| /* | 
 |  * xHCI host controller driver | 
 |  * | 
 |  * Copyright (C) 2008 Intel Corp. | 
 |  * | 
 |  * Author: Sarah Sharp | 
 |  * Some code borrowed from the Linux EHCI driver. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License version 2 as | 
 |  * published by the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, but | 
 |  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY | 
 |  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License | 
 |  * for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program; if not, write to the Free Software Foundation, | 
 |  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 
 |  */ | 
 |  | 
 | /* | 
 |  * Ring initialization rules: | 
 |  * 1. Each segment is initialized to zero, except for link TRBs. | 
 |  * 2. Ring cycle state = 0.  This represents Producer Cycle State (PCS) or | 
 |  *    Consumer Cycle State (CCS), depending on ring function. | 
 |  * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. | 
 |  * | 
 |  * Ring behavior rules: | 
 |  * 1. A ring is empty if enqueue == dequeue.  This means there will always be at | 
 |  *    least one free TRB in the ring.  This is useful if you want to turn that | 
 |  *    into a link TRB and expand the ring. | 
 |  * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a | 
 |  *    link TRB, then load the pointer with the address in the link TRB.  If the | 
 |  *    link TRB had its toggle bit set, you may need to update the ring cycle | 
 |  *    state (see cycle bit rules).  You may have to do this multiple times | 
 |  *    until you reach a non-link TRB. | 
 |  * 3. A ring is full if enqueue++ (for the definition of increment above) | 
 |  *    equals the dequeue pointer. | 
 |  * | 
 |  * Cycle bit rules: | 
 |  * 1. When a consumer increments a dequeue pointer and encounters a toggle bit | 
 |  *    in a link TRB, it must toggle the ring cycle state. | 
 |  * 2. When a producer increments an enqueue pointer and encounters a toggle bit | 
 |  *    in a link TRB, it must toggle the ring cycle state. | 
 |  * | 
 |  * Producer rules: | 
 |  * 1. Check if ring is full before you enqueue. | 
 |  * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. | 
 |  *    Update enqueue pointer between each write (which may update the ring | 
 |  *    cycle state). | 
 |  * 3. Notify consumer.  If SW is producer, it rings the doorbell for command | 
 |  *    and endpoint rings.  If HC is the producer for the event ring, | 
 |  *    and it generates an interrupt according to interrupt modulation rules. | 
 |  * | 
 |  * Consumer rules: | 
 |  * 1. Check if TRB belongs to you.  If the cycle bit == your ring cycle state, | 
 |  *    the TRB is owned by the consumer. | 
 |  * 2. Update dequeue pointer (which may update the ring cycle state) and | 
 |  *    continue processing TRBs until you reach a TRB which is not owned by you. | 
 |  * 3. Notify the producer.  SW is the consumer for the event ring, and it | 
 |  *   updates event ring dequeue pointer.  HC is the consumer for the command and | 
 |  *   endpoint rings; it generates events on the event ring for these. | 
 |  */ | 
 |  | 
 | #include <linux/scatterlist.h> | 
 | #include <linux/slab.h> | 
 | #include "xhci.h" | 
 |  | 
 | static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci, | 
 | 		struct xhci_virt_device *virt_dev, | 
 | 		struct xhci_event_cmd *event); | 
 |  | 
 | /* | 
 |  * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA | 
 |  * address of the TRB. | 
 |  */ | 
 | dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, | 
 | 		union xhci_trb *trb) | 
 | { | 
 | 	unsigned long segment_offset; | 
 |  | 
 | 	if (!seg || !trb || trb < seg->trbs) | 
 | 		return 0; | 
 | 	/* offset in TRBs */ | 
 | 	segment_offset = trb - seg->trbs; | 
 | 	if (segment_offset > TRBS_PER_SEGMENT) | 
 | 		return 0; | 
 | 	return seg->dma + (segment_offset * sizeof(*trb)); | 
 | } | 
 |  | 
 | /* Does this link TRB point to the first segment in a ring, | 
 |  * or was the previous TRB the last TRB on the last segment in the ERST? | 
 |  */ | 
 | static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring, | 
 | 		struct xhci_segment *seg, union xhci_trb *trb) | 
 | { | 
 | 	if (ring == xhci->event_ring) | 
 | 		return (trb == &seg->trbs[TRBS_PER_SEGMENT]) && | 
 | 			(seg->next == xhci->event_ring->first_seg); | 
 | 	else | 
 | 		return le32_to_cpu(trb->link.control) & LINK_TOGGLE; | 
 | } | 
 |  | 
 | /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring | 
 |  * segment?  I.e. would the updated event TRB pointer step off the end of the | 
 |  * event seg? | 
 |  */ | 
 | static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, | 
 | 		struct xhci_segment *seg, union xhci_trb *trb) | 
 | { | 
 | 	if (ring == xhci->event_ring) | 
 | 		return trb == &seg->trbs[TRBS_PER_SEGMENT]; | 
 | 	else | 
 | 		return TRB_TYPE_LINK_LE32(trb->link.control); | 
 | } | 
 |  | 
 | static int enqueue_is_link_trb(struct xhci_ring *ring) | 
 | { | 
 | 	struct xhci_link_trb *link = &ring->enqueue->link; | 
 | 	return TRB_TYPE_LINK_LE32(link->control); | 
 | } | 
 |  | 
 | /* Updates trb to point to the next TRB in the ring, and updates seg if the next | 
 |  * TRB is in a new segment.  This does not skip over link TRBs, and it does not | 
 |  * effect the ring dequeue or enqueue pointers. | 
 |  */ | 
 | static void next_trb(struct xhci_hcd *xhci, | 
 | 		struct xhci_ring *ring, | 
 | 		struct xhci_segment **seg, | 
 | 		union xhci_trb **trb) | 
 | { | 
 | 	if (last_trb(xhci, ring, *seg, *trb)) { | 
 | 		*seg = (*seg)->next; | 
 | 		*trb = ((*seg)->trbs); | 
 | 	} else { | 
 | 		(*trb)++; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * See Cycle bit rules. SW is the consumer for the event ring only. | 
 |  * Don't make a ring full of link TRBs.  That would be dumb and this would loop. | 
 |  */ | 
 | static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) | 
 | { | 
 | 	unsigned long long addr; | 
 |  | 
 | 	ring->deq_updates++; | 
 |  | 
 | 	/* | 
 | 	 * If this is not event ring, and the dequeue pointer | 
 | 	 * is not on a link TRB, there is one more usable TRB | 
 | 	 */ | 
 | 	if (ring->type != TYPE_EVENT && | 
 | 			!last_trb(xhci, ring, ring->deq_seg, ring->dequeue)) | 
 | 		ring->num_trbs_free++; | 
 |  | 
 | 	do { | 
 | 		/* | 
 | 		 * Update the dequeue pointer further if that was a link TRB or | 
 | 		 * we're at the end of an event ring segment (which doesn't have | 
 | 		 * link TRBS) | 
 | 		 */ | 
 | 		if (last_trb(xhci, ring, ring->deq_seg, ring->dequeue)) { | 
 | 			if (ring->type == TYPE_EVENT && | 
 | 					last_trb_on_last_seg(xhci, ring, | 
 | 						ring->deq_seg, ring->dequeue)) { | 
 | 				ring->cycle_state = (ring->cycle_state ? 0 : 1); | 
 | 			} | 
 | 			ring->deq_seg = ring->deq_seg->next; | 
 | 			ring->dequeue = ring->deq_seg->trbs; | 
 | 		} else { | 
 | 			ring->dequeue++; | 
 | 		} | 
 | 	} while (last_trb(xhci, ring, ring->deq_seg, ring->dequeue)); | 
 |  | 
 | 	addr = (unsigned long long) xhci_trb_virt_to_dma(ring->deq_seg, ring->dequeue); | 
 | } | 
 |  | 
 | /* | 
 |  * See Cycle bit rules. SW is the consumer for the event ring only. | 
 |  * Don't make a ring full of link TRBs.  That would be dumb and this would loop. | 
 |  * | 
 |  * If we've just enqueued a TRB that is in the middle of a TD (meaning the | 
 |  * chain bit is set), then set the chain bit in all the following link TRBs. | 
 |  * If we've enqueued the last TRB in a TD, make sure the following link TRBs | 
 |  * have their chain bit cleared (so that each Link TRB is a separate TD). | 
 |  * | 
 |  * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit | 
 |  * set, but other sections talk about dealing with the chain bit set.  This was | 
 |  * fixed in the 0.96 specification errata, but we have to assume that all 0.95 | 
 |  * xHCI hardware can't handle the chain bit being cleared on a link TRB. | 
 |  * | 
 |  * @more_trbs_coming:	Will you enqueue more TRBs before calling | 
 |  *			prepare_transfer()? | 
 |  */ | 
 | static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, | 
 | 			bool more_trbs_coming) | 
 | { | 
 | 	u32 chain; | 
 | 	union xhci_trb *next; | 
 | 	unsigned long long addr; | 
 |  | 
 | 	chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; | 
 | 	/* If this is not event ring, there is one less usable TRB */ | 
 | 	if (ring->type != TYPE_EVENT && | 
 | 			!last_trb(xhci, ring, ring->enq_seg, ring->enqueue)) | 
 | 		ring->num_trbs_free--; | 
 | 	next = ++(ring->enqueue); | 
 |  | 
 | 	ring->enq_updates++; | 
 | 	/* Update the dequeue pointer further if that was a link TRB or we're at | 
 | 	 * the end of an event ring segment (which doesn't have link TRBS) | 
 | 	 */ | 
 | 	while (last_trb(xhci, ring, ring->enq_seg, next)) { | 
 | 		if (ring->type != TYPE_EVENT) { | 
 | 			/* | 
 | 			 * If the caller doesn't plan on enqueueing more | 
 | 			 * TDs before ringing the doorbell, then we | 
 | 			 * don't want to give the link TRB to the | 
 | 			 * hardware just yet.  We'll give the link TRB | 
 | 			 * back in prepare_ring() just before we enqueue | 
 | 			 * the TD at the top of the ring. | 
 | 			 */ | 
 | 			if (!chain && !more_trbs_coming) | 
 | 				break; | 
 |  | 
 | 			/* If we're not dealing with 0.95 hardware or | 
 | 			 * isoc rings on AMD 0.96 host, | 
 | 			 * carry over the chain bit of the previous TRB | 
 | 			 * (which may mean the chain bit is cleared). | 
 | 			 */ | 
 | 			if (!(ring->type == TYPE_ISOC && | 
 | 					(xhci->quirks & XHCI_AMD_0x96_HOST)) | 
 | 						&& !xhci_link_trb_quirk(xhci)) { | 
 | 				next->link.control &= | 
 | 					cpu_to_le32(~TRB_CHAIN); | 
 | 				next->link.control |= | 
 | 					cpu_to_le32(chain); | 
 | 			} | 
 | 			/* Give this link TRB to the hardware */ | 
 | 			wmb(); | 
 | 			next->link.control ^= cpu_to_le32(TRB_CYCLE); | 
 |  | 
 | 			/* Toggle the cycle bit after the last ring segment. */ | 
 | 			if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) { | 
 | 				ring->cycle_state = (ring->cycle_state ? 0 : 1); | 
 | 			} | 
 | 		} | 
 | 		ring->enq_seg = ring->enq_seg->next; | 
 | 		ring->enqueue = ring->enq_seg->trbs; | 
 | 		next = ring->enqueue; | 
 | 	} | 
 | 	addr = (unsigned long long) xhci_trb_virt_to_dma(ring->enq_seg, ring->enqueue); | 
 | } | 
 |  | 
 | /* | 
 |  * Check to see if there's room to enqueue num_trbs on the ring and make sure | 
 |  * enqueue pointer will not advance into dequeue segment. See rules above. | 
 |  */ | 
 | static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, | 
 | 		unsigned int num_trbs) | 
 | { | 
 | 	int num_trbs_in_deq_seg; | 
 |  | 
 | 	if (ring->num_trbs_free < num_trbs) | 
 | 		return 0; | 
 |  | 
 | 	if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) { | 
 | 		num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs; | 
 | 		if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg) | 
 | 			return 0; | 
 | 	} | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* Ring the host controller doorbell after placing a command on the ring */ | 
 | void xhci_ring_cmd_db(struct xhci_hcd *xhci) | 
 | { | 
 | 	if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) | 
 | 		return; | 
 |  | 
 | 	xhci_dbg(xhci, "// Ding dong!\n"); | 
 | 	xhci_writel(xhci, DB_VALUE_HOST, &xhci->dba->doorbell[0]); | 
 | 	/* Flush PCI posted writes */ | 
 | 	xhci_readl(xhci, &xhci->dba->doorbell[0]); | 
 | } | 
 |  | 
 | static int xhci_abort_cmd_ring(struct xhci_hcd *xhci) | 
 | { | 
 | 	u64 temp_64; | 
 | 	int ret; | 
 |  | 
 | 	xhci_dbg(xhci, "Abort command ring\n"); | 
 |  | 
 | 	if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) { | 
 | 		xhci_dbg(xhci, "The command ring isn't running, " | 
 | 				"Have the command ring been stopped?\n"); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); | 
 | 	if (!(temp_64 & CMD_RING_RUNNING)) { | 
 | 		xhci_dbg(xhci, "Command ring had been stopped\n"); | 
 | 		return 0; | 
 | 	} | 
 | 	xhci->cmd_ring_state = CMD_RING_STATE_ABORTED; | 
 | 	xhci_write_64(xhci, temp_64 | CMD_RING_ABORT, | 
 | 			&xhci->op_regs->cmd_ring); | 
 |  | 
 | 	/* Section 4.6.1.2 of xHCI 1.0 spec says software should | 
 | 	 * time the completion od all xHCI commands, including | 
 | 	 * the Command Abort operation. If software doesn't see | 
 | 	 * CRR negated in a timely manner (e.g. longer than 5 | 
 | 	 * seconds), then it should assume that the there are | 
 | 	 * larger problems with the xHC and assert HCRST. | 
 | 	 */ | 
 | 	ret = xhci_handshake(xhci, &xhci->op_regs->cmd_ring, | 
 | 			CMD_RING_RUNNING, 0, 5 * 1000 * 1000); | 
 | 	if (ret < 0) { | 
 | 		xhci_err(xhci, "Stopped the command ring failed, " | 
 | 				"maybe the host is dead\n"); | 
 | 		xhci->xhc_state |= XHCI_STATE_DYING; | 
 | 		xhci_quiesce(xhci); | 
 | 		xhci_halt(xhci); | 
 | 		return -ESHUTDOWN; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int xhci_queue_cd(struct xhci_hcd *xhci, | 
 | 		struct xhci_command *command, | 
 | 		union xhci_trb *cmd_trb) | 
