAILED; |
| |
| if (!bnx2x_fp_lock_poll(fp)) |
| return LL_FLUSH_BUSY; |
| |
| if (bnx2x_has_rx_work(fp)) |
| found = bnx2x_rx_int(fp, 4); |
| |
| bnx2x_fp_unlock_poll(fp); |
| |
| return found; |
| } |
| #endif |
| |
| /* we split the first BD into headers and data BDs |
| * to ease the pain of our fellow microcode engineers |
| * we use one mapping for both BDs |
| */ |
| static u16 bnx2x_tx_split(struct bnx2x *bp, |
| struct bnx2x_fp_txdata *txdata, |
| struct sw_tx_bd *tx_buf, |
| struct eth_tx_start_bd **tx_bd, u16 hlen, |
| u16 bd_prod) |
| { |
| struct eth_tx_start_bd *h_tx_bd = *tx_bd; |
| struct eth_tx_bd *d_tx_bd; |
| dma_addr_t mapping; |
| int old_len = le16_to_cpu(h_tx_bd->nbytes); |
| |
| /* first fix first BD */ |
| h_tx_bd->nbytes = cpu_to_le16(hlen); |
| |
| DP(NETIF_MSG_TX_QUEUED, "TSO split header size is %d (%x:%x)\n", |
| h_tx_bd->nbytes, h_tx_bd->addr_hi, h_tx_bd->addr_lo); |
| |
| /* now get a new data BD |
| * (after the pbd) and fill it */ |
| bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); |
| d_tx_bd = &txdata->tx_desc_ring[bd_prod].reg_bd; |
| |
| mapping = HILO_U64(le32_to_cpu(h_tx_bd->addr_hi), |
| le32_to_cpu(h_tx_bd->addr_lo)) + hlen; |
| |
| d_tx_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); |
| d_tx_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); |
| d_tx_bd->nbytes = cpu_to_le16(old_len - hlen); |
| |
| /* this marks the BD as one that has no individual mapping */ |
| tx_buf->flags |= BNX2X_TSO_SPLIT_BD; |
| |
| DP(NETIF_MSG_TX_QUEUED, |
| "TSO split data size is %d (%x:%x)\n", |
| d_tx_bd->nbytes, d_tx_bd->addr_hi, d_tx_bd->addr_lo); |
| |
| /* update tx_bd */ |
| *tx_bd = (struct eth_tx_start_bd *)d_tx_bd; |
| |
| return bd_prod; |
| } |
| |
| #define bswab32(b32) ((__force __le32) swab32((__force __u32) (b32))) |
| #define bswab16(b16) ((__force __le16) swab16((__force __u16) (b16))) |
| static __le16 bnx2x_csum_fix(unsigned char *t_header, u16 csum, s8 fix) |
| { |
| __sum16 tsum = (__force __sum16) csum; |
| |
| if (fix > 0) |
| tsum = ~csum_fold(csum_sub((__force __wsum) csum, |
| csum_partial(t_header - fix, fix, 0))); |
| |
| else if (fix < 0) |
| tsum = ~csum_fold(csum_add((__force __wsum) csum, |
| csum_partial(t_header, -fix, 0))); |
| |
| return bswab16(tsum); |
| } |
| |
| static u32 bnx2x_xmit_type(struct bnx2x *bp, struct sk_buff *skb) |
| { |
| u32 rc; |
| __u8 prot = 0; |
| __be16 protocol; |
| |
| if (skb->ip_summed != CHECKSUM_PARTIAL) |
| return XMIT_PLAIN; |
| |
| protocol = vlan_get_protocol(skb); |
| if (protocol == htons(ETH_P_IPV6)) { |
| rc = XMIT_CSUM_V6; |
| prot = ipv6_hdr(skb)->nexthdr; |
| } else { |
| rc = XMIT_CSUM_V4; |
| prot = ip_hdr(skb)->protocol; |
| } |
| |
| if (!CHIP_IS_E1x(bp) && skb->encapsulation) { |
| if (inner_ip_hdr(skb)->version == 6) { |
| rc |= XMIT_CSUM_ENC_V6; |
| if (inner_ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) |
| rc |= XMIT_CSUM_TCP; |
| } else { |
| rc |= XMIT_CSUM_ENC_V4; |
| if (inner_ip_hdr(skb)->protocol == IPPROTO_TCP) |
| rc |= XMIT_CSUM_TCP; |
| } |
| } |
| if (prot == IPPROTO_TCP) |
| rc |= XMIT_CSUM_TCP; |
| |
| if (skb_is_gso_v6(skb)) { |
| rc |= (XMIT_GSO_V6 | XMIT_CSUM_TCP); |
| if (rc & XMIT_CSUM_ENC) |
| rc |= XMIT_GSO_ENC_V6; |
| } else if (skb_is_gso(skb)) { |
| rc |= (XMIT_GSO_V4 | XMIT_CSUM_TCP); |
| if (rc & XMIT_CSUM_ENC) |
| rc |= XMIT_GSO_ENC_V4; |
| } |
| |
| return rc; |
| } |
| |
| #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - 3) |
| /* check if packet requires linearization (packet is too fragmented) |
| no need to check fragmentation if page size > 8K (there will be no |
| violation to FW restrictions) */ |
| static int bnx2x_pkt_req_lin(struct bnx2x *bp, struct sk_buff *skb, |
| u32 xmit_type) |
| { |
| int to_copy = 0; |
| int hlen = 0; |
| int first_bd_sz = 0; |
| |
| /* 3 = 1 (for linear data BD) + 2 (for PBD and last BD) */ |
| if (skb_shinfo(skb)->nr_frags >= (MAX_FETCH_BD - 3)) { |
| |
| if (xmit_type & XMIT_GSO) { |
| unsigned short lso_mss = skb_shinfo(skb)->gso_size; |
| /* Check if LSO packet needs to be copied: |
| 3 = 1 (for headers BD) + 2 (for PBD and last BD) */ |
| int wnd_size = MAX_FETCH_BD - 3; |
| /* Number of windows to check */ |
| int num_wnds = skb_shinfo(skb)->nr_frags - wnd_size; |
| int wnd_idx = 0; |
| int frag_idx = 0; |
| u32 wnd_sum = 0; |
| |
| /* Headers length */ |
| hlen = (int)(skb_transport_header(skb) - skb->data) + |
| tcp_hdrlen(skb); |
| |
| /* Amount of data (w/o headers) on linear part of SKB*/ |
| first_bd_sz = skb_headlen(skb) - hlen; |
| |
| wnd_sum = first_bd_sz; |
| |
| /* Calculate the first sum - it's special */ |
| for (frag_idx = 0; frag_idx < wnd_size - 1; frag_idx++) |
| wnd_sum += |
| skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]); |
| |
| /* If there was data on linear skb data - check it */ |
| if (first_bd_sz > 0) { |
| if (unlikely(wnd_sum < lso_mss)) { |
| to_copy = 1; |
| goto exit_lbl; |
| } |
| |
| wnd_sum -= first_bd_sz; |
| } |
| |
| /* Others are easier: run through the frag list and |
| check all windows */ |
| for (wnd_idx = 0; wnd_idx <= num_wnds; wnd_idx++) { |
| wnd_sum += |
| skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx + wnd_size - 1]); |
| |
| if (unlikely(wnd_sum < lso_mss)) { |
| to_copy = 1; |
| break; |
| } |
| wnd_sum -= |
| skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx]); |
| } |
| } else { |
| /* in non-LSO too fragmented packet should always |
| be linearized */ |
| to_copy = 1; |
| } |
| } |
| |
| exit_lbl: |
| if (unlikely(to_copy)) |
| DP(NETIF_MSG_TX_QUEUED, |
| "Linearization IS REQUIRED for %s packet. num_frags %d hlen %d first_bd_sz %d\n", |
| (xmit_type & XMIT_GSO) ? "LSO" : "non-LSO", |
| skb_shinfo(skb)->nr_frags, hlen, first_bd_sz); |
| |
| return to_copy; |
| } |
| #endif |
| |
| static void bnx2x_set_pbd_gso_e2(struct sk_buff *skb, u32 *parsing_data, |
| u32 xmit_type) |
| { |
| struct ipv6hdr *ipv6; |
| |
| *parsing_data |= (skb_shinfo(skb)->gso_size << |
| ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) & |
| ETH_TX_PARSE_BD_E2_LSO_MSS; |
| |
| if (xmit_type & XMIT_GSO_ENC_V6) |
| ipv6 = inner_ipv6_hdr(skb); |
| else if (xmit_type & XMIT_GSO_V6) |
| ipv6 = ipv6_hdr(skb); |
| else |
| ipv6 = NULL; |
| |
| if (ipv6 && ipv6->nexthdr == NEXTHDR_IPV6) |
| *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR; |
| } |
| |
| /** |
