|  | /* | 
|  | * Copyright 2014 Advanced Micro Devices, Inc. | 
|  | * | 
|  | * Permission is hereby granted, free of charge, to any person obtaining a | 
|  | * copy of this software and associated documentation files (the "Software"), | 
|  | * to deal in the Software without restriction, including without limitation | 
|  | * the rights to use, copy, modify, merge, publish, distribute, sublicense, | 
|  | * and/or sell copies of the Software, and to permit persons to whom the | 
|  | * Software is furnished to do so, subject to the following conditions: | 
|  | * | 
|  | * The above copyright notice and this permission notice shall be included in | 
|  | * all copies or substantial portions of the Software. | 
|  | * | 
|  | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | 
|  | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | 
|  | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL | 
|  | * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR | 
|  | * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, | 
|  | * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR | 
|  | * OTHER DEALINGS IN THE SOFTWARE. | 
|  | */ | 
|  |  | 
|  | #include <linux/mm_types.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/mman.h> | 
|  | #include <linux/memory.h> | 
|  | #include "kfd_priv.h" | 
|  | #include "kfd_events.h" | 
|  | #include <linux/device.h> | 
|  |  | 
|  | /* | 
|  | * A task can only be on a single wait_queue at a time, but we need to support | 
|  | * waiting on multiple events (any/all). | 
|  | * Instead of each event simply having a wait_queue with sleeping tasks, it | 
|  | * has a singly-linked list of tasks. | 
|  | * A thread that wants to sleep creates an array of these, one for each event | 
|  | * and adds one to each event's waiter chain. | 
|  | */ | 
|  | struct kfd_event_waiter { | 
|  | struct list_head waiters; | 
|  | struct task_struct *sleeping_task; | 
|  |  | 
|  | /* Transitions to true when the event this belongs to is signaled. */ | 
|  | bool activated; | 
|  |  | 
|  | /* Event */ | 
|  | struct kfd_event *event; | 
|  | uint32_t input_index; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Over-complicated pooled allocator for event notification slots. | 
|  | * | 
|  | * Each signal event needs a 64-bit signal slot where the signaler will write | 
|  | * a 1 before sending an interrupt.l (This is needed because some interrupts | 
|  | * do not contain enough spare data bits to identify an event.) | 
|  | * We get whole pages from vmalloc and map them to the process VA. | 
|  | * Individual signal events are then allocated a slot in a page. | 
|  | */ | 
|  |  | 
|  | struct signal_page { | 
|  | struct list_head event_pages;	/* kfd_process.signal_event_pages */ | 
|  | uint64_t *kernel_address; | 
|  | uint64_t __user *user_address; | 
|  | uint32_t page_index;		/* Index into the mmap aperture. */ | 
|  | unsigned int free_slots; | 
|  | unsigned long used_slot_bitmap[0]; | 
|  | }; | 
|  |  | 
|  | #define SLOTS_PER_PAGE KFD_SIGNAL_EVENT_LIMIT | 
|  | #define SLOT_BITMAP_SIZE BITS_TO_LONGS(SLOTS_PER_PAGE) | 
|  | #define BITS_PER_PAGE (ilog2(SLOTS_PER_PAGE)+1) | 
|  | #define SIGNAL_PAGE_SIZE (sizeof(struct signal_page) + \ | 
|  | SLOT_BITMAP_SIZE * sizeof(long)) | 
|  |  | 
|  | /* | 
|  | * For signal events, the event ID is used as the interrupt user data. | 
|  | * For SQ s_sendmsg interrupts, this is limited to 8 bits. | 
|  | */ | 
|  |  | 
|  | #define INTERRUPT_DATA_BITS 8 | 
|  | #define SIGNAL_EVENT_ID_SLOT_SHIFT 0 | 
|  |  | 
|  | static uint64_t *page_slots(struct signal_page *page) | 
|  | { | 
|  | return page->kernel_address; | 
|  | } | 
|  |  | 
|  | static bool allocate_free_slot(struct kfd_process *process, | 
|  | struct signal_page **out_page, | 
|  | unsigned int *out_slot_index) | 
|  | { | 