 | { | 
 | 	struct xhci_cd *cd; | 
 | 	cd = kzalloc(sizeof(struct xhci_cd), GFP_ATOMIC); | 
 | 	if (!cd) | 
 | 		return -ENOMEM; | 
 | 	INIT_LIST_HEAD(&cd->cancel_cmd_list); | 
 |  | 
 | 	cd->command = command; | 
 | 	cd->cmd_trb = cmd_trb; | 
 | 	list_add_tail(&cd->cancel_cmd_list, &xhci->cancel_cmd_list); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Cancel the command which has issue. | 
 |  * | 
 |  * Some commands may hang due to waiting for acknowledgement from | 
 |  * usb device. It is outside of the xHC's ability to control and | 
 |  * will cause the command ring is blocked. When it occurs software | 
 |  * should intervene to recover the command ring. | 
 |  * See Section 4.6.1.1 and 4.6.1.2 | 
 |  */ | 
 | int xhci_cancel_cmd(struct xhci_hcd *xhci, struct xhci_command *command, | 
 | 		union xhci_trb *cmd_trb) | 
 | { | 
 | 	int retval = 0; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&xhci->lock, flags); | 
 |  | 
 | 	if (xhci->xhc_state & XHCI_STATE_DYING) { | 
 | 		xhci_warn(xhci, "Abort the command ring," | 
 | 				" but the xHCI is dead.\n"); | 
 | 		retval = -ESHUTDOWN; | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	/* queue the cmd desriptor to cancel_cmd_list */ | 
 | 	retval = xhci_queue_cd(xhci, command, cmd_trb); | 
 | 	if (retval) { | 
 | 		xhci_warn(xhci, "Queuing command descriptor failed.\n"); | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	/* abort command ring */ | 
 | 	retval = xhci_abort_cmd_ring(xhci); | 
 | 	if (retval) { | 
 | 		xhci_err(xhci, "Abort command ring failed\n"); | 
 | 		if (unlikely(retval == -ESHUTDOWN)) { | 
 | 			spin_unlock_irqrestore(&xhci->lock, flags); | 
 | 			usb_hc_died(xhci_to_hcd(xhci)->primary_hcd); | 
 | 			xhci_dbg(xhci, "xHCI host controller is dead.\n"); | 
 | 			return retval; | 
 | 		} | 
 | 	} | 
 |  | 
 | fail: | 
 | 	spin_unlock_irqrestore(&xhci->lock, flags); | 
 | 	return retval; | 
 | } | 
 |  | 
 | void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, | 
 | 		unsigned int slot_id, | 
 | 		unsigned int ep_index, | 
 | 		unsigned int stream_id) | 
 | { | 
 | 	__le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; | 
 | 	struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; | 
 | 	unsigned int ep_state = ep->ep_state; | 
 |  | 
 | 	/* Don't ring the doorbell for this endpoint if there are pending | 
 | 	 * cancellations because we don't want to interrupt processing. | 
 | 	 * We don't want to restart any stream rings if there's a set dequeue | 
 | 	 * pointer command pending because the device can choose to start any | 
 | 	 * stream once the endpoint is on the HW schedule. | 
 | 	 * FIXME - check all the stream rings for pending cancellations. | 
 | 	 */ | 
 | 	if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) || | 
 | 	    (ep_state & EP_HALTED)) | 
 | 		return; | 
 | 	xhci_writel(xhci, DB_VALUE(ep_index, stream_id), db_addr); | 
 | 	/* The CPU has better things to do at this point than wait for a | 
 | 	 * write-posting flush.  It'll get there soon enough. | 
 | 	 */ | 
 | } | 
 |  | 
 | /* Ring the doorbell for any rings with pending URBs */ | 
 | static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, | 
 | 		unsigned int slot_id, | 
 | 		unsigned int ep_index) | 
 | { | 
 | 	unsigned int stream_id; | 
 | 	struct xhci_virt_ep *ep; | 
 |  | 
 | 	ep = &xhci->devs[slot_id]->eps[ep_index]; | 
 |  | 
 | 	/* A ring has pending URBs if its TD list is not empty */ | 
 | 	if (!(ep->ep_state & EP_HAS_STREAMS)) { | 
 | 		if (!(list_empty(&ep->ring->td_list))) | 
 | 			xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	for (stream_id = 1; stream_id < ep->stream_info->num_streams; | 
 | 			stream_id++) { | 
 | 		struct xhci_stream_info *stream_info = ep->stream_info; | 
 | 		if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) | 
 | 			xhci_ring_ep_doorbell(xhci, slot_id, ep_index, | 
 | 						stream_id); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Find the segment that trb is in.  Start searching in start_seg. | 
 |  * If we must move past a segment that has a link TRB with a toggle cycle state | 
 |  * bit set, then we will toggle the value pointed at by cycle_state. | 
 |  */ | 
 | static struct xhci_segment *find_trb_seg( | 
 | 		struct xhci_segment *start_seg, | 
 | 		union xhci_trb	*trb, int *cycle_state) | 
 | { | 
 | 	struct xhci_segment *cur_seg = start_seg; | 
 | 	struct xhci_generic_trb *generic_trb; | 
 |  | 
 | 	while (cur_seg->trbs > trb || | 
 | 			&cur_seg->trbs[TRBS_PER_SEGMENT - 1] < trb) { | 
 | 		generic_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1].generic; | 
 | 		if (generic_trb->field[3] & cpu_to_le32(LINK_TOGGLE)) | 
 | 			*cycle_state ^= 0x1; | 
 | 		cur_seg = cur_seg->next; | 
 | 		if (cur_seg == start_seg) | 
 | 			/* Looped over the entire list.  Oops! */ | 
 | 			return NULL; | 
 | 	} | 
 | 	return cur_seg; | 
 | } | 
 |  | 
 |  | 
 | static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, | 
 | 		unsigned int slot_id, unsigned int ep_index, | 
 | 		unsigned int stream_id) | 
 | { | 
 | 	struct xhci_virt_ep *ep; | 
 |  | 
 | 	ep = &xhci->devs[slot_id]->eps[ep_index]; | 
 | 	/* Common case: no streams */ | 
 | 	if (!(ep->ep_state & EP_HAS_STREAMS)) | 
 | 		return ep->ring; | 
 |  | 
 | 	if (stream_id == 0) { | 
 | 		xhci_warn(xhci, | 
 | 				"WARN: Slot ID %u, ep index %u has streams, " | 
 | 				"but URB has no stream ID.\n", | 
 | 				slot_id, ep_index); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	if (stream_id < ep->stream_info->num_streams) | 
 | 		return ep->stream_info->stream_rings[stream_id]; | 
 |  | 
 | 	xhci_warn(xhci, | 
 | 			"WARN: Slot ID %u, ep index %u has " | 
 | 			"stream IDs 1 to %u allocated, " | 
 | 			"but stream ID %u is requested.\n", | 
 | 			slot_id, ep_index, | 
 | 			ep->stream_info->num_streams - 1, | 
 | 			stream_id); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* Get the right ring for the given URB. | 
 |  * If the endpoint supports streams, boundary check the URB's stream ID. | 
 |  * If the endpoint doesn't support streams, return the singular endpoint ring. | 
 |  */ | 
 | static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci, | 
 | 		struct urb *urb) | 
 | { | 
 | 	return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id, | 
 | 		xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id); | 
 | } | 
 |  | 
 | /* | 
 |  * Move the xHC's endpoint ring dequeue pointer past cur_td. | 
 |  * Record the new state of the xHC's endpoint ring dequeue segment, | 
 |  * dequeue pointer, and new consumer cycle state in state. | 
 |  * Update our internal representation of the ring's dequeue pointer. | 
 |  * | 
 |  * We do this in three jumps: | 
 |  *  - First we update our new ring state to be the same as when the xHC stopped. | 
 |  *  - Then we traverse the ring to find the segment that contains | 
 |  *    the last TRB in the TD.  We toggle the xHC's new cycle state when we pass | 
 |  *    any link TRBs with the toggle cycle bit set. | 
 |  *  - Finally we move the dequeue state one TRB further, toggling the cycle bit | 
 |  *    if we've moved it past a link TRB with the toggle cycle bit set. | 
 |  * | 
 |  * Some of the uses of xhci_generic_trb are grotty, but if they're done | 
 |  * with correct __le32 accesses they should work fine.  Only users of this are | 
 |  * in here. | 
 |  */ | 
 | void xhci_find_new_dequeue_state(struct xhci_hcd *xhci, | 
 | 		unsigned int slot_id, unsigned int ep_index, | 
 | 		unsigned int stream_id, struct xhci_td *cur_td, | 
 | 		struct xhci_dequeue_state *state) | 
 | { | 
 | 	struct xhci_virt_device *dev = xhci->devs[slot_id]; | 
 | 	struct xhci_ring *ep_ring; | 
 | 	struct xhci_generic_trb *trb; | 
 | 	struct xhci_ep_ctx *ep_ctx; | 
 | 	dma_addr_t addr; | 
 |  | 
 | 	ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, | 
 | 			ep_index, stream_id); | 
 | 	if (!ep_ring) { | 
 | 		xhci_warn(xhci, "WARN can't find new dequeue state " | 
 | 				"for invalid stream ID %u.\n", | 
 | 				stream_id); | 
 | 		return; | 
 | 	} | 
 | 	state->new_cycle_state = 0; | 
 | 	xhci_dbg(xhci, "Finding segment containing stopped TRB.\n"); | 
 | 	state->new_deq_seg = find_trb_seg(cur_td->start_seg, | 
 | 			dev->eps[ep_index].stopped_trb, | 
 | 			&state->new_cycle_state); | 
 | 	if (!state->new_deq_seg) { | 
 | 		WARN_ON(1); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* Dig out the cycle state saved by the xHC during the stop ep cmd */ | 
 | 	xhci_dbg(xhci, "Finding endpoint context\n"); | 
 | 	ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); | 
 | 	state->new_cycle_state = 0x1 & le64_to_cpu(ep_ctx->deq); | 
 |  | 
 | 	state->new_deq_ptr = cur_td->last_trb; | 
 | 	xhci_dbg(xhci, "Finding segment containing last TRB in TD.\n"); | 
 | 	state->new_deq_seg = find_trb_seg(state->new_deq_seg, | 
 | 			state->new_deq_ptr, | 
 | 			&state->new_cycle_state); | 
 | 	if (!state->new_deq_seg) { | 
 | 		WARN_ON(1); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	trb = &state->new_deq_ptr->generic; | 
 | 	if (TRB_TYPE_LINK_LE32(trb->field[3]) && | 
 | 	    (trb->field[3] & cpu_to_le32(LINK_TOGGLE))) | 
 | 		state->new_cycle_state ^= 0x1; | 
 | 	next_trb(xhci, ep_ring, &state->new_deq_seg, &state->new_deq_ptr); | 
 |  | 
 | 	/* | 
 | 	 * If there is only one segment in a ring, find_trb_seg()'s while loop | 
 | 	 * will not run, and it will return before it has a chance to see if it | 
 | 	 * needs to toggle the cycle bit.  It can't tell if the stalled transfer | 
 | 	 * ended just before the link TRB on a one-segment ring, or if the TD | 
 | 	 * wrapped around the top of the ring, because it doesn't have the TD in | 
 | 	 * question.  Look for the one-segment case where stalled TRB's address | 
 | 	 * is greater than the new dequeue pointer address. | 
 | 	 */ | 
 | 	if (ep_ring->first_seg == ep_ring->first_seg->next && | 
 | 			state->new_deq_ptr < dev->eps[ep_index].stopped_trb) | 
 | 		state->new_cycle_state ^= 0x1; | 
 | 	xhci_dbg(xhci, "Cycle state = 0x%x\n", state->new_cycle_state); | 
 |  | 
 | 	/* Don't update the ring cycle state for the producer (us). */ | 
 | 	xhci_dbg(xhci, "New dequeue segment = %p (virtual)\n", | 
 | 			state->new_deq_seg); | 
 | 	addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr); | 
 | 	xhci_dbg(xhci, "New dequeue pointer = 0x%llx (DMA)\n", | 
 | 			(unsigned long long) addr); | 
 | } | 
 |  | 
 | /* flip_cycle means flip the cycle bit of all but the first and last TRB. | 
 |  * (The last TRB actually points to the ring enqueue pointer, which is not part | 
 |  * of this TD.)  This is used to remove partially enqueued isoc TDs from a ring. | 
 |  */ | 
 | static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, | 
 | 		struct xhci_td *cur_td, bool flip_cycle) | 
 | { | 
 | 	struct xhci_segment *cur_seg; | 
 | 	union xhci_trb *cur_trb; | 
 |  | 
 | 	for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb; | 
 | 			true; | 
 | 			next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { | 
 | 		if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) { | 
 | 			/* Unchain any chained Link TRBs, but | 
 | 			 * leave the pointers intact. | 
 | 			 */ | 
 | 			cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN); | 
 | 			/* Flip the cycle bit (link TRBs can't be the first | 
 | 			 * or last TRB). | 
 | 			 */ | 
 | 			if (flip_cycle) | 
 | 				cur_trb->generic.field[3] ^= | 
 | 					cpu_to_le32(TRB_CYCLE); | 
 | 			xhci_dbg(xhci, "Cancel (unchain) link TRB\n"); | 
 | 			xhci_dbg(xhci, "Address = %p (0x%llx dma); " | 
 | 					"in seg %p (0x%llx dma)\n", | 
 | 					cur_trb, | 
 | 					(unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb), | 
 | 					cur_seg, | 
 | 					(unsigned long long)cur_seg->dma); | 
 | 		} else { | 
 | 			cur_trb->generic.field[0] = 0; | 
 | 			cur_trb->generic.field[1] = 0; | 
 | 			cur_trb->generic.field[2] = 0; | 
 | 			/* Preserve only the cycle bit of this TRB */ | 
 | 			cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); | 
 | 			/* Flip the cycle bit except on the first or last TRB */ | 
 | 			if (flip_cycle && cur_trb != cur_td->first_trb && | 
 | 					cur_trb != cur_td->last_trb) | 
 | 				cur_trb->generic.field[3] ^= | 
 | 					cpu_to_le32(TRB_CYCLE); | 
 | 			cur_trb->generic.field[3] |= cpu_to_le32( | 
 | 				TRB_TYPE(TRB_TR_NOOP)); | 
 | 			xhci_dbg(xhci, "TRB to noop at offset 0x%llx\n", | 
 | 					(unsigned long long) | 
 | 					xhci_trb_virt_to_dma(cur_seg, cur_trb)); | 
 | 		} | 
 | 		if (cur_trb == cur_td->last_trb) | 
 | 			break; | 
 | 	} | 
 | } | 
 |  | 
 | static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id, | 
 | 		unsigned int ep_index, unsigned int stream_id, | 
 | 		struct xhci_segment *deq_seg, | 
 | 		union xhci_trb *deq_ptr, u32 cycle_state); | 
 |  | 
 | void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci, | 
 | 		unsigned int slot_id, unsigned int ep_index, | 
 | 		unsigned int stream_id, | 
 | 		struct xhci_dequeue_state *deq_state) | 
 | { | 
