| /**************************************************************************** |
| * Driver for Solarflare Solarstorm network controllers and boards |
| * Copyright 2011 Solarflare Communications Inc. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License version 2 as published |
| * by the Free Software Foundation, incorporated herein by reference. |
| */ |
| |
| /* Theory of operation: |
| * |
| * PTP support is assisted by firmware running on the MC, which provides |
| * the hardware timestamping capabilities. Both transmitted and received |
| * PTP event packets are queued onto internal queues for subsequent processing; |
| * this is because the MC operations are relatively long and would block |
| * block NAPI/interrupt operation. |
| * |
| * Receive event processing: |
| * The event contains the packet's UUID and sequence number, together |
| * with the hardware timestamp. The PTP receive packet queue is searched |
| * for this UUID/sequence number and, if found, put on a pending queue. |
| * Packets not matching are delivered without timestamps (MCDI events will |
| * always arrive after the actual packet). |
| * It is important for the operation of the PTP protocol that the ordering |
| * of packets between the event and general port is maintained. |
| * |
| * Work queue processing: |
| * If work waiting, synchronise host/hardware time |
| * |
| * Transmit: send packet through MC, which returns the transmission time |
| * that is converted to an appropriate timestamp. |
| * |
| * Receive: the packet's reception time is converted to an appropriate |
| * timestamp. |
| */ |
| #include <linux/ip.h> |
| #include <linux/udp.h> |
| #include <linux/time.h> |
| #include <linux/ktime.h> |
| #include <linux/module.h> |
| #include <linux/net_tstamp.h> |
| #include <linux/pps_kernel.h> |
| #include <linux/ptp_clock_kernel.h> |
| #include "net_driver.h" |
| #include "efx.h" |
| #include "mcdi.h" |
| #include "mcdi_pcol.h" |
| #include "io.h" |
| #include "regs.h" |
| #include "nic.h" |
| |
| /* Maximum number of events expected to make up a PTP event */ |
| #define MAX_EVENT_FRAGS 3 |
| |
| /* Maximum delay, ms, to begin synchronisation */ |
| #define MAX_SYNCHRONISE_WAIT_MS 2 |
| |
| /* How long, at most, to spend synchronising */ |
| #define SYNCHRONISE_PERIOD_NS 250000 |
| |
| /* How often to update the shared memory time */ |
| #define SYNCHRONISATION_GRANULARITY_NS 200 |
| |
| /* Minimum permitted length of a (corrected) synchronisation time */ |
| #define MIN_SYNCHRONISATION_NS 120 |
| |
| /* Maximum permitted length of a (corrected) synchronisation time */ |
| #define MAX_SYNCHRONISATION_NS 1000 |
| |
| /* How many (MC) receive events that can be queued */ |
| #define MAX_RECEIVE_EVENTS 8 |
| |
| /* Length of (modified) moving average. */ |
| #define AVERAGE_LENGTH 16 |
| |
| /* How long an unmatched event or packet can be held */ |
| #define PKT_EVENT_LIFETIME_MS 10 |
| |
| /* Offsets into PTP packet for identification. These offsets are from the |
| * start of the IP header, not the MAC header. Note that neither PTP V1 nor |
| * PTP V2 permit the use of IPV4 options. |
| */ |
| #define PTP_DPORT_OFFSET 22 |
| |
| #define PTP_V1_VERSION_LENGTH 2 |
| #define PTP_V1_VERSION_OFFSET 28 |
| |
| #define PTP_V1_UUID_LENGTH 6 |
| #define PTP_V1_UUID_OFFSET 50 |
| |
| #define PTP_V1_SEQUENCE_LENGTH 2 |
| #define PTP_V1_SEQUENCE_OFFSET 58 |
| |
| /* The minimum length of a PTP V1 packet for offsets, etc. to be valid: |
| * includes IP header. |
| */ |
| #define PTP_V1_MIN_LENGTH 64 |
| |
| #define PTP_V2_VERSION_LENGTH 1 |
| #define PTP_V2_VERSION_OFFSET 29 |
| |
| /* Although PTP V2 UUIDs are comprised a ClockIdentity (8) and PortNumber (2), |
| * the MC only captures the last six bytes of the clock identity. These values |
| * reflect those, not the ones used in the standard. The standard permits |
| * mapping of V1 UUIDs to V2 UUIDs with these same values. |
| */ |
| #define PTP_V2_MC_UUID_LENGTH 6 |
| #define PTP_V2_MC_UUID_OFFSET 50 |
| |
| #define PTP_V2_SEQUENCE_LENGTH 2 |
| #define PTP_V2_SEQUENCE_OFFSET 58 |
| |
| /* The minimum length of a PTP V2 packet for offsets, etc. to be valid: |
| * includes IP header. |
| */ |
| #define PTP_V2_MIN_LENGTH 63 |
| |
| #define PTP_MIN_LENGTH 63 |
| |
| #define PTP_ADDRESS 0xe0000181 /* 224.0.1.129 */ |
| #define PTP_EVENT_PORT 319 |
| #define PTP_GENERAL_PORT 320 |
| |
| /* Annoyingly the format of the version numbers are different between |
| * versions 1 and 2 so it isn't possible to simply look for 1 or 2. |
| */ |
| #define PTP_VERSION_V1 1 |
| |
| #define PTP_VERSION_V2 2 |
| #define PTP_VERSION_V2_MASK 0x0f |
| |
| enum ptp_packet_state { |
| PTP_PACKET_STATE_UNMATCHED = 0, |
| PTP_PACKET_STATE_MATCHED, |
| PTP_PACKET_STATE_TIMED_OUT, |
| PTP_PACKET_STATE_MATCH_UNWANTED |
| }; |
| |
| /* NIC synchronised with single word of time only comprising |
| * partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds. |
| */ |
| #define MC_NANOSECOND_BITS 30 |
| #define MC_NANOSECOND_MASK ((1 << MC_NANOSECOND_BITS) - 1) |
| #define MC_SECOND_MASK ((1 << (32 - MC_NANOSECOND_BITS)) - 1) |
| |
| /* Maximum parts-per-billion adjustment that is acceptable */ |
| #define MAX_PPB 1000000 |
| |
| /* Number of bits required to hold the above */ |
| #define MAX_PPB_BITS 20 |
| |
| /* Number of extra bits allowed when calculating fractional ns. |
| * EXTRA_BITS + MC_CMD_PTP_IN_ADJUST_BITS + MAX_PPB_BITS should |
| * be less than 63. |
| */ |
| #define PPB_EXTRA_BITS 2 |
| |
| /* Precalculate scale word to avoid long long division at runtime */ |
| #define PPB_SCALE_WORD ((1LL << (PPB_EXTRA_BITS + MC_CMD_PTP_IN_ADJUST_BITS +\ |
| MAX_PPB_BITS)) / 1000000000LL) |
| |
| #define PTP_SYNC_ATTEMPTS 4 |
| |
| /** |
| * struct efx_ptp_match - Matching structure, stored in sk_buff's cb area. |
| * @words: UUID and (partial) sequence number |
| * @expiry: Time after which the packet should be delivered irrespective of |