|  | struct signal_page *page; | 
|  |  | 
|  | list_for_each_entry(page, &process->signal_event_pages, event_pages) { | 
|  | if (page->free_slots > 0) { | 
|  | unsigned int slot = | 
|  | find_first_zero_bit(page->used_slot_bitmap, | 
|  | SLOTS_PER_PAGE); | 
|  |  | 
|  | __set_bit(slot, page->used_slot_bitmap); | 
|  | page->free_slots--; | 
|  |  | 
|  | page_slots(page)[slot] = UNSIGNALED_EVENT_SLOT; | 
|  |  | 
|  | *out_page = page; | 
|  | *out_slot_index = slot; | 
|  |  | 
|  | pr_debug("allocated event signal slot in page %p, slot %d\n", | 
|  | page, slot); | 
|  |  | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | pr_debug("No free event signal slots were found for process %p\n", | 
|  | process); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | #define list_tail_entry(head, type, member) \ | 
|  | list_entry((head)->prev, type, member) | 
|  |  | 
|  | static bool allocate_signal_page(struct file *devkfd, struct kfd_process *p) | 
|  | { | 
|  | void *backing_store; | 
|  | struct signal_page *page; | 
|  |  | 
|  | page = kzalloc(SIGNAL_PAGE_SIZE, GFP_KERNEL); | 
|  | if (!page) | 
|  | goto fail_alloc_signal_page; | 
|  |  | 
|  | page->free_slots = SLOTS_PER_PAGE; | 
|  |  | 
|  | backing_store = (void *) __get_free_pages(GFP_KERNEL | __GFP_ZERO, | 
|  | get_order(KFD_SIGNAL_EVENT_LIMIT * 8)); | 
|  | if (!backing_store) | 
|  | goto fail_alloc_signal_store; | 
|  |  | 
|  | /* prevent user-mode info leaks */ | 
|  | memset(backing_store, (uint8_t) UNSIGNALED_EVENT_SLOT, | 
|  | KFD_SIGNAL_EVENT_LIMIT * 8); | 
|  |  | 
|  | page->kernel_address = backing_store; | 
|  |  | 
|  | if (list_empty(&p->signal_event_pages)) | 
|  | page->page_index = 0; | 
|  | else | 
|  | page->page_index = list_tail_entry(&p->signal_event_pages, | 
|  | struct signal_page, | 
|  | event_pages)->page_index + 1; | 
|  |  | 
|  | pr_debug("allocated new event signal page at %p, for process %p\n", | 
|  | page, p); | 
|  | pr_debug("page index is %d\n", page->page_index); | 
|  |  | 
|  | list_add(&page->event_pages, &p->signal_event_pages); | 
|  |  | 
|  | return true; | 
|  |  | 
|  | fail_alloc_signal_store: | 
|  | kfree(page); | 
|  | fail_alloc_signal_page: | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool allocate_event_notification_slot(struct file *devkfd, | 
|  | struct kfd_process *p, | 
|  | struct signal_page **page, | 
|  | unsigned int *signal_slot_index) | 
|  | { | 
|  | bool ret; | 
|  |  | 
|  | ret = allocate_free_slot(p, page, signal_slot_index); | 
|  | if (ret == false) { | 
|  | ret = allocate_signal_page(devkfd, p); | 
|  | if (ret == true) | 
|  | ret = allocate_free_slot(p, page, signal_slot_index); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Assumes that the process's event_mutex is locked. */ | 
|  | static void release_event_notification_slot(struct signal_page *page, | 
|  | size_t slot_index) | 
|  | { | 
|  | __clear_bit(slot_index, page->used_slot_bitmap); | 
|  | page->free_slots++; | 
|  |  | 
|  | /* We don't free signal pages, they are retained by the process | 
|  | * and reused until it exits. */ | 
|  | } | 
|  |  | 
|  | static struct signal_page *lookup_signal_page_by_index(struct kfd_process *p, | 
|  | unsigned int page_index) | 
|  | { | 
|  | struct signal_page *page; | 
|  |  | 
|  | /* | 
|  | * This is safe because we don't delete signal pages until the | 
|  | * process exits. | 
|  | */ | 
|  | list_for_each_entry(page, &p->signal_event_pages, event_pages) | 
|  | if (page->page_index == page_index) | 
|  | return page; | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Assumes that p->event_mutex is held and of course that p is not going | 
|  | * away (current or locked). | 
|  | */ | 
|  | static struct kfd_event *lookup_event_by_id(struct kfd_process *p, uint32_t id) | 
|  | { | 
|  | struct kfd_event *ev; | 
|  |  | 