 | 	struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; | 
 |  | 
 | 	xhci_dbg(xhci, "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), " | 
 | 			"new deq ptr = %p (0x%llx dma), new cycle = %u\n", | 
 | 			deq_state->new_deq_seg, | 
 | 			(unsigned long long)deq_state->new_deq_seg->dma, | 
 | 			deq_state->new_deq_ptr, | 
 | 			(unsigned long long)xhci_trb_virt_to_dma(deq_state->new_deq_seg, deq_state->new_deq_ptr), | 
 | 			deq_state->new_cycle_state); | 
 | 	queue_set_tr_deq(xhci, slot_id, ep_index, stream_id, | 
 | 			deq_state->new_deq_seg, | 
 | 			deq_state->new_deq_ptr, | 
 | 			(u32) deq_state->new_cycle_state); | 
 | 	/* Stop the TD queueing code from ringing the doorbell until | 
 | 	 * this command completes.  The HC won't set the dequeue pointer | 
 | 	 * if the ring is running, and ringing the doorbell starts the | 
 | 	 * ring running. | 
 | 	 */ | 
 | 	ep->ep_state |= SET_DEQ_PENDING; | 
 | } | 
 |  | 
 | static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci, | 
 | 		struct xhci_virt_ep *ep) | 
 | { | 
 | 	ep->ep_state &= ~EP_HALT_PENDING; | 
 | 	/* Can't del_timer_sync in interrupt, so we attempt to cancel.  If the | 
 | 	 * timer is running on another CPU, we don't decrement stop_cmds_pending | 
 | 	 * (since we didn't successfully stop the watchdog timer). | 
 | 	 */ | 
 | 	if (del_timer(&ep->stop_cmd_timer)) | 
 | 		ep->stop_cmds_pending--; | 
 | } | 
 |  | 
 | /* Must be called with xhci->lock held in interrupt context */ | 
 | static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, | 
 | 		struct xhci_td *cur_td, int status, char *adjective) | 
 | { | 
 | 	struct usb_hcd *hcd; | 
 | 	struct urb	*urb; | 
 | 	struct urb_priv	*urb_priv; | 
 |  | 
 | 	urb = cur_td->urb; | 
 | 	urb_priv = urb->hcpriv; | 
 | 	urb_priv->td_cnt++; | 
 | 	hcd = bus_to_hcd(urb->dev->bus); | 
 |  | 
 | 	/* Only giveback urb when this is the last td in urb */ | 
 | 	if (urb_priv->td_cnt == urb_priv->length) { | 
 | 		if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { | 
 | 			xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; | 
 | 			if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs	== 0) { | 
 | 				if (xhci->quirks & XHCI_AMD_PLL_FIX) | 
 | 					usb_amd_quirk_pll_enable(); | 
 | 			} | 
 | 		} | 
 | 		usb_hcd_unlink_urb_from_ep(hcd, urb); | 
 |  | 
 | 		spin_unlock(&xhci->lock); | 
 | 		usb_hcd_giveback_urb(hcd, urb, status); | 
 | 		xhci_urb_free_priv(xhci, urb_priv); | 
 | 		spin_lock(&xhci->lock); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * When we get a command completion for a Stop Endpoint Command, we need to | 
 |  * unlink any cancelled TDs from the ring.  There are two ways to do that: | 
 |  * | 
 |  *  1. If the HW was in the middle of processing the TD that needs to be | 
 |  *     cancelled, then we must move the ring's dequeue pointer past the last TRB | 
 |  *     in the TD with a Set Dequeue Pointer Command. | 
 |  *  2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain | 
 |  *     bit cleared) so that the HW will skip over them. | 
 |  */ | 
 | static void handle_stopped_endpoint(struct xhci_hcd *xhci, | 
 | 		union xhci_trb *trb, struct xhci_event_cmd *event) | 
 | { | 
 | 	unsigned int slot_id; | 
 | 	unsigned int ep_index; | 
 | 	struct xhci_virt_device *virt_dev; | 
 | 	struct xhci_ring *ep_ring; | 
 | 	struct xhci_virt_ep *ep; | 
 | 	struct list_head *entry; | 
 | 	struct xhci_td *cur_td = NULL; | 
 | 	struct xhci_td *last_unlinked_td; | 
 |  | 
 | 	struct xhci_dequeue_state deq_state; | 
 |  | 
 | 	if (unlikely(TRB_TO_SUSPEND_PORT( | 
 | 			     le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])))) { | 
 | 		slot_id = TRB_TO_SLOT_ID( | 
 | 			le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])); | 
 | 		virt_dev = xhci->devs[slot_id]; | 
 | 		if (virt_dev) | 
 | 			handle_cmd_in_cmd_wait_list(xhci, virt_dev, | 
 | 				event); | 
 | 		else | 
 | 			xhci_warn(xhci, "Stop endpoint command " | 
 | 				"completion for disabled slot %u\n", | 
 | 				slot_id); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	memset(&deq_state, 0, sizeof(deq_state)); | 
 | 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3])); | 
 | 	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); | 
 | 	ep = &xhci->devs[slot_id]->eps[ep_index]; | 
 |  | 
 | 	if (list_empty(&ep->cancelled_td_list)) { | 
 | 		xhci_stop_watchdog_timer_in_irq(xhci, ep); | 
 | 		ep->stopped_td = NULL; | 
 | 		ep->stopped_trb = NULL; | 
 | 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* Fix up the ep ring first, so HW stops executing cancelled TDs. | 
 | 	 * We have the xHCI lock, so nothing can modify this list until we drop | 
 | 	 * it.  We're also in the event handler, so we can't get re-interrupted | 
 | 	 * if another Stop Endpoint command completes | 
 | 	 */ | 
 | 	list_for_each(entry, &ep->cancelled_td_list) { | 
 | 		cur_td = list_entry(entry, struct xhci_td, cancelled_td_list); | 
 | 		xhci_dbg(xhci, "Removing canceled TD starting at 0x%llx (dma).\n", | 
 | 				(unsigned long long)xhci_trb_virt_to_dma( | 
 | 					cur_td->start_seg, cur_td->first_trb)); | 
 | 		ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb); | 
 | 		if (!ep_ring) { | 
 | 			/* This shouldn't happen unless a driver is mucking | 
 | 			 * with the stream ID after submission.  This will | 
 | 			 * leave the TD on the hardware ring, and the hardware | 
 | 			 * will try to execute it, and may access a buffer | 
 | 			 * that has already been freed.  In the best case, the | 
 | 			 * hardware will execute it, and the event handler will | 
 | 			 * ignore the completion event for that TD, since it was | 
 | 			 * removed from the td_list for that endpoint.  In | 
 | 			 * short, don't muck with the stream ID after | 
 | 			 * submission. | 
 | 			 */ | 
 | 			xhci_warn(xhci, "WARN Cancelled URB %p " | 
 | 					"has invalid stream ID %u.\n", | 
 | 					cur_td->urb, | 
 | 					cur_td->urb->stream_id); | 
 | 			goto remove_finished_td; | 
 | 		} | 
 | 		/* | 
 | 		 * If we stopped on the TD we need to cancel, then we have to | 
 | 		 * move the xHC endpoint ring dequeue pointer past this TD. | 
 | 		 */ | 
 | 		if (cur_td == ep->stopped_td) | 
 | 			xhci_find_new_dequeue_state(xhci, slot_id, ep_index, | 
 | 					cur_td->urb->stream_id, | 
 | 					cur_td, &deq_state); | 
 | 		else | 
 | 			td_to_noop(xhci, ep_ring, cur_td, false); | 
 | remove_finished_td: | 
 | 		/* | 
 | 		 * The event handler won't see a completion for this TD anymore, | 
 | 		 * so remove it from the endpoint ring's TD list.  Keep it in | 
 | 		 * the cancelled TD list for URB completion later. | 
 | 		 */ | 
 | 		list_del_init(&cur_td->td_list); | 
 | 	} | 
 | 	last_unlinked_td = cur_td; | 
 | 	xhci_stop_watchdog_timer_in_irq(xhci, ep); | 
 |  | 
 | 	/* If necessary, queue a Set Transfer Ring Dequeue Pointer command */ | 
 | 	if (deq_state.new_deq_ptr && deq_state.new_deq_seg) { | 
 | 		xhci_queue_new_dequeue_state(xhci, | 
 | 				slot_id, ep_index, | 
 | 				ep->stopped_td->urb->stream_id, | 
 | 				&deq_state); | 
 | 		xhci_ring_cmd_db(xhci); | 
 | 	} else { | 
 | 		/* Otherwise ring the doorbell(s) to restart queued transfers */ | 
 | 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index); | 
 | 	} | 
 | 	ep->stopped_td = NULL; | 
 | 	ep->stopped_trb = NULL; | 
 |  | 
 | 	/* | 
 | 	 * Drop the lock and complete the URBs in the cancelled TD list. | 
 | 	 * New TDs to be cancelled might be added to the end of the list before | 
 | 	 * we can complete all the URBs for the TDs we already unlinked. | 
 | 	 * So stop when we've completed the URB for the last TD we unlinked. | 
 | 	 */ | 
 | 	do { | 
 | 		cur_td = list_entry(ep->cancelled_td_list.next, | 
 | 				struct xhci_td, cancelled_td_list); | 
 | 		list_del_init(&cur_td->cancelled_td_list); | 
 |  | 
 | 		/* Clean up the cancelled URB */ | 
 | 		/* Doesn't matter what we pass for status, since the core will | 
 | 		 * just overwrite it (because the URB has been unlinked). | 
 | 		 */ | 
 | 		xhci_giveback_urb_in_irq(xhci, cur_td, 0, "cancelled"); | 
 |  | 
 | 		/* Stop processing the cancelled list if the watchdog timer is | 
 | 		 * running. | 
 | 		 */ | 
 | 		if (xhci->xhc_state & XHCI_STATE_DYING) | 
 | 			return; | 
 | 	} while (cur_td != last_unlinked_td); | 
 |  | 
 | 	/* Return to the event handler with xhci->lock re-acquired */ | 
 | } | 
 |  | 
 | /* Watchdog timer function for when a stop endpoint command fails to complete. | 
 |  * In this case, we assume the host controller is broken or dying or dead.  The | 
 |  * host may still be completing some other events, so we have to be careful to | 
 |  * let the event ring handler and the URB dequeueing/enqueueing functions know | 
 |  * through xhci->state. | 
 |  * | 
 |  * The timer may also fire if the host takes a very long time to respond to the | 
 |  * command, and the stop endpoint command completion handler cannot delete the | 
 |  * timer before the timer function is called.  Another endpoint cancellation may | 
 |  * sneak in before the timer function can grab the lock, and that may queue | 
 |  * another stop endpoint command and add the timer back.  So we cannot use a | 
 |  * simple flag to say whether there is a pending stop endpoint command for a | 
 |  * particular endpoint. | 
 |  * | 
 |  * Instead we use a combination of that flag and a counter for the number of | 
 |  * pending stop endpoint commands.  If the timer is the tail end of the last | 
 |  * stop endpoint command, and the endpoint's command is still pending, we assume | 
 |  * the host is dying. | 
 |  */ | 
 | void xhci_stop_endpoint_command_watchdog(unsigned long arg) | 
 | { | 
 | 	struct xhci_hcd *xhci; | 
 | 	struct xhci_virt_ep *ep; | 
 | 	struct xhci_virt_ep *temp_ep; | 
 | 	struct xhci_ring *ring; | 
 | 	struct xhci_td *cur_td; | 
 | 	int ret, i, j; | 
 | 	unsigned long flags; | 
 |  | 
 | 	ep = (struct xhci_virt_ep *) arg; | 
 | 	xhci = ep->xhci; | 
 |  | 
 | 	spin_lock_irqsave(&xhci->lock, flags); | 
 |  | 
 | 	ep->stop_cmds_pending--; | 
 | 	if (xhci->xhc_state & XHCI_STATE_DYING) { | 
 | 		xhci_dbg(xhci, "Stop EP timer ran, but another timer marked " | 
 | 				"xHCI as DYING, exiting.\n"); | 
 | 		spin_unlock_irqrestore(&xhci->lock, flags); | 
 | 		return; | 
 | 	} | 
 | 	if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) { | 
 | 		xhci_dbg(xhci, "Stop EP timer ran, but no command pending, " | 
 | 				"exiting.\n"); | 
 | 		spin_unlock_irqrestore(&xhci->lock, flags); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n"); | 
 | 	xhci_warn(xhci, "Assuming host is dying, halting host.\n"); | 
 | 	/* Oops, HC is dead or dying or at least not responding to the stop | 
 | 	 * endpoint command. | 
 | 	 */ | 
 | 	xhci->xhc_state |= XHCI_STATE_DYING; | 
 | 	/* Disable interrupts from the host controller and start halting it */ | 
 | 	xhci_quiesce(xhci); | 
 | 	spin_unlock_irqrestore(&xhci->lock, flags); | 
 |  | 
 | 	ret = xhci_halt(xhci); | 
 |  | 
 | 	spin_lock_irqsave(&xhci->lock, flags); | 
 | 	if (ret < 0) { | 
 | 		/* This is bad; the host is not responding to commands and it's | 
 | 		 * not allowing itself to be halted.  At least interrupts are | 
 | 		 * disabled. If we call usb_hc_died(), it will attempt to | 
 | 		 * disconnect all device drivers under this host.  Those | 
 | 		 * disconnect() methods will wait for all URBs to be unlinked, | 
 | 		 * so we must complete them. | 
 | 		 */ | 
 | 		xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n"); | 
 | 		xhci_warn(xhci, "Completing active URBs anyway.\n"); | 
 | 		/* We could turn all TDs on the rings to no-ops.  This won't | 
 | 		 * help if the host has cached part of the ring, and is slow if | 
 | 		 * we want to preserve the cycle bit.  Skip it and hope the host | 
 | 		 * doesn't touch the memory. | 
 | 		 */ | 
 | 	} | 
 | 	for (i = 0; i < MAX_HC_SLOTS; i++) { | 
 | 		if (!xhci->devs[i]) | 
 | 			continue; | 
 | 		for (j = 0; j < 31; j++) { | 
 | 			temp_ep = &xhci->devs[i]->eps[j]; | 
 | 			ring = temp_ep->ring; | 
 | 			if (!ring) | 
 | 				continue; | 
 | 			xhci_dbg(xhci, "Killing URBs for slot ID %u, " | 
 | 					"ep index %u\n", i, j); | 
 | 			while (!list_empty(&ring->td_list)) { | 
 | 				cur_td = list_first_entry(&ring->td_list, | 
 | 						struct xhci_td, | 
 | 						td_list); | 
 | 				list_del_init(&cur_td->td_list); | 
 | 				if (!list_empty(&cur_td->cancelled_td_list)) | 
 | 					list_del_init(&cur_td->cancelled_td_list); | 
 | 				xhci_giveback_urb_in_irq(xhci, cur_td, | 
 | 						-ESHUTDOWN, "killed"); | 
 | 			} | 
 | 			while (!list_empty(&temp_ep->cancelled_td_list)) { | 
 | 				cur_td = list_first_entry( | 
 | 						&temp_ep->cancelled_td_list, | 
 | 						struct xhci_td, | 
 | 						cancelled_td_list); | 
 | 				list_del_init(&cur_td->cancelled_td_list); | 
 | 				xhci_giveback_urb_in_irq(xhci, cur_td, | 
 | 						-ESHUTDOWN, "killed"); | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	spin_unlock_irqrestore(&xhci->lock, flags); | 