| * event arrival. |
| * @state: The state of the packet - whether it is ready for processing or |
| * whether that is of no interest. |
| */ |
| struct efx_ptp_match { |
| u32 words[DIV_ROUND_UP(PTP_V1_UUID_LENGTH, 4)]; |
| unsigned long expiry; |
| enum ptp_packet_state state; |
| }; |
| |
| /** |
| * struct efx_ptp_event_rx - A PTP receive event (from MC) |
| * @seq0: First part of (PTP) UUID |
| * @seq1: Second part of (PTP) UUID and sequence number |
| * @hwtimestamp: Event timestamp |
| */ |
| struct efx_ptp_event_rx { |
| struct list_head link; |
| u32 seq0; |
| u32 seq1; |
| ktime_t hwtimestamp; |
| unsigned long expiry; |
| }; |
| |
| /** |
| * struct efx_ptp_timeset - Synchronisation between host and MC |
| * @host_start: Host time immediately before hardware timestamp taken |
| * @seconds: Hardware timestamp, seconds |
| * @nanoseconds: Hardware timestamp, nanoseconds |
| * @host_end: Host time immediately after hardware timestamp taken |
| * @waitns: Number of nanoseconds between hardware timestamp being read and |
| * host end time being seen |
| * @window: Difference of host_end and host_start |
| * @valid: Whether this timeset is valid |
| */ |
| struct efx_ptp_timeset { |
| u32 host_start; |
| u32 seconds; |
| u32 nanoseconds; |
| u32 host_end; |
| u32 waitns; |
| u32 window; /* Derived: end - start, allowing for wrap */ |
| }; |
| |
| /** |
| * struct efx_ptp_data - Precision Time Protocol (PTP) state |
| * @channel: The PTP channel |
| * @rxq: Receive queue (awaiting timestamps) |
| * @txq: Transmit queue |
| * @evt_list: List of MC receive events awaiting packets |
| * @evt_free_list: List of free events |
| * @evt_lock: Lock for manipulating evt_list and evt_free_list |
| * @rx_evts: Instantiated events (on evt_list and evt_free_list) |
| * @workwq: Work queue for processing pending PTP operations |
| * @work: Work task |
| * @reset_required: A serious error has occurred and the PTP task needs to be |
| * reset (disable, enable). |
| * @rxfilter_event: Receive filter when operating |
| * @rxfilter_general: Receive filter when operating |
| * @config: Current timestamp configuration |
| * @enabled: PTP operation enabled |
| * @mode: Mode in which PTP operating (PTP version) |
| * @evt_frags: Partly assembled PTP events |
| * @evt_frag_idx: Current fragment number |
| * @evt_code: Last event code |
| * @start: Address at which MC indicates ready for synchronisation |
| * @host_time_pps: Host time at last PPS |
| * @last_sync_ns: Last number of nanoseconds between readings when synchronising |
| * @base_sync_ns: Number of nanoseconds for last synchronisation. |
| * @base_sync_valid: Whether base_sync_time is valid. |
| * @current_adjfreq: Current ppb adjustment. |
| * @phc_clock: Pointer to registered phc device |
| * @phc_clock_info: Registration structure for phc device |
| * @pps_work: pps work task for handling pps events |
| * @pps_workwq: pps work queue |
| * @nic_ts_enabled: Flag indicating if NIC generated TS events are handled |
| * @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids |
| * allocations in main data path). |
| * @debug_ptp_dir: PTP debugfs directory |
| * @missed_rx_sync: Number of packets received without syncrhonisation. |
| * @good_syncs: Number of successful synchronisations. |
| * @no_time_syncs: Number of synchronisations with no good times. |
| * @bad_sync_durations: Number of synchronisations with bad durations. |
| * @bad_syncs: Number of failed synchronisations. |
| * @last_sync_time: Number of nanoseconds for last synchronisation. |
| * @sync_timeouts: Number of synchronisation timeouts |
| * @fast_syncs: Number of synchronisations requiring short delay |
| * @min_sync_delta: Minimum time between event and synchronisation |
| * @max_sync_delta: Maximum time between event and synchronisation |
| * @average_sync_delta: Average time between event and synchronisation. |
| * Modified moving average. |
| * @last_sync_delta: Last time between event and synchronisation |
| * @mc_stats: Context value for MC statistics |
| * @timeset: Last set of synchronisation statistics. |
| */ |
| struct efx_ptp_data { |
| struct efx_channel *channel; |
| struct sk_buff_head rxq; |
| struct sk_buff_head txq; |
| struct list_head evt_list; |
| struct list_head evt_free_list; |
| spinlock_t evt_lock; |
| struct efx_ptp_event_rx rx_evts[MAX_RECEIVE_EVENTS]; |
| struct workqueue_struct *workwq; |
| struct work_struct work; |
| bool reset_required; |
| u32 rxfilter_event; |
| u32 rxfilter_general; |
| bool rxfilter_installed; |
| struct hwtstamp_config config; |
| bool enabled; |
| unsigned int mode; |
| efx_qword_t evt_frags[MAX_EVENT_FRAGS]; |
| int evt_frag_idx; |
| int evt_code; |
| struct efx_buffer start; |
| struct pps_event_time host_time_pps; |
| unsigned last_sync_ns; |
| unsigned base_sync_ns; |
| bool base_sync_valid; |
| s64 current_adjfreq; |
| struct ptp_clock *phc_clock; |
| struct ptp_clock_info phc_clock_info; |
| struct work_struct pps_work; |
| struct workqueue_struct *pps_workwq; |
| bool nic_ts_enabled; |
| u8 txbuf[ALIGN(MC_CMD_PTP_IN_TRANSMIT_LEN( |
| MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM), 4)]; |
| struct efx_ptp_timeset |
| timeset[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM]; |
| }; |
| |
| static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta); |
| static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta); |
| static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec *ts); |
| static int efx_phc_settime(struct ptp_clock_info *ptp, |
| const struct timespec *e_ts); |
| static int efx_phc_enable(struct ptp_clock_info *ptp, |
| struct ptp_clock_request *request, int on); |
| |
| /* Enable MCDI PTP support. */ |
| static int efx_ptp_enable(struct efx_nic *efx) |
| { |
| u8 inbuf[MC_CMD_PTP_IN_ENABLE_LEN]; |
| |
| MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ENABLE); |
| MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_QUEUE, |
