| /* |
| * linux/mm/swap.c |
| * |
| * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds |
| */ |
| |
| /* |
| * This file contains the default values for the operation of the |
| * Linux VM subsystem. Fine-tuning documentation can be found in |
| * Documentation/sysctl/vm.txt. |
| * Started 18.12.91 |
| * Swap aging added 23.2.95, Stephen Tweedie. |
| * Buffermem limits added 12.3.98, Rik van Riel. |
| */ |
| |
| #include <linux/mm.h> |
| #include <linux/sched.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/swap.h> |
| #include <linux/mman.h> |
| #include <linux/pagemap.h> |
| #include <linux/pagevec.h> |
| #include <linux/init.h> |
| #include <linux/export.h> |
| #include <linux/mm_inline.h> |
| #include <linux/percpu_counter.h> |
| #include <linux/percpu.h> |
| #include <linux/cpu.h> |
| #include <linux/notifier.h> |
| #include <linux/backing-dev.h> |
| #include <linux/memcontrol.h> |
| #include <linux/gfp.h> |
| #include <linux/uio.h> |
| |
| #include "internal.h" |
| |
| #define CREATE_TRACE_POINTS |
| #include <trace/events/pagemap.h> |
| |
| /* How many pages do we try to swap or page in/out together? */ |
| int page_cluster; |
| |
| static DEFINE_PER_CPU(struct pagevec, lru_add_pvec); |
| static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs); |
| static DEFINE_PER_CPU(struct pagevec, lru_deactivate_file_pvecs); |
| |
| /* |
| * This path almost never happens for VM activity - pages are normally |
| * freed via pagevecs. But it gets used by networking. |
| */ |
| static void __page_cache_release(struct page *page) |
| { |
| if (PageLRU(page)) { |
| struct zone *zone = page_zone(page); |
| struct lruvec *lruvec; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&zone->lru_lock, flags); |
| lruvec = mem_cgroup_page_lruvec(page, zone); |
| VM_BUG_ON_PAGE(!PageLRU(page), page); |
| __ClearPageLRU(page); |
| del_page_from_lru_list(page, lruvec, page_off_lru(page)); |
| spin_unlock_irqrestore(&zone->lru_lock, flags); |
| } |
| mem_cgroup_uncharge(page); |
| } |
| |
| static void __put_single_page(struct page *page) |
| { |
| __page_cache_release(page); |
| free_hot_cold_page(page, false); |
| } |
| |
| static void __put_compound_page(struct page *page) |
| { |
| compound_page_dtor *dtor; |
| |
| __page_cache_release(page); |
| dtor = get_compound_page_dtor(page); |
| (*dtor)(page); |
| } |
| |
| /** |
| * Two special cases here: we could avoid taking compound_lock_irqsave |
| * and could skip the tail refcounting(in _mapcount). |
| * |
| * 1. Hugetlbfs page: |
| * |
| * PageHeadHuge will remain true until the compound page |
| * is released and enters the buddy allocator, and it could |
| * not be split by __split_huge_page_refcount(). |
| * |
| * So if we see PageHeadHuge set, and we have the tail page pin, |
| * then we could safely put head page. |
| * |
| * 2. Slab THP page: |
| * |
| * PG_slab is cleared before the slab frees the head page, and |
| * tail pin cannot be the last reference left on the head page, |
| * because the slab code is free to reuse the compound page |
| * after a kfree/kmem_cache_free without having to check if |
| * there's any tail pin left. In turn all tail pinsmust be always |
| * released while the head is still pinned by the slab code |
| * and so we know PG_slab will be still set too. |
| * |
| * So if we see PageSlab set, and we have the tail page pin, |
| * then we could safely put head page. |
| */ |
| static __always_inline |
| void put_unrefcounted_compound_page(struct page *page_head, struct page *page) |
| { |
| /* |
| * If @page is a THP tail, we must read the tail page |
| * flags after the head page flags. The |
| * __split_huge_page_refcount side enforces write memory barriers |
| * between clearing PageTail and before the head page |
| * can be freed and reallocated. |
| */ |
| smp_rmb(); |
| if (likely(PageTail(page))) { |
| /* |
| * __split_huge_page_refcount cannot race |
| * here, see the comment above this function. |
| */ |
| VM_BUG_ON_PAGE(!PageHead(page_head), page_head); |
| VM_BUG_ON_PAGE(page_mapcount(page) != 0, page); |
| if (put_page_testzero(page_head)) { |
| /* |
| * If this is the tail of a slab THP page, |
| * the tail pin must not be the last reference |
| * held on the page, because the PG_slab cannot |
| * be cleared before all tail pins (which skips |
| * the _mapcount tail refcounting) have been |
| * released. |
| * |