 | 	xhci_dbg(xhci, "Calling usb_hc_died()\n"); | 
 | 	usb_hc_died(xhci_to_hcd(xhci)->primary_hcd); | 
 | 	xhci_dbg(xhci, "xHCI host controller is dead.\n"); | 
 | } | 
 |  | 
 |  | 
 | static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci, | 
 | 		struct xhci_virt_device *dev, | 
 | 		struct xhci_ring *ep_ring, | 
 | 		unsigned int ep_index) | 
 | { | 
 | 	union xhci_trb *dequeue_temp; | 
 | 	int num_trbs_free_temp; | 
 | 	bool revert = false; | 
 |  | 
 | 	num_trbs_free_temp = ep_ring->num_trbs_free; | 
 | 	dequeue_temp = ep_ring->dequeue; | 
 |  | 
 | 	/* If we get two back-to-back stalls, and the first stalled transfer | 
 | 	 * ends just before a link TRB, the dequeue pointer will be left on | 
 | 	 * the link TRB by the code in the while loop.  So we have to update | 
 | 	 * the dequeue pointer one segment further, or we'll jump off | 
 | 	 * the segment into la-la-land. | 
 | 	 */ | 
 | 	if (last_trb(xhci, ep_ring, ep_ring->deq_seg, ep_ring->dequeue)) { | 
 | 		ep_ring->deq_seg = ep_ring->deq_seg->next; | 
 | 		ep_ring->dequeue = ep_ring->deq_seg->trbs; | 
 | 	} | 
 |  | 
 | 	while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) { | 
 | 		/* We have more usable TRBs */ | 
 | 		ep_ring->num_trbs_free++; | 
 | 		ep_ring->dequeue++; | 
 | 		if (last_trb(xhci, ep_ring, ep_ring->deq_seg, | 
 | 				ep_ring->dequeue)) { | 
 | 			if (ep_ring->dequeue == | 
 | 					dev->eps[ep_index].queued_deq_ptr) | 
 | 				break; | 
 | 			ep_ring->deq_seg = ep_ring->deq_seg->next; | 
 | 			ep_ring->dequeue = ep_ring->deq_seg->trbs; | 
 | 		} | 
 | 		if (ep_ring->dequeue == dequeue_temp) { | 
 | 			revert = true; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (revert) { | 
 | 		xhci_dbg(xhci, "Unable to find new dequeue pointer\n"); | 
 | 		ep_ring->num_trbs_free = num_trbs_free_temp; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * When we get a completion for a Set Transfer Ring Dequeue Pointer command, | 
 |  * we need to clear the set deq pending flag in the endpoint ring state, so that | 
 |  * the TD queueing code can ring the doorbell again.  We also need to ring the | 
 |  * endpoint doorbell to restart the ring, but only if there aren't more | 
 |  * cancellations pending. | 
 |  */ | 
 | static void handle_set_deq_completion(struct xhci_hcd *xhci, | 
 | 		struct xhci_event_cmd *event, | 
 | 		union xhci_trb *trb) | 
 | { | 
 | 	unsigned int slot_id; | 
 | 	unsigned int ep_index; | 
 | 	unsigned int stream_id; | 
 | 	struct xhci_ring *ep_ring; | 
 | 	struct xhci_virt_device *dev; | 
 | 	struct xhci_ep_ctx *ep_ctx; | 
 | 	struct xhci_slot_ctx *slot_ctx; | 
 |  | 
 | 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3])); | 
 | 	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); | 
 | 	stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); | 
 | 	dev = xhci->devs[slot_id]; | 
 |  | 
 | 	ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id); | 
 | 	if (!ep_ring) { | 
 | 		xhci_warn(xhci, "WARN Set TR deq ptr command for " | 
 | 				"freed stream ID %u\n", | 
 | 				stream_id); | 
 | 		/* XXX: Harmless??? */ | 
 | 		dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); | 
 | 	slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx); | 
 |  | 
 | 	if (GET_COMP_CODE(le32_to_cpu(event->status)) != COMP_SUCCESS) { | 
 | 		unsigned int ep_state; | 
 | 		unsigned int slot_state; | 
 |  | 
 | 		switch (GET_COMP_CODE(le32_to_cpu(event->status))) { | 
 | 		case COMP_TRB_ERR: | 
 | 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because " | 
 | 					"of stream ID configuration\n"); | 
 | 			break; | 
 | 		case COMP_CTX_STATE: | 
 | 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due " | 
 | 					"to incorrect slot or ep state.\n"); | 
 | 			ep_state = le32_to_cpu(ep_ctx->ep_info); | 
 | 			ep_state &= EP_STATE_MASK; | 
 | 			slot_state = le32_to_cpu(slot_ctx->dev_state); | 
 | 			slot_state = GET_SLOT_STATE(slot_state); | 
 | 			xhci_dbg(xhci, "Slot state = %u, EP state = %u\n", | 
 | 					slot_state, ep_state); | 
 | 			break; | 
 | 		case COMP_EBADSLT: | 
 | 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because " | 
 | 					"slot %u was not enabled.\n", slot_id); | 
 | 			break; | 
 | 		default: | 
 | 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown " | 
 | 					"completion code of %u.\n", | 
 | 				  GET_COMP_CODE(le32_to_cpu(event->status))); | 
 | 			break; | 
 | 		} | 
 | 		/* OK what do we do now?  The endpoint state is hosed, and we | 
 | 		 * should never get to this point if the synchronization between | 
 | 		 * queueing, and endpoint state are correct.  This might happen | 
 | 		 * if the device gets disconnected after we've finished | 
 | 		 * cancelling URBs, which might not be an error... | 
 | 		 */ | 
 | 	} else { | 
 | 		xhci_dbg(xhci, "Successful Set TR Deq Ptr cmd, deq = @%08llx\n", | 
 | 			 le64_to_cpu(ep_ctx->deq)); | 
 | 		if (xhci_trb_virt_to_dma(dev->eps[ep_index].queued_deq_seg, | 
 | 					 dev->eps[ep_index].queued_deq_ptr) == | 
 | 		    (le64_to_cpu(ep_ctx->deq) & ~(EP_CTX_CYCLE_MASK))) { | 
 | 			/* Update the ring's dequeue segment and dequeue pointer | 
 | 			 * to reflect the new position. | 
 | 			 */ | 
 | 			update_ring_for_set_deq_completion(xhci, dev, | 
 | 				ep_ring, ep_index); | 
 | 		} else { | 
 | 			xhci_warn(xhci, "Mismatch between completed Set TR Deq " | 
 | 					"Ptr command & xHCI internal state.\n"); | 
 | 			xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", | 
 | 					dev->eps[ep_index].queued_deq_seg, | 
 | 					dev->eps[ep_index].queued_deq_ptr); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; | 
 | 	dev->eps[ep_index].queued_deq_seg = NULL; | 
 | 	dev->eps[ep_index].queued_deq_ptr = NULL; | 
 | 	/* Restart any rings with pending URBs */ | 
 | 	ring_doorbell_for_active_rings(xhci, slot_id, ep_index); | 
 | } | 
 |  | 
 | static void handle_reset_ep_completion(struct xhci_hcd *xhci, | 
 | 		struct xhci_event_cmd *event, | 
 | 		union xhci_trb *trb) | 
 | { | 
 | 	int slot_id; | 
 | 	unsigned int ep_index; | 
 |  | 
 | 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3])); | 
 | 	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); | 
 | 	/* This command will only fail if the endpoint wasn't halted, | 
 | 	 * but we don't care. | 
 | 	 */ | 
 | 	xhci_dbg(xhci, "Ignoring reset ep completion code of %u\n", | 
 | 		 GET_COMP_CODE(le32_to_cpu(event->status))); | 
 |  | 
 | 	/* HW with the reset endpoint quirk needs to have a configure endpoint | 
 | 	 * command complete before the endpoint can be used.  Queue that here | 
 | 	 * because the HW can't handle two commands being queued in a row. | 
 | 	 */ | 
 | 	if (xhci->quirks & XHCI_RESET_EP_QUIRK) { | 
 | 		xhci_dbg(xhci, "Queueing configure endpoint command\n"); | 
 | 		xhci_queue_configure_endpoint(xhci, | 
 | 				xhci->devs[slot_id]->in_ctx->dma, slot_id, | 
 | 				false); | 
 | 		xhci_ring_cmd_db(xhci); | 
 | 	} else { | 
 | 		/* Clear our internal halted state and restart the ring(s) */ | 
 | 		xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED; | 
 | 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index); | 
 | 	} | 
 | } | 
 |  | 
 | /* Complete the command and detele it from the devcie's command queue. | 
 |  */ | 
 | static void xhci_complete_cmd_in_cmd_wait_list(struct xhci_hcd *xhci, | 
 | 		struct xhci_command *command, u32 status) | 
 | { | 
 | 	command->status = status; | 
 | 	list_del(&command->cmd_list); | 
 | 	if (command->completion) | 
 | 		complete(command->completion); | 
 | 	else | 
 | 		xhci_free_command(xhci, command); | 
 | } | 
 |  | 
 |  | 
 | /* Check to see if a command in the device's command queue matches this one. | 
 |  * Signal the completion or free the command, and return 1.  Return 0 if the | 
 |  * completed command isn't at the head of the command list. | 
 |  */ | 
 | static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci, | 
 | 		struct xhci_virt_device *virt_dev, | 
 | 		struct xhci_event_cmd *event) | 
 | { | 
 | 	struct xhci_command *command; | 
 |  | 
 | 	if (list_empty(&virt_dev->cmd_list)) | 
 | 		return 0; | 
 |  | 
 | 	command = list_entry(virt_dev->cmd_list.next, | 
 | 			struct xhci_command, cmd_list); | 
 | 	if (xhci->cmd_ring->dequeue != command->command_trb) | 
 | 		return 0; | 
 |  | 
 | 	xhci_complete_cmd_in_cmd_wait_list(xhci, command, | 
 | 			GET_COMP_CODE(le32_to_cpu(event->status))); | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Finding the command trb need to be cancelled and modifying it to | 
 |  * NO OP command. And if the command is in device's command wait | 
 |  * list, finishing and freeing it. | 
 |  * | 
 |  * If we can't find the command trb, we think it had already been | 
 |  * executed. | 
 |  */ | 
 | static void xhci_cmd_to_noop(struct xhci_hcd *xhci, struct xhci_cd *cur_cd) | 
 | { | 
 | 	struct xhci_segment *cur_seg; | 
 | 	union xhci_trb *cmd_trb; | 
 | 	u32 cycle_state; | 
 |  | 
 | 	if (xhci->cmd_ring->dequeue == xhci->cmd_ring->enqueue) | 
 | 		return; | 
 |  | 
 | 	/* find the current segment of command ring */ | 
 | 	cur_seg = find_trb_seg(xhci->cmd_ring->first_seg, | 
 | 			xhci->cmd_ring->dequeue, &cycle_state); | 
 |  | 
 | 	if (!cur_seg) { | 
 | 		xhci_warn(xhci, "Command ring mismatch, dequeue = %p %llx (dma)\n", | 
 | 				xhci->cmd_ring->dequeue, | 
 | 				(unsigned long long) | 
 | 				xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, | 
 | 					xhci->cmd_ring->dequeue)); | 
 | 		xhci_debug_ring(xhci, xhci->cmd_ring); | 
 | 		xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* find the command trb matched by cd from command ring */ | 
 | 	for (cmd_trb = xhci->cmd_ring->dequeue; | 
 | 			cmd_trb != xhci->cmd_ring->enqueue; | 
 | 			next_trb(xhci, xhci->cmd_ring, &cur_seg, &cmd_trb)) { | 
 | 		/* If the trb is link trb, continue */ | 
 | 		if (TRB_TYPE_LINK_LE32(cmd_trb->generic.field[3])) | 
 | 			continue; | 
 |  | 
 | 		if (cur_cd->cmd_trb == cmd_trb) { | 
 |  | 
 | 			/* If the command in device's command list, we should | 
 | 			 * finish it and free the command structure. | 
 | 			 */ | 
 | 			if (cur_cd->command) | 
 | 				xhci_complete_cmd_in_cmd_wait_list(xhci, | 
 | 					cur_cd->command, COMP_CMD_STOP); | 
 |  | 
 | 			/* get cycle state from the origin command trb */ | 
 | 			cycle_state = le32_to_cpu(cmd_trb->generic.field[3]) | 
 | 				& TRB_CYCLE; | 
 |  | 
 | 			/* modify the command trb to NO OP command */ | 
 | 			cmd_trb->generic.field[0] = 0; | 
 | 			cmd_trb->generic.field[1] = 0; | 
 | 			cmd_trb->generic.field[2] = 0; | 
 | 			cmd_trb->generic.field[3] = cpu_to_le32( | 
 | 					TRB_TYPE(TRB_CMD_NOOP) | cycle_state); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void xhci_cancel_cmd_in_cd_list(struct xhci_hcd *xhci) | 
 | { | 
 | 	struct xhci_cd *cur_cd, *next_cd; | 
 |  | 
 | 	if (list_empty(&xhci->cancel_cmd_list)) | 
 | 		return; | 
 |  | 
 | 	list_for_each_entry_safe(cur_cd, next_cd, | 
 | 			&xhci->cancel_cmd_list, cancel_cmd_list) { | 
 | 		xhci_cmd_to_noop(xhci, cur_cd); | 
 | 		list_del(&cur_cd->cancel_cmd_list); | 
 | 		kfree(cur_cd); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * traversing the cancel_cmd_list. If the command descriptor according | 
 |  * to cmd_trb is found, the function free it and return 1, otherwise | 
 |  * return 0. | 
 |  */ | 
 | static int xhci_search_cmd_trb_in_cd_list(struct xhci_hcd *xhci, | 
 | 		union xhci_trb *cmd_trb) | 
 | { | 
 | 	struct xhci_cd *cur_cd, *next_cd; | 
 |  | 
 | 	if (list_empty(&xhci->cancel_cmd_list)) | 
 | 		return 0; | 
 |  | 
 | 	list_for_each_entry_safe(cur_cd, next_cd, | 
 | 			&xhci->cancel_cmd_list, cancel_cmd_list) { | 
 | 		if (cur_cd->cmd_trb == cmd_trb) { | 
 | 			if (cur_cd->command) | 
 | 				xhci_complete_cmd_in_cmd_wait_list(xhci, | 
 | 					cur_cd->command, COMP_CMD_STOP); | 
 | 			list_del(&cur_cd->cancel_cmd_list); | 
 | 			kfree(cur_cd); | 
 | 			return 1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * If the cmd_trb_comp_code is COMP_CMD_ABORT, we just check whether the | 
 |  * trb pointed by the command ring dequeue pointer is the trb we want to | 
 |  * cancel or not. And if the cmd_trb_comp_code is COMP_CMD_STOP, we will | 
 |  * traverse the cancel_cmd_list to trun the all of the commands according | 
 |  * to command descriptor to NO-OP trb. | 
 |  */ | 
 | static int handle_stopped_cmd_ring(struct xhci_hcd *xhci, | 
 | 		int cmd_trb_comp_code) | 
 | { | 
 | 	int cur_trb_is_good = 0; | 
 |  | 
 | 	/* Searching the cmd trb pointed by the command ring dequeue | 
 | 	 * pointer in command descriptor list. If it is found, free it. | 
 | 	 */ | 
 | 	cur_trb_is_good = xhci_search_cmd_trb_in_cd_list(xhci, | 
 | 			xhci->cmd_ring->dequeue); | 
 |  | 
 | 	if (cmd_trb_comp_code == COMP_CMD_ABORT) | 
 | 		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; | 
 | 	else if (cmd_trb_comp_code == COMP_CMD_STOP) { | 
 | 		/* traversing the cancel_cmd_list and canceling | 
 | 		 * the command according to command descriptor | 
 | 		 */ | 
 | 		xhci_cancel_cmd_in_cd_list(xhci); | 