| efx->ptp_data->channel->channel); |
| MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_MODE, efx->ptp_data->mode); |
| |
| return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), |
| NULL, 0, NULL); |
| } |
| |
| /* Disable MCDI PTP support. |
| * |
| * Note that this function should never rely on the presence of ptp_data - |
| * may be called before that exists. |
| */ |
| static int efx_ptp_disable(struct efx_nic *efx) |
| { |
| u8 inbuf[MC_CMD_PTP_IN_DISABLE_LEN]; |
| |
| MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_DISABLE); |
| return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), |
| NULL, 0, NULL); |
| } |
| |
| static void efx_ptp_deliver_rx_queue(struct sk_buff_head *q) |
| { |
| struct sk_buff *skb; |
| |
| while ((skb = skb_dequeue(q))) { |
| local_bh_disable(); |
| netif_receive_skb(skb); |
| local_bh_enable(); |
| } |
| } |
| |
| static void efx_ptp_handle_no_channel(struct efx_nic *efx) |
| { |
| netif_err(efx, drv, efx->net_dev, |
| "ERROR: PTP requires MSI-X and 1 additional interrupt" |
| "vector. PTP disabled\n"); |
| } |
| |
| /* Repeatedly send the host time to the MC which will capture the hardware |
| * time. |
| */ |
| static void efx_ptp_send_times(struct efx_nic *efx, |
| struct pps_event_time *last_time) |
| { |
| struct pps_event_time now; |
| struct timespec limit; |
| struct efx_ptp_data *ptp = efx->ptp_data; |
| struct timespec start; |
| int *mc_running = ptp->start.addr; |
| |
| pps_get_ts(&now); |
| start = now.ts_real; |
| limit = now.ts_real; |
| timespec_add_ns(&limit, SYNCHRONISE_PERIOD_NS); |
| |
| /* Write host time for specified period or until MC is done */ |
| while ((timespec_compare(&now.ts_real, &limit) < 0) && |
| ACCESS_ONCE(*mc_running)) { |
| struct timespec update_time; |
| unsigned int host_time; |
| |
| /* Don't update continuously to avoid saturating the PCIe bus */ |
| update_time = now.ts_real; |
| timespec_add_ns(&update_time, SYNCHRONISATION_GRANULARITY_NS); |
| do { |
| pps_get_ts(&now); |
| } while ((timespec_compare(&now.ts_real, &update_time) < 0) && |
| ACCESS_ONCE(*mc_running)); |
| |
| /* Synchronise NIC with single word of time only */ |
| host_time = (now.ts_real.tv_sec << MC_NANOSECOND_BITS | |
| now.ts_real.tv_nsec); |
| /* Update host time in NIC memory */ |
| _efx_writed(efx, cpu_to_le32(host_time), |
| FR_CZ_MC_TREG_SMEM + MC_SMEM_P0_PTP_TIME_OFST); |
| } |
| *last_time = now; |
| } |
| |
| /* Read a timeset from the MC's results and partial process. */ |
| static void efx_ptp_read_timeset(u8 *data, struct efx_ptp_timeset *timeset) |
| { |
| unsigned start_ns, end_ns; |
| |
| timeset->host_start = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTSTART); |
| timeset->seconds = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_SECONDS); |
| timeset->nanoseconds = MCDI_DWORD(data, |
| PTP_OUT_SYNCHRONIZE_NANOSECONDS); |
| timeset->host_end = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTEND), |
| timeset->waitns = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_WAITNS); |
| |
| /* Ignore seconds */ |
| start_ns = timeset->host_start & MC_NANOSECOND_MASK; |
| end_ns = timeset->host_end & MC_NANOSECOND_MASK; |
| /* Allow for rollover */ |
| if (end_ns < start_ns) |
| end_ns += NSEC_PER_SEC; |
| /* Determine duration of operation */ |
| timeset->window = end_ns - start_ns; |
| } |
| |
| /* Process times received from MC. |
| * |
| * Extract times from returned results, and establish the minimum value |
| * seen. The minimum value represents the "best" possible time and events |
| * too much greater than this are rejected - the machine is, perhaps, too |
| * busy. A number of readings are taken so that, hopefully, at least one good |
| * synchronisation will be seen in the results. |
| */ |
| static int efx_ptp_process_times(struct efx_nic *efx, u8 *synch_buf, |
| size_t response_length, |
| const struct pps_event_time *last_time) |
| { |
| unsigned number_readings = (response_length / |
| MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_LEN); |
| unsigned i; |
| unsigned min; |
| unsigned min_set = 0; |
| unsigned total; |
| unsigned ngood = 0; |
| unsigned last_good = 0; |
| struct efx_ptp_data *ptp = efx->ptp_data; |
| bool min_valid = false; |
| u32 last_sec; |
| u32 start_sec; |
| struct timespec delta; |
| |
| if (number_readings == 0) |
| return -EAGAIN; |
| |
| /* Find minimum value in this set of results, discarding clearly |
| * erroneous results. |
| */ |
| for (i = 0; i < number_readings; i++) { |
| efx_ptp_read_timeset(synch_buf, &ptp->timeset[i]); |
| synch_buf += MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_LEN; |
| if (ptp->timeset[i].window > SYNCHRONISATION_GRANULARITY_NS) { |
| if (min_valid) { |
| if (ptp->timeset[i].window < min_set) |
| min_set = ptp->timeset[i].window; |
| } else { |
| min_valid = true; |
| min_set = ptp->timeset[i].window; |
| } |
| } |
| } |
| |
| if (min_valid) { |
| if (ptp->base_sync_valid && (min_set > ptp->base_sync_ns)) |
| min = ptp->base_sync_ns; |
| else |
| min = min_set; |
| } else { |
| min = SYNCHRONISATION_GRANULARITY_NS; |
| } |
| |
| /* Discard excessively long synchronise durations. The MC times |
| * when it finishes reading the host time so the corrected window |
| * time should be fairly constant for a given platform. |
| */ |
| total = 0; |
| for (i = 0; i < number_readings; i++) |
| if (ptp->timeset[i].window > ptp->timeset[i].waitns) { |
| unsigned win; |
| |
| win = ptp->timeset[i].window - ptp->timeset[i].waitns; |
| if (win >= MIN_SYNCHRONISATION_NS && |
| win < MAX_SYNCHRONISATION_NS) { |
| total += ptp->timeset[i].window; |
| ngood++; |
| last_good = i; |
| } |
| } |
| |
| if (ngood == 0) { |
| netif_warn(efx, drv, efx->net_dev, |
| "PTP no suitable synchronisations %dns %dns\n", |
| ptp->base_sync_ns, min_set); |
| return -EAGAIN; |
| } |
| |
| /* Average minimum this synchronisation */ |
| ptp->last_sync_ns = DIV_ROUND_UP(total, ngood); |