| * bnx2x_set_pbd_gso - update PBD in GSO case. |
| * |
| * @skb: packet skb |
| * @pbd: parse BD |
| * @xmit_type: xmit flags |
| */ |
| static void bnx2x_set_pbd_gso(struct sk_buff *skb, |
| struct eth_tx_parse_bd_e1x *pbd, |
| struct eth_tx_start_bd *tx_start_bd, |
| u32 xmit_type) |
| { |
| pbd->lso_mss = cpu_to_le16(skb_shinfo(skb)->gso_size); |
| pbd->tcp_send_seq = bswab32(tcp_hdr(skb)->seq); |
| pbd->tcp_flags = pbd_tcp_flags(tcp_hdr(skb)); |
| |
| if (xmit_type & XMIT_GSO_V4) { |
| pbd->ip_id = bswab16(ip_hdr(skb)->id); |
| pbd->tcp_pseudo_csum = |
| bswab16(~csum_tcpudp_magic(ip_hdr(skb)->saddr, |
| ip_hdr(skb)->daddr, |
| 0, IPPROTO_TCP, 0)); |
| |
| /* GSO on 57710/57711 needs FW to calculate IP checksum */ |
| tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM; |
| } else { |
| pbd->tcp_pseudo_csum = |
| bswab16(~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, |
| &ipv6_hdr(skb)->daddr, |
| 0, IPPROTO_TCP, 0)); |
| } |
| |
| pbd->global_data |= |
| cpu_to_le16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN); |
| } |
| |
| /** |
| * bnx2x_set_pbd_csum_enc - update PBD with checksum and return header length |
| * |
| * @bp: driver handle |
| * @skb: packet skb |
| * @parsing_data: data to be updated |
| * @xmit_type: xmit flags |
| * |
| * 57712/578xx related, when skb has encapsulation |
| */ |
| static u8 bnx2x_set_pbd_csum_enc(struct bnx2x *bp, struct sk_buff *skb, |
| u32 *parsing_data, u32 xmit_type) |
| { |
| *parsing_data |= |
| ((((u8 *)skb_inner_transport_header(skb) - skb->data) >> 1) << |
| ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) & |
| ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W; |
| |
| if (xmit_type & XMIT_CSUM_TCP) { |
| *parsing_data |= ((inner_tcp_hdrlen(skb) / 4) << |
| ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) & |
| ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW; |
| |
| return skb_inner_transport_header(skb) + |
| inner_tcp_hdrlen(skb) - skb->data; |
| } |
| |
| /* We support checksum offload for TCP and UDP only. |
| * No need to pass the UDP header length - it's a constant. |
| */ |
| return skb_inner_transport_header(skb) + |
| sizeof(struct udphdr) - skb->data; |
| } |
| |
| /** |
| * bnx2x_set_pbd_csum_e2 - update PBD with checksum and return header length |
| * |
| * @bp: driver handle |
| * @skb: packet skb |
| * @parsing_data: data to be updated |
| * @xmit_type: xmit flags |
| * |
| * 57712/578xx related |
| */ |
| static u8 bnx2x_set_pbd_csum_e2(struct bnx2x *bp, struct sk_buff *skb, |
| u32 *parsing_data, u32 xmit_type) |
| { |
| *parsing_data |= |
| ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) << |
| ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) & |
| ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W; |
| |
| if (xmit_type & XMIT_CSUM_TCP) { |
| *parsing_data |= ((tcp_hdrlen(skb) / 4) << |
| ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) & |
| ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW; |
| |
| return skb_transport_header(skb) + tcp_hdrlen(skb) - skb->data; |
| } |
| /* We support checksum offload for TCP and UDP only. |
| * No need to pass the UDP header length - it's a constant. |
| */ |
| return skb_transport_header(skb) + sizeof(struct udphdr) - skb->data; |
| } |
| |
| /* set FW indication according to inner or outer protocols if tunneled */ |
| static void bnx2x_set_sbd_csum(struct bnx2x *bp, struct sk_buff *skb, |
| struct eth_tx_start_bd *tx_start_bd, |
| u32 xmit_type) |
| { |
| tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM; |
| |
| if (xmit_type & (XMIT_CSUM_ENC_V6 | XMIT_CSUM_V6)) |
| tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IPV6; |
| |
| if (!(xmit_type & XMIT_CSUM_TCP)) |
| tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IS_UDP; |
| } |
| |
| /** |
| * bnx2x_set_pbd_csum - update PBD with checksum and return header length |
| * |
| * @bp: driver handle |
| * @skb: packet skb |
| * @pbd: parse BD to be updated |
| * @xmit_type: xmit flags |
| */ |
| static u8 bnx2x_set_pbd_csum(struct bnx2x *bp, struct sk_buff *skb, |
| struct eth_tx_parse_bd_e1x *pbd, |
| u32 xmit_type) |
| { |
| u8 hlen = (skb_network_header(skb) - skb->data) >> 1; |
| |
| /* for now NS flag is not used in Linux */ |
| pbd->global_data = |
| cpu_to_le16(hlen | |
| ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) << |
| ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT)); |
| |
| pbd->ip_hlen_w = (skb_transport_header(skb) - |
| skb_network_header(skb)) >> 1; |
| |
| hlen += pbd->ip_hlen_w; |
| |
| /* We support checksum offload for TCP and UDP only */ |
| if (xmit_type & XMIT_CSUM_TCP) |
| hlen += tcp_hdrlen(skb) / 2; |
| else |
| hlen += sizeof(struct udphdr) / 2; |
| |
| pbd->total_hlen_w = cpu_to_le16(hlen); |
| hlen = hlen*2; |
| |
| if (xmit_type & XMIT_CSUM_TCP) { |
| pbd->tcp_pseudo_csum = bswab16(tcp_hdr(skb)->check); |
| |
| } else { |
| s8 fix = SKB_CS_OFF(skb); /* signed! */ |
| |
| DP(NETIF_MSG_TX_QUEUED, |
| "hlen %d fix %d csum before fix %x\n", |
| le16_to_cpu(pbd->total_hlen_w), fix, SKB_CS(skb)); |
| |
| /* HW bug: fixup the CSUM */ |
| pbd->tcp_pseudo_csum = |
| bnx2x_csum_fix(skb_transport_header(skb), |
| SKB_CS(skb), fix); |
| |
| DP(NETIF_MSG_TX_QUEUED, "csum after fix %x\n", |
| pbd->tcp_pseudo_csum); |
| } |
| |
| return hlen; |
| } |
| |
| static void bnx2x_update_pbds_gso_enc(struct sk_buff *skb, |
| struct eth_tx_parse_bd_e2 *pbd_e2, |
| struct eth_tx_parse_2nd_bd *pbd2, |
| u16 *global_data, |
| u32 xmit_type) |
| { |
| u16 hlen_w = 0; |
| u8 outerip_off, outerip_len = 0; |
| |
| /* from outer IP to transport */ |
| hlen_w = (skb_inner_transport_header(skb) - |
| skb_network_header(skb)) >> 1; |
| |
| /* transport len */ |
| hlen_w += inner_tcp_hdrlen(skb) >> 1; |
| |
| pbd2->fw_ip_hdr_to_payload_w = hlen_w; |
| |
| /* outer IP header info */ |
| if (xmit_type & XMIT_CSUM_V4) { |
| struct iphdr *iph = ip_hdr(skb); |
| pbd2->fw_ip_csum_wo_len_flags_frag = |
| bswab16(csum_fold((~iph->check) - |
| iph->tot_len - iph->frag_off)); |
| } else { |
| pbd2->fw_ip_hdr_to_payload_w = |
| hlen_w - ((sizeof(struct ipv6hdr)) >> 1); |
| } |
| |
| pbd2->tcp_send_seq = bswab32(inner_tcp_hdr(skb)->seq); |
| |
| pbd2->tcp_flags = pbd_tcp_flags(inner_tcp_hdr(skb)); |
| |
| if (xmit_type & XMIT_GSO_V4) { |
| pbd2->hw_ip_id = bswab16(inner_ip_hdr(skb)->id); |
| |