|  | hash_for_each_possible(p->events, ev, events, id) | 
|  | if (ev->event_id == id) | 
|  | return ev; | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static u32 make_signal_event_id(struct signal_page *page, | 
|  | unsigned int signal_slot_index) | 
|  | { | 
|  | return page->page_index | | 
|  | (signal_slot_index << SIGNAL_EVENT_ID_SLOT_SHIFT); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Produce a kfd event id for a nonsignal event. | 
|  | * These are arbitrary numbers, so we do a sequential search through | 
|  | * the hash table for an unused number. | 
|  | */ | 
|  | static u32 make_nonsignal_event_id(struct kfd_process *p) | 
|  | { | 
|  | u32 id; | 
|  |  | 
|  | for (id = p->next_nonsignal_event_id; | 
|  | id < KFD_LAST_NONSIGNAL_EVENT_ID && | 
|  | lookup_event_by_id(p, id) != NULL; | 
|  | id++) | 
|  | ; | 
|  |  | 
|  | if (id < KFD_LAST_NONSIGNAL_EVENT_ID) { | 
|  |  | 
|  | /* | 
|  | * What if id == LAST_NONSIGNAL_EVENT_ID - 1? | 
|  | * Then next_nonsignal_event_id = LAST_NONSIGNAL_EVENT_ID so | 
|  | * the first loop fails immediately and we proceed with the | 
|  | * wraparound loop below. | 
|  | */ | 
|  | p->next_nonsignal_event_id = id + 1; | 
|  |  | 
|  | return id; | 
|  | } | 
|  |  | 
|  | for (id = KFD_FIRST_NONSIGNAL_EVENT_ID; | 
|  | id < KFD_LAST_NONSIGNAL_EVENT_ID && | 
|  | lookup_event_by_id(p, id) != NULL; | 
|  | id++) | 
|  | ; | 
|  |  | 
|  |  | 
|  | if (id < KFD_LAST_NONSIGNAL_EVENT_ID) { | 
|  | p->next_nonsignal_event_id = id + 1; | 
|  | return id; | 
|  | } | 
|  |  | 
|  | p->next_nonsignal_event_id = KFD_FIRST_NONSIGNAL_EVENT_ID; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct kfd_event *lookup_event_by_page_slot(struct kfd_process *p, | 
|  | struct signal_page *page, | 
|  | unsigned int signal_slot) | 
|  | { | 
|  | return lookup_event_by_id(p, make_signal_event_id(page, signal_slot)); | 
|  | } | 
|  |  | 
|  | static int create_signal_event(struct file *devkfd, | 
|  | struct kfd_process *p, | 
|  | struct kfd_event *ev) | 
|  | { | 
|  | if (p->signal_event_count == KFD_SIGNAL_EVENT_LIMIT) { | 
|  | pr_warn("amdkfd: Signal event wasn't created because limit was reached\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | if (!allocate_event_notification_slot(devkfd, p, &ev->signal_page, | 
|  | &ev->signal_slot_index)) { | 
|  | pr_warn("amdkfd: Signal event wasn't created because out of kernel memory\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | p->signal_event_count++; | 
|  |  | 
|  | ev->user_signal_address = | 
|  | &ev->signal_page->user_address[ev->signal_slot_index]; | 
|  |  | 
|  | ev->event_id = make_signal_event_id(ev->signal_page, | 
|  | ev->signal_slot_index); | 
|  |  | 
|  | pr_debug("signal event number %zu created with id %d, address %p\n", | 
|  | p->signal_event_count, ev->event_id, | 
|  | ev->user_signal_address); | 
|  |  | 
|  | pr_debug("signal event number %zu created with id %d, address %p\n", | 
|  | p->signal_event_count, ev->event_id, | 
|  | ev->user_signal_address); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * No non-signal events are supported yet. | 
|  | * We create them as events that never signal. | 
|  | * Set event calls from user-mode are failed. | 
|  | */ | 
|  | static int create_other_event(struct kfd_process *p, struct kfd_event *ev) | 
|  | { | 
|  | ev->event_id = make_nonsignal_event_id(p); | 
|  | if (ev->event_id == 0) | 
|  | return -ENOMEM; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void kfd_event_init_process(struct kfd_process *p) | 
|  | { | 
|  | mutex_init(&p->event_mutex); | 
|  | hash_init(p->events); | 
|  | INIT_LIST_HEAD(&p->signal_event_pages); | 
|  | p->next_nonsignal_event_id = KFD_FIRST_NONSIGNAL_EVENT_ID; | 
|  | p->signal_event_count = 0; | 
|  | } | 
|  |  | 
|  | static void destroy_event(struct kfd_process *p, struct kfd_event *ev) | 