| if (!ptp->base_sync_valid || (ptp->last_sync_ns < ptp->base_sync_ns)) { |
| ptp->base_sync_valid = true; |
| ptp->base_sync_ns = ptp->last_sync_ns; |
| } |
| |
| /* Calculate delay from actual PPS to last_time */ |
| delta.tv_nsec = |
| ptp->timeset[last_good].nanoseconds + |
| last_time->ts_real.tv_nsec - |
| (ptp->timeset[last_good].host_start & MC_NANOSECOND_MASK); |
| |
| /* It is possible that the seconds rolled over between taking |
| * the start reading and the last value written by the host. The |
| * timescales are such that a gap of more than one second is never |
| * expected. |
| */ |
| start_sec = ptp->timeset[last_good].host_start >> MC_NANOSECOND_BITS; |
| last_sec = last_time->ts_real.tv_sec & MC_SECOND_MASK; |
| if (start_sec != last_sec) { |
| if (((start_sec + 1) & MC_SECOND_MASK) != last_sec) { |
| netif_warn(efx, hw, efx->net_dev, |
| "PTP bad synchronisation seconds\n"); |
| return -EAGAIN; |
| } else { |
| delta.tv_sec = 1; |
| } |
| } else { |
| delta.tv_sec = 0; |
| } |
| |
| ptp->host_time_pps = *last_time; |
| pps_sub_ts(&ptp->host_time_pps, delta); |
| |
| return 0; |
| } |
| |
| /* Synchronize times between the host and the MC */ |
| static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings) |
| { |
| struct efx_ptp_data *ptp = efx->ptp_data; |
| u8 synch_buf[MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX]; |
| size_t response_length; |
| int rc; |
| unsigned long timeout; |
| struct pps_event_time last_time = {}; |
| unsigned int loops = 0; |
| int *start = ptp->start.addr; |
| |
| MCDI_SET_DWORD(synch_buf, PTP_IN_OP, MC_CMD_PTP_OP_SYNCHRONIZE); |
| MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_NUMTIMESETS, |
| num_readings); |
| MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR_LO, |
| (u32)ptp->start.dma_addr); |
| MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR_HI, |
| (u32)((u64)ptp->start.dma_addr >> 32)); |
| |
| /* Clear flag that signals MC ready */ |
| ACCESS_ONCE(*start) = 0; |
| efx_mcdi_rpc_start(efx, MC_CMD_PTP, synch_buf, |
| MC_CMD_PTP_IN_SYNCHRONIZE_LEN); |
| |
| /* Wait for start from MCDI (or timeout) */ |
| timeout = jiffies + msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS); |
| while (!ACCESS_ONCE(*start) && (time_before(jiffies, timeout))) { |
| udelay(20); /* Usually start MCDI execution quickly */ |
| loops++; |
| } |
| |
| if (ACCESS_ONCE(*start)) |
| efx_ptp_send_times(efx, &last_time); |
| |
| /* Collect results */ |
| rc = efx_mcdi_rpc_finish(efx, MC_CMD_PTP, |
| MC_CMD_PTP_IN_SYNCHRONIZE_LEN, |
| synch_buf, sizeof(synch_buf), |
| &response_length); |
| if (rc == 0) |
| rc = efx_ptp_process_times(efx, synch_buf, response_length, |
| &last_time); |
| |
| return rc; |
| } |
| |
| /* Transmit a PTP packet, via the MCDI interface, to the wire. */ |
| static int efx_ptp_xmit_skb(struct efx_nic *efx, struct sk_buff *skb) |
| { |
| u8 *txbuf = efx->ptp_data->txbuf; |
| struct skb_shared_hwtstamps timestamps; |
| int rc = -EIO; |
| /* MCDI driver requires word aligned lengths */ |
| size_t len = ALIGN(MC_CMD_PTP_IN_TRANSMIT_LEN(skb->len), 4); |
| u8 txtime[MC_CMD_PTP_OUT_TRANSMIT_LEN]; |
| |
| MCDI_SET_DWORD(txbuf, PTP_IN_OP, MC_CMD_PTP_OP_TRANSMIT); |
| MCDI_SET_DWORD(txbuf, PTP_IN_TRANSMIT_LENGTH, skb->len); |
| if (skb_shinfo(skb)->nr_frags != 0) { |
| rc = skb_linearize(skb); |
| if (rc != 0) |
| goto fail; |
| } |
| |
| if (skb->ip_summed == CHECKSUM_PARTIAL) { |
| rc = skb_checksum_help(skb); |
| if (rc != 0) |
| goto fail; |
| } |
| skb_copy_from_linear_data(skb, |
| &txbuf[MC_CMD_PTP_IN_TRANSMIT_PACKET_OFST], |
| len); |
| rc = efx_mcdi_rpc(efx, MC_CMD_PTP, txbuf, len, txtime, |
| sizeof(txtime), &len); |
| if (rc != 0) |
| goto fail; |
| |
| memset(×tamps, 0, sizeof(timestamps)); |
| timestamps.hwtstamp = ktime_set( |
| MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_SECONDS), |
| MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_NANOSECONDS)); |
| |
| skb_tstamp_tx(skb, ×tamps); |
| |
| rc = 0; |
| |
| fail: |
| dev_kfree_skb(skb); |
| |
| return rc; |
| } |
| |
| static void efx_ptp_drop_time_expired_events(struct efx_nic *efx) |
| { |
| struct efx_ptp_data *ptp = efx->ptp_data; |
| struct list_head *cursor; |
| struct list_head *next; |
| |
| /* Drop time-expired events */ |
| spin_lock_bh(&ptp->evt_lock); |
| if (!list_empty(&ptp->evt_list)) { |
| list_for_each_safe(cursor, next, &ptp->evt_list) { |
| struct efx_ptp_event_rx *evt; |
| |
| evt = list_entry(cursor, struct efx_ptp_event_rx, |
| link); |
| if (time_after(jiffies, evt->expiry)) { |
| list_del(&evt->link); |
| list_add(&evt->link, &ptp->evt_free_list); |
| netif_warn(efx, hw, efx->net_dev, |
| "PTP rx event dropped\n"); |
| } |
| } |
| } |
| spin_unlock_bh(&ptp->evt_lock); |
| } |
| |
| static enum ptp_packet_state efx_ptp_match_rx(struct efx_nic *efx, |
| struct sk_buff *skb) |
| { |
| struct efx_ptp_data *ptp = efx->ptp_data; |
| bool evts_waiting; |
| struct list_head *cursor; |
| struct list_head *next; |
| struct efx_ptp_match *match; |
| enum ptp_packet_state rc = PTP_PACKET_STATE_UNMATCHED; |
| |
| spin_lock_bh(&ptp->evt_lock); |
| evts_waiting = !list_empty(&ptp->evt_list); |
| spin_unlock_bh(&ptp->evt_lock); |
| |
| if (!evts_waiting) |
| return PTP_PACKET_STATE_UNMATCHED; |
| |
| match = (struct efx_ptp_match *)skb->cb; |
| /* Look for a matching timestamp in the event queue */ |
| spin_lock_bh(&ptp->evt_lock); |
| list_for_each_safe(cursor, next, &ptp->evt_list) { |
| struct efx_ptp_event_rx *evt; |
| |
| evt = list_entry(cursor, struct efx_ptp_event_rx, link); |
| if ((evt->seq0 == match->words[0]) && |
| (evt->seq1 == match->words[1])) { |
| struct skb_shared_hwtstamps *timestamps; |
| |
| /* Match - add in hardware timestamp */ |
| timestamps = skb_hwtstamps(skb); |
| timestamps->hwtstamp = evt->hwtimestamp; |
| |
| match->state = PTP_PACKET_STATE_MATCHED; |
| rc = PTP_PACKET_STATE_MATCHED; |
| list_del(&evt->link); |