| pbd_e2->data.tunnel_data.pseudo_csum = |
| bswab16(~csum_tcpudp_magic( |
| inner_ip_hdr(skb)->saddr, |
| inner_ip_hdr(skb)->daddr, |
| 0, IPPROTO_TCP, 0)); |
| |
| outerip_len = ip_hdr(skb)->ihl << 1; |
| } else { |
| pbd_e2->data.tunnel_data.pseudo_csum = |
| bswab16(~csum_ipv6_magic( |
| &inner_ipv6_hdr(skb)->saddr, |
| &inner_ipv6_hdr(skb)->daddr, |
| 0, IPPROTO_TCP, 0)); |
| } |
| |
| outerip_off = (skb_network_header(skb) - skb->data) >> 1; |
| |
| *global_data |= |
| outerip_off | |
| (!!(xmit_type & XMIT_CSUM_V6) << |
| ETH_TX_PARSE_2ND_BD_IP_HDR_TYPE_OUTER_SHIFT) | |
| (outerip_len << |
| ETH_TX_PARSE_2ND_BD_IP_HDR_LEN_OUTER_W_SHIFT) | |
| ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) << |
| ETH_TX_PARSE_2ND_BD_LLC_SNAP_EN_SHIFT); |
| |
| if (ip_hdr(skb)->protocol == IPPROTO_UDP) { |
| SET_FLAG(*global_data, ETH_TX_PARSE_2ND_BD_TUNNEL_UDP_EXIST, 1); |
| pbd2->tunnel_udp_hdr_start_w = skb_transport_offset(skb) >> 1; |
| } |
| } |
| |
| /* called with netif_tx_lock |
| * bnx2x_tx_int() runs without netif_tx_lock unless it needs to call |
| * netif_wake_queue() |
| */ |
| netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev) |
| { |
| struct bnx2x *bp = netdev_priv(dev); |
| |
| struct netdev_queue *txq; |
| struct bnx2x_fp_txdata *txdata; |
| struct sw_tx_bd *tx_buf; |
| struct eth_tx_start_bd *tx_start_bd, *first_bd; |
| struct eth_tx_bd *tx_data_bd, *total_pkt_bd = NULL; |
| struct eth_tx_parse_bd_e1x *pbd_e1x = NULL; |
| struct eth_tx_parse_bd_e2 *pbd_e2 = NULL; |
| struct eth_tx_parse_2nd_bd *pbd2 = NULL; |
| u32 pbd_e2_parsing_data = 0; |
| u16 pkt_prod, bd_prod; |
| int nbd, txq_index; |
| dma_addr_t mapping; |
| u32 xmit_type = bnx2x_xmit_type(bp, skb); |
| int i; |
| u8 hlen = 0; |
| __le16 pkt_size = 0; |
| struct ethhdr *eth; |
| u8 mac_type = UNICAST_ADDRESS; |
| |
| #ifdef BNX2X_STOP_ON_ERROR |
| if (unlikely(bp->panic)) |
| return NETDEV_TX_BUSY; |
| #endif |
| |
| txq_index = skb_get_queue_mapping(skb); |
| txq = netdev_get_tx_queue(dev, txq_index); |
| |
| BUG_ON(txq_index >= MAX_ETH_TXQ_IDX(bp) + (CNIC_LOADED(bp) ? 1 : 0)); |
| |
| txdata = &bp->bnx2x_txq[txq_index]; |
| |
| /* enable this debug print to view the transmission queue being used |
| DP(NETIF_MSG_TX_QUEUED, "indices: txq %d, fp %d, txdata %d\n", |
| txq_index, fp_index, txdata_index); */ |
| |
| /* enable this debug print to view the transmission details |
| DP(NETIF_MSG_TX_QUEUED, |
| "transmitting packet cid %d fp index %d txdata_index %d tx_data ptr %p fp pointer %p\n", |
| txdata->cid, fp_index, txdata_index, txdata, fp); */ |
| |
| if (unlikely(bnx2x_tx_avail(bp, txdata) < |
| skb_shinfo(skb)->nr_frags + |
| BDS_PER_TX_PKT + |
| NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT))) { |
| /* Handle special storage cases separately */ |
| if (txdata->tx_ring_size == 0) { |
| struct bnx2x_eth_q_stats *q_stats = |
| bnx2x_fp_qstats(bp, txdata->parent_fp); |
| q_stats->driver_filtered_tx_pkt++; |
| dev_kfree_skb(skb); |
| return NETDEV_TX_OK; |
| } |
| bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++; |
| netif_tx_stop_queue(txq); |
| BNX2X_ERR("BUG! Tx ring full when queue awake!\n"); |
| |
| return NETDEV_TX_BUSY; |
| } |
| |
| DP(NETIF_MSG_TX_QUEUED, |
| "queue[%d]: SKB: summed %x protocol %x protocol(%x,%x) gso type %x xmit_type %x len %d\n", |
| txq_index, skb->ip_summed, skb->protocol, ipv6_hdr(skb)->nexthdr, |
| ip_hdr(skb)->protocol, skb_shinfo(skb)->gso_type, xmit_type, |
| skb->len); |
| |
| eth = (struct ethhdr *)skb->data; |
| |
| /* set flag according to packet type (UNICAST_ADDRESS is default)*/ |
| if (unlikely(is_multicast_ether_addr(eth->h_dest))) { |
| if (is_broadcast_ether_addr(eth->h_dest)) |
| mac_type = BROADCAST_ADDRESS; |
| else |
| mac_type = MULTICAST_ADDRESS; |
| } |
| |
| #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT) |
| /* First, check if we need to linearize the skb (due to FW |
| restrictions). No need to check fragmentation if page size > 8K |
| (there will be no violation to FW restrictions) */ |
| if (bnx2x_pkt_req_lin(bp, skb, xmit_type)) { |
| /* Statistics of linearization */ |
| bp->lin_cnt++; |
| if (skb_linearize(skb) != 0) { |
| DP(NETIF_MSG_TX_QUEUED, |
| "SKB linearization failed - silently dropping this SKB\n"); |
| dev_kfree_skb_any(skb); |
| return NETDEV_TX_OK; |
| } |
| } |
| #endif |
| /* Map skb linear data for DMA */ |
| mapping = dma_map_single(&bp->pdev->dev, skb->data, |
| skb_headlen(skb), DMA_TO_DEVICE); |
| if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { |
| DP(NETIF_MSG_TX_QUEUED, |
| "SKB mapping failed - silently dropping this SKB\n"); |
| dev_kfree_skb_any(skb); |
| return NETDEV_TX_OK; |
| } |
| /* |
| Please read carefully. First we use one BD which we mark as start, |
| then we have a parsing info BD (used for TSO or xsum), |
| and only then we have the rest of the TSO BDs. |
| (don't forget to mark the last one as last, |
| and to unmap only AFTER you write to the BD ...) |
| And above all, all pdb sizes are in words - NOT DWORDS! |
| */ |
| |
| /* get current pkt produced now - advance it just before sending packet |
| * since mapping of pages may fail and cause packet to be dropped |
| */ |
| pkt_prod = txdata->tx_pkt_prod; |
| bd_prod = TX_BD(txdata->tx_bd_prod); |
| |
| /* get a tx_buf and first BD |
| * tx_start_bd may be changed during SPLIT, |
| * but first_bd will always stay first |
| */ |
| tx_buf = &txdata->tx_buf_ring[TX_BD(pkt_prod)]; |
| tx_start_bd = &txdata->tx_desc_ring[bd_prod].start_bd; |
| first_bd = tx_start_bd; |
| |
| tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD; |
| |
| /* header nbd: indirectly zero other flags! */ |
| tx_start_bd->general_data = 1 << ETH_TX_START_BD_HDR_NBDS_SHIFT; |
| |
| /* remember the first BD of the packet */ |
| tx_buf->first_bd = txdata->tx_bd_prod; |
| tx_buf->skb = skb; |
| tx_buf->flags = 0; |
| |
| DP(NETIF_MSG_TX_QUEUED, |
| "sending pkt %u @%p next_idx %u bd %u @%p\n", |
| pkt_prod, tx_buf, txdata->tx_pkt_prod, bd_prod, tx_start_bd); |
| |
| if (vlan_tx_tag_present(skb)) { |
| tx_start_bd->vlan_or_ethertype = |
| cpu_to_le16(vlan_tx_tag_get(skb)); |
| tx_start_bd->bd_flags.as_bitfield |= |
| (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT); |
| } else { |
| /* when transmitting in a vf, start bd must hold the ethertype |
| * for fw to enforce it |
| */ |
| if (IS_VF(bp)) |