|  | { | 
|  | if (ev->signal_page != NULL) { | 
|  | release_event_notification_slot(ev->signal_page, | 
|  | ev->signal_slot_index); | 
|  | p->signal_event_count--; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Abandon the list of waiters. Individual waiting threads will | 
|  | * clean up their own data. | 
|  | */ | 
|  | list_del(&ev->waiters); | 
|  |  | 
|  | hash_del(&ev->events); | 
|  | kfree(ev); | 
|  | } | 
|  |  | 
|  | static void destroy_events(struct kfd_process *p) | 
|  | { | 
|  | struct kfd_event *ev; | 
|  | struct hlist_node *tmp; | 
|  | unsigned int hash_bkt; | 
|  |  | 
|  | hash_for_each_safe(p->events, hash_bkt, tmp, ev, events) | 
|  | destroy_event(p, ev); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We assume that the process is being destroyed and there is no need to | 
|  | * unmap the pages or keep bookkeeping data in order. | 
|  | */ | 
|  | static void shutdown_signal_pages(struct kfd_process *p) | 
|  | { | 
|  | struct signal_page *page, *tmp; | 
|  |  | 
|  | list_for_each_entry_safe(page, tmp, &p->signal_event_pages, | 
|  | event_pages) { | 
|  | free_pages((unsigned long)page->kernel_address, | 
|  | get_order(KFD_SIGNAL_EVENT_LIMIT * 8)); | 
|  | kfree(page); | 
|  | } | 
|  | } | 
|  |  | 
|  | void kfd_event_free_process(struct kfd_process *p) | 
|  | { | 
|  | destroy_events(p); | 
|  | shutdown_signal_pages(p); | 
|  | } | 
|  |  | 
|  | static bool event_can_be_gpu_signaled(const struct kfd_event *ev) | 
|  | { | 
|  | return ev->type == KFD_EVENT_TYPE_SIGNAL || | 
|  | ev->type == KFD_EVENT_TYPE_DEBUG; | 
|  | } | 
|  |  | 
|  | static bool event_can_be_cpu_signaled(const struct kfd_event *ev) | 
|  | { | 
|  | return ev->type == KFD_EVENT_TYPE_SIGNAL; | 
|  | } | 
|  |  | 
|  | int kfd_event_create(struct file *devkfd, struct kfd_process *p, | 
|  | uint32_t event_type, bool auto_reset, uint32_t node_id, | 
|  | uint32_t *event_id, uint32_t *event_trigger_data, | 
|  | uint64_t *event_page_offset, uint32_t *event_slot_index) | 
|  | { | 
|  | int ret = 0; | 
|  | struct kfd_event *ev = kzalloc(sizeof(*ev), GFP_KERNEL); | 
|  |  | 
|  | if (!ev) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ev->type = event_type; | 
|  | ev->auto_reset = auto_reset; | 
|  | ev->signaled = false; | 
|  |  | 
|  | INIT_LIST_HEAD(&ev->waiters); | 
|  |  | 
|  | *event_page_offset = 0; | 
|  |  | 
|  | mutex_lock(&p->event_mutex); | 
|  |  | 
|  | switch (event_type) { | 
|  | case KFD_EVENT_TYPE_SIGNAL: | 
|  | case KFD_EVENT_TYPE_DEBUG: | 
|  | ret = create_signal_event(devkfd, p, ev); | 
|  | if (!ret) { | 
|  | *event_page_offset = (ev->signal_page->page_index | | 
|  | KFD_MMAP_EVENTS_MASK); | 
|  | *event_page_offset <<= PAGE_SHIFT; | 
|  | *event_slot_index = ev->signal_slot_index; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | ret = create_other_event(p, ev); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!ret) { | 
|  | hash_add(p->events, &ev->events, ev->event_id); | 
|  |  | 
|  | *event_id = ev->event_id; | 
|  | *event_trigger_data = ev->event_id; | 
|  | } else { | 
|  | kfree(ev); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&p->event_mutex); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Assumes that p is current. */ | 
|  | int kfd_event_destroy(struct kfd_process *p, uint32_t event_id) | 
|  | { | 
|  | struct kfd_event *ev; | 
|  | int ret = 0; | 
|  |  | 
|  | mutex_lock(&p->event_mutex); | 
|  |  | 
|  | ev = lookup_event_by_id(p, event_id); | 
|  |  | 
|  | if (ev) | 
|  | destroy_event(p, ev); | 
|  | else | 
|  | ret = -EINVAL; | 
|  |  | 
|  | mutex_unlock(&p->event_mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void set_event(struct kfd_event *ev) | 
|  | { | 
|  | struct kfd_event_waiter *waiter; | 
|  | struct kfd_event_waiter *next; | 
|  |  | 