| list_add(&evt->link, &ptp->evt_free_list); |
| break; |
| } |
| } |
| spin_unlock_bh(&ptp->evt_lock); |
| |
| return rc; |
| } |
| |
| /* Process any queued receive events and corresponding packets |
| * |
| * q is returned with all the packets that are ready for delivery. |
| * true is returned if at least one of those packets requires |
| * synchronisation. |
| */ |
| static bool efx_ptp_process_events(struct efx_nic *efx, struct sk_buff_head *q) |
| { |
| struct efx_ptp_data *ptp = efx->ptp_data; |
| bool rc = false; |
| struct sk_buff *skb; |
| |
| while ((skb = skb_dequeue(&ptp->rxq))) { |
| struct efx_ptp_match *match; |
| |
| match = (struct efx_ptp_match *)skb->cb; |
| if (match->state == PTP_PACKET_STATE_MATCH_UNWANTED) { |
| __skb_queue_tail(q, skb); |
| } else if (efx_ptp_match_rx(efx, skb) == |
| PTP_PACKET_STATE_MATCHED) { |
| rc = true; |
| __skb_queue_tail(q, skb); |
| } else if (time_after(jiffies, match->expiry)) { |
| match->state = PTP_PACKET_STATE_TIMED_OUT; |
| netif_warn(efx, rx_err, efx->net_dev, |
| "PTP packet - no timestamp seen\n"); |
| __skb_queue_tail(q, skb); |
| } else { |
| /* Replace unprocessed entry and stop */ |
| skb_queue_head(&ptp->rxq, skb); |
| break; |
| } |
| } |
| |
| return rc; |
| } |
| |
| /* Complete processing of a received packet */ |
| static inline void efx_ptp_process_rx(struct efx_nic *efx, struct sk_buff *skb) |
| { |
| local_bh_disable(); |
| netif_receive_skb(skb); |
| local_bh_enable(); |
| } |
| |
| static int efx_ptp_start(struct efx_nic *efx) |
| { |
| struct efx_ptp_data *ptp = efx->ptp_data; |
| struct efx_filter_spec rxfilter; |
| int rc; |
| |
| ptp->reset_required = false; |
| |
| /* Must filter on both event and general ports to ensure |
| * that there is no packet re-ordering. |
| */ |
| efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0, |
| efx_rx_queue_index( |
| efx_channel_get_rx_queue(ptp->channel))); |
| rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP, |
| htonl(PTP_ADDRESS), |
| htons(PTP_EVENT_PORT)); |
| if (rc != 0) |
| return rc; |
| |
| rc = efx_filter_insert_filter(efx, &rxfilter, true); |
| if (rc < 0) |
| return rc; |
| ptp->rxfilter_event = rc; |
| |
| efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0, |
| efx_rx_queue_index( |
| efx_channel_get_rx_queue(ptp->channel))); |
| rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP, |
| htonl(PTP_ADDRESS), |
| htons(PTP_GENERAL_PORT)); |
| if (rc != 0) |
| goto fail; |
| |
| rc = efx_filter_insert_filter(efx, &rxfilter, true); |
| if (rc < 0) |
| goto fail; |
| ptp->rxfilter_general = rc; |
| |
| rc = efx_ptp_enable(efx); |
| if (rc != 0) |
| goto fail2; |
| |
| ptp->evt_frag_idx = 0; |
| ptp->current_adjfreq = 0; |
| ptp->rxfilter_installed = true; |
| |
| return 0; |
| |
| fail2: |
| efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED, |
| ptp->rxfilter_general); |
| fail: |
| efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED, |
| ptp->rxfilter_event); |
| |
| return rc; |
| } |
| |
| static int efx_ptp_stop(struct efx_nic *efx) |
| { |
| struct efx_ptp_data *ptp = efx->ptp_data; |
| int rc = efx_ptp_disable(efx); |
| struct list_head *cursor; |
| struct list_head *next; |
| |
| if (ptp->rxfilter_installed) { |
| efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED, |
| ptp->rxfilter_general); |
| efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED, |
| ptp->rxfilter_event); |
| ptp->rxfilter_installed = false; |
| } |
| |
| /* Make sure RX packets are really delivered */ |
| efx_ptp_deliver_rx_queue(&efx->ptp_data->rxq); |
| skb_queue_purge(&efx->ptp_data->txq); |
| |
| /* Drop any pending receive events */ |
| spin_lock_bh(&efx->ptp_data->evt_lock); |
| list_for_each_safe(cursor, next, &efx->ptp_data->evt_list) { |
| list_del(cursor); |
| list_add(cursor, &efx->ptp_data->evt_free_list); |
| } |
| spin_unlock_bh(&efx->ptp_data->evt_lock); |
| |
| return rc; |
| } |
| |
| static void efx_ptp_pps_worker(struct work_struct *work) |
| { |
| struct efx_ptp_data *ptp = |
| container_of(work, struct efx_ptp_data, pps_work); |
| struct efx_nic *efx = ptp->channel->efx; |
| struct ptp_clock_event ptp_evt; |
| |
| if (efx_ptp_synchronize(efx, PTP_SYNC_ATTEMPTS)) |
| return; |
| |
| ptp_evt.type = PTP_CLOCK_PPSUSR; |
| ptp_evt.pps_times = ptp->host_time_pps; |
| ptp_clock_event(ptp->phc_clock, &ptp_evt); |
| } |
| |
| /* Process any pending transmissions and timestamp any received packets. |
| */ |
| static void efx_ptp_worker(struct work_struct *work) |
| { |
| struct efx_ptp_data *ptp_data = |
| container_of(work, struct efx_ptp_data, work); |
| struct efx_nic *efx = ptp_data->channel->efx; |
| struct sk_buff *skb; |
| struct sk_buff_head tempq; |
| |
| if (ptp_data->reset_required) { |
| efx_ptp_stop(efx); |
| efx_ptp_start(efx); |
| return; |
| } |
| |
| efx_ptp_drop_time_expired_events(efx); |
| |
| __skb_queue_head_init(&tempq); |
| if (efx_ptp_process_events(efx, &tempq) || |
| !skb_queue_empty(&ptp_data->txq)) { |
| |
| while ((skb = skb_dequeue(&ptp_data->txq))) |
| efx_ptp_xmit_skb(efx, skb); |
| } |
| |
| while ((skb = __skb_dequeue(&tempq))) |
| efx_ptp_process_rx(efx, skb); |
| } |
| |
| /* Initialise PTP channel and state. |
| * |
| * Setting core_index to zero causes the queue to be initialised and doesn't |
| * overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue. |
| */ |
| static int efx_ptp_probe_channel(struct efx_channel *channel) |
| { |
| struct efx_nic *efx = channel->efx; |
| struct efx_ptp_data *ptp; |
| int rc = 0; |
| unsigned int pos; |
| |
| channel->irq_moderation = 0; |
| channel->rx_queue.core_index = 0; |
| |
| ptp = kzalloc(sizeof(struct efx_ptp_data), GFP_KERNEL); |
| efx->ptp_data = ptp; |
| if (!efx->ptp_data) |
| return -ENOMEM; |
| |
| rc = efx_nic_alloc_buffer(efx, &ptp->start, sizeof(int)); |
| if (rc != 0) |
| goto fail1; |
| |
| ptp->channel = channel; |
| skb_queue_head_init(&ptp->rxq); |
| skb_queue_head_init(&ptp->txq); |