| tx_start_bd->vlan_or_ethertype = |
| cpu_to_le16(ntohs(eth->h_proto)); |
| else |
| /* used by FW for packet accounting */ |
| tx_start_bd->vlan_or_ethertype = cpu_to_le16(pkt_prod); |
| } |
| |
| nbd = 2; /* start_bd + pbd + frags (updated when pages are mapped) */ |
| |
| /* turn on parsing and get a BD */ |
| bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); |
| |
| if (xmit_type & XMIT_CSUM) |
| bnx2x_set_sbd_csum(bp, skb, tx_start_bd, xmit_type); |
| |
| if (!CHIP_IS_E1x(bp)) { |
| pbd_e2 = &txdata->tx_desc_ring[bd_prod].parse_bd_e2; |
| memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2)); |
| |
| if (xmit_type & XMIT_CSUM_ENC) { |
| u16 global_data = 0; |
| |
| /* Set PBD in enc checksum offload case */ |
| hlen = bnx2x_set_pbd_csum_enc(bp, skb, |
| &pbd_e2_parsing_data, |
| xmit_type); |
| |
| /* turn on 2nd parsing and get a BD */ |
| bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); |
| |
| pbd2 = &txdata->tx_desc_ring[bd_prod].parse_2nd_bd; |
| |
| memset(pbd2, 0, sizeof(*pbd2)); |
| |
| pbd_e2->data.tunnel_data.ip_hdr_start_inner_w = |
| (skb_inner_network_header(skb) - |
| skb->data) >> 1; |
| |
| if (xmit_type & XMIT_GSO_ENC) |
| bnx2x_update_pbds_gso_enc(skb, pbd_e2, pbd2, |
| &global_data, |
| xmit_type); |
| |
| pbd2->global_data = cpu_to_le16(global_data); |
| |
| /* add addition parse BD indication to start BD */ |
| SET_FLAG(tx_start_bd->general_data, |
| ETH_TX_START_BD_PARSE_NBDS, 1); |
| /* set encapsulation flag in start BD */ |
| SET_FLAG(tx_start_bd->general_data, |
| ETH_TX_START_BD_TUNNEL_EXIST, 1); |
| nbd++; |
| } else if (xmit_type & XMIT_CSUM) { |
| /* Set PBD in checksum offload case w/o encapsulation */ |
| hlen = bnx2x_set_pbd_csum_e2(bp, skb, |
| &pbd_e2_parsing_data, |
| xmit_type); |
| } |
| |
| /* Add the macs to the parsing BD this is a vf */ |
| if (IS_VF(bp)) { |
| /* override GRE parameters in BD */ |
| bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi, |
| &pbd_e2->data.mac_addr.src_mid, |
| &pbd_e2->data.mac_addr.src_lo, |
| eth->h_source); |
| |
| bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi, |
| &pbd_e2->data.mac_addr.dst_mid, |
| &pbd_e2->data.mac_addr.dst_lo, |
| eth->h_dest); |
| } |
| |
| SET_FLAG(pbd_e2_parsing_data, |
| ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, mac_type); |
| } else { |
| u16 global_data = 0; |
| pbd_e1x = &txdata->tx_desc_ring[bd_prod].parse_bd_e1x; |
| memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x)); |
| /* Set PBD in checksum offload case */ |
| if (xmit_type & XMIT_CSUM) |
| hlen = bnx2x_set_pbd_csum(bp, skb, pbd_e1x, xmit_type); |
| |
| SET_FLAG(global_data, |
| ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type); |
| pbd_e1x->global_data |= cpu_to_le16(global_data); |
| } |
| |
| /* Setup the data pointer of the first BD of the packet */ |
| tx_start_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); |
| tx_start_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); |
| tx_start_bd->nbytes = cpu_to_le16(skb_headlen(skb)); |
| pkt_size = tx_start_bd->nbytes; |
| |
| DP(NETIF_MSG_TX_QUEUED, |
| "first bd @%p addr (%x:%x) nbytes %d flags %x vlan %x\n", |
| tx_start_bd, tx_start_bd->addr_hi, tx_start_bd->addr_lo, |
| le16_to_cpu(tx_start_bd->nbytes), |
| tx_start_bd->bd_flags.as_bitfield, |
| le16_to_cpu(tx_start_bd->vlan_or_ethertype)); |
| |
| if (xmit_type & XMIT_GSO) { |
| |
| DP(NETIF_MSG_TX_QUEUED, |
| "TSO packet len %d hlen %d total len %d tso size %d\n", |
| skb->len, hlen, skb_headlen(skb), |
| skb_shinfo(skb)->gso_size); |
| |
| tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO; |
| |
| if (unlikely(skb_headlen(skb) > hlen)) { |
| nbd++; |
| bd_prod = bnx2x_tx_split(bp, txdata, tx_buf, |
| &tx_start_bd, hlen, |
| bd_prod); |
| } |
| if (!CHIP_IS_E1x(bp)) |
| bnx2x_set_pbd_gso_e2(skb, &pbd_e2_parsing_data, |
| xmit_type); |
| else |
| bnx2x_set_pbd_gso(skb, pbd_e1x, first_bd, xmit_type); |
| } |
| |
| /* Set the PBD's parsing_data field if not zero |
| * (for the chips newer than 57711). |
| */ |
| if (pbd_e2_parsing_data) |
| pbd_e2->parsing_data = cpu_to_le32(pbd_e2_parsing_data); |
| |
| tx_data_bd = (struct eth_tx_bd *)tx_start_bd; |
| |
| /* Handle fragmented skb */ |
| for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { |
| skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; |
| |
| mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 0, |
| skb_frag_size(frag), DMA_TO_DEVICE); |
| if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { |
| unsigned int pkts_compl = 0, bytes_compl = 0; |
| |
| DP(NETIF_MSG_TX_QUEUED, |
| "Unable to map page - dropping packet...\n"); |
| |
| /* we need unmap all buffers already mapped |
| * for this SKB; |
| * first_bd->nbd need to be properly updated |
| * before call to bnx2x_free_tx_pkt |
| */ |
| first_bd->nbd = cpu_to_le16(nbd); |
| bnx2x_free_tx_pkt(bp, txdata, |
| TX_BD(txdata->tx_pkt_prod), |
| &pkts_compl, &bytes_compl); |
| return NETDEV_TX_OK; |
| } |
| |
| bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); |
| tx_data_bd = &txdata->tx_desc_ring[bd_prod].reg_bd; |
| if (total_pkt_bd == NULL) |
| total_pkt_bd = &txdata->tx_desc_ring[bd_prod].reg_bd; |
| |
| tx_data_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); |
| tx_data_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); |
| tx_data_bd->nbytes = cpu_to_le16(skb_frag_size(frag)); |
| le16_add_cpu(&pkt_size, skb_frag_size(frag)); |
| nbd++; |
| |
| DP(NETIF_MSG_TX_QUEUED, |
| "frag %d bd @%p addr (%x:%x) nbytes %d\n", |
| i, tx_data_bd, tx_data_bd->addr_hi, tx_data_bd->addr_lo, |
| le16_to_cpu(tx_data_bd->nbytes)); |
| } |
| |
| DP(NETIF_MSG_TX_QUEUED, "last bd @%p\n", tx_data_bd); |
| |
| /* update with actual num BDs */ |
| first_bd->nbd = cpu_to_le16(nbd); |
| |
| bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); |
| |
| /* now send a tx doorbell, counting the next BD |
| * if the packet contains or ends with it |
| */ |
| if (TX_BD_POFF(bd_prod) < nbd) |
| nbd++; |
| |
| /* total_pkt_bytes should be set on the first data BD if |
| * it's not an LSO packet and there is more than one |
| * data BD. In this case pkt_size is limited by an MTU value. |
| * However we prefer to set it for an LSO packet (while we don't |
| * have to) in order to save some CPU cycles in a none-LSO |
| * case, when we much more care about them. |