 |  | 
 | 		xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; | 
 | 		/* | 
 | 		 * ring command ring doorbell again to restart the | 
 | 		 * command ring | 
 | 		 */ | 
 | 		if (xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) | 
 | 			xhci_ring_cmd_db(xhci); | 
 | 	} | 
 | 	return cur_trb_is_good; | 
 | } | 
 |  | 
 | static void handle_cmd_completion(struct xhci_hcd *xhci, | 
 | 		struct xhci_event_cmd *event) | 
 | { | 
 | 	int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); | 
 | 	u64 cmd_dma; | 
 | 	dma_addr_t cmd_dequeue_dma; | 
 | 	struct xhci_input_control_ctx *ctrl_ctx; | 
 | 	struct xhci_virt_device *virt_dev; | 
 | 	unsigned int ep_index; | 
 | 	struct xhci_ring *ep_ring; | 
 | 	unsigned int ep_state; | 
 |  | 
 | 	cmd_dma = le64_to_cpu(event->cmd_trb); | 
 | 	cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, | 
 | 			xhci->cmd_ring->dequeue); | 
 | 	/* Is the command ring deq ptr out of sync with the deq seg ptr? */ | 
 | 	if (cmd_dequeue_dma == 0) { | 
 | 		xhci->error_bitmask |= 1 << 4; | 
 | 		return; | 
 | 	} | 
 | 	/* Does the DMA address match our internal dequeue pointer address? */ | 
 | 	if (cmd_dma != (u64) cmd_dequeue_dma) { | 
 | 		xhci->error_bitmask |= 1 << 5; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if ((GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_CMD_ABORT) || | 
 | 		(GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_CMD_STOP)) { | 
 | 		/* If the return value is 0, we think the trb pointed by | 
 | 		 * command ring dequeue pointer is a good trb. The good | 
 | 		 * trb means we don't want to cancel the trb, but it have | 
 | 		 * been stopped by host. So we should handle it normally. | 
 | 		 * Otherwise, driver should invoke inc_deq() and return. | 
 | 		 */ | 
 | 		if (handle_stopped_cmd_ring(xhci, | 
 | 				GET_COMP_CODE(le32_to_cpu(event->status)))) { | 
 | 			inc_deq(xhci, xhci->cmd_ring); | 
 | 			return; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	switch (le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]) | 
 | 		& TRB_TYPE_BITMASK) { | 
 | 	case TRB_TYPE(TRB_ENABLE_SLOT): | 
 | 		if (GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_SUCCESS) | 
 | 			xhci->slot_id = slot_id; | 
 | 		else | 
 | 			xhci->slot_id = 0; | 
 | 		complete(&xhci->addr_dev); | 
 | 		break; | 
 | 	case TRB_TYPE(TRB_DISABLE_SLOT): | 
 | 		if (xhci->devs[slot_id]) { | 
 | 			if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) | 
 | 				/* Delete default control endpoint resources */ | 
 | 				xhci_free_device_endpoint_resources(xhci, | 
 | 						xhci->devs[slot_id], true); | 
 | 			xhci_free_virt_device(xhci, slot_id); | 
 | 		} | 
 | 		break; | 
 | 	case TRB_TYPE(TRB_CONFIG_EP): | 
 | 		virt_dev = xhci->devs[slot_id]; | 
 | 		if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event)) | 
 | 			break; | 
 | 		/* | 
 | 		 * Configure endpoint commands can come from the USB core | 
 | 		 * configuration or alt setting changes, or because the HW | 
 | 		 * needed an extra configure endpoint command after a reset | 
 | 		 * endpoint command or streams were being configured. | 
 | 		 * If the command was for a halted endpoint, the xHCI driver | 
 | 		 * is not waiting on the configure endpoint command. | 
 | 		 */ | 
 | 		ctrl_ctx = xhci_get_input_control_ctx(xhci, | 
 | 				virt_dev->in_ctx); | 
 | 		/* Input ctx add_flags are the endpoint index plus one */ | 
 | 		ep_index = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags)) - 1; | 
 | 		/* A usb_set_interface() call directly after clearing a halted | 
 | 		 * condition may race on this quirky hardware.  Not worth | 
 | 		 * worrying about, since this is prototype hardware.  Not sure | 
 | 		 * if this will work for streams, but streams support was | 
 | 		 * untested on this prototype. | 
 | 		 */ | 
 | 		if (xhci->quirks & XHCI_RESET_EP_QUIRK && | 
 | 				ep_index != (unsigned int) -1 && | 
 | 		    le32_to_cpu(ctrl_ctx->add_flags) - SLOT_FLAG == | 
 | 		    le32_to_cpu(ctrl_ctx->drop_flags)) { | 
 | 			ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; | 
 | 			ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; | 
 | 			if (!(ep_state & EP_HALTED)) | 
 | 				goto bandwidth_change; | 
 | 			xhci_dbg(xhci, "Completed config ep cmd - " | 
 | 					"last ep index = %d, state = %d\n", | 
 | 					ep_index, ep_state); | 
 | 			/* Clear internal halted state and restart ring(s) */ | 
 | 			xhci->devs[slot_id]->eps[ep_index].ep_state &= | 
 | 				~EP_HALTED; | 
 | 			ring_doorbell_for_active_rings(xhci, slot_id, ep_index); | 
 | 			break; | 
 | 		} | 
 | bandwidth_change: | 
 | 		xhci_dbg(xhci, "Completed config ep cmd\n"); | 
 | 		xhci->devs[slot_id]->cmd_status = | 
 | 			GET_COMP_CODE(le32_to_cpu(event->status)); | 
 | 		complete(&xhci->devs[slot_id]->cmd_completion); | 
 | 		break; | 
 | 	case TRB_TYPE(TRB_EVAL_CONTEXT): | 
 | 		virt_dev = xhci->devs[slot_id]; | 
 | 		if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event)) | 
 | 			break; | 
 | 		xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status)); | 
 | 		complete(&xhci->devs[slot_id]->cmd_completion); | 
 | 		break; | 
 | 	case TRB_TYPE(TRB_ADDR_DEV): | 
 | 		xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status)); | 
 | 		complete(&xhci->addr_dev); | 
 | 		break; | 
 | 	case TRB_TYPE(TRB_STOP_RING): | 
 | 		handle_stopped_endpoint(xhci, xhci->cmd_ring->dequeue, event); | 
 | 		break; | 
 | 	case TRB_TYPE(TRB_SET_DEQ): | 
 | 		handle_set_deq_completion(xhci, event, xhci->cmd_ring->dequeue); | 
 | 		break; | 
 | 	case TRB_TYPE(TRB_CMD_NOOP): | 
 | 		break; | 
 | 	case TRB_TYPE(TRB_RESET_EP): | 
 | 		handle_reset_ep_completion(xhci, event, xhci->cmd_ring->dequeue); | 
 | 		break; | 
 | 	case TRB_TYPE(TRB_RESET_DEV): | 
 | 		xhci_dbg(xhci, "Completed reset device command.\n"); | 
 | 		slot_id = TRB_TO_SLOT_ID( | 
 | 			le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])); | 
 | 		virt_dev = xhci->devs[slot_id]; | 
 | 		if (virt_dev) | 
 | 			handle_cmd_in_cmd_wait_list(xhci, virt_dev, event); | 
 | 		else | 
 | 			xhci_warn(xhci, "Reset device command completion " | 
 | 					"for disabled slot %u\n", slot_id); | 
 | 		break; | 
 | 	case TRB_TYPE(TRB_NEC_GET_FW): | 
 | 		if (!(xhci->quirks & XHCI_NEC_HOST)) { | 
 | 			xhci->error_bitmask |= 1 << 6; | 
 | 			break; | 
 | 		} | 
 | 		xhci_dbg(xhci, "NEC firmware version %2x.%02x\n", | 
 | 			 NEC_FW_MAJOR(le32_to_cpu(event->status)), | 
 | 			 NEC_FW_MINOR(le32_to_cpu(event->status))); | 
 | 		break; | 
 | 	default: | 
 | 		/* Skip over unknown commands on the event ring */ | 
 | 		xhci->error_bitmask |= 1 << 6; | 
 | 		break; | 
 | 	} | 
 | 	inc_deq(xhci, xhci->cmd_ring); | 
 | } | 
 |  | 
 | static void handle_vendor_event(struct xhci_hcd *xhci, | 
 | 		union xhci_trb *event) | 
 | { | 
 | 	u32 trb_type; | 
 |  | 
 | 	trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3])); | 
 | 	xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); | 
 | 	if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) | 
 | 		handle_cmd_completion(xhci, &event->event_cmd); | 
 | } | 
 |  | 
 | /* @port_id: the one-based port ID from the hardware (indexed from array of all | 
 |  * port registers -- USB 3.0 and USB 2.0). | 
 |  * | 
 |  * Returns a zero-based port number, which is suitable for indexing into each of | 
 |  * the split roothubs' port arrays and bus state arrays. | 
 |  * Add one to it in order to call xhci_find_slot_id_by_port. | 
 |  */ | 
 | static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd, | 
 | 		struct xhci_hcd *xhci, u32 port_id) | 
 | { | 
 | 	unsigned int i; | 
 | 	unsigned int num_similar_speed_ports = 0; | 
 |  | 
 | 	/* port_id from the hardware is 1-based, but port_array[], usb3_ports[], | 
 | 	 * and usb2_ports are 0-based indexes.  Count the number of similar | 
 | 	 * speed ports, up to 1 port before this port. | 
 | 	 */ | 
 | 	for (i = 0; i < (port_id - 1); i++) { | 
 | 		u8 port_speed = xhci->port_array[i]; | 
 |  | 
 | 		/* | 
 | 		 * Skip ports that don't have known speeds, or have duplicate | 
 | 		 * Extended Capabilities port speed entries. | 
 | 		 */ | 
 | 		if (port_speed == 0 || port_speed == DUPLICATE_ENTRY) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * USB 3.0 ports are always under a USB 3.0 hub.  USB 2.0 and | 
 | 		 * 1.1 ports are under the USB 2.0 hub.  If the port speed | 
 | 		 * matches the device speed, it's a similar speed port. | 
 | 		 */ | 
 | 		if ((port_speed == 0x03) == (hcd->speed == HCD_USB3)) | 
 | 			num_similar_speed_ports++; | 
 | 	} | 
 | 	return num_similar_speed_ports; | 
 | } | 
 |  | 
 | static void handle_device_notification(struct xhci_hcd *xhci, | 
 | 		union xhci_trb *event) | 
 | { | 
 | 	u32 slot_id; | 
 | 	struct usb_device *udev; | 
 |  | 
 | 	slot_id = TRB_TO_SLOT_ID(event->generic.field[3]); | 
 | 	if (!xhci->devs[slot_id]) { | 
 | 		xhci_warn(xhci, "Device Notification event for " | 
 | 				"unused slot %u\n", slot_id); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", | 
 | 			slot_id); | 
 | 	udev = xhci->devs[slot_id]->udev; | 
 | 	if (udev && udev->parent) | 
 | 		usb_wakeup_notification(udev->parent, udev->portnum); | 
 | } | 
 |  | 
 | static void handle_port_status(struct xhci_hcd *xhci, | 
 | 		union xhci_trb *event) | 
 | { | 
 | 	struct usb_hcd *hcd; | 
 | 	u32 port_id; | 
 | 	u32 temp, temp1; | 
 | 	int max_ports; | 
 | 	int slot_id; | 
 | 	unsigned int faked_port_index; | 
 | 	u8 major_revision; | 
 | 	struct xhci_bus_state *bus_state; | 
 | 	__le32 __iomem **port_array; | 
 | 	bool bogus_port_status = false; | 
 |  | 
 | 	/* Port status change events always have a successful completion code */ | 
 | 	if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) { | 
 | 		xhci_warn(xhci, "WARN: xHC returned failed port status event\n"); | 
 | 		xhci->error_bitmask |= 1 << 8; | 
 | 	} | 
 | 	port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); | 
 | 	xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id); | 
 |  | 
 | 	max_ports = HCS_MAX_PORTS(xhci->hcs_params1); | 
 | 	if ((port_id <= 0) || (port_id > max_ports)) { | 
 | 		xhci_warn(xhci, "Invalid port id %d\n", port_id); | 
 | 		bogus_port_status = true; | 
 | 		goto cleanup; | 
 | 	} | 
 |  | 
 | 	/* Figure out which usb_hcd this port is attached to: | 
 | 	 * is it a USB 3.0 port or a USB 2.0/1.1 port? | 
 | 	 */ | 
 | 	major_revision = xhci->port_array[port_id - 1]; | 
 | 	if (major_revision == 0) { | 
 | 		xhci_warn(xhci, "Event for port %u not in " | 
 | 				"Extended Capabilities, ignoring.\n", | 
 | 				port_id); | 
 | 		bogus_port_status = true; | 
 | 		goto cleanup; | 
 | 	} | 
 | 	if (major_revision == DUPLICATE_ENTRY) { | 
 | 		xhci_warn(xhci, "Event for port %u duplicated in" | 
 | 				"Extended Capabilities, ignoring.\n", | 
 | 				port_id); | 
 | 		bogus_port_status = true; | 
 | 		goto cleanup; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Hardware port IDs reported by a Port Status Change Event include USB | 
 | 	 * 3.0 and USB 2.0 ports.  We want to check if the port has reported a | 
 | 	 * resume event, but we first need to translate the hardware port ID | 
 | 	 * into the index into the ports on the correct split roothub, and the | 
 | 	 * correct bus_state structure. | 
 | 	 */ | 
 | 	/* Find the right roothub. */ | 
 | 	hcd = xhci_to_hcd(xhci); | 
 | 	if ((major_revision == 0x03) != (hcd->speed == HCD_USB3)) | 
 | 		hcd = xhci->shared_hcd; | 
 | 	bus_state = &xhci->bus_state[hcd_index(hcd)]; | 
 | 	if (hcd->speed == HCD_USB3) | 
 | 		port_array = xhci->usb3_ports; | 
 | 	else | 
 | 		port_array = xhci->usb2_ports; | 
 | 	/* Find the faked port hub number */ | 
 | 	faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci, | 
 | 			port_id); | 
 |  | 
 | 	temp = xhci_readl(xhci, port_array[faked_port_index]); | 
 | 	if (hcd->state == HC_STATE_SUSPENDED) { | 
 | 		xhci_dbg(xhci, "resume root hub\n"); | 
 | 		usb_hcd_resume_root_hub(hcd); | 
 | 	} | 
 |  | 
 | 	if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) { | 
 | 		xhci_dbg(xhci, "port resume event for port %d\n", port_id); | 
 |  | 
 | 		temp1 = xhci_readl(xhci, &xhci->op_regs->command); | 
 | 		if (!(temp1 & CMD_RUN)) { | 
 | 			xhci_warn(xhci, "xHC is not running.\n"); | 
 | 			goto cleanup; | 
 | 		} | 
 |  | 
 | 		if (DEV_SUPERSPEED(temp)) { | 
 | 			xhci_dbg(xhci, "remote wake SS port %d\n", port_id); | 
 | 			/* Set a flag to say the port signaled remote wakeup, | 
 | 			 * so we can tell the difference between the end of | 
 | 			 * device and host initiated resume. | 
 | 			 */ | 
 | 			bus_state->port_remote_wakeup |= 1 << faked_port_index; | 
 | 			xhci_test_and_clear_bit(xhci, port_array, | 
 | 					faked_port_index, PORT_PLC); | 
 | 			xhci_set_link_state(xhci, port_array, faked_port_index, | 
 | 						XDEV_U0); | 
 | 			/* Need to wait until the next link state change | 
 | 			 * indicates the device is actually in U0. | 
 | 			 */ | 
 | 			bogus_port_status = true; | 
 | 			goto cleanup; | 
 | 		} else { | 