| ptp->workwq = create_singlethread_workqueue("sfc_ptp"); |
| if (!ptp->workwq) { |
| rc = -ENOMEM; |
| goto fail2; |
| } |
| |
| INIT_WORK(&ptp->work, efx_ptp_worker); |
| ptp->config.flags = 0; |
| ptp->config.tx_type = HWTSTAMP_TX_OFF; |
| ptp->config.rx_filter = HWTSTAMP_FILTER_NONE; |
| INIT_LIST_HEAD(&ptp->evt_list); |
| INIT_LIST_HEAD(&ptp->evt_free_list); |
| spin_lock_init(&ptp->evt_lock); |
| for (pos = 0; pos < MAX_RECEIVE_EVENTS; pos++) |
| list_add(&ptp->rx_evts[pos].link, &ptp->evt_free_list); |
| |
| ptp->phc_clock_info.owner = THIS_MODULE; |
| snprintf(ptp->phc_clock_info.name, |
| sizeof(ptp->phc_clock_info.name), |
| "%pm", efx->net_dev->perm_addr); |
| ptp->phc_clock_info.max_adj = MAX_PPB; |
| ptp->phc_clock_info.n_alarm = 0; |
| ptp->phc_clock_info.n_ext_ts = 0; |
| ptp->phc_clock_info.n_per_out = 0; |
| ptp->phc_clock_info.pps = 1; |
| ptp->phc_clock_info.adjfreq = efx_phc_adjfreq; |
| ptp->phc_clock_info.adjtime = efx_phc_adjtime; |
| ptp->phc_clock_info.gettime = efx_phc_gettime; |
| ptp->phc_clock_info.settime = efx_phc_settime; |
| ptp->phc_clock_info.enable = efx_phc_enable; |
| |
| ptp->phc_clock = ptp_clock_register(&ptp->phc_clock_info); |
| if (!ptp->phc_clock) |
| goto fail3; |
| |
| INIT_WORK(&ptp->pps_work, efx_ptp_pps_worker); |
| ptp->pps_workwq = create_singlethread_workqueue("sfc_pps"); |
| if (!ptp->pps_workwq) { |
| rc = -ENOMEM; |
| goto fail4; |
| } |
| ptp->nic_ts_enabled = false; |
| |
| return 0; |
| fail4: |
| ptp_clock_unregister(efx->ptp_data->phc_clock); |
| |
| fail3: |
| destroy_workqueue(efx->ptp_data->workwq); |
| |
| fail2: |
| efx_nic_free_buffer(efx, &ptp->start); |
| |
| fail1: |
| kfree(efx->ptp_data); |
| efx->ptp_data = NULL; |
| |
| return rc; |
| } |
| |
| static void efx_ptp_remove_channel(struct efx_channel *channel) |
| { |
| struct efx_nic *efx = channel->efx; |
| |
| if (!efx->ptp_data) |
| return; |
| |
| (void)efx_ptp_disable(channel->efx); |
| |
| cancel_work_sync(&efx->ptp_data->work); |
| cancel_work_sync(&efx->ptp_data->pps_work); |
| |
| skb_queue_purge(&efx->ptp_data->rxq); |
| skb_queue_purge(&efx->ptp_data->txq); |
| |
| ptp_clock_unregister(efx->ptp_data->phc_clock); |
| |
| destroy_workqueue(efx->ptp_data->workwq); |
| destroy_workqueue(efx->ptp_data->pps_workwq); |
| |
| efx_nic_free_buffer(efx, &efx->ptp_data->start); |
| kfree(efx->ptp_data); |
| } |
| |
| static void efx_ptp_get_channel_name(struct efx_channel *channel, |
| char *buf, size_t len) |
| { |
| snprintf(buf, len, "%s-ptp", channel->efx->name); |
| } |
| |
| /* Determine whether this packet should be processed by the PTP module |
| * or transmitted conventionally. |
| */ |
| bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb) |
| { |
| return efx->ptp_data && |
| efx->ptp_data->enabled && |
| skb->len >= PTP_MIN_LENGTH && |
| skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM && |
| likely(skb->protocol == htons(ETH_P_IP)) && |
| ip_hdr(skb)->protocol == IPPROTO_UDP && |
| udp_hdr(skb)->dest == htons(PTP_EVENT_PORT); |
| } |
| |
| /* Receive a PTP packet. Packets are queued until the arrival of |
| * the receive timestamp from the MC - this will probably occur after the |
| * packet arrival because of the processing in the MC. |
| */ |
| static void efx_ptp_rx(struct efx_channel *channel, struct sk_buff *skb) |
| { |
| struct efx_nic *efx = channel->efx; |
| struct efx_ptp_data *ptp = efx->ptp_data; |
| struct efx_ptp_match *match = (struct efx_ptp_match *)skb->cb; |
| u8 *data; |
| unsigned int version; |
| |
| match->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS); |
| |
| /* Correct version? */ |
| if (ptp->mode == MC_CMD_PTP_MODE_V1) { |
| if (skb->len < PTP_V1_MIN_LENGTH) { |
| netif_receive_skb(skb); |
| return; |
| } |
| version = ntohs(*(__be16 *)&skb->data[PTP_V1_VERSION_OFFSET]); |
| if (version != PTP_VERSION_V1) { |
| netif_receive_skb(skb); |
| return; |
| } |
| } else { |
| if (skb->len < PTP_V2_MIN_LENGTH) { |
| netif_receive_skb(skb); |
| return; |
| } |
| version = skb->data[PTP_V2_VERSION_OFFSET]; |
| |
| BUG_ON(ptp->mode != MC_CMD_PTP_MODE_V2); |
| BUILD_BUG_ON(PTP_V1_UUID_OFFSET != PTP_V2_MC_UUID_OFFSET); |
| BUILD_BUG_ON(PTP_V1_UUID_LENGTH != PTP_V2_MC_UUID_LENGTH); |
| BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET != PTP_V2_SEQUENCE_OFFSET); |
| BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH != PTP_V2_SEQUENCE_LENGTH); |
| |
| if ((version & PTP_VERSION_V2_MASK) != PTP_VERSION_V2) { |
| netif_receive_skb(skb); |
| return; |
| } |
| } |
| |
| /* Does this packet require timestamping? */ |
| if (ntohs(*(__be16 *)&skb->data[PTP_DPORT_OFFSET]) == PTP_EVENT_PORT) { |
| struct skb_shared_hwtstamps *timestamps; |
| |
| match->state = PTP_PACKET_STATE_UNMATCHED; |
| |
| /* Clear all timestamps held: filled in later */ |
| timestamps = skb_hwtstamps(skb); |
| memset(timestamps, 0, sizeof(*timestamps)); |
| |
| /* Extract UUID/Sequence information */ |
| data = skb->data + PTP_V1_UUID_OFFSET; |
| match->words[0] = (data[0] | |
| (data[1] << 8) | |
| (data[2] << 16) | |
| (data[3] << 24)); |
| match->words[1] = (data[4] | |
| (data[5] << 8) | |
| (skb->data[PTP_V1_SEQUENCE_OFFSET + |
| PTP_V1_SEQUENCE_LENGTH - 1] << |
| 16)); |
| } else { |
| match->state = PTP_PACKET_STATE_MATCH_UNWANTED; |
| } |
| |
| skb_queue_tail(&ptp->rxq, skb); |
| queue_work(ptp->workwq, &ptp->work); |
| } |
| |
| /* Transmit a PTP packet. This has to be transmitted by the MC |
| * itself, through an MCDI call. MCDI calls aren't permitted |
| * in the transmit path so defer the actual transmission to a suitable worker. |
| */ |
| int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb) |
| { |
| struct efx_ptp_data *ptp = efx->ptp_data; |
| |
| skb_queue_tail(&ptp->txq, skb); |
| |
| if ((udp_hdr(skb)->dest == htons(PTP_EVENT_PORT)) && |
| (skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM)) |
| efx_xmit_hwtstamp_pending(skb); |
| queue_work(ptp->workwq, &ptp->work); |