| * If this is the tail of a hugetlbfs page, |
| * the tail pin may be the last reference on |
| * the page instead, because PageHeadHuge will |
| * not go away until the compound page enters |
| * the buddy allocator. |
| */ |
| VM_BUG_ON_PAGE(PageSlab(page_head), page_head); |
| __put_compound_page(page_head); |
| } |
| } else |
| /* |
| * __split_huge_page_refcount run before us, |
| * @page was a THP tail. The split @page_head |
| * has been freed and reallocated as slab or |
| * hugetlbfs page of smaller order (only |
| * possible if reallocated as slab on x86). |
| */ |
| if (put_page_testzero(page)) |
| __put_single_page(page); |
| } |
| |
| static __always_inline |
| void put_refcounted_compound_page(struct page *page_head, struct page *page) |
| { |
| if (likely(page != page_head && get_page_unless_zero(page_head))) { |
| unsigned long flags; |
| |
| /* |
| * @page_head wasn't a dangling pointer but it may not |
| * be a head page anymore by the time we obtain the |
| * lock. That is ok as long as it can't be freed from |
| * under us. |
| */ |
| flags = compound_lock_irqsave(page_head); |
| if (unlikely(!PageTail(page))) { |
| /* __split_huge_page_refcount run before us */ |
| compound_unlock_irqrestore(page_head, flags); |
| if (put_page_testzero(page_head)) { |
| /* |
| * The @page_head may have been freed |
| * and reallocated as a compound page |
| * of smaller order and then freed |
| * again. All we know is that it |
| * cannot have become: a THP page, a |
| * compound page of higher order, a |
| * tail page. That is because we |
| * still hold the refcount of the |
| * split THP tail and page_head was |
| * the THP head before the split. |
| */ |
| if (PageHead(page_head)) |
| __put_compound_page(page_head); |
| else |
| __put_single_page(page_head); |
| } |
| out_put_single: |
| if (put_page_testzero(page)) |
| __put_single_page(page); |
| return; |
| } |
| VM_BUG_ON_PAGE(page_head != page->first_page, page); |
| /* |
| * We can release the refcount taken by |
| * get_page_unless_zero() now that |
| * __split_huge_page_refcount() is blocked on the |
| * compound_lock. |
| */ |
| if (put_page_testzero(page_head)) |
| VM_BUG_ON_PAGE(1, page_head); |
| /* __split_huge_page_refcount will wait now */ |
| VM_BUG_ON_PAGE(page_mapcount(page) <= 0, page); |
| atomic_dec(&page->_mapcount); |
| VM_BUG_ON_PAGE(atomic_read(&page_head->_count) <= 0, page_head); |
| VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page); |
| compound_unlock_irqrestore(page_head, flags); |
| |
| if (put_page_testzero(page_head)) { |
| if (PageHead(page_head)) |
| __put_compound_page(page_head); |
| else |
| __put_single_page(page_head); |
| } |
| } else { |
| /* @page_head is a dangling pointer */ |
| VM_BUG_ON_PAGE(PageTail(page), page); |
| goto out_put_single; |
| } |
| } |
| |
| static void put_compound_page(struct page *page) |
| { |
| struct page *page_head; |
| |
| /* |
| * We see the PageCompound set and PageTail not set, so @page maybe: |
| * 1. hugetlbfs head page, or |
| * 2. THP head page. |
| */ |
| if (likely(!PageTail(page))) { |
| if (put_page_testzero(page)) { |
| /* |
| * By the time all refcounts have been released |
| * split_huge_page cannot run anymore from under us. |
| */ |
| if (PageHead(page)) |
| __put_compound_page(page); |
| else |
| __put_single_page(page); |
| } |
| return; |
| } |
| |
| /* |
| * We see the PageCompound set and PageTail set, so @page maybe: |
| * 1. a tail hugetlbfs page, or |
| * 2. a tail THP page, or |
| * 3. a split THP page. |
| * |
| * Case 3 is possible, as we may race with |
| * __split_huge_page_refcount tearing down a THP page. |
| */ |
| page_head = compound_head_by_tail(page); |
| if (!__compound_tail_refcounted(page_head)) |
| put_unrefcounted_compound_page(page_head, page); |
| else |
| put_refcounted_compound_page(page_head, page); |
| } |
| |
| void put_page(struct page *page) |
| { |
| if (unlikely(PageCompound(page))) |
| put_compound_page(page); |
| else if (put_page_testzero(page)) |
| __put_single_page(page); |
| } |
| EXPORT_SYMBOL(put_page); |
| |
| /* |
| * This function is exported but must not be called by anything other |
| * than get_page(). It implements the slow path of get_page(). |
| */ |
| bool __get_page_tail(struct page *page) |
| { |
| /* |
| * This takes care of get_page() if run on a tail page |
| * returned by one of the get_user_pages/follow_page variants. |