|  | /* Auto reset if the list is non-empty and we're waking someone. */ | 
|  | ev->signaled = !ev->auto_reset || list_empty(&ev->waiters); | 
|  |  | 
|  | list_for_each_entry_safe(waiter, next, &ev->waiters, waiters) { | 
|  | waiter->activated = true; | 
|  |  | 
|  | /* _init because free_waiters will call list_del */ | 
|  | list_del_init(&waiter->waiters); | 
|  |  | 
|  | wake_up_process(waiter->sleeping_task); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Assumes that p is current. */ | 
|  | int kfd_set_event(struct kfd_process *p, uint32_t event_id) | 
|  | { | 
|  | int ret = 0; | 
|  | struct kfd_event *ev; | 
|  |  | 
|  | mutex_lock(&p->event_mutex); | 
|  |  | 
|  | ev = lookup_event_by_id(p, event_id); | 
|  |  | 
|  | if (ev && event_can_be_cpu_signaled(ev)) | 
|  | set_event(ev); | 
|  | else | 
|  | ret = -EINVAL; | 
|  |  | 
|  | mutex_unlock(&p->event_mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void reset_event(struct kfd_event *ev) | 
|  | { | 
|  | ev->signaled = false; | 
|  | } | 
|  |  | 
|  | /* Assumes that p is current. */ | 
|  | int kfd_reset_event(struct kfd_process *p, uint32_t event_id) | 
|  | { | 
|  | int ret = 0; | 
|  | struct kfd_event *ev; | 
|  |  | 
|  | mutex_lock(&p->event_mutex); | 
|  |  | 
|  | ev = lookup_event_by_id(p, event_id); | 
|  |  | 
|  | if (ev && event_can_be_cpu_signaled(ev)) | 
|  | reset_event(ev); | 
|  | else | 
|  | ret = -EINVAL; | 
|  |  | 
|  | mutex_unlock(&p->event_mutex); | 
|  | return ret; | 
|  |  | 
|  | } | 
|  |  | 
|  | static void acknowledge_signal(struct kfd_process *p, struct kfd_event *ev) | 
|  | { | 
|  | page_slots(ev->signal_page)[ev->signal_slot_index] = | 
|  | UNSIGNALED_EVENT_SLOT; | 
|  | } | 
|  |  | 
|  | static bool is_slot_signaled(struct signal_page *page, unsigned int index) | 
|  | { | 
|  | return page_slots(page)[index] != UNSIGNALED_EVENT_SLOT; | 
|  | } | 
|  |  | 
|  | static void set_event_from_interrupt(struct kfd_process *p, | 
|  | struct kfd_event *ev) | 
|  | { | 
|  | if (ev && event_can_be_gpu_signaled(ev)) { | 
|  | acknowledge_signal(p, ev); | 
|  | set_event(ev); | 
|  | } | 
|  | } | 
|  |  | 
|  | void kfd_signal_event_interrupt(unsigned int pasid, uint32_t partial_id, | 
|  | uint32_t valid_id_bits) | 
|  | { | 
|  | struct kfd_event *ev; | 
|  |  | 
|  | /* | 
|  | * Because we are called from arbitrary context (workqueue) as opposed | 
|  | * to process context, kfd_process could attempt to exit while we are | 
|  | * running so the lookup function returns a locked process. | 
|  | */ | 
|  | struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); | 
|  |  | 
|  | if (!p) | 
|  | return; /* Presumably process exited. */ | 
|  |  | 
|  | mutex_lock(&p->event_mutex); | 
|  |  | 
|  | if (valid_id_bits >= INTERRUPT_DATA_BITS) { | 
|  | /* Partial ID is a full ID. */ | 
|  | ev = lookup_event_by_id(p, partial_id); | 
|  | set_event_from_interrupt(p, ev); | 
|  | } else { | 
|  | /* | 
|  | * Partial ID is in fact partial. For now we completely | 
|  | * ignore it, but we could use any bits we did receive to | 
|  | * search faster. | 
|  | */ | 
|  | struct signal_page *page; | 
|  | unsigned i; | 
|  |  | 
|  | list_for_each_entry(page, &p->signal_event_pages, event_pages) | 
|  | for (i = 0; i < SLOTS_PER_PAGE; i++) | 
|  | if (is_slot_signaled(page, i)) { | 
|  | ev = lookup_event_by_page_slot(p, | 
|  | page, i); | 
|  | set_event_from_interrupt(p, ev); | 
|  | } | 
|  | } | 
|  |  | 
|  | mutex_unlock(&p->event_mutex); | 
|  | mutex_unlock(&p->mutex); | 
|  | } | 
|  |  | 
|  | static struct kfd_event_waiter *alloc_event_waiters(uint32_t num_events) | 
|  | { | 
|  | struct kfd_event_waiter *event_waiters; | 
|  | uint32_t i; | 
|  |  | 
|  | event_waiters = kmalloc_array(num_events, | 
|  | sizeof(struct kfd_event_waiter), | 
|  | GFP_KERNEL); | 
|  |  | 