| |
| return NETDEV_TX_OK; |
| } |
| |
| static int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted, |
| unsigned int new_mode) |
| { |
| if ((enable_wanted != efx->ptp_data->enabled) || |
| (enable_wanted && (efx->ptp_data->mode != new_mode))) { |
| int rc; |
| |
| if (enable_wanted) { |
| /* Change of mode requires disable */ |
| if (efx->ptp_data->enabled && |
| (efx->ptp_data->mode != new_mode)) { |
| efx->ptp_data->enabled = false; |
| rc = efx_ptp_stop(efx); |
| if (rc != 0) |
| return rc; |
| } |
| |
| /* Set new operating mode and establish |
| * baseline synchronisation, which must |
| * succeed. |
| */ |
| efx->ptp_data->mode = new_mode; |
| rc = efx_ptp_start(efx); |
| if (rc == 0) { |
| rc = efx_ptp_synchronize(efx, |
| PTP_SYNC_ATTEMPTS * 2); |
| if (rc != 0) |
| efx_ptp_stop(efx); |
| } |
| } else { |
| rc = efx_ptp_stop(efx); |
| } |
| |
| if (rc != 0) |
| return rc; |
| |
| efx->ptp_data->enabled = enable_wanted; |
| } |
| |
| return 0; |
| } |
| |
| static int efx_ptp_ts_init(struct efx_nic *efx, struct hwtstamp_config *init) |
| { |
| bool enable_wanted = false; |
| unsigned int new_mode; |
| int rc; |
| |
| if (init->flags) |
| return -EINVAL; |
| |
| if ((init->tx_type != HWTSTAMP_TX_OFF) && |
| (init->tx_type != HWTSTAMP_TX_ON)) |
| return -ERANGE; |
| |
| new_mode = efx->ptp_data->mode; |
| /* Determine whether any PTP HW operations are required */ |
| switch (init->rx_filter) { |
| case HWTSTAMP_FILTER_NONE: |
| break; |
| case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: |
| case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: |
| case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: |
| init->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; |
| new_mode = MC_CMD_PTP_MODE_V1; |
| enable_wanted = true; |
| break; |
| case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: |
| case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: |
| case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: |
| /* Although these three are accepted only IPV4 packets will be |
| * timestamped |
| */ |
| init->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT; |
| new_mode = MC_CMD_PTP_MODE_V2; |
| enable_wanted = true; |
| break; |
| case HWTSTAMP_FILTER_PTP_V2_EVENT: |
| case HWTSTAMP_FILTER_PTP_V2_SYNC: |
| case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: |
| case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: |
| case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: |
| case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: |
| /* Non-IP + IPv6 timestamping not supported */ |
| return -ERANGE; |
| break; |
| default: |
| return -ERANGE; |
| } |
| |
| if (init->tx_type != HWTSTAMP_TX_OFF) |
| enable_wanted = true; |
| |
| rc = efx_ptp_change_mode(efx, enable_wanted, new_mode); |
| if (rc != 0) |
| return rc; |
| |
| efx->ptp_data->config = *init; |
| |
| return 0; |
| } |
| |
| int |
| efx_ptp_get_ts_info(struct net_device *net_dev, struct ethtool_ts_info *ts_info) |
| { |
| struct efx_nic *efx = netdev_priv(net_dev); |
| struct efx_ptp_data *ptp = efx->ptp_data; |
| |
| if (!ptp) |
| return -EOPNOTSUPP; |
| |
| ts_info->so_timestamping = (SOF_TIMESTAMPING_TX_HARDWARE | |
| SOF_TIMESTAMPING_RX_HARDWARE | |
| SOF_TIMESTAMPING_RAW_HARDWARE); |
| ts_info->phc_index = ptp_clock_index(ptp->phc_clock); |
| ts_info->tx_types = 1 << HWTSTAMP_TX_OFF | 1 << HWTSTAMP_TX_ON; |
| ts_info->rx_filters = (1 << HWTSTAMP_FILTER_NONE | |
| 1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT | |
| 1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC | |
| 1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ | |
| 1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT | |
| 1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC | |
| 1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ); |
| return 0; |
| } |
| |
| int efx_ptp_ioctl(struct efx_nic *efx, struct ifreq *ifr, int cmd) |
| { |
| struct hwtstamp_config config; |
| int rc; |
| |
| /* Not a PTP enabled port */ |
| if (!efx->ptp_data) |
| return -EOPNOTSUPP; |
| |
| if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) |
| return -EFAULT; |
| |
| rc = efx_ptp_ts_init(efx, &config); |
| if (rc != 0) |
| return rc; |
| |
| return copy_to_user(ifr->ifr_data, &config, sizeof(config)) |
| ? -EFAULT : 0; |
| } |
| |
| static void ptp_event_failure(struct efx_nic *efx, int expected_frag_len) |
| { |
| struct efx_ptp_data *ptp = efx->ptp_data; |
| |
| netif_err(efx, hw, efx->net_dev, |
| "PTP unexpected event length: got %d expected %d\n", |
| ptp->evt_frag_idx, expected_frag_len); |
| ptp->reset_required = true; |
| queue_work(ptp->workwq, &ptp->work); |
| } |
| |
| /* Process a completed receive event. Put it on the event queue and |
| * start worker thread. This is required because event and their |
| * correspoding packets may come in either order. |
| */ |
| static void ptp_event_rx(struct efx_nic *efx, struct efx_ptp_data *ptp) |
| { |
| struct efx_ptp_event_rx *evt = NULL; |
| |
| if (ptp->evt_frag_idx != 3) { |
| ptp_event_failure(efx, 3); |
| return; |
| } |
| |
| spin_lock_bh(&ptp->evt_lock); |
| if (!list_empty(&ptp->evt_free_list)) { |
| evt = list_first_entry(&ptp->evt_free_list, |
| struct efx_ptp_event_rx, link); |
| list_del(&evt->link); |
| |
| evt->seq0 = EFX_QWORD_FIELD(ptp->evt_frags[2], MCDI_EVENT_DATA); |
| evt->seq1 = (EFX_QWORD_FIELD(ptp->evt_frags[2], |
| MCDI_EVENT_SRC) | |
| (EFX_QWORD_FIELD(ptp->evt_frags[1], |
| MCDI_EVENT_SRC) << 8) | |
| (EFX_QWORD_FIELD(ptp->evt_frags[0], |
| MCDI_EVENT_SRC) << 16)); |
| evt->hwtimestamp = ktime_set( |
| EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA), |
| EFX_QWORD_FIELD(ptp->evt_frags[1], MCDI_EVENT_DATA)); |
| evt->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS); |
| list_add_tail(&evt->link, &ptp->evt_list); |
| |
| queue_work(ptp->workwq, &ptp->work); |
| } else { |
| netif_err(efx, rx_err, efx->net_dev, "No free PTP event"); |