| * get_user_pages/follow_page itself doesn't need the compound |
| * lock because it runs __get_page_tail_foll() under the |
| * proper PT lock that already serializes against |
| * split_huge_page(). |
| */ |
| unsigned long flags; |
| bool got; |
| struct page *page_head = compound_head(page); |
| |
| /* Ref to put_compound_page() comment. */ |
| if (!__compound_tail_refcounted(page_head)) { |
| smp_rmb(); |
| if (likely(PageTail(page))) { |
| /* |
| * This is a hugetlbfs page or a slab |
| * page. __split_huge_page_refcount |
| * cannot race here. |
| */ |
| VM_BUG_ON_PAGE(!PageHead(page_head), page_head); |
| __get_page_tail_foll(page, true); |
| return true; |
| } else { |
| /* |
| * __split_huge_page_refcount run |
| * before us, "page" was a THP |
| * tail. The split page_head has been |
| * freed and reallocated as slab or |
| * hugetlbfs page of smaller order |
| * (only possible if reallocated as |
| * slab on x86). |
| */ |
| return false; |
| } |
| } |
| |
| got = false; |
| if (likely(page != page_head && get_page_unless_zero(page_head))) { |
| /* |
| * page_head wasn't a dangling pointer but it |
| * may not be a head page anymore by the time |
| * we obtain the lock. That is ok as long as it |
| * can't be freed from under us. |
| */ |
| flags = compound_lock_irqsave(page_head); |
| /* here __split_huge_page_refcount won't run anymore */ |
| if (likely(PageTail(page))) { |
| __get_page_tail_foll(page, false); |
| got = true; |
| } |
| compound_unlock_irqrestore(page_head, flags); |
| if (unlikely(!got)) |
| put_page(page_head); |
| } |
| return got; |
| } |
| EXPORT_SYMBOL(__get_page_tail); |
| |
| /** |
| * put_pages_list() - release a list of pages |
| * @pages: list of pages threaded on page->lru |
| * |
| * Release a list of pages which are strung together on page.lru. Currently |
| * used by read_cache_pages() and related error recovery code. |
| */ |
| void put_pages_list(struct list_head *pages) |
| { |
| while (!list_empty(pages)) { |
| struct page *victim; |
| |
| victim = list_entry(pages->prev, struct page, lru); |
| list_del(&victim->lru); |
| page_cache_release(victim); |
| } |
| } |
| EXPORT_SYMBOL(put_pages_list); |
| |
| /* |
| * get_kernel_pages() - pin kernel pages in memory |
| * @kiov: An array of struct kvec structures |
| * @nr_segs: number of segments to pin |
| * @write: pinning for read/write, currently ignored |
| * @pages: array that receives pointers to the pages pinned. |
| * Should be at least nr_segs long. |
| * |
| * Returns number of pages pinned. This may be fewer than the number |
| * requested. If nr_pages is 0 or negative, returns 0. If no pages |
| * were pinned, returns -errno. Each page returned must be released |
| * with a put_page() call when it is finished with. |
| */ |
| int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write, |
| struct page **pages) |
| { |
| int seg; |
| |
| for (seg = 0; seg < nr_segs; seg++) { |
| if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE)) |
| return seg; |
| |
| pages[seg] = kmap_to_page(kiov[seg].iov_base); |
| page_cache_get(pages[seg]); |
| } |
| |
| return seg; |
| } |
| EXPORT_SYMBOL_GPL(get_kernel_pages); |
| |
| /* |
| * get_kernel_page() - pin a kernel page in memory |
| * @start: starting kernel address |
| * @write: pinning for read/write, currently ignored |
| * @pages: array that receives pointer to the page pinned. |
| * Must be at least nr_segs long. |
| * |
| * Returns 1 if page is pinned. If the page was not pinned, returns |
| * -errno. The page returned must be released with a put_page() call |
| * when it is finished with. |
| */ |
| int get_kernel_page(unsigned long start, int write, struct page **pages) |
| { |
| const struct kvec kiov = { |
| .iov_base = (void *)start, |
| .iov_len = PAGE_SIZE |
| }; |
| |
| return get_kernel_pages(&kiov, 1, write, pages); |
| } |
| EXPORT_SYMBOL_GPL(get_kernel_page); |
| |
| static void pagevec_lru_move_fn(struct pagevec *pvec, |
| void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg), |
| void *arg) |
| { |
| int i; |
| struct zone *zone = NULL; |
| struct lruvec *lruvec; |
| unsigned long flags = 0; |
| |
| for (i = 0; i < pagevec_count(pvec); i++) { |
| struct page *page = pvec->pages[i]; |
| struct zone *pagezone = page_zone(page); |
| |
| if (pagezone != zone) { |
| if (zone) |
| spin_unlock_irqrestore(&zone->lru_lock, flags); |
| zone = pagezone; |
| spin_lock_irqsave(&zone->lru_lock, flags); |