|  | for (i = 0; (event_waiters) && (i < num_events) ; i++) { | 
|  | INIT_LIST_HEAD(&event_waiters[i].waiters); | 
|  | event_waiters[i].sleeping_task = current; | 
|  | event_waiters[i].activated = false; | 
|  | } | 
|  |  | 
|  | return event_waiters; | 
|  | } | 
|  |  | 
|  | static int init_event_waiter(struct kfd_process *p, | 
|  | struct kfd_event_waiter *waiter, | 
|  | uint32_t event_id, | 
|  | uint32_t input_index) | 
|  | { | 
|  | struct kfd_event *ev = lookup_event_by_id(p, event_id); | 
|  |  | 
|  | if (!ev) | 
|  | return -EINVAL; | 
|  |  | 
|  | waiter->event = ev; | 
|  | waiter->input_index = input_index; | 
|  | waiter->activated = ev->signaled; | 
|  | ev->signaled = ev->signaled && !ev->auto_reset; | 
|  |  | 
|  | list_add(&waiter->waiters, &ev->waiters); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool test_event_condition(bool all, uint32_t num_events, | 
|  | struct kfd_event_waiter *event_waiters) | 
|  | { | 
|  | uint32_t i; | 
|  | uint32_t activated_count = 0; | 
|  |  | 
|  | for (i = 0; i < num_events; i++) { | 
|  | if (event_waiters[i].activated) { | 
|  | if (!all) | 
|  | return true; | 
|  |  | 
|  | activated_count++; | 
|  | } | 
|  | } | 
|  |  | 
|  | return activated_count == num_events; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Copy event specific data, if defined. | 
|  | * Currently only memory exception events have additional data to copy to user | 
|  | */ | 
|  | static bool copy_signaled_event_data(uint32_t num_events, | 
|  | struct kfd_event_waiter *event_waiters, | 
|  | struct kfd_event_data __user *data) | 
|  | { | 
|  | struct kfd_hsa_memory_exception_data *src; | 
|  | struct kfd_hsa_memory_exception_data __user *dst; | 
|  | struct kfd_event_waiter *waiter; | 
|  | struct kfd_event *event; | 
|  | uint32_t i; | 
|  |  | 
|  | for (i = 0; i < num_events; i++) { | 
|  | waiter = &event_waiters[i]; | 
|  | event = waiter->event; | 
|  | if (waiter->activated && event->type == KFD_EVENT_TYPE_MEMORY) { | 
|  | dst = &data[waiter->input_index].memory_exception_data; | 
|  | src = &event->memory_exception_data; | 
|  | if (copy_to_user(dst, src, | 
|  | sizeof(struct kfd_hsa_memory_exception_data))) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  |  | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | static long user_timeout_to_jiffies(uint32_t user_timeout_ms) | 
|  | { | 
|  | if (user_timeout_ms == KFD_EVENT_TIMEOUT_IMMEDIATE) | 
|  | return 0; | 
|  |  | 
|  | if (user_timeout_ms == KFD_EVENT_TIMEOUT_INFINITE) | 
|  | return MAX_SCHEDULE_TIMEOUT; | 
|  |  | 
|  | /* | 
|  | * msecs_to_jiffies interprets all values above 2^31-1 as infinite, | 
|  | * but we consider them finite. | 
|  | * This hack is wrong, but nobody is likely to notice. | 
|  | */ | 
|  | user_timeout_ms = min_t(uint32_t, user_timeout_ms, 0x7FFFFFFF); | 
|  |  | 
|  | return msecs_to_jiffies(user_timeout_ms) + 1; | 
|  | } | 
|  |  | 
|  | static void free_waiters(uint32_t num_events, struct kfd_event_waiter *waiters) | 
|  | { | 
|  | uint32_t i; | 
|  |  | 
|  | for (i = 0; i < num_events; i++) | 
|  | list_del(&waiters[i].waiters); | 
|  |  | 
|  | kfree(waiters); | 
|  | } | 
|  |  | 
|  | int kfd_wait_on_events(struct kfd_process *p, | 
|  | uint32_t num_events, void __user *data, | 
|  | bool all, uint32_t user_timeout_ms, | 
|  | enum kfd_event_wait_result *wait_result) | 
|  | { | 
|  | struct kfd_event_data __user *events = | 
|  | (struct kfd_event_data __user *) data; | 
|  | uint32_t i; | 
|  | int ret = 0; | 
|  | struct kfd_event_waiter *event_waiters = NULL; | 
|  | long timeout = user_timeout_to_jiffies(user_timeout_ms); | 
|  |  | 
|  | mutex_lock(&p->event_mutex); | 
|  |  | 
|  | event_waiters = alloc_event_waiters(num_events); | 
|  | if (!event_waiters) { | 
|  | ret = -ENOMEM; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < num_events; i++) { | 