| */ |
| if (total_pkt_bd != NULL) |
| total_pkt_bd->total_pkt_bytes = pkt_size; |
| |
| if (pbd_e1x) |
| DP(NETIF_MSG_TX_QUEUED, |
| "PBD (E1X) @%p ip_data %x ip_hlen %u ip_id %u lso_mss %u tcp_flags %x xsum %x seq %u hlen %u\n", |
| pbd_e1x, pbd_e1x->global_data, pbd_e1x->ip_hlen_w, |
| pbd_e1x->ip_id, pbd_e1x->lso_mss, pbd_e1x->tcp_flags, |
| pbd_e1x->tcp_pseudo_csum, pbd_e1x->tcp_send_seq, |
| le16_to_cpu(pbd_e1x->total_hlen_w)); |
| if (pbd_e2) |
| DP(NETIF_MSG_TX_QUEUED, |
| "PBD (E2) @%p dst %x %x %x src %x %x %x parsing_data %x\n", |
| pbd_e2, |
| pbd_e2->data.mac_addr.dst_hi, |
| pbd_e2->data.mac_addr.dst_mid, |
| pbd_e2->data.mac_addr.dst_lo, |
| pbd_e2->data.mac_addr.src_hi, |
| pbd_e2->data.mac_addr.src_mid, |
| pbd_e2->data.mac_addr.src_lo, |
| pbd_e2->parsing_data); |
| DP(NETIF_MSG_TX_QUEUED, "doorbell: nbd %d bd %u\n", nbd, bd_prod); |
| |
| netdev_tx_sent_queue(txq, skb->len); |
| |
| skb_tx_timestamp(skb); |
| |
| txdata->tx_pkt_prod++; |
| /* |
| * Make sure that the BD data is updated before updating the producer |
| * since FW might read the BD right after the producer is updated. |
| * This is only applicable for weak-ordered memory model archs such |
| * as IA-64. The following barrier is also mandatory since FW will |
| * assumes packets must have BDs. |
| */ |
| wmb(); |
| |
| txdata->tx_db.data.prod += nbd; |
| barrier(); |
| |
| DOORBELL(bp, txdata->cid, txdata->tx_db.raw); |
| |
| mmiowb(); |
| |
| txdata->tx_bd_prod += nbd; |
| |
| if (unlikely(bnx2x_tx_avail(bp, txdata) < MAX_DESC_PER_TX_PKT)) { |
| netif_tx_stop_queue(txq); |
| |
| /* paired memory barrier is in bnx2x_tx_int(), we have to keep |
| * ordering of set_bit() in netif_tx_stop_queue() and read of |
| * fp->bd_tx_cons */ |
| smp_mb(); |
| |
| bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++; |
| if (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT) |
| netif_tx_wake_queue(txq); |
| } |
| txdata->tx_pkt++; |
| |
| return NETDEV_TX_OK; |
| } |
| |
| /** |
| * bnx2x_setup_tc - routine to configure net_device for multi tc |
| * |
| * @netdev: net device to configure |
| * @tc: number of traffic classes to enable |
| * |
| * callback connected to the ndo_setup_tc function pointer |
| */ |
| int bnx2x_setup_tc(struct net_device *dev, u8 num_tc) |
| { |
| int cos, prio, count, offset; |
| struct bnx2x *bp = netdev_priv(dev); |
| |
| /* setup tc must be called under rtnl lock */ |
| ASSERT_RTNL(); |
| |
| /* no traffic classes requested. Aborting */ |
| if (!num_tc) { |
| netdev_reset_tc(dev); |
| return 0; |
| } |
| |
| /* requested to support too many traffic classes */ |
| if (num_tc > bp->max_cos) { |
| BNX2X_ERR("support for too many traffic classes requested: %d. Max supported is %d\n", |
| num_tc, bp->max_cos); |
| return -EINVAL; |
| } |
| |
| /* declare amount of supported traffic classes */ |
| if (netdev_set_num_tc(dev, num_tc)) { |
| BNX2X_ERR("failed to declare %d traffic classes\n", num_tc); |
| return -EINVAL; |
| } |
| |
| /* configure priority to traffic class mapping */ |
| for (prio = 0; prio < BNX2X_MAX_PRIORITY; prio++) { |
| netdev_set_prio_tc_map(dev, prio, bp->prio_to_cos[prio]); |
| DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, |
| "mapping priority %d to tc %d\n", |
| prio, bp->prio_to_cos[prio]); |
| } |
| |
| /* Use this configuration to differentiate tc0 from other COSes |
| This can be used for ets or pfc, and save the effort of setting |
| up a multio class queue disc or negotiating DCBX with a switch |
| netdev_set_prio_tc_map(dev, 0, 0); |
| DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", 0, 0); |
| for (prio = 1; prio < 16; prio++) { |
| netdev_set_prio_tc_map(dev, prio, 1); |
| DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", prio, 1); |
| } */ |
| |
| /* configure traffic class to transmission queue mapping */ |
| for (cos = 0; cos < bp->max_cos; cos++) { |
| count = BNX2X_NUM_ETH_QUEUES(bp); |
| offset = cos * BNX2X_NUM_NON_CNIC_QUEUES(bp); |
| netdev_set_tc_queue(dev, cos, count, offset); |
| DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, |
| "mapping tc %d to offset %d count %d\n", |
| cos, offset, count); |
| } |
| |
| return 0; |
| } |
| |
| /* called with rtnl_lock */ |
| int bnx2x_change_mac_addr(struct net_device *dev, void *p) |
| { |
| struct sockaddr *addr = p; |
| struct bnx2x *bp = netdev_priv(dev); |
| int rc = 0; |
| |
| if (!bnx2x_is_valid_ether_addr(bp, addr->sa_data)) { |
| BNX2X_ERR("Requested MAC address is not valid\n"); |
| return -EINVAL; |
| } |
| |
| if ((IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp)) && |
| !is_zero_ether_addr(addr->sa_data)) { |
| BNX2X_ERR("Can't configure non-zero address on iSCSI or FCoE functions in MF-SD mode\n"); |
| return -EINVAL; |
| } |
| |
| if (netif_running(dev)) { |
| rc = bnx2x_set_eth_mac(bp, false); |
| if (rc) |
| return rc; |
| } |
| |
| memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); |
| |
| if (netif_running(dev)) |
| rc = bnx2x_set_eth_mac(bp, true); |
| |
| return rc; |
| } |
| |
| static void bnx2x_free_fp_mem_at(struct bnx2x *bp, int fp_index) |
| { |
| union host_hc_status_block *sb = &bnx2x_fp(bp, fp_index, status_blk); |
| struct bnx2x_fastpath *fp = &bp->fp[fp_index]; |
| u8 cos; |
| |
| /* Common */ |
| |
| if (IS_FCOE_IDX(fp_index)) { |
| memset(sb, 0, sizeof(union host_hc_status_block)); |
| fp->status_blk_mapping = 0; |
| } else { |
| /* status blocks */ |
| if (!CHIP_IS_E1x(bp)) |
| BNX2X_PCI_FREE(sb->e2_sb, |
| bnx2x_fp(bp, fp_index, |
| status_blk_mapping), |
| sizeof(struct host_hc_status_block_e2)); |
| else |
| BNX2X_PCI_FREE(sb->e1x_sb, |
| bnx2x_fp(bp, fp_index, |
| status_blk_mapping), |
| sizeof(struct host_hc_status_block_e1x)); |
| } |
| |
| /* Rx */ |
| if (!skip_rx_queue(bp, fp_index)) { |
| bnx2x_free_rx_bds(fp); |
| |
| /* fastpath rx rings: rx_buf rx_desc rx_comp */ |
| BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_buf_ring)); |
| BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_desc_ring), |
| bnx2x_fp(bp, fp_index, rx_desc_mapping), |
| sizeof(struct eth_rx_bd) * NUM_RX_BD); |
| |
| BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_comp_ring), |
| bnx2x_fp(bp, fp_index, rx_comp_mapping), |
| sizeof(struct eth_fast_path_rx_cqe) * |
| NUM_RCQ_BD); |
| |
| /* SGE ring */ |
| BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_page_ring)); |
| BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_sge_ring), |
| bnx2x_fp(bp, fp_index, rx_sge_mapping), |
| BCM_PAGE_SIZE * NUM_RX_SGE_PAGES); |
| } |
| |
| /* Tx */ |
| if (!skip_tx_queue(bp, fp_index)) { |
| /* fastpath tx rings: tx_buf tx_desc */ |
| for_each_cos_in_tx_queue(fp, cos) { |
| struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; |
| |
| DP(NETIF_MSG_IFDOWN, |
| "freeing tx memory of fp %d cos %d cid %d\n", |
| fp_index, cos, txdata->cid); |
| |
| BNX2X_FREE(txdata->tx_buf_ring); |
| BNX2X_PCI_FREE(txdata->tx_desc_ring, |
| txdata->tx_desc_mapping, |
| sizeof(union eth_tx_bd_types) * NUM_TX_BD); |
| } |
| } |
| /* end of fastpath */ |
| } |
| |
| void bnx2x_free_fp_mem_cnic(struct bnx2x *bp) |
| { |
| int i; |
| for_each_cnic_queue(bp, i) |
| bnx2x_free_fp_mem_at(bp, i); |
| } |
| |
| void bnx2x_free_fp_mem(struct bnx2x *bp) |
| { |
| int i; |
| for_each_eth_queue(bp, i) |
| bnx2x_free_fp_mem_at(bp, i); |
| } |
| |
| static void set_sb_shortcuts(struct bnx2x *bp, int index) |
| { |
| union host_hc_status_block status_blk = bnx2x_fp(bp, index, status_blk); |
| if (!CHIP_IS_E1x(bp)) { |
| bnx2x_fp(bp, index, sb_index_values) = |
| (__le16 *)status_blk.e2_sb->sb.index_values; |
| bnx2x_fp(bp, index, sb_running_index) = |
| (__le16 *)status_blk.e2_sb->sb.running_index; |
| } else { |
| bnx2x_fp(bp, index, sb_index_values) = |
| (__le16 *)status_blk.e1x_sb->sb.index_values; |
| bnx2x_fp(bp, index, sb_running_index) = |
| (__le16 *)status_blk.e1x_sb->sb.running_index; |
| } |
| } |
| |
| /* Returns the number of actually allocated BDs */ |
| static int bnx2x_alloc_rx_bds(struct bnx2x_fastpath *fp, |
| int rx_ring_size) |
| { |
| struct bnx2x *bp = fp->bp; |
| u16 ring_prod, cqe_ring_prod; |
| int i, failure_cnt = 0; |
| |
| fp->rx_comp_cons = 0; |
| cqe_ring_prod = ring_prod = 0; |
| |
| /* This routine is called only during fo init so |
| * fp->eth_q_stats.rx_skb_alloc_failed = 0 |
| */ |
| for (i = 0; i < rx_ring_size; i++) { |
| if (bnx2x_alloc_rx_data(bp, fp, ring_prod) < 0) { |
| failure_cnt++; |
| continue; |
| } |
| ring_prod = NEXT_RX_IDX(ring_prod); |
| cqe_ring_prod = NEXT_RCQ_IDX(cqe_ring_prod); |
| WARN_ON(ring_prod <= (i - failure_cnt)); |
| } |
| |
| if (failure_cnt) |
| BNX2X_ERR("was only able to allocate %d rx skbs on queue[%d]\n", |
| i - failure_cnt, fp->index); |
| |
| fp->rx_bd_prod = ring_prod; |
| /* Limit the CQE producer by the CQE ring size */ |
| fp->rx_comp_prod = min_t(u16, NUM_RCQ_RINGS*RCQ_DESC_CNT, |
| cqe_ring_prod); |
| fp->rx_pkt = fp->rx_calls = 0; |
| |
| bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed += failure_cnt; |
| |
| return i - failure_cnt; |
| } |
| |
| static void bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath *fp) |
| { |
| int i; |
| |
| for (i = 1; i <= NUM_RCQ_RINGS; i++) { |
| struct eth_rx_cqe_next_page *nextpg; |
| |
| nextpg = (struct eth_rx_cqe_next_page *) |
| &fp->rx_comp_ring[RCQ_DESC_CNT * i - 1]; |
| nextpg->addr_hi = |
| cpu_to_le32(U64_HI(fp->rx_comp_mapping + |
| BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS))); |
| nextpg->addr_lo = |
| cpu_to_le32(U64_LO(fp->rx_comp_mapping + |
| BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS))); |
| } |
| } |
| |
| static int bnx2x_alloc_fp_mem_at(struct bnx2x *bp, int index) |
| { |
| union host_hc_status_block *sb; |
| struct bnx2x_fastpath *fp = &bp->fp[index]; |
| int ring_size = 0; |
| u8 cos; |
| int rx_ring_size = 0; |
| |
| if (!bp->rx_ring_size && |
| (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))) { |
| rx_ring_size = MIN_RX_SIZE_NONTPA; |
| bp->rx_ring_size = rx_ring_size; |
| } else if (!bp->rx_ring_size) { |
| rx_ring_size = MAX_RX_AVAIL/BNX2X_NUM_RX_QUEUES(bp); |
| |
| if (CHIP_IS_E3(bp)) { |
| u32 cfg = SHMEM_RD(bp, |
| dev_info.port_hw_config[BP_PORT(bp)]. |
| default_cfg); |
| |
| /* Decrease ring size for 1G functions */ |
| if ((cfg & PORT_HW_CFG_NET_SERDES_IF_MASK) == |
| PORT_HW_CFG_NET_SERDES_IF_SGMII) |
| rx_ring_size /= 10; |
| } |
| |
| /* allocate at least number of buffers required by FW */ |
| rx_ring_size = max_t(int, bp->disable_tpa ? MIN_RX_SIZE_NONTPA : |
| MIN_RX_SIZE_TPA, rx_ring_size); |
| |
| bp->rx_ring_size = rx_ring_size; |
| } else /* if rx_ring_size specified - use it */ |
| rx_ring_size = bp->rx_ring_size; |
| |
| DP(BNX2X_MSG_SP, "calculated rx_ring_size %d\n", rx_ring_size); |
| |
| /* Common */ |
| sb = &bnx2x_fp(bp, index, status_blk); |
| |
| if (!IS_FCOE_IDX(index)) { |
| /* status blocks */ |
| if (!CHIP_IS_E1x(bp)) |
| BNX2X_PCI_ALLOC(sb->e2_sb, |
| &bnx2x_fp(bp, index, status_blk_mapping), |
| sizeof(struct host_hc_status_block_e2)); |
| else |
| BNX2X_PCI_ALLOC(sb->e1x_sb, |
| &bnx2x_fp(bp, index, status_blk_mapping), |
| sizeof(struct host_hc_status_block_e1x)); |
| } |
| |
| /* FCoE Queue uses Default SB and doesn't ACK the SB, thus no need to |
| * set shortcuts for it. |
| */ |
| if (!IS_FCOE_IDX(index)) |
| set_sb_shortcuts(bp, index); |
| |
| /* Tx */ |
| if (!skip_tx_queue(bp, index)) { |
| /* fastpath tx rings: tx_buf tx_desc */ |
| for_each_cos_in_tx_queue(fp, cos) { |
| struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; |
| |
| DP(NETIF_MSG_IFUP, |
| "allocating tx memory of fp %d cos %d\n", |
| index, cos); |
| |
| BNX2X_ALLOC(txdata->tx_buf_ring, |
| sizeof(struct sw_tx_bd) * NUM_TX_BD); |
| BNX2X_PCI_ALLOC(txdata->tx_desc_ring, |
| &txdata->tx_desc_mapping, |
| sizeof(union eth_tx_bd_types) * NUM_TX_BD); |
| } |
| } |
| |
| /* Rx */ |
| if (!skip_rx_queue(bp, index)) { |
| /* fastpath rx rings: rx_buf rx_desc rx_comp */ |
| BNX2X_ALLOC(bnx2x_fp(bp, index, rx_buf_ring), |
| sizeof(struct sw_rx_bd) * NUM_RX_BD); |
| BNX2X_PCI_ALLOC(bnx2x_fp(bp, index, rx_desc_ring), |
| &bnx2x_fp(bp, index, rx_desc_mapping), |
| sizeof(struct eth_rx_bd) * NUM_RX_BD); |
| |
| /* Seed all CQEs by 1s */ |
| BNX2X_PCI_FALLOC(bnx2x_fp(bp, index, rx_comp_ring), |
| &bnx2x_fp(bp, index, rx_comp_mapping), |
| sizeof(struct eth_fast_path_rx_cqe) * |
| NUM_RCQ_BD); |
| |
| /* SGE ring */ |
| BNX2X_ALLOC(bnx2x_fp(bp, index, rx_page_ring), |
| sizeof(struct sw_rx_page) * NUM_RX_SGE); |
| BNX2X_PCI_ALLOC(bnx2x_fp(bp, index, rx_sge_ring), |
| &bnx2x_fp(bp, index, rx_sge_mapping), |
| BCM_PAGE_SIZE * NUM_RX_SGE_PAGES); |
| /* RX BD ring */ |
| bnx2x_set_next_page_rx_bd(fp); |
| |
| /* CQ ring */ |
| bnx2x_set_next_page_rx_cq(fp); |