| } |
| |
| lruvec = mem_cgroup_page_lruvec(page, zone); |
| (*move_fn)(page, lruvec, arg); |
| } |
| if (zone) |
| spin_unlock_irqrestore(&zone->lru_lock, flags); |
| release_pages(pvec->pages, pvec->nr, pvec->cold); |
| pagevec_reinit(pvec); |
| } |
| |
| static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec, |
| void *arg) |
| { |
| int *pgmoved = arg; |
| |
| if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { |
| enum lru_list lru = page_lru_base_type(page); |
| list_move_tail(&page->lru, &lruvec->lists[lru]); |
| (*pgmoved)++; |
| } |
| } |
| |
| /* |
| * pagevec_move_tail() must be called with IRQ disabled. |
| * Otherwise this may cause nasty races. |
| */ |
| static void pagevec_move_tail(struct pagevec *pvec) |
| { |
| int pgmoved = 0; |
| |
| pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved); |
| __count_vm_events(PGROTATED, pgmoved); |
| } |
| |
| /* |
| * Writeback is about to end against a page which has been marked for immediate |
| * reclaim. If it still appears to be reclaimable, move it to the tail of the |
| * inactive list. |
| */ |
| void rotate_reclaimable_page(struct page *page) |
| { |
| if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) && |
| !PageUnevictable(page) && PageLRU(page)) { |
| struct pagevec *pvec; |
| unsigned long flags; |
| |
| page_cache_get(page); |
| local_irq_save(flags); |
| pvec = this_cpu_ptr(&lru_rotate_pvecs); |
| if (!pagevec_add(pvec, page)) |
| pagevec_move_tail(pvec); |
| local_irq_restore(flags); |
| } |
| } |
| |
| static void update_page_reclaim_stat(struct lruvec *lruvec, |
| int file, int rotated) |
| { |
| struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; |
| |
| reclaim_stat->recent_scanned[file]++; |
| if (rotated) |
| reclaim_stat->recent_rotated[file]++; |
| } |
| |
| static void __activate_page(struct page *page, struct lruvec *lruvec, |
| void *arg) |
| { |
| if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { |
| int file = page_is_file_cache(page); |
| int lru = page_lru_base_type(page); |
| |
| del_page_from_lru_list(page, lruvec, lru); |
| SetPageActive(page); |
| lru += LRU_ACTIVE; |
| add_page_to_lru_list(page, lruvec, lru); |
| trace_mm_lru_activate(page); |
| |
| __count_vm_event(PGACTIVATE); |
| update_page_reclaim_stat(lruvec, file, 1); |
| } |
| } |
| |
| #ifdef CONFIG_SMP |
| static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs); |
| |
| static void activate_page_drain(int cpu) |
| { |
| struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu); |
| |
| if (pagevec_count(pvec)) |
| pagevec_lru_move_fn(pvec, __activate_page, NULL); |
| } |
| |
| static bool need_activate_page_drain(int cpu) |
| { |
| return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0; |
| } |
| |
| void activate_page(struct page *page) |
| { |
| if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { |
| struct pagevec *pvec = &get_cpu_var(activate_page_pvecs); |
| |
| page_cache_get(page); |
| if (!pagevec_add(pvec, page)) |
| pagevec_lru_move_fn(pvec, __activate_page, NULL); |
| put_cpu_var(activate_page_pvecs); |
| } |
| } |
| |
| #else |
| static inline void activate_page_drain(int cpu) |
| { |
| } |
| |
| static bool need_activate_page_drain(int cpu) |
| { |
| return false; |
| } |
| |
| void activate_page(struct page *page) |
| { |
| struct zone *zone = page_zone(page); |
| |
| spin_lock_irq(&zone->lru_lock); |
| __activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL); |
| spin_unlock_irq(&zone->lru_lock); |
| } |
| #endif |
| |
| static void __lru_cache_activate_page(struct page *page) |
| { |
| struct pagevec *pvec = &get_cpu_var(lru_add_pvec); |
| int i; |
| |
| /* |
| * Search backwards on the optimistic assumption that the page being |
| * activated has just been added to this pagevec. Note that only |
| * the local pagevec is examined as a !PageLRU page could be in the |
| * process of being released, reclaimed, migrated or on a remote |
| * pagevec that is currently being drained. Furthermore, marking |
| * a remote pagevec's page PageActive potentially hits a race where |
| * a page is marked PageActive just after it is added to the inactive |
| * list causing accounting errors and BUG_ON checks to trigger. |
| */ |
| for (i = pagevec_count(pvec) - 1; i >= 0; i--) { |
| struct page *pagevec_page = pvec->pages[i]; |
| |
| if (pagevec_page == page) { |
| SetPageActive(page); |
| break; |
| } |