|  | struct kfd_event_data event_data; | 
|  |  | 
|  | if (copy_from_user(&event_data, &events[i], | 
|  | sizeof(struct kfd_event_data))) | 
|  | goto fail; | 
|  |  | 
|  | ret = init_event_waiter(p, &event_waiters[i], | 
|  | event_data.event_id, i); | 
|  | if (ret) | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | mutex_unlock(&p->event_mutex); | 
|  |  | 
|  | while (true) { | 
|  | if (fatal_signal_pending(current)) { | 
|  | ret = -EINTR; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (signal_pending(current)) { | 
|  | /* | 
|  | * This is wrong when a nonzero, non-infinite timeout | 
|  | * is specified. We need to use | 
|  | * ERESTARTSYS_RESTARTBLOCK, but struct restart_block | 
|  | * contains a union with data for each user and it's | 
|  | * in generic kernel code that I don't want to | 
|  | * touch yet. | 
|  | */ | 
|  | ret = -ERESTARTSYS; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (test_event_condition(all, num_events, event_waiters)) { | 
|  | if (copy_signaled_event_data(num_events, | 
|  | event_waiters, events)) | 
|  | *wait_result = KFD_WAIT_COMPLETE; | 
|  | else | 
|  | *wait_result = KFD_WAIT_ERROR; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (timeout <= 0) { | 
|  | *wait_result = KFD_WAIT_TIMEOUT; | 
|  | break; | 
|  | } | 
|  |  | 
|  | timeout = schedule_timeout_interruptible(timeout); | 
|  | } | 
|  | __set_current_state(TASK_RUNNING); | 
|  |  | 
|  | mutex_lock(&p->event_mutex); | 
|  | free_waiters(num_events, event_waiters); | 
|  | mutex_unlock(&p->event_mutex); | 
|  |  | 
|  | return ret; | 
|  |  | 
|  | fail: | 
|  | if (event_waiters) | 
|  | free_waiters(num_events, event_waiters); | 
|  |  | 
|  | mutex_unlock(&p->event_mutex); | 
|  |  | 
|  | *wait_result = KFD_WAIT_ERROR; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int kfd_event_mmap(struct kfd_process *p, struct vm_area_struct *vma) | 
|  | { | 
|  |  | 
|  | unsigned int page_index; | 
|  | unsigned long pfn; | 
|  | struct signal_page *page; | 
|  |  | 
|  | /* check required size is logical */ | 
|  | if (get_order(KFD_SIGNAL_EVENT_LIMIT * 8) != | 
|  | get_order(vma->vm_end - vma->vm_start)) { | 
|  | pr_err("amdkfd: event page mmap requested illegal size\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | page_index = vma->vm_pgoff; | 
|  |  | 
|  | page = lookup_signal_page_by_index(p, page_index); | 
|  | if (!page) { | 
|  | /* Probably KFD bug, but mmap is user-accessible. */ | 
|  | pr_debug("signal page could not be found for page_index %u\n", | 
|  | page_index); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | pfn = __pa(page->kernel_address); | 
|  | pfn >>= PAGE_SHIFT; | 
|  |  | 
|  | vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE | 
|  | | VM_DONTDUMP | VM_PFNMAP; | 
|  |  | 
|  | pr_debug("mapping signal page\n"); | 
|  | pr_debug("     start user address  == 0x%08lx\n", vma->vm_start); | 
|  | pr_debug("     end user address    == 0x%08lx\n", vma->vm_end); | 
|  | pr_debug("     pfn                 == 0x%016lX\n", pfn); | 
|  | pr_debug("     vm_flags            == 0x%08lX\n", vma->vm_flags); | 
|  | pr_debug("     size                == 0x%08lX\n", | 
|  | vma->vm_end - vma->vm_start); | 
|  |  | 
|  | page->user_address = (uint64_t __user *)vma->vm_start; | 
|  |  | 
|  | /* mapping the page to user process */ | 
|  | return remap_pfn_range(vma, vma->vm_start, pfn, | 
|  | vma->vm_end - vma->vm_start, vma->vm_page_prot); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Assumes that p->event_mutex is held and of course | 
|  | * that p is not going away (current or locked). | 
|  | */ | 
|  | static void lookup_events_by_type_and_signal(struct kfd_process *p, | 
|  | int type, void *event_data) | 
|  | { | 
|  | struct kfd_hsa_memory_exception_data *ev_data; | 
|  | struct kfd_event *ev; | 