 | 			xhci_dbg(xhci, "resume HS port %d\n", port_id); | 
 | 			bus_state->resume_done[faked_port_index] = jiffies + | 
 | 				msecs_to_jiffies(20); | 
 | 			set_bit(faked_port_index, &bus_state->resuming_ports); | 
 | 			mod_timer(&hcd->rh_timer, | 
 | 				  bus_state->resume_done[faked_port_index]); | 
 | 			/* Do the rest in GetPortStatus */ | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_U0 && | 
 | 			DEV_SUPERSPEED(temp)) { | 
 | 		xhci_dbg(xhci, "resume SS port %d finished\n", port_id); | 
 | 		/* We've just brought the device into U0 through either the | 
 | 		 * Resume state after a device remote wakeup, or through the | 
 | 		 * U3Exit state after a host-initiated resume.  If it's a device | 
 | 		 * initiated remote wake, don't pass up the link state change, | 
 | 		 * so the roothub behavior is consistent with external | 
 | 		 * USB 3.0 hub behavior. | 
 | 		 */ | 
 | 		slot_id = xhci_find_slot_id_by_port(hcd, xhci, | 
 | 				faked_port_index + 1); | 
 | 		if (slot_id && xhci->devs[slot_id]) | 
 | 			xhci_ring_device(xhci, slot_id); | 
 | 		if (bus_state->port_remote_wakeup && (1 << faked_port_index)) { | 
 | 			bus_state->port_remote_wakeup &= | 
 | 				~(1 << faked_port_index); | 
 | 			xhci_test_and_clear_bit(xhci, port_array, | 
 | 					faked_port_index, PORT_PLC); | 
 | 			usb_wakeup_notification(hcd->self.root_hub, | 
 | 					faked_port_index + 1); | 
 | 			bogus_port_status = true; | 
 | 			goto cleanup; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (hcd->speed != HCD_USB3) | 
 | 		xhci_test_and_clear_bit(xhci, port_array, faked_port_index, | 
 | 					PORT_PLC); | 
 |  | 
 | cleanup: | 
 | 	/* Update event ring dequeue pointer before dropping the lock */ | 
 | 	inc_deq(xhci, xhci->event_ring); | 
 |  | 
 | 	/* Don't make the USB core poll the roothub if we got a bad port status | 
 | 	 * change event.  Besides, at that point we can't tell which roothub | 
 | 	 * (USB 2.0 or USB 3.0) to kick. | 
 | 	 */ | 
 | 	if (bogus_port_status) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * xHCI port-status-change events occur when the "or" of all the | 
 | 	 * status-change bits in the portsc register changes from 0 to 1. | 
 | 	 * New status changes won't cause an event if any other change | 
 | 	 * bits are still set.  When an event occurs, switch over to | 
 | 	 * polling to avoid losing status changes. | 
 | 	 */ | 
 | 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__); | 
 | 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags); | 
 | 	spin_unlock(&xhci->lock); | 
 | 	/* Pass this up to the core */ | 
 | 	usb_hcd_poll_rh_status(hcd); | 
 | 	spin_lock(&xhci->lock); | 
 | } | 
 |  | 
 | /* | 
 |  * This TD is defined by the TRBs starting at start_trb in start_seg and ending | 
 |  * at end_trb, which may be in another segment.  If the suspect DMA address is a | 
 |  * TRB in this TD, this function returns that TRB's segment.  Otherwise it | 
 |  * returns 0. | 
 |  */ | 
 | struct xhci_segment *trb_in_td(struct xhci_segment *start_seg, | 
 | 		union xhci_trb	*start_trb, | 
 | 		union xhci_trb	*end_trb, | 
 | 		dma_addr_t	suspect_dma) | 
 | { | 
 | 	dma_addr_t start_dma; | 
 | 	dma_addr_t end_seg_dma; | 
 | 	dma_addr_t end_trb_dma; | 
 | 	struct xhci_segment *cur_seg; | 
 |  | 
 | 	start_dma = xhci_trb_virt_to_dma(start_seg, start_trb); | 
 | 	cur_seg = start_seg; | 
 |  | 
 | 	do { | 
 | 		if (start_dma == 0) | 
 | 			return NULL; | 
 | 		/* We may get an event for a Link TRB in the middle of a TD */ | 
 | 		end_seg_dma = xhci_trb_virt_to_dma(cur_seg, | 
 | 				&cur_seg->trbs[TRBS_PER_SEGMENT - 1]); | 
 | 		/* If the end TRB isn't in this segment, this is set to 0 */ | 
 | 		end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb); | 
 |  | 
 | 		if (end_trb_dma > 0) { | 
 | 			/* The end TRB is in this segment, so suspect should be here */ | 
 | 			if (start_dma <= end_trb_dma) { | 
 | 				if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) | 
 | 					return cur_seg; | 
 | 			} else { | 
 | 				/* Case for one segment with | 
 | 				 * a TD wrapped around to the top | 
 | 				 */ | 
 | 				if ((suspect_dma >= start_dma && | 
 | 							suspect_dma <= end_seg_dma) || | 
 | 						(suspect_dma >= cur_seg->dma && | 
 | 						 suspect_dma <= end_trb_dma)) | 
 | 					return cur_seg; | 
 | 			} | 
 | 			return NULL; | 
 | 		} else { | 
 | 			/* Might still be somewhere in this segment */ | 
 | 			if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) | 
 | 				return cur_seg; | 
 | 		} | 
 | 		cur_seg = cur_seg->next; | 
 | 		start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); | 
 | 	} while (cur_seg != start_seg); | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci, | 
 | 		unsigned int slot_id, unsigned int ep_index, | 
 | 		unsigned int stream_id, | 
 | 		struct xhci_td *td, union xhci_trb *event_trb) | 
 | { | 
 | 	struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; | 
 | 	ep->ep_state |= EP_HALTED; | 
 | 	ep->stopped_td = td; | 
 | 	ep->stopped_trb = event_trb; | 
 | 	ep->stopped_stream = stream_id; | 
 |  | 
 | 	xhci_queue_reset_ep(xhci, slot_id, ep_index); | 
 | 	xhci_cleanup_stalled_ring(xhci, td->urb->dev, ep_index); | 
 |  | 
 | 	ep->stopped_td = NULL; | 
 | 	ep->stopped_trb = NULL; | 
 | 	ep->stopped_stream = 0; | 
 |  | 
 | 	xhci_ring_cmd_db(xhci); | 
 | } | 
 |  | 
 | /* Check if an error has halted the endpoint ring.  The class driver will | 
 |  * cleanup the halt for a non-default control endpoint if we indicate a stall. | 
 |  * However, a babble and other errors also halt the endpoint ring, and the class | 
 |  * driver won't clear the halt in that case, so we need to issue a Set Transfer | 
 |  * Ring Dequeue Pointer command manually. | 
 |  */ | 
 | static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci, | 
 | 		struct xhci_ep_ctx *ep_ctx, | 
 | 		unsigned int trb_comp_code) | 
 | { | 
 | 	/* TRB completion codes that may require a manual halt cleanup */ | 
 | 	if (trb_comp_code == COMP_TX_ERR || | 
 | 			trb_comp_code == COMP_BABBLE || | 
 | 			trb_comp_code == COMP_SPLIT_ERR) | 
 | 		/* The 0.96 spec says a babbling control endpoint | 
 | 		 * is not halted. The 0.96 spec says it is.  Some HW | 
 | 		 * claims to be 0.95 compliant, but it halts the control | 
 | 		 * endpoint anyway.  Check if a babble halted the | 
 | 		 * endpoint. | 
 | 		 */ | 
 | 		if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) == | 
 | 		    cpu_to_le32(EP_STATE_HALTED)) | 
 | 			return 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) | 
 | { | 
 | 	if (trb_comp_code >= 224 && trb_comp_code <= 255) { | 
 | 		/* Vendor defined "informational" completion code, | 
 | 		 * treat as not-an-error. | 
 | 		 */ | 
 | 		xhci_dbg(xhci, "Vendor defined info completion code %u\n", | 
 | 				trb_comp_code); | 
 | 		xhci_dbg(xhci, "Treating code as success.\n"); | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Finish the td processing, remove the td from td list; | 
 |  * Return 1 if the urb can be given back. | 
 |  */ | 
 | static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td, | 
 | 	union xhci_trb *event_trb, struct xhci_transfer_event *event, | 
 | 	struct xhci_virt_ep *ep, int *status, bool skip) | 
 | { | 
 | 	struct xhci_virt_device *xdev; | 
 | 	struct xhci_ring *ep_ring; | 
 | 	unsigned int slot_id; | 
 | 	int ep_index; | 
 | 	struct urb *urb = NULL; | 
 | 	struct xhci_ep_ctx *ep_ctx; | 
 | 	int ret = 0; | 
 | 	struct urb_priv	*urb_priv; | 
 | 	u32 trb_comp_code; | 
 |  | 
 | 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); | 
 | 	xdev = xhci->devs[slot_id]; | 
 | 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; | 
 | 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); | 
 | 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); | 
 | 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); | 
 |  | 
 | 	if (skip) | 
 | 		goto td_cleanup; | 
 |  | 
 | 	if (trb_comp_code == COMP_STOP_INVAL || | 
 | 			trb_comp_code == COMP_STOP) { | 
 | 		/* The Endpoint Stop Command completion will take care of any | 
 | 		 * stopped TDs.  A stopped TD may be restarted, so don't update | 
 | 		 * the ring dequeue pointer or take this TD off any lists yet. | 
 | 		 */ | 
 | 		ep->stopped_td = td; | 
 | 		ep->stopped_trb = event_trb; | 
 | 		return 0; | 
 | 	} else { | 
 | 		if (trb_comp_code == COMP_STALL) { | 
 | 			/* The transfer is completed from the driver's | 
 | 			 * perspective, but we need to issue a set dequeue | 
 | 			 * command for this stalled endpoint to move the dequeue | 
 | 			 * pointer past the TD.  We can't do that here because | 
 | 			 * the halt condition must be cleared first.  Let the | 
 | 			 * USB class driver clear the stall later. | 
 | 			 */ | 
 | 			ep->stopped_td = td; | 
 | 			ep->stopped_trb = event_trb; | 
 | 			ep->stopped_stream = ep_ring->stream_id; | 
 | 		} else if (xhci_requires_manual_halt_cleanup(xhci, | 
 | 					ep_ctx, trb_comp_code)) { | 
 | 			/* Other types of errors halt the endpoint, but the | 
 | 			 * class driver doesn't call usb_reset_endpoint() unless | 
 | 			 * the error is -EPIPE.  Clear the halted status in the | 
 | 			 * xHCI hardware manually. | 
 | 			 */ | 
 | 			xhci_cleanup_halted_endpoint(xhci, | 
 | 					slot_id, ep_index, ep_ring->stream_id, | 
 | 					td, event_trb); | 
 | 		} else { | 
 | 			/* Update ring dequeue pointer */ | 
 | 			while (ep_ring->dequeue != td->last_trb) | 
 | 				inc_deq(xhci, ep_ring); | 
 | 			inc_deq(xhci, ep_ring); | 
 | 		} | 
 |  | 
 | td_cleanup: | 
 | 		/* Clean up the endpoint's TD list */ | 
 | 		urb = td->urb; | 
 | 		urb_priv = urb->hcpriv; | 
 |  | 
 | 		/* Do one last check of the actual transfer length. | 
 | 		 * If the host controller said we transferred more data than | 
 | 		 * the buffer length, urb->actual_length will be a very big | 
 | 		 * number (since it's unsigned).  Play it safe and say we didn't | 
 | 		 * transfer anything. | 
 | 		 */ | 
 | 		if (urb->actual_length > urb->transfer_buffer_length) { | 
 | 			xhci_warn(xhci, "URB transfer length is wrong, " | 
 | 					"xHC issue? req. len = %u, " | 
 | 					"act. len = %u\n", | 
 | 					urb->transfer_buffer_length, | 
 | 					urb->actual_length); | 
 | 			urb->actual_length = 0; | 
 | 			if (td->urb->transfer_flags & URB_SHORT_NOT_OK) | 
 | 				*status = -EREMOTEIO; | 
 | 			else | 
 | 				*status = 0; | 
 | 		} | 
 | 		list_del_init(&td->td_list); | 
 | 		/* Was this TD slated to be cancelled but completed anyway? */ | 
 | 		if (!list_empty(&td->cancelled_td_list)) | 
 | 			list_del_init(&td->cancelled_td_list); | 
 |  | 
 | 		urb_priv->td_cnt++; | 
 | 		/* Giveback the urb when all the tds are completed */ | 
 | 		if (urb_priv->td_cnt == urb_priv->length) { | 
 | 			ret = 1; | 
 | 			if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { | 
 | 				xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; | 
 | 				if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs | 
 | 					== 0) { | 
 | 					if (xhci->quirks & XHCI_AMD_PLL_FIX) | 
 | 						usb_amd_quirk_pll_enable(); | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Process control tds, update urb status and actual_length. | 
 |  */ | 
 | static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td, | 
 | 	union xhci_trb *event_trb, struct xhci_transfer_event *event, | 
 | 	struct xhci_virt_ep *ep, int *status) | 
 | { | 
 | 	struct xhci_virt_device *xdev; | 
 | 	struct xhci_ring *ep_ring; | 
 | 	unsigned int slot_id; | 
 | 	int ep_index; | 
 | 	struct xhci_ep_ctx *ep_ctx; | 
 | 	u32 trb_comp_code; | 
 |  | 
 | 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); | 
 | 	xdev = xhci->devs[slot_id]; | 
 | 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; | 
 | 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); | 
 | 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); | 
 | 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); | 
 |  | 
 | 	switch (trb_comp_code) { | 
 | 	case COMP_SUCCESS: | 
 | 		if (event_trb == ep_ring->dequeue) { | 
 | 			xhci_warn(xhci, "WARN: Success on ctrl setup TRB " | 
 | 					"without IOC set??\n"); | 
 | 			*status = -ESHUTDOWN; | 
 | 		} else if (event_trb != td->last_trb) { | 
 | 			xhci_warn(xhci, "WARN: Success on ctrl data TRB " | 
 | 					"without IOC set??\n"); | 
 | 			*status = -ESHUTDOWN; | 
 | 		} else { | 
 | 			*status = 0; | 
 | 		} | 
 | 		break; | 
 | 	case COMP_SHORT_TX: | 
 | 		if (td->urb->transfer_flags & URB_SHORT_NOT_OK) | 
 | 			*status = -EREMOTEIO; | 
 | 		else | 
 | 			*status = 0; | 
 | 		break; | 
 | 	case COMP_STOP_INVAL: | 
 | 	case COMP_STOP: | 
 | 		return finish_td(xhci, td, event_trb, event, ep, status, false); | 
 | 	default: | 
 | 		if (!xhci_requires_manual_halt_cleanup(xhci, | 
 | 					ep_ctx, trb_comp_code)) | 
 | 			break; | 
 | 		xhci_dbg(xhci, "TRB error code %u, " | 
 | 				"halted endpoint index = %u\n", | 
 | 				trb_comp_code, ep_index); | 
 | 		/* else fall through */ | 
 | 	case COMP_STALL: | 
 | 		/* Did we transfer part of the data (middle) phase? */ | 