| } |
| |
| put_cpu_var(lru_add_pvec); |
| } |
| |
| /* |
| * Mark a page as having seen activity. |
| * |
| * inactive,unreferenced -> inactive,referenced |
| * inactive,referenced -> active,unreferenced |
| * active,unreferenced -> active,referenced |
| * |
| * When a newly allocated page is not yet visible, so safe for non-atomic ops, |
| * __SetPageReferenced(page) may be substituted for mark_page_accessed(page). |
| */ |
| void mark_page_accessed(struct page *page) |
| { |
| if (!PageActive(page) && !PageUnevictable(page) && |
| PageReferenced(page)) { |
| |
| /* |
| * If the page is on the LRU, queue it for activation via |
| * activate_page_pvecs. Otherwise, assume the page is on a |
| * pagevec, mark it active and it'll be moved to the active |
| * LRU on the next drain. |
| */ |
| if (PageLRU(page)) |
| activate_page(page); |
| else |
| __lru_cache_activate_page(page); |
| ClearPageReferenced(page); |
| if (page_is_file_cache(page)) |
| workingset_activation(page); |
| } else if (!PageReferenced(page)) { |
| SetPageReferenced(page); |
| } |
| } |
| EXPORT_SYMBOL(mark_page_accessed); |
| |
| static void __lru_cache_add(struct page *page) |
| { |
| struct pagevec *pvec = &get_cpu_var(lru_add_pvec); |
| |
| page_cache_get(page); |
| if (!pagevec_space(pvec)) |
| __pagevec_lru_add(pvec); |
| pagevec_add(pvec, page); |
| put_cpu_var(lru_add_pvec); |
| } |
| |
| /** |
| * lru_cache_add: add a page to the page lists |
| * @page: the page to add |
| */ |
| void lru_cache_add_anon(struct page *page) |
| { |
| if (PageActive(page)) |
| ClearPageActive(page); |
| __lru_cache_add(page); |
| } |
| |
| void lru_cache_add_file(struct page *page) |
| { |
| if (PageActive(page)) |
| ClearPageActive(page); |
| __lru_cache_add(page); |
| } |
| EXPORT_SYMBOL(lru_cache_add_file); |
| |
| /** |
| * lru_cache_add - add a page to a page list |
| * @page: the page to be added to the LRU. |
| * |
| * Queue the page for addition to the LRU via pagevec. The decision on whether |
| * to add the page to the [in]active [file|anon] list is deferred until the |
| * pagevec is drained. This gives a chance for the caller of lru_cache_add() |
| * have the page added to the active list using mark_page_accessed(). |
| */ |
| void lru_cache_add(struct page *page) |
| { |
| VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page); |
| VM_BUG_ON_PAGE(PageLRU(page), page); |
| __lru_cache_add(page); |
| } |
| |
| /** |
| * add_page_to_unevictable_list - add a page to the unevictable list |
| * @page: the page to be added to the unevictable list |
| * |
| * Add page directly to its zone's unevictable list. To avoid races with |
| * tasks that might be making the page evictable, through eg. munlock, |
| * munmap or exit, while it's not on the lru, we want to add the page |
| * while it's locked or otherwise "invisible" to other tasks. This is |
| * difficult to do when using the pagevec cache, so bypass that. |
| */ |
| void add_page_to_unevictable_list(struct page *page) |
| { |
| struct zone *zone = page_zone(page); |
| struct lruvec *lruvec; |
| |
| spin_lock_irq(&zone->lru_lock); |
| lruvec = mem_cgroup_page_lruvec(page, zone); |
| ClearPageActive(page); |
| SetPageUnevictable(page); |
| SetPageLRU(page); |
| add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE); |
| spin_unlock_irq(&zone->lru_lock); |
| } |
| |
| /** |
| * lru_cache_add_active_or_unevictable |
| * @page: the page to be added to LRU |
| * @vma: vma in which page is mapped for determining reclaimability |
| * |
| * Place @page on the active or unevictable LRU list, depending on its |
| * evictability. Note that if the page is not evictable, it goes |
| * directly back onto it's zone's unevictable list, it does NOT use a |
| * per cpu pagevec. |
| */ |
| void lru_cache_add_active_or_unevictable(struct page *page, |
| struct vm_area_struct *vma) |
| { |
| VM_BUG_ON_PAGE(PageLRU(page), page); |
| |
| if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED)) { |
| SetPageActive(page); |
| lru_cache_add(page); |
| return; |
| } |
| |
| if (!TestSetPageMlocked(page)) { |
| /* |
| * We use the irq-unsafe __mod_zone_page_stat because this |
| * counter is not modified from interrupt context, and the pte |
| * lock is held(spinlock), which implies preemption disabled. |
| */ |
| __mod_zone_page_state(page_zone(page), NR_MLOCK, |
| hpage_nr_pages(page)); |
| count_vm_event(UNEVICTABLE_PGMLOCKED); |