|  | int bkt; | 
|  | bool send_signal = true; | 
|  |  | 
|  | ev_data = (struct kfd_hsa_memory_exception_data *) event_data; | 
|  |  | 
|  | hash_for_each(p->events, bkt, ev, events) | 
|  | if (ev->type == type) { | 
|  | send_signal = false; | 
|  | dev_dbg(kfd_device, | 
|  | "Event found: id %X type %d", | 
|  | ev->event_id, ev->type); | 
|  | set_event(ev); | 
|  | if (ev->type == KFD_EVENT_TYPE_MEMORY && ev_data) | 
|  | ev->memory_exception_data = *ev_data; | 
|  | } | 
|  |  | 
|  | /* Send SIGTERM no event of type "type" has been found*/ | 
|  | if (send_signal) { | 
|  | if (send_sigterm) { | 
|  | dev_warn(kfd_device, | 
|  | "Sending SIGTERM to HSA Process with PID %d ", | 
|  | p->lead_thread->pid); | 
|  | send_sig(SIGTERM, p->lead_thread, 0); | 
|  | } else { | 
|  | dev_err(kfd_device, | 
|  | "HSA Process (PID %d) got unhandled exception", | 
|  | p->lead_thread->pid); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void kfd_signal_iommu_event(struct kfd_dev *dev, unsigned int pasid, | 
|  | unsigned long address, bool is_write_requested, | 
|  | bool is_execute_requested) | 
|  | { | 
|  | struct kfd_hsa_memory_exception_data memory_exception_data; | 
|  | struct vm_area_struct *vma; | 
|  |  | 
|  | /* | 
|  | * Because we are called from arbitrary context (workqueue) as opposed | 
|  | * to process context, kfd_process could attempt to exit while we are | 
|  | * running so the lookup function returns a locked process. | 
|  | */ | 
|  | struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); | 
|  |  | 
|  | if (!p) | 
|  | return; /* Presumably process exited. */ | 
|  |  | 
|  | memset(&memory_exception_data, 0, sizeof(memory_exception_data)); | 
|  |  | 
|  | down_read(&p->mm->mmap_sem); | 
|  | vma = find_vma(p->mm, address); | 
|  |  | 
|  | memory_exception_data.gpu_id = dev->id; | 
|  | memory_exception_data.va = address; | 
|  | /* Set failure reason */ | 
|  | memory_exception_data.failure.NotPresent = 1; | 
|  | memory_exception_data.failure.NoExecute = 0; | 
|  | memory_exception_data.failure.ReadOnly = 0; | 
|  | if (vma) { | 
|  | if (vma->vm_start > address) { | 
|  | memory_exception_data.failure.NotPresent = 1; | 
|  | memory_exception_data.failure.NoExecute = 0; | 
|  | memory_exception_data.failure.ReadOnly = 0; | 
|  | } else { | 
|  | memory_exception_data.failure.NotPresent = 0; | 
|  | if (is_write_requested && !(vma->vm_flags & VM_WRITE)) | 
|  | memory_exception_data.failure.ReadOnly = 1; | 
|  | else | 
|  | memory_exception_data.failure.ReadOnly = 0; | 
|  | if (is_execute_requested && !(vma->vm_flags & VM_EXEC)) | 
|  | memory_exception_data.failure.NoExecute = 1; | 
|  | else | 
|  | memory_exception_data.failure.NoExecute = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | up_read(&p->mm->mmap_sem); | 
|  |  | 
|  | mutex_lock(&p->event_mutex); | 
|  |  | 
|  | /* Lookup events by type and signal them */ | 
|  | lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_MEMORY, | 
|  | &memory_exception_data); | 
|  |  | 
|  | mutex_unlock(&p->event_mutex); | 
|  | mutex_unlock(&p->mutex); | 
|  | } | 
|  |  | 
|  | void kfd_signal_hw_exception_event(unsigned int pasid) | 
|  | { | 
|  | /* | 
|  | * Because we are called from arbitrary context (workqueue) as opposed | 
|  | * to process context, kfd_process could attempt to exit while we are | 
|  | * running so the lookup function returns a locked process. | 
|  | */ | 
|  | struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); | 
|  |  | 
|  | if (!p) | 
|  | return; /* Presumably process exited. */ | 
|  |  | 
|  | mutex_lock(&p->event_mutex); | 
|  |  | 
|  | /* Lookup events by type and signal them */ | 
|  | lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_HW_EXCEPTION, NULL); | 
|  |  | 
|  | mutex_unlock(&p->event_mutex); | 
|  | mutex_unlock(&p->mutex); | 
|  | } |