| } |
| spin_unlock_bh(&ptp->evt_lock); |
| } |
| |
| static void ptp_event_fault(struct efx_nic *efx, struct efx_ptp_data *ptp) |
| { |
| int code = EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA); |
| if (ptp->evt_frag_idx != 1) { |
| ptp_event_failure(efx, 1); |
| return; |
| } |
| |
| netif_err(efx, hw, efx->net_dev, "PTP error %d\n", code); |
| } |
| |
| static void ptp_event_pps(struct efx_nic *efx, struct efx_ptp_data *ptp) |
| { |
| if (ptp->nic_ts_enabled) |
| queue_work(ptp->pps_workwq, &ptp->pps_work); |
| } |
| |
| void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev) |
| { |
| struct efx_ptp_data *ptp = efx->ptp_data; |
| int code = EFX_QWORD_FIELD(*ev, MCDI_EVENT_CODE); |
| |
| if (!ptp->enabled) |
| return; |
| |
| if (ptp->evt_frag_idx == 0) { |
| ptp->evt_code = code; |
| } else if (ptp->evt_code != code) { |
| netif_err(efx, hw, efx->net_dev, |
| "PTP out of sequence event %d\n", code); |
| ptp->evt_frag_idx = 0; |
| } |
| |
| ptp->evt_frags[ptp->evt_frag_idx++] = *ev; |
| if (!MCDI_EVENT_FIELD(*ev, CONT)) { |
| /* Process resulting event */ |
| switch (code) { |
| case MCDI_EVENT_CODE_PTP_RX: |
| ptp_event_rx(efx, ptp); |
| break; |
| case MCDI_EVENT_CODE_PTP_FAULT: |
| ptp_event_fault(efx, ptp); |
| break; |
| case MCDI_EVENT_CODE_PTP_PPS: |
| ptp_event_pps(efx, ptp); |
| break; |
| default: |
| netif_err(efx, hw, efx->net_dev, |
| "PTP unknown event %d\n", code); |
| break; |
| } |
| ptp->evt_frag_idx = 0; |
| } else if (MAX_EVENT_FRAGS == ptp->evt_frag_idx) { |
| netif_err(efx, hw, efx->net_dev, |
| "PTP too many event fragments\n"); |
| ptp->evt_frag_idx = 0; |
| } |
| } |
| |
| static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta) |
| { |
| struct efx_ptp_data *ptp_data = container_of(ptp, |
| struct efx_ptp_data, |
| phc_clock_info); |
| struct efx_nic *efx = ptp_data->channel->efx; |
| u8 inadj[MC_CMD_PTP_IN_ADJUST_LEN]; |
| s64 adjustment_ns; |
| int rc; |
| |
| if (delta > MAX_PPB) |
| delta = MAX_PPB; |
| else if (delta < -MAX_PPB) |
| delta = -MAX_PPB; |
| |
| /* Convert ppb to fixed point ns. */ |
| adjustment_ns = (((s64)delta * PPB_SCALE_WORD) >> |
| (PPB_EXTRA_BITS + MAX_PPB_BITS)); |
| |
| MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST); |
| MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_FREQ_LO, (u32)adjustment_ns); |
| MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_FREQ_HI, |
| (u32)(adjustment_ns >> 32)); |
| MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_SECONDS, 0); |
| MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_NANOSECONDS, 0); |
| rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inadj, sizeof(inadj), |
| NULL, 0, NULL); |
| if (rc != 0) |
| return rc; |
| |
| ptp_data->current_adjfreq = delta; |
| return 0; |
| } |
| |
| static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta) |
| { |
| struct efx_ptp_data *ptp_data = container_of(ptp, |
| struct efx_ptp_data, |
| phc_clock_info); |
| struct efx_nic *efx = ptp_data->channel->efx; |
| struct timespec delta_ts = ns_to_timespec(delta); |
| u8 inbuf[MC_CMD_PTP_IN_ADJUST_LEN]; |
| |
| MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST); |
| MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_FREQ_LO, 0); |
| MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_FREQ_HI, 0); |
| MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_SECONDS, (u32)delta_ts.tv_sec); |
| MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_NANOSECONDS, (u32)delta_ts.tv_nsec); |
| return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), |
| NULL, 0, NULL); |
| } |
| |
| static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec *ts) |
| { |
| struct efx_ptp_data *ptp_data = container_of(ptp, |
| struct efx_ptp_data, |
| phc_clock_info); |
| struct efx_nic *efx = ptp_data->channel->efx; |
| u8 inbuf[MC_CMD_PTP_IN_READ_NIC_TIME_LEN]; |
| u8 outbuf[MC_CMD_PTP_OUT_READ_NIC_TIME_LEN]; |
| int rc; |
| |
| MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_READ_NIC_TIME); |
| |
| rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), |
| outbuf, sizeof(outbuf), NULL); |
| if (rc != 0) |
| return rc; |
| |
| ts->tv_sec = MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_SECONDS); |
| ts->tv_nsec = MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_NANOSECONDS); |
| return 0; |
| } |
| |
| static int efx_phc_settime(struct ptp_clock_info *ptp, |
| const struct timespec *e_ts) |
| { |
| /* Get the current NIC time, efx_phc_gettime. |
| * Subtract from the desired time to get the offset |
| * call efx_phc_adjtime with the offset |
| */ |
| int rc; |
| struct timespec time_now; |
| struct timespec delta; |
| |
| rc = efx_phc_gettime(ptp, &time_now); |
| if (rc != 0) |
| return rc; |
| |
| delta = timespec_sub(*e_ts, time_now); |
| |
| efx_phc_adjtime(ptp, timespec_to_ns(&delta)); |
| if (rc != 0) |
| return rc; |
| |
| return 0; |
| } |
| |
| static int efx_phc_enable(struct ptp_clock_info *ptp, |
| struct ptp_clock_request *request, |
| int enable) |
| { |
| struct efx_ptp_data *ptp_data = container_of(ptp, |
| struct efx_ptp_data, |
| phc_clock_info); |
| if (request->type != PTP_CLK_REQ_PPS) |
| return -EOPNOTSUPP; |
| |
| ptp_data->nic_ts_enabled = !!enable; |
| return 0; |
| } |
| |
| static const struct efx_channel_type efx_ptp_channel_type = { |
| .handle_no_channel = efx_ptp_handle_no_channel, |
| .pre_probe = efx_ptp_probe_channel, |
| .post_remove = efx_ptp_remove_channel, |
| .get_name = efx_ptp_get_channel_name, |
| /* no copy operation; there is no need to reallocate this channel */ |
| .receive_skb = efx_ptp_rx, |
| .keep_eventq = false, |
| }; |
| |
| void efx_ptp_probe(struct efx_nic *efx) |
| { |
| /* Check whether PTP is implemented on this NIC. The DISABLE |
| * operation will succeed if and only if it is implemented. |
| */ |
| if (efx_ptp_disable(efx) == 0) |
| efx->extra_channel_type[EFX_EXTRA_CHANNEL_PTP] = |
| &efx_ptp_channel_type; |
| } |