| } |
| add_page_to_unevictable_list(page); |
| } |
| |
| /* |
| * If the page can not be invalidated, it is moved to the |
| * inactive list to speed up its reclaim. It is moved to the |
| * head of the list, rather than the tail, to give the flusher |
| * threads some time to write it out, as this is much more |
| * effective than the single-page writeout from reclaim. |
| * |
| * If the page isn't page_mapped and dirty/writeback, the page |
| * could reclaim asap using PG_reclaim. |
| * |
| * 1. active, mapped page -> none |
| * 2. active, dirty/writeback page -> inactive, head, PG_reclaim |
| * 3. inactive, mapped page -> none |
| * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim |
| * 5. inactive, clean -> inactive, tail |
| * 6. Others -> none |
| * |
| * In 4, why it moves inactive's head, the VM expects the page would |
| * be write it out by flusher threads as this is much more effective |
| * than the single-page writeout from reclaim. |
| */ |
| static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec, |
| void *arg) |
| { |
| int lru, file; |
| bool active; |
| |
| if (!PageLRU(page)) |
| return; |
| |
| if (PageUnevictable(page)) |
| return; |
| |
| /* Some processes are using the page */ |
| if (page_mapped(page)) |
| return; |
| |
| active = PageActive(page); |
| file = page_is_file_cache(page); |
| lru = page_lru_base_type(page); |
| |
| del_page_from_lru_list(page, lruvec, lru + active); |
| ClearPageActive(page); |
| ClearPageReferenced(page); |
| add_page_to_lru_list(page, lruvec, lru); |
| |
| if (PageWriteback(page) || PageDirty(page)) { |
| /* |
| * PG_reclaim could be raced with end_page_writeback |
| * It can make readahead confusing. But race window |
| * is _really_ small and it's non-critical problem. |
| */ |
| SetPageReclaim(page); |
| } else { |
| /* |
| * The page's writeback ends up during pagevec |
| * We moves tha page into tail of inactive. |
| */ |
| list_move_tail(&page->lru, &lruvec->lists[lru]); |
| __count_vm_event(PGROTATED); |
| } |
| |
| if (active) |
| __count_vm_event(PGDEACTIVATE); |
| update_page_reclaim_stat(lruvec, file, 0); |
| } |
| |
| /* |
| * Drain pages out of the cpu's pagevecs. |
| * Either "cpu" is the current CPU, and preemption has already been |
| * disabled; or "cpu" is being hot-unplugged, and is already dead. |
| */ |
| void lru_add_drain_cpu(int cpu) |
| { |
| struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu); |
| |
| if (pagevec_count(pvec)) |
| __pagevec_lru_add(pvec); |
| |
| pvec = &per_cpu(lru_rotate_pvecs, cpu); |
| if (pagevec_count(pvec)) { |
| unsigned long flags; |
| |
| /* No harm done if a racing interrupt already did this */ |
| local_irq_save(flags); |
| pagevec_move_tail(pvec); |
| local_irq_restore(flags); |
| } |
| |
| pvec = &per_cpu(lru_deactivate_file_pvecs, cpu); |
| if (pagevec_count(pvec)) |
| pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL); |
| |
| activate_page_drain(cpu); |
| } |
| |
| /** |
| * deactivate_file_page - forcefully deactivate a file page |
| * @page: page to deactivate |
| * |
| * This function hints the VM that @page is a good reclaim candidate, |
| * for example if its invalidation fails due to the page being dirty |
| * or under writeback. |
| */ |
| void deactivate_file_page(struct page *page) |
| { |
| /* |
| * In a workload with many unevictable page such as mprotect, |
| * unevictable page deactivation for accelerating reclaim is pointless. |
| */ |
| if (PageUnevictable(page)) |
| return; |
| |
| if (likely(get_page_unless_zero(page))) { |
| struct pagevec *pvec = &get_cpu_var(lru_deactivate_file_pvecs); |
| |
| if (!pagevec_add(pvec, page)) |
| pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL); |
| put_cpu_var(lru_deactivate_file_pvecs); |
| } |
| } |
| |
| void lru_add_drain(void) |
| { |
| lru_add_drain_cpu(get_cpu()); |
| put_cpu(); |
| } |
| |
| static void lru_add_drain_per_cpu(struct work_struct *dummy) |
| { |
| lru_add_drain(); |
| } |
| |
| static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work); |
| |
| void lru_add_drain_all(void) |
| { |
| static DEFINE_MUTEX(lock); |
| static struct cpumask has_work; |
| int cpu; |
| |
| mutex_lock(&lock); |
| get_online_cpus(); |
| cpumask_clear(&has_work); |
| |
| for_each_online_cpu(cpu) { |
| struct work_struct *work = &per_cpu(lru_add_drain_work, cpu); |
| |
| if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) || |
| pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) || |
| pagevec_count(&per_cpu(lru_deactivate_file_pvecs, cpu)) || |
| need_activate_page_drain(cpu)) { |
| INIT_WORK(work, lru_add_drain_per_cpu); |
| schedule_work_on(cpu, work); |
| cpumask_set_cpu(cpu, &has_work); |
| } |
| } |
| |
| for_each_cpu(cpu, &has_work) |
| flush_work(&per_cpu(lru_add_drain_work, cpu)); |
| |
| put_online_cpus(); |
| mutex_unlock(&lock); |
| } |
| |
| /** |
| * release_pages - batched page_cache_release() |
| * @pages: array of pages to release |
| * @nr: number of pages |
| * @cold: whether the pages are cache cold |
| * |
| * Decrement the reference count on all the pages in @pages. If it |
| * fell to zero, remove the page from the LRU and free it. |
| */ |
| void release_pages(struct page **pages, int nr, bool cold) |
| { |
| int i; |
| LIST_HEAD(pages_to_free); |
| struct zone *zone = NULL; |
| struct lruvec *lruvec; |
| unsigned long uninitialized_var(flags); |
| unsigned int uninitialized_var(lock_batch); |
| |
| for (i = 0; i < nr; i++) { |
| struct page *page = pages[i]; |
| |
| if (unlikely(PageCompound(page))) { |
| if (zone) { |
| spin_unlock_irqrestore(&zone->lru_lock, flags); |
| zone = NULL; |
| } |
| put_compound_page(page); |
| continue; |
| } |
| |
| /* |
| * Make sure the IRQ-safe lock-holding time does not get |
| * excessive with a continuous string of pages from the |
| * same zone. The lock is held only if zone != NULL. |
| */ |
| if (zone && ++lock_batch == SWAP_CLUSTER_MAX) { |
| spin_unlock_irqrestore(&zone->lru_lock, flags); |
| zone = NULL; |
| } |
| |
| if (!put_page_testzero(page)) |
| continue; |
| |
| if (PageLRU(page)) { |
| struct zone *pagezone = page_zone(page); |
| |
| if (pagezone != zone) { |
| if (zone) |
| spin_unlock_irqrestore(&zone->lru_lock, |
| flags); |
| lock_batch = 0; |
| zone = pagezone; |
| spin_lock_irqsave(&zone->lru_lock, flags); |
| } |
| |
| lruvec = mem_cgroup_page_lruvec(page, zone); |
| VM_BUG_ON_PAGE(!PageLRU(page), page); |
| __ClearPageLRU(page); |
| del_page_from_lru_list(page, lruvec, page_off_lru(page)); |
| } |
| |
| /* Clear Active bit in case of parallel mark_page_accessed */ |
| __ClearPageActive(page); |
| |
| list_add(&page->lru, &pages_to_free); |
| } |
| if (zone) |
| spin_unlock_irqrestore(&zone->lru_lock, flags); |
| |
| mem_cgroup_uncharge_list(&pages_to_free); |
| free_hot_cold_page_list(&pages_to_free, cold); |
| } |
| EXPORT_SYMBOL(release_pages); |
| |
| /* |
| * The pages which we're about to release may be in the deferred lru-addition |
| * queues. That would prevent them from really being freed right now. That's |
| * OK from a correctness point of view but is inefficient - those pages may be |
| * cache-warm and we want to give them back to the page allocator ASAP. |
| * |
| * So __pagevec_release() will drain those queues here. __pagevec_lru_add() |
| * and __pagevec_lru_add_active() call release_pages() directly to avoid |
| * mutual recursion. |
| */ |
| void __pagevec_release(struct pagevec *pvec) |
| { |
| lru_add_drain(); |
| release_pages(pvec->pages, pagevec_count(pvec), pvec->cold); |
| pagevec_reinit(pvec); |
| } |
| EXPORT_SYMBOL(__pagevec_release); |
| |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| /* used by __split_huge_page_refcount() */ |
| void lru_add_page_tail(struct page *page, struct page *page_tail, |
| struct lruvec *lruvec, struct list_head *list) |
| { |
| const int file = 0; |
| |
| VM_BUG_ON_PAGE(!PageHead(page), page); |
| VM_BUG_ON_PAGE(PageCompound(page_tail), page); |
| VM_BUG_ON_PAGE(PageLRU(page_tail), page); |
| VM_BUG_ON(NR_CPUS != 1 && |
| !spin_is_locked(&lruvec_zone(lruvec)->lru_lock)); |
| |
| if (!list) |
| SetPageLRU(page_tail); |
| |
| if (likely(PageLRU(page))) |
| list_add_tail(&page_tail->lru, &page->lru); |
| else if (list) { |
| /* page reclaim is reclaiming a huge page */ |
| get_page(page_tail); |
| list_add_tail(&page_tail->lru, list); |
| } else { |
| struct list_head *list_head; |
| /* |
| * Head page has not yet been counted, as an hpage, |
| * so we must account for each subpage individually. |
| * |
| * Use the standard add function to put page_tail on the list, |
| * but then correct its position so they all end up in order. |
| */ |
| add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail)); |
| list_head = page_tail->lru.prev; |
| list_move_tail(&page_tail->lru, list_head); |
| } |
| |