 | 		if (event_trb != ep_ring->dequeue && | 
 | 				event_trb != td->last_trb) | 
 | 			td->urb->actual_length = | 
 | 				td->urb->transfer_buffer_length | 
 | 				- TRB_LEN(le32_to_cpu(event->transfer_len)); | 
 | 		else | 
 | 			td->urb->actual_length = 0; | 
 |  | 
 | 		xhci_cleanup_halted_endpoint(xhci, | 
 | 			slot_id, ep_index, 0, td, event_trb); | 
 | 		return finish_td(xhci, td, event_trb, event, ep, status, true); | 
 | 	} | 
 | 	/* | 
 | 	 * Did we transfer any data, despite the errors that might have | 
 | 	 * happened?  I.e. did we get past the setup stage? | 
 | 	 */ | 
 | 	if (event_trb != ep_ring->dequeue) { | 
 | 		/* The event was for the status stage */ | 
 | 		if (event_trb == td->last_trb) { | 
 | 			if (td->urb->actual_length != 0) { | 
 | 				/* Don't overwrite a previously set error code | 
 | 				 */ | 
 | 				if ((*status == -EINPROGRESS || *status == 0) && | 
 | 						(td->urb->transfer_flags | 
 | 						 & URB_SHORT_NOT_OK)) | 
 | 					/* Did we already see a short data | 
 | 					 * stage? */ | 
 | 					*status = -EREMOTEIO; | 
 | 			} else { | 
 | 				td->urb->actual_length = | 
 | 					td->urb->transfer_buffer_length; | 
 | 			} | 
 | 		} else { | 
 | 		/* Maybe the event was for the data stage? */ | 
 | 			td->urb->actual_length = | 
 | 				td->urb->transfer_buffer_length - | 
 | 				TRB_LEN(le32_to_cpu(event->transfer_len)); | 
 | 			xhci_dbg(xhci, "Waiting for status " | 
 | 					"stage event\n"); | 
 | 			return 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return finish_td(xhci, td, event_trb, event, ep, status, false); | 
 | } | 
 |  | 
 | /* | 
 |  * Process isochronous tds, update urb packet status and actual_length. | 
 |  */ | 
 | static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, | 
 | 	union xhci_trb *event_trb, struct xhci_transfer_event *event, | 
 | 	struct xhci_virt_ep *ep, int *status) | 
 | { | 
 | 	struct xhci_ring *ep_ring; | 
 | 	struct urb_priv *urb_priv; | 
 | 	int idx; | 
 | 	int len = 0; | 
 | 	union xhci_trb *cur_trb; | 
 | 	struct xhci_segment *cur_seg; | 
 | 	struct usb_iso_packet_descriptor *frame; | 
 | 	u32 trb_comp_code; | 
 | 	bool skip_td = false; | 
 |  | 
 | 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); | 
 | 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); | 
 | 	urb_priv = td->urb->hcpriv; | 
 | 	idx = urb_priv->td_cnt; | 
 | 	frame = &td->urb->iso_frame_desc[idx]; | 
 |  | 
 | 	/* handle completion code */ | 
 | 	switch (trb_comp_code) { | 
 | 	case COMP_SUCCESS: | 
 | 		if (TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) { | 
 | 			frame->status = 0; | 
 | 			break; | 
 | 		} | 
 | 		if ((xhci->quirks & XHCI_TRUST_TX_LENGTH)) | 
 | 			trb_comp_code = COMP_SHORT_TX; | 
 | 	case COMP_SHORT_TX: | 
 | 		frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ? | 
 | 				-EREMOTEIO : 0; | 
 | 		break; | 
 | 	case COMP_BW_OVER: | 
 | 		frame->status = -ECOMM; | 
 | 		skip_td = true; | 
 | 		break; | 
 | 	case COMP_BUFF_OVER: | 
 | 	case COMP_BABBLE: | 
 | 		frame->status = -EOVERFLOW; | 
 | 		skip_td = true; | 
 | 		break; | 
 | 	case COMP_DEV_ERR: | 
 | 	case COMP_STALL: | 
 | 	case COMP_TX_ERR: | 
 | 		frame->status = -EPROTO; | 
 | 		skip_td = true; | 
 | 		break; | 
 | 	case COMP_STOP: | 
 | 	case COMP_STOP_INVAL: | 
 | 		break; | 
 | 	default: | 
 | 		frame->status = -1; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	if (trb_comp_code == COMP_SUCCESS || skip_td) { | 
 | 		frame->actual_length = frame->length; | 
 | 		td->urb->actual_length += frame->length; | 
 | 	} else { | 
 | 		for (cur_trb = ep_ring->dequeue, | 
 | 		     cur_seg = ep_ring->deq_seg; cur_trb != event_trb; | 
 | 		     next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { | 
 | 			if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) && | 
 | 			    !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) | 
 | 				len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])); | 
 | 		} | 
 | 		len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) - | 
 | 			TRB_LEN(le32_to_cpu(event->transfer_len)); | 
 |  | 
 | 		if (trb_comp_code != COMP_STOP_INVAL) { | 
 | 			frame->actual_length = len; | 
 | 			td->urb->actual_length += len; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return finish_td(xhci, td, event_trb, event, ep, status, false); | 
 | } | 
 |  | 
 | static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, | 
 | 			struct xhci_transfer_event *event, | 
 | 			struct xhci_virt_ep *ep, int *status) | 
 | { | 
 | 	struct xhci_ring *ep_ring; | 
 | 	struct urb_priv *urb_priv; | 
 | 	struct usb_iso_packet_descriptor *frame; | 
 | 	int idx; | 
 |  | 
 | 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); | 
 | 	urb_priv = td->urb->hcpriv; | 
 | 	idx = urb_priv->td_cnt; | 
 | 	frame = &td->urb->iso_frame_desc[idx]; | 
 |  | 
 | 	/* The transfer is partly done. */ | 
 | 	frame->status = -EXDEV; | 
 |  | 
 | 	/* calc actual length */ | 
 | 	frame->actual_length = 0; | 
 |  | 
 | 	/* Update ring dequeue pointer */ | 
 | 	while (ep_ring->dequeue != td->last_trb) | 
 | 		inc_deq(xhci, ep_ring); | 
 | 	inc_deq(xhci, ep_ring); | 
 |  | 
 | 	return finish_td(xhci, td, NULL, event, ep, status, true); | 
 | } | 
 |  | 
 | /* | 
 |  * Process bulk and interrupt tds, update urb status and actual_length. | 
 |  */ | 
 | static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td, | 
 | 	union xhci_trb *event_trb, struct xhci_transfer_event *event, | 
 | 	struct xhci_virt_ep *ep, int *status) | 
 | { | 
 | 	struct xhci_ring *ep_ring; | 
 | 	union xhci_trb *cur_trb; | 
 | 	struct xhci_segment *cur_seg; | 
 | 	u32 trb_comp_code; | 
 |  | 
 | 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); | 
 | 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); | 
 |  | 
 | 	switch (trb_comp_code) { | 
 | 	case COMP_SUCCESS: | 
 | 		/* Double check that the HW transferred everything. */ | 
 | 		if (event_trb != td->last_trb || | 
 | 				TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) { | 
 | 			xhci_warn(xhci, "WARN Successful completion " | 
 | 					"on short TX\n"); | 
 | 			if (td->urb->transfer_flags & URB_SHORT_NOT_OK) | 
 | 				*status = -EREMOTEIO; | 
 | 			else | 
 | 				*status = 0; | 
 | 			if ((xhci->quirks & XHCI_TRUST_TX_LENGTH)) | 
 | 				trb_comp_code = COMP_SHORT_TX; | 
 | 		} else { | 
 | 			*status = 0; | 
 | 		} | 
 | 		break; | 
 | 	case COMP_SHORT_TX: | 
 | 		if (td->urb->transfer_flags & URB_SHORT_NOT_OK) | 
 | 			*status = -EREMOTEIO; | 
 | 		else | 
 | 			*status = 0; | 
 | 		break; | 
 | 	default: | 
 | 		/* Others already handled above */ | 
 | 		break; | 
 | 	} | 
 | 	if (trb_comp_code == COMP_SHORT_TX) | 
 | 		xhci_dbg(xhci, "ep %#x - asked for %d bytes, " | 
 | 				"%d bytes untransferred\n", | 
 | 				td->urb->ep->desc.bEndpointAddress, | 
 | 				td->urb->transfer_buffer_length, | 
 | 				TRB_LEN(le32_to_cpu(event->transfer_len))); | 
 | 	/* Fast path - was this the last TRB in the TD for this URB? */ | 
 | 	if (event_trb == td->last_trb) { | 
 | 		if (TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) { | 
 | 			td->urb->actual_length = | 
 | 				td->urb->transfer_buffer_length - | 
 | 				TRB_LEN(le32_to_cpu(event->transfer_len)); | 
 | 			if (td->urb->transfer_buffer_length < | 
 | 					td->urb->actual_length) { | 
 | 				xhci_warn(xhci, "HC gave bad length " | 
 | 						"of %d bytes left\n", | 
 | 					  TRB_LEN(le32_to_cpu(event->transfer_len))); | 
 | 				td->urb->actual_length = 0; | 
 | 				if (td->urb->transfer_flags & URB_SHORT_NOT_OK) | 
 | 					*status = -EREMOTEIO; | 
 | 				else | 
 | 					*status = 0; | 
 | 			} | 
 | 			/* Don't overwrite a previously set error code */ | 
 | 			if (*status == -EINPROGRESS) { | 
 | 				if (td->urb->transfer_flags & URB_SHORT_NOT_OK) | 
 | 					*status = -EREMOTEIO; | 
 | 				else | 
 | 					*status = 0; | 
 | 			} | 
 | 		} else { | 
 | 			td->urb->actual_length = | 
 | 				td->urb->transfer_buffer_length; | 
 | 			/* Ignore a short packet completion if the | 
 | 			 * untransferred length was zero. | 
 | 			 */ | 
 | 			if (*status == -EREMOTEIO) | 
 | 				*status = 0; | 
 | 		} | 
 | 	} else { | 
 | 		/* Slow path - walk the list, starting from the dequeue | 
 | 		 * pointer, to get the actual length transferred. | 
 | 		 */ | 
 | 		td->urb->actual_length = 0; | 
 | 		for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg; | 
 | 				cur_trb != event_trb; | 
 | 				next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { | 
 | 			if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) && | 
 | 			    !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) | 
 | 				td->urb->actual_length += | 
 | 					TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])); | 
 | 		} | 
 | 		/* If the ring didn't stop on a Link or No-op TRB, add | 
 | 		 * in the actual bytes transferred from the Normal TRB | 
 | 		 */ | 
 | 		if (trb_comp_code != COMP_STOP_INVAL) | 
 | 			td->urb->actual_length += | 
 | 				TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) - | 
 | 				TRB_LEN(le32_to_cpu(event->transfer_len)); | 
 | 	} | 
 |  | 
 | 	return finish_td(xhci, td, event_trb, event, ep, status, false); | 
 | } | 
 |  | 
 | /* | 
 |  * If this function returns an error condition, it means it got a Transfer | 
 |  * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. | 
 |  * At this point, the host controller is probably hosed and should be reset. | 
 |  */ | 
 | static int handle_tx_event(struct xhci_hcd *xhci, | 
 | 		struct xhci_transfer_event *event) | 
 | 	__releases(&xhci->lock) | 
 | 	__acquires(&xhci->lock) | 
 | { | 
 | 	struct xhci_virt_device *xdev; | 
 | 	struct xhci_virt_ep *ep; | 
 | 	struct xhci_ring *ep_ring; | 
 | 	unsigned int slot_id; | 
 | 	int ep_index; | 
 | 	struct xhci_td *td = NULL; | 
 | 	dma_addr_t event_dma; | 
 | 	struct xhci_segment *event_seg; | 
 | 	union xhci_trb *event_trb; | 
 | 	struct urb *urb = NULL; | 
 | 	int status = -EINPROGRESS; | 
 | 	struct urb_priv *urb_priv; | 
 | 	struct xhci_ep_ctx *ep_ctx; | 
 | 	struct list_head *tmp; | 
 | 	u32 trb_comp_code; | 
 | 	int ret = 0; | 
 | 	int td_num = 0; | 
 |  | 
 | 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); | 
 | 	xdev = xhci->devs[slot_id]; | 
 | 	if (!xdev) { | 
 | 		xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n"); | 
 | 		xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", | 
 | 			 (unsigned long long) xhci_trb_virt_to_dma( | 
 | 				 xhci->event_ring->deq_seg, | 
 | 				 xhci->event_ring->dequeue), | 
 | 			 lower_32_bits(le64_to_cpu(event->buffer)), | 
 | 			 upper_32_bits(le64_to_cpu(event->buffer)), | 
 | 			 le32_to_cpu(event->transfer_len), | 
 | 			 le32_to_cpu(event->flags)); | 
 | 		xhci_dbg(xhci, "Event ring:\n"); | 
 | 		xhci_debug_segment(xhci, xhci->event_ring->deq_seg); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	/* Endpoint ID is 1 based, our index is zero based */ | 
 | 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; | 
 | 	ep = &xdev->eps[ep_index]; | 
 | 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); | 
 | 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); | 
 | 	if (!ep_ring || | 
 | 	    (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) == | 
 | 	    EP_STATE_DISABLED) { | 
 | 		xhci_err(xhci, "ERROR Transfer event for disabled endpoint " | 
 | 				"or incorrect stream ring\n"); | 
 | 		xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", | 
 | 			 (unsigned long long) xhci_trb_virt_to_dma( | 
 | 				 xhci->event_ring->deq_seg, | 
 | 				 xhci->event_ring->dequeue), | 
 | 			 lower_32_bits(le64_to_cpu(event->buffer)), | 
 | 			 upper_32_bits(le64_to_cpu(event->buffer)), | 
 | 			 le32_to_cpu(event->transfer_len), | 
 | 			 le32_to_cpu(event->flags)); | 
 | 		xhci_dbg(xhci, "Event ring:\n"); | 
 | 		xhci_debug_segment(xhci, xhci->event_ring->deq_seg); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	/* Count current td numbers if ep->skip is set */ | 
 | 	if (ep->skip) { | 
 | 		list_for_each(tmp, &ep_ring->td_list) | 
 | 			td_num++; | 
 | 	} | 
 |  | 
 | 	event_dma = le64_to_cpu(event->buffer); | 
 | 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); | 
 | 	/* Look for common error cases */ | 
 | 	switch (trb_comp_code) { | 
 | 	/* Skip codes that require special handling depending on | 
 | 	 * transfer type | 
 | 	 */ | 
 | 	case COMP_SUCCESS: | 
 | 		if (TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) | 
 | 			break; | 
 | 		if (xhci->quirks & XHCI_TRUST_TX_LENGTH) | 
 | 			trb_comp_code = COMP_SHORT_TX; | 
 | 		else | 
 | 			xhci_warn_ratelimited(xhci, | 
 | 					"WARN Successful completion on short TX: needs XHCI_TRUST_TX_LENGTH quirk?\n"); | 
 | 	case COMP_SHORT_TX: | 
 | 		break; | 
 | 	case COMP_STOP: | 
 | 		xhci_dbg(xhci, "Stopped on Transfer TRB\n"); | 
 | 		break; | 
 | 	case COMP_STOP_INVAL: | 
 | 		xhci_dbg(xhci, "Stopped on No-op or Link TRB\n"); | 
 | 		break; | 
 | 	case COMP_STALL: | 
 | 		xhci_dbg(xhci, "Stalled endpoint\n"); | 