| |
| /* BDs */ |
| ring_size = bnx2x_alloc_rx_bds(fp, rx_ring_size); |
| if (ring_size < rx_ring_size) |
| goto alloc_mem_err; |
| } |
| |
| return 0; |
| |
| /* handles low memory cases */ |
| alloc_mem_err: |
| BNX2X_ERR("Unable to allocate full memory for queue %d (size %d)\n", |
| index, ring_size); |
| /* FW will drop all packets if queue is not big enough, |
| * In these cases we disable the queue |
| * Min size is different for OOO, TPA and non-TPA queues |
| */ |
| if (ring_size < (fp->disable_tpa ? |
| MIN_RX_SIZE_NONTPA : MIN_RX_SIZE_TPA)) { |
| /* release memory allocated for this queue */ |
| bnx2x_free_fp_mem_at(bp, index); |
| return -ENOMEM; |
| } |
| return 0; |
| } |
| |
| int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp) |
| { |
| if (!NO_FCOE(bp)) |
| /* FCoE */ |
| if (bnx2x_alloc_fp_mem_at(bp, FCOE_IDX(bp))) |
| /* we will fail load process instead of mark |
| * NO_FCOE_FLAG |
| */ |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| int bnx2x_alloc_fp_mem(struct bnx2x *bp) |
| { |
| int i; |
| |
| /* 1. Allocate FP for leading - fatal if error |
| * 2. Allocate RSS - fix number of queues if error |
| */ |
| |
| /* leading */ |
| if (bnx2x_alloc_fp_mem_at(bp, 0)) |
| return -ENOMEM; |
| |
| /* RSS */ |
| for_each_nondefault_eth_queue(bp, i) |
| if (bnx2x_alloc_fp_mem_at(bp, i)) |
| break; |
| |
| /* handle memory failures */ |
| if (i != BNX2X_NUM_ETH_QUEUES(bp)) { |
| int delta = BNX2X_NUM_ETH_QUEUES(bp) - i; |
| |
| WARN_ON(delta < 0); |
| bnx2x_shrink_eth_fp(bp, delta); |
| if (CNIC_SUPPORT(bp)) |
| /* move non eth FPs next to last eth FP |
| * must be done in that order |
| * FCOE_IDX < FWD_IDX < OOO_IDX |
| */ |
| |
| /* move FCoE fp even NO_FCOE_FLAG is on */ |
| bnx2x_move_fp(bp, FCOE_IDX(bp), FCOE_IDX(bp) - delta); |
| bp->num_ethernet_queues -= delta; |
| bp->num_queues = bp->num_ethernet_queues + |
| bp->num_cnic_queues; |
| BNX2X_ERR("Adjusted num of queues from %d to %d\n", |
| bp->num_queues + delta, bp->num_queues); |
| } |
| |
| return 0; |
| } |
| |
| void bnx2x_free_mem_bp(struct bnx2x *bp) |
| { |
| int i; |
| |
| for (i = 0; i < bp->fp_array_size; i++) |
| kfree(bp->fp[i].tpa_info); |
| kfree(bp->fp); |
| kfree(bp->sp_objs); |
| kfree(bp->fp_stats); |
| kfree(bp->bnx2x_txq); |
| kfree(bp->msix_table); |
| kfree(bp->ilt); |
| } |
| |
| int bnx2x_alloc_mem_bp(struct bnx2x *bp) |
| { |
| struct bnx2x_fastpath *fp; |
| struct msix_entry *tbl; |
| struct bnx2x_ilt *ilt; |
| int msix_table_size = 0; |
| int fp_array_size, txq_array_size; |
| int i; |
| |
| /* |
| * The biggest MSI-X table we might need is as a maximum number of fast |
| * path IGU SBs plus default SB (for PF only). |
| */ |
| msix_table_size = bp->igu_sb_cnt; |
| if (IS_PF(bp)) |
| msix_table_size++; |
| BNX2X_DEV_INFO("msix_table_size %d\n", msix_table_size); |
| |
| /* fp array: RSS plus CNIC related L2 queues */ |
| fp_array_size = BNX2X_MAX_RSS_COUNT(bp) + CNIC_SUPPORT(bp); |
| bp->fp_array_size = fp_array_size; |
| BNX2X_DEV_INFO("fp_array_size %d\n", bp->fp_array_size); |
| |
| fp = kcalloc(bp->fp_array_size, sizeof(*fp), GFP_KERNEL); |
| if (!fp) |
| goto alloc_err; |
| for (i = 0; i < bp->fp_array_size; i++) { |
| fp[i].tpa_info = |
| kcalloc(ETH_MAX_AGGREGATION_QUEUES_E1H_E2, |
| sizeof(struct bnx2x_agg_info), GFP_KERNEL); |
| if (!(fp[i].tpa_info)) |
| goto alloc_err; |
| } |
| |
| bp->fp = fp; |
| |
| /* allocate sp objs */ |
| bp->sp_objs = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_sp_objs), |
| GFP_KERNEL); |
| if (!bp->sp_objs) |
| goto alloc_err; |
| |
| /* allocate fp_stats */ |
| bp->fp_stats = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_fp_stats), |
| GFP_KERNEL); |
| if (!bp->fp_stats) |
| goto alloc_err; |
| |
| /* Allocate memory for the transmission queues array */ |
| txq_array_size = |
| BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + CNIC_SUPPORT(bp); |
| BNX2X_DEV_INFO("txq_array_size %d", txq_array_size); |
| |
| bp->bnx2x_txq = kcalloc(txq_array_size, sizeof(struct bnx2x_fp_txdata), |
| GFP_KERNEL); |
| if (!bp->bnx2x_txq) |
| goto alloc_err; |
| |
| /* msix table */ |
| tbl = kcalloc(msix_table_size, sizeof(*tbl), GFP_KERNEL); |
| if (!tbl) |
| goto alloc_err; |
| bp->msix_table = tbl; |
| |
| /* ilt */ |
| ilt = kzalloc(sizeof(*ilt), GFP_KERNEL); |
| if (!ilt) |
| goto alloc_err; |
| bp->ilt = ilt; |
| |
| return 0; |
| alloc_err: |
| bnx2x_free_mem_bp(bp); |
| return -ENOMEM; |
| } |
| |
| int bnx2x_reload_if_running(struct net_device *dev) |
| { |
| struct bnx2x *bp = netdev_priv(dev); |
| |
| if (unlikely(!netif_running(dev))) |
| return 0; |
| |
| bnx2x_nic_unload(bp, UNLOAD_NORMAL, true); |
| return bnx2x_nic_load(bp, LOAD_NORMAL); |
| } |
| |
| int bnx2x_get_cur_phy_idx(struct bnx2x *bp) |
| { |
| u32 sel_phy_idx = 0; |
| if (bp->link_params.num_phys <= 1) |
| return INT_PHY; |
| |
| if (bp->link_vars.link_up) { |
| sel_phy_idx = EXT_PHY1; |
| /* In case link is SERDES, check if the EXT_PHY2 is the one */ |
| if ((bp->link_vars.link_status & LINK_STATUS_SERDES_LINK) && |
| (bp->link_params.phy[EXT_PHY2].supported & SUPPORTED_FIBRE)) |
| sel_phy_idx = EXT_PHY2; |
| } else { |
| |
| switch (bnx2x_phy_selection(&bp->link_params)) { |
| case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT: |
| case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY: |
| case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY: |
| sel_phy_idx = EXT_PHY1; |
| break; |
| case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY: |
| case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY: |
| sel_phy_idx = EXT_PHY2; |
| break; |
| } |
| } |
| |
| return sel_phy_idx; |
| } |
| int bnx2x_get_link_cfg_idx(struct bnx2x *bp) |
| { |
| u32 sel_phy_idx = bnx2x_get_cur_phy_idx(bp); |
| /* |
| * The selected activated PHY is always after swapping (in case PHY |
| * swapping is enabled). So when swapping is enabled, we need to reverse |
| * the configuration |
| */ |
| |
| if (bp->link_params.multi_phy_config & |
| PORT_HW_CFG_PHY_SWAPPED_ENABLED) { |
| if (sel_phy_idx == EXT_PHY1) |
| sel_phy_idx = EXT_PHY2; |
| else if (sel_phy_idx == EXT_PHY2) |
| sel_phy_idx = EXT_PHY1; |
| } |
| return LINK_CONFIG_IDX(sel_phy_idx); |
| } |
| |
| #ifdef NETDEV_FCOE_WWNN |
| int bnx2x_fcoe_get_wwn(struct net_device *dev, u64 *wwn, int type) |
| { |
| struct bnx2x *bp = netdev_priv(dev); |