| if (!PageUnevictable(page)) |
| update_page_reclaim_stat(lruvec, file, PageActive(page_tail)); |
| } |
| #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
| |
| static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec, |
| void *arg) |
| { |
| int file = page_is_file_cache(page); |
| int active = PageActive(page); |
| enum lru_list lru = page_lru(page); |
| |
| VM_BUG_ON_PAGE(PageLRU(page), page); |
| |
| SetPageLRU(page); |
| add_page_to_lru_list(page, lruvec, lru); |
| update_page_reclaim_stat(lruvec, file, active); |
| trace_mm_lru_insertion(page, lru); |
| } |
| |
| /* |
| * Add the passed pages to the LRU, then drop the caller's refcount |
| * on them. Reinitialises the caller's pagevec. |
| */ |
| void __pagevec_lru_add(struct pagevec *pvec) |
| { |
| pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL); |
| } |
| EXPORT_SYMBOL(__pagevec_lru_add); |
| |
| /** |
| * pagevec_lookup_entries - gang pagecache lookup |
| * @pvec: Where the resulting entries are placed |
| * @mapping: The address_space to search |
| * @start: The starting entry index |
| * @nr_entries: The maximum number of entries |
| * @indices: The cache indices corresponding to the entries in @pvec |
| * |
| * pagevec_lookup_entries() will search for and return a group of up |
| * to @nr_entries pages and shadow entries in the mapping. All |
| * entries are placed in @pvec. pagevec_lookup_entries() takes a |
| * reference against actual pages in @pvec. |
| * |
| * The search returns a group of mapping-contiguous entries with |
| * ascending indexes. There may be holes in the indices due to |
| * not-present entries. |
| * |
| * pagevec_lookup_entries() returns the number of entries which were |
| * found. |
| */ |
| unsigned pagevec_lookup_entries(struct pagevec *pvec, |
| struct address_space *mapping, |
| pgoff_t start, unsigned nr_pages, |
| pgoff_t *indices) |
| { |
| pvec->nr = find_get_entries(mapping, start, nr_pages, |
| pvec->pages, indices); |
| return pagevec_count(pvec); |
| } |
| |
| /** |
| * pagevec_remove_exceptionals - pagevec exceptionals pruning |
| * @pvec: The pagevec to prune |
| * |
| * pagevec_lookup_entries() fills both pages and exceptional radix |
| * tree entries into the pagevec. This function prunes all |
| * exceptionals from @pvec without leaving holes, so that it can be |
| * passed on to page-only pagevec operations. |
| */ |
| void pagevec_remove_exceptionals(struct pagevec *pvec) |
| { |
| int i, j; |
| |
| for (i = 0, j = 0; i < pagevec_count(pvec); i++) { |
| struct page *page = pvec->pages[i]; |
| if (!radix_tree_exceptional_entry(page)) |
| pvec->pages[j++] = page; |
| } |
| pvec->nr = j; |
| } |
| |
| /** |
| * pagevec_lookup - gang pagecache lookup |
| * @pvec: Where the resulting pages are placed |
| * @mapping: The address_space to search |
| * @start: The starting page index |
| * @nr_pages: The maximum number of pages |
| * |
| * pagevec_lookup() will search for and return a group of up to @nr_pages pages |
| * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a |
| * reference against the pages in @pvec. |
| * |
| * The search returns a group of mapping-contiguous pages with ascending |
| * indexes. There may be holes in the indices due to not-present pages. |
| * |
| * pagevec_lookup() returns the number of pages which were found. |
| */ |
| unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping, |
| pgoff_t start, unsigned nr_pages) |
| { |
| pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages); |
| return pagevec_count(pvec); |
| } |
| EXPORT_SYMBOL(pagevec_lookup); |
| |
| unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping, |
| pgoff_t *index, int tag, unsigned nr_pages) |
| { |
| pvec->nr = find_get_pages_tag(mapping, index, tag, |
| nr_pages, pvec->pages); |
| return pagevec_count(pvec); |
| } |
| EXPORT_SYMBOL(pagevec_lookup_tag); |
| |
| /* |
| * Perform any setup for the swap system |
| */ |
| void __init swap_setup(void) |
| { |
| unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT); |
| #ifdef CONFIG_SWAP |
| int i; |
| |
| for (i = 0; i < MAX_SWAPFILES; i++) |
| spin_lock_init(&swapper_spaces[i].tree_lock); |
| #endif |
| |
| /* Use a smaller cluster for small-memory machines */ |
| if (megs < 16) |
| page_cluster = 2; |
| else |
| page_cluster = 3; |
| /* |
| * Right now other parts of the system means that we |
| * _really_ don't want to cluster much more |
| */ |
| } |