 | 		ep->ep_state |= EP_HALTED; | 
 | 		status = -EPIPE; | 
 | 		break; | 
 | 	case COMP_TRB_ERR: | 
 | 		xhci_warn(xhci, "WARN: TRB error on endpoint\n"); | 
 | 		status = -EILSEQ; | 
 | 		break; | 
 | 	case COMP_SPLIT_ERR: | 
 | 	case COMP_TX_ERR: | 
 | 		xhci_dbg(xhci, "Transfer error on endpoint\n"); | 
 | 		status = -EPROTO; | 
 | 		break; | 
 | 	case COMP_BABBLE: | 
 | 		xhci_dbg(xhci, "Babble error on endpoint\n"); | 
 | 		status = -EOVERFLOW; | 
 | 		break; | 
 | 	case COMP_DB_ERR: | 
 | 		xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n"); | 
 | 		status = -ENOSR; | 
 | 		break; | 
 | 	case COMP_BW_OVER: | 
 | 		xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n"); | 
 | 		break; | 
 | 	case COMP_BUFF_OVER: | 
 | 		xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n"); | 
 | 		break; | 
 | 	case COMP_UNDERRUN: | 
 | 		/* | 
 | 		 * When the Isoch ring is empty, the xHC will generate | 
 | 		 * a Ring Overrun Event for IN Isoch endpoint or Ring | 
 | 		 * Underrun Event for OUT Isoch endpoint. | 
 | 		 */ | 
 | 		xhci_dbg(xhci, "underrun event on endpoint\n"); | 
 | 		if (!list_empty(&ep_ring->td_list)) | 
 | 			xhci_dbg(xhci, "Underrun Event for slot %d ep %d " | 
 | 					"still with TDs queued?\n", | 
 | 				 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), | 
 | 				 ep_index); | 
 | 		goto cleanup; | 
 | 	case COMP_OVERRUN: | 
 | 		xhci_dbg(xhci, "overrun event on endpoint\n"); | 
 | 		if (!list_empty(&ep_ring->td_list)) | 
 | 			xhci_dbg(xhci, "Overrun Event for slot %d ep %d " | 
 | 					"still with TDs queued?\n", | 
 | 				 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), | 
 | 				 ep_index); | 
 | 		goto cleanup; | 
 | 	case COMP_DEV_ERR: | 
 | 		xhci_warn(xhci, "WARN: detect an incompatible device"); | 
 | 		status = -EPROTO; | 
 | 		break; | 
 | 	case COMP_MISSED_INT: | 
 | 		/* | 
 | 		 * When encounter missed service error, one or more isoc tds | 
 | 		 * may be missed by xHC. | 
 | 		 * Set skip flag of the ep_ring; Complete the missed tds as | 
 | 		 * short transfer when process the ep_ring next time. | 
 | 		 */ | 
 | 		ep->skip = true; | 
 | 		xhci_dbg(xhci, "Miss service interval error, set skip flag\n"); | 
 | 		goto cleanup; | 
 | 	default: | 
 | 		if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { | 
 | 			status = 0; | 
 | 			break; | 
 | 		} | 
 | 		xhci_warn(xhci, "ERROR Unknown event condition, HC probably " | 
 | 				"busted\n"); | 
 | 		goto cleanup; | 
 | 	} | 
 |  | 
 | 	do { | 
 | 		/* This TRB should be in the TD at the head of this ring's | 
 | 		 * TD list. | 
 | 		 */ | 
 | 		if (list_empty(&ep_ring->td_list)) { | 
 | 			xhci_warn(xhci, "WARN Event TRB for slot %d ep %d " | 
 | 					"with no TDs queued?\n", | 
 | 				  TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), | 
 | 				  ep_index); | 
 | 			xhci_dbg(xhci, "Event TRB with TRB type ID %u\n", | 
 | 				 (le32_to_cpu(event->flags) & | 
 | 				  TRB_TYPE_BITMASK)>>10); | 
 | 			xhci_print_trb_offsets(xhci, (union xhci_trb *) event); | 
 | 			if (ep->skip) { | 
 | 				ep->skip = false; | 
 | 				xhci_dbg(xhci, "td_list is empty while skip " | 
 | 						"flag set. Clear skip flag.\n"); | 
 | 			} | 
 | 			ret = 0; | 
 | 			goto cleanup; | 
 | 		} | 
 |  | 
 | 		/* We've skipped all the TDs on the ep ring when ep->skip set */ | 
 | 		if (ep->skip && td_num == 0) { | 
 | 			ep->skip = false; | 
 | 			xhci_dbg(xhci, "All tds on the ep_ring skipped. " | 
 | 						"Clear skip flag.\n"); | 
 | 			ret = 0; | 
 | 			goto cleanup; | 
 | 		} | 
 |  | 
 | 		td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list); | 
 | 		if (ep->skip) | 
 | 			td_num--; | 
 |  | 
 | 		/* Is this a TRB in the currently executing TD? */ | 
 | 		event_seg = trb_in_td(ep_ring->deq_seg, ep_ring->dequeue, | 
 | 				td->last_trb, event_dma); | 
 |  | 
 | 		/* | 
 | 		 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE | 
 | 		 * is not in the current TD pointed by ep_ring->dequeue because | 
 | 		 * that the hardware dequeue pointer still at the previous TRB | 
 | 		 * of the current TD. The previous TRB maybe a Link TD or the | 
 | 		 * last TRB of the previous TD. The command completion handle | 
 | 		 * will take care the rest. | 
 | 		 */ | 
 | 		if (!event_seg && trb_comp_code == COMP_STOP_INVAL) { | 
 | 			ret = 0; | 
 | 			goto cleanup; | 
 | 		} | 
 |  | 
 | 		if (!event_seg) { | 
 | 			if (!ep->skip || | 
 | 			    !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { | 
 | 				/* Some host controllers give a spurious | 
 | 				 * successful event after a short transfer. | 
 | 				 * Ignore it. | 
 | 				 */ | 
 | 				if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&  | 
 | 						ep_ring->last_td_was_short) { | 
 | 					ep_ring->last_td_was_short = false; | 
 | 					ret = 0; | 
 | 					goto cleanup; | 
 | 				} | 
 | 				/* HC is busted, give up! */ | 
 | 				xhci_err(xhci, | 
 | 					"ERROR Transfer event TRB DMA ptr not " | 
 | 					"part of current TD\n"); | 
 | 				return -ESHUTDOWN; | 
 | 			} | 
 |  | 
 | 			ret = skip_isoc_td(xhci, td, event, ep, &status); | 
 | 			goto cleanup; | 
 | 		} | 
 | 		if (trb_comp_code == COMP_SHORT_TX) | 
 | 			ep_ring->last_td_was_short = true; | 
 | 		else | 
 | 			ep_ring->last_td_was_short = false; | 
 |  | 
 | 		if (ep->skip) { | 
 | 			xhci_dbg(xhci, "Found td. Clear skip flag.\n"); | 
 | 			ep->skip = false; | 
 | 		} | 
 |  | 
 | 		event_trb = &event_seg->trbs[(event_dma - event_seg->dma) / | 
 | 						sizeof(*event_trb)]; | 
 | 		/* | 
 | 		 * No-op TRB should not trigger interrupts. | 
 | 		 * If event_trb is a no-op TRB, it means the | 
 | 		 * corresponding TD has been cancelled. Just ignore | 
 | 		 * the TD. | 
 | 		 */ | 
 | 		if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) { | 
 | 			xhci_dbg(xhci, | 
 | 				 "event_trb is a no-op TRB. Skip it\n"); | 
 | 			goto cleanup; | 
 | 		} | 
 |  | 
 | 		/* Now update the urb's actual_length and give back to | 
 | 		 * the core | 
 | 		 */ | 
 | 		if (usb_endpoint_xfer_control(&td->urb->ep->desc)) | 
 | 			ret = process_ctrl_td(xhci, td, event_trb, event, ep, | 
 | 						 &status); | 
 | 		else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) | 
 | 			ret = process_isoc_td(xhci, td, event_trb, event, ep, | 
 | 						 &status); | 
 | 		else | 
 | 			ret = process_bulk_intr_td(xhci, td, event_trb, event, | 
 | 						 ep, &status); | 
 |  | 
 | cleanup: | 
 | 		/* | 
 | 		 * Do not update event ring dequeue pointer if ep->skip is set. | 
 | 		 * Will roll back to continue process missed tds. | 
 | 		 */ | 
 | 		if (trb_comp_code == COMP_MISSED_INT || !ep->skip) { | 
 | 			inc_deq(xhci, xhci->event_ring); | 
 | 		} | 
 |  | 
 | 		if (ret) { | 
 | 			urb = td->urb; | 
 | 			urb_priv = urb->hcpriv; | 
 | 			/* Leave the TD around for the reset endpoint function | 
 | 			 * to use(but only if it's not a control endpoint, | 
 | 			 * since we already queued the Set TR dequeue pointer | 
 | 			 * command for stalled control endpoints). | 
 | 			 */ | 
 | 			if (usb_endpoint_xfer_control(&urb->ep->desc) || | 
 | 				(trb_comp_code != COMP_STALL && | 
 | 					trb_comp_code != COMP_BABBLE)) | 
 | 				xhci_urb_free_priv(xhci, urb_priv); | 
 |  | 
 | 			usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); | 
 | 			if ((urb->actual_length != urb->transfer_buffer_length && | 
 | 						(urb->transfer_flags & | 
 | 						 URB_SHORT_NOT_OK)) || | 
 | 					(status != 0 && | 
 | 					 !usb_endpoint_xfer_isoc(&urb->ep->desc))) | 
 | 				xhci_dbg(xhci, "Giveback URB %p, len = %d, " | 
 | 						"expected = %d, status = %d\n", | 
 | 						urb, urb->actual_length, | 
 | 						urb->transfer_buffer_length, | 
 | 						status); | 
 | 			spin_unlock(&xhci->lock); | 
 | 			/* EHCI, UHCI, and OHCI always unconditionally set the | 
 | 			 * urb->status of an isochronous endpoint to 0. | 
 | 			 */ | 
 | 			if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) | 
 | 				status = 0; | 
 | 			usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status); | 
 | 			spin_lock(&xhci->lock); | 
 | 		} | 
 |  | 
 | 	/* | 
 | 	 * If ep->skip is set, it means there are missed tds on the | 
 | 	 * endpoint ring need to take care of. | 
 | 	 * Process them as short transfer until reach the td pointed by | 
 | 	 * the event. | 
 | 	 */ | 
 | 	} while (ep->skip && trb_comp_code != COMP_MISSED_INT); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * This function handles all OS-owned events on the event ring.  It may drop | 
 |  * xhci->lock between event processing (e.g. to pass up port status changes). | 
 |  * Returns >0 for "possibly more events to process" (caller should call again), | 
 |  * otherwise 0 if done.  In future, <0 returns should indicate error code. | 
 |  */ | 
 | static int xhci_handle_event(struct xhci_hcd *xhci) | 
 | { | 
 | 	union xhci_trb *event; | 
 | 	int update_ptrs = 1; | 
 | 	int ret; | 
 |  | 
 | 	if (!xhci->event_ring || !xhci->event_ring->dequeue) { | 
 | 		xhci->error_bitmask |= 1 << 1; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	event = xhci->event_ring->dequeue; | 
 | 	/* Does the HC or OS own the TRB? */ | 
 | 	if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) != | 
 | 	    xhci->event_ring->cycle_state) { | 
 | 		xhci->error_bitmask |= 1 << 2; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Barrier between reading the TRB_CYCLE (valid) flag above and any | 
 | 	 * speculative reads of the event's flags/data below. | 
 | 	 */ | 
 | 	rmb(); | 
 | 	/* FIXME: Handle more event types. */ | 
 | 	switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) { | 
 | 	case TRB_TYPE(TRB_COMPLETION): | 
 | 		handle_cmd_completion(xhci, &event->event_cmd); | 
 | 		break; | 
 | 	case TRB_TYPE(TRB_PORT_STATUS): | 
 | 		handle_port_status(xhci, event); | 
 | 		update_ptrs = 0; | 
 | 		break; | 
 | 	case TRB_TYPE(TRB_TRANSFER): | 
 | 		ret = handle_tx_event(xhci, &event->trans_event); | 
 | 		if (ret < 0) | 
 | 			xhci->error_bitmask |= 1 << 9; | 
 | 		else | 
 | 			update_ptrs = 0; | 
 | 		break; | 
 | 	case TRB_TYPE(TRB_DEV_NOTE): | 
 | 		handle_device_notification(xhci, event); | 
 | 		break; | 
 | 	default: | 
 | 		if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >= | 
 | 		    TRB_TYPE(48)) | 
 | 			handle_vendor_event(xhci, event); | 
 | 		else | 
 | 			xhci->error_bitmask |= 1 << 3; | 
 | 	} | 
 | 	/* Any of the above functions may drop and re-acquire the lock, so check | 
 | 	 * to make sure a watchdog timer didn't mark the host as non-responsive. | 
 | 	 */ | 
 | 	if (xhci->xhc_state & XHCI_STATE_DYING) { | 
 | 		xhci_dbg(xhci, "xHCI host dying, returning from " | 
 | 				"event handler.\n"); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (update_ptrs) | 
 | 		/* Update SW event ring dequeue pointer */ | 
 | 		inc_deq(xhci, xhci->event_ring); | 
 |  | 
 | 	/* Are there more items on the event ring?  Caller will call us again to | 
 | 	 * check. | 
 | 	 */ | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * xHCI spec says we can get an interrupt, and if the HC has an error condition, | 
 |  * we might get bad data out of the event ring.  Section 4.10.2.7 has a list of | 
 |  * indicators of an event TRB error, but we check the status *first* to be safe. | 
 |  */ | 
 | irqreturn_t xhci_irq(struct usb_hcd *hcd) | 
 | { | 
 | 	struct xhci_hcd *xhci = hcd_to_xhci(hcd); | 
 | 	u32 status; | 
 | 	union xhci_trb *trb; | 
 | 	u64 temp_64; | 
 | 	union xhci_trb *event_ring_deq; | 
 | 	dma_addr_t deq; | 
 |  | 
 | 	spin_lock(&xhci->lock); | 
 | 	trb = xhci->event_ring->dequeue; | 
 | 	/* Check if the xHC generated the interrupt, or the irq is shared */ | 
 | 	status = xhci_readl(xhci, &xhci->op_regs->status); | 
 | 	if (status == 0xffffffff) | 
 | 		goto hw_died; | 
 |  | 
 | 	if (!(status & STS_EINT)) { | 
 | 		spin_unlock(&xhci->lock); | 
 | 		return IRQ_NONE; | 
 | 	} | 
 | 	if (status & STS_FATAL) { | 
 | 		xhci_warn(xhci, "WARNING: Host System Error\n"); | 
 | 		xhci_halt(xhci); | 
 | hw_died: | 
 | 		spin_unlock(&xhci->lock); | 
 | 		return -ESHUTDOWN; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Clear the op reg interrupt status first, | 
 | 	 * so we can receive interrupts from other MSI-X interrupters. | 
 | 	 * Write 1 to clear the interrupt status. | 
 | 	 */ | 
 | 	status |= STS_EINT; | 
 | 	xhci_writel(xhci, status, &xhci->op_regs->status); | 
 | 	/* FIXME when MSI-X is supported and there are multiple vectors */ | 
 | 	/* Clear the MSI-X event interrupt status */ | 
 |  | 
 | 	if (hcd->irq) { | 
 | 		u32 irq_pending; | 
 | 		/* Acknowledge the PCI interrupt */ | 
 | 		irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending); | 
 | 		irq_pending |= IMAN_IP; | 
 | 		xhci_writel(xhci, irq_pending, &xhci->ir_set->irq_pending); | 
 | 	} | 
 |  | 
 | 	if (xhci->xhc_state & XHCI_STATE_DYING) { | 
 | 		xhci_dbg(xhci, "xHCI dying, ignoring interrupt. " | 
 | 				"Shouldn't IRQs be disabled?\n"); | 
 | 		/* Clear the event handler busy flag (RW1C); | 
 | 		 * the event ring should be empty. | 