| struct cnic_eth_dev *cp = &bp->cnic_eth_dev; |
| |
| switch (type) { |
| case NETDEV_FCOE_WWNN: |
| *wwn = HILO_U64(cp->fcoe_wwn_node_name_hi, |
| cp->fcoe_wwn_node_name_lo); |
| break; |
| case NETDEV_FCOE_WWPN: |
| *wwn = HILO_U64(cp->fcoe_wwn_port_name_hi, |
| cp->fcoe_wwn_port_name_lo); |
| break; |
| default: |
| BNX2X_ERR("Wrong WWN type requested - %d\n", type); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| #endif |
| |
| /* called with rtnl_lock */ |
| int bnx2x_change_mtu(struct net_device *dev, int new_mtu) |
| { |
| struct bnx2x *bp = netdev_priv(dev); |
| |
| if (bp->recovery_state != BNX2X_RECOVERY_DONE) { |
| BNX2X_ERR("Can't perform change MTU during parity recovery\n"); |
| return -EAGAIN; |
| } |
| |
| if ((new_mtu > ETH_MAX_JUMBO_PACKET_SIZE) || |
| ((new_mtu + ETH_HLEN) < ETH_MIN_PACKET_SIZE)) { |
| BNX2X_ERR("Can't support requested MTU size\n"); |
| return -EINVAL; |
| } |
| |
| /* This does not race with packet allocation |
| * because the actual alloc size is |
| * only updated as part of load |
| */ |
| dev->mtu = new_mtu; |
| |
| return bnx2x_reload_if_running(dev); |
| } |
| |
| netdev_features_t bnx2x_fix_features(struct net_device *dev, |
| netdev_features_t features) |
| { |
| struct bnx2x *bp = netdev_priv(dev); |
| |
| /* TPA requires Rx CSUM offloading */ |
| if (!(features & NETIF_F_RXCSUM) || bp->disable_tpa) { |
| features &= ~NETIF_F_LRO; |
| features &= ~NETIF_F_GRO; |
| } |
| |
| return features; |
| } |
| |
| int bnx2x_set_features(struct net_device *dev, netdev_features_t features) |
| { |
| struct bnx2x *bp = netdev_priv(dev); |
| u32 flags = bp->flags; |
| u32 changes; |
| bool bnx2x_reload = false; |
| |
| if (features & NETIF_F_LRO) |
| flags |= TPA_ENABLE_FLAG; |
| else |
| flags &= ~TPA_ENABLE_FLAG; |
| |
| if (features & NETIF_F_GRO) |
| flags |= GRO_ENABLE_FLAG; |
| else |
| flags &= ~GRO_ENABLE_FLAG; |
| |
| if (features & NETIF_F_LOOPBACK) { |
| if (bp->link_params.loopback_mode != LOOPBACK_BMAC) { |
| bp->link_params.loopback_mode = LOOPBACK_BMAC; |
| bnx2x_reload = true; |
| } |
| } else { |
| if (bp->link_params.loopback_mode != LOOPBACK_NONE) { |
| bp->link_params.loopback_mode = LOOPBACK_NONE; |
| bnx2x_reload = true; |
| } |
| } |
| |
| changes = flags ^ bp->flags; |
| |
| /* if GRO is changed while LRO is enabled, don't force a reload */ |
| if ((changes & GRO_ENABLE_FLAG) && (flags & TPA_ENABLE_FLAG)) |
| changes &= ~GRO_ENABLE_FLAG; |
| |
| if (changes) |
| bnx2x_reload = true; |
| |
| bp->flags = flags; |
| |
| if (bnx2x_reload) { |
| if (bp->recovery_state == BNX2X_RECOVERY_DONE) |
| return bnx2x_reload_if_running(dev); |
| /* else: bnx2x_nic_load() will be called at end of recovery */ |
| } |
| |
| return 0; |
| } |
| |
| void bnx2x_tx_timeout(struct net_device *dev) |
| { |
| struct bnx2x *bp = netdev_priv(dev); |
| |
| #ifdef BNX2X_STOP_ON_ERROR |
| if (!bp->panic) |
| bnx2x_panic(); |
| #endif |
| |
| smp_mb__before_clear_bit(); |
| set_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state); |
| smp_mb__after_clear_bit(); |
| |
| /* This allows the netif to be shutdown gracefully before resetting */ |
| schedule_delayed_work(&bp->sp_rtnl_task, 0); |
| } |
| |
| int bnx2x_suspend(struct pci_dev *pdev, pm_message_t state) |
| { |
| struct net_device *dev = pci_get_drvdata(pdev); |
| struct bnx2x *bp; |
| |
| if (!dev) { |
| dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n"); |
| return -ENODEV; |
| } |
| bp = netdev_priv(dev); |
| |
| rtnl_lock(); |
| |
| pci_save_state(pdev); |
| |
| if (!netif_running(dev)) { |
| rtnl_unlock(); |
| return 0; |
| } |
| |
| netif_device_detach(dev); |
| |
| bnx2x_nic_unload(bp, UNLOAD_CLOSE, false); |
| |
| bnx2x_set_power_state(bp, pci_choose_state(pdev, state)); |
| |
| rtnl_unlock(); |
| |
| return 0; |
| } |
| |
| int bnx2x_resume(struct pci_dev *pdev) |
| { |
| struct net_device *dev = pci_get_drvdata(pdev); |
| struct bnx2x *bp; |
| int rc; |
| |
| if (!dev) { |
| dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n"); |
| return -ENODEV; |
| } |
| bp = netdev_priv(dev); |
| |
| if (bp->recovery_state != BNX2X_RECOVERY_DONE) { |
| BNX2X_ERR("Handling parity error recovery. Try again later\n"); |
| return -EAGAIN; |
| } |
| |
| rtnl_lock(); |
| |
| pci_restore_state(pdev); |
| |
| if (!netif_running(dev)) { |
| rtnl_unlock(); |
| return 0; |
| } |
| |
| bnx2x_set_power_state(bp, PCI_D0); |
| netif_device_attach(dev); |
| |
| rc = bnx2x_nic_load(bp, LOAD_OPEN); |
| |
| rtnl_unlock(); |
| |
| return rc; |
| } |
| |
| void bnx2x_set_ctx_validation(struct bnx2x *bp, struct eth_context *cxt, |
| u32 cid) |
| { |
| /* ustorm cxt validation */ |
| cxt->ustorm_ag_context.cdu_usage = |
| CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid), |
| CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE); |
| /* xcontext validation */ |
| cxt->xstorm_ag_context.cdu_reserved = |
| CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid), |
| CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE); |
| } |
| |
| static void storm_memset_hc_timeout(struct bnx2x *bp, u8 port, |
| u8 fw_sb_id, u8 sb_index, |
| u8 ticks) |
| { |
| u32 addr = BAR_CSTRORM_INTMEM + |
| CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index); |
| REG_WR8(bp, addr, ticks); |
| DP(NETIF_MSG_IFUP, |
| "port %x fw_sb_id %d sb_index %d ticks %d\n", |
| port, fw_sb_id, sb_index, ticks); |
| } |
| |
| static void storm_memset_hc_disable(struct bnx2x *bp, u8 port, |
| u16 fw_sb_id, u8 sb_index, |
| u8 disable) |
| { |
| u32 enable_flag = disable ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT); |
| u32 addr = BAR_CSTRORM_INTMEM + |
| CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index); |
| u8 flags = REG_RD8(bp, addr); |
| /* clear and set */ |
| flags &= ~HC_INDEX_DATA_HC_ENABLED; |
| flags |= enable_flag; |
| REG_WR8(bp, addr, flags); |
| DP(NETIF_MSG_IFUP, |
| "port %x fw_sb_id %d sb_index %d disable %d\n", |
| port, fw_sb_id, sb_index, disable); |
| } |
| |
| void bnx2x_update_coalesce_sb_index(struct bnx2x *bp, u8 fw_sb_id, |
| u8 sb_index, u8 disable, u16 usec) |
| { |
| int port = BP_PORT(bp); |
| u8 ticks = usec / BNX2X_BTR; |
| |
| storm_memset_hc_timeout(bp, port, fw_sb_id, sb_index, ticks); |
| |
| disable = disable ? 1 : (usec ? 0 : 1); |
| storm_memset_hc_disable(bp, port, fw_sb_id, sb_index, disable); |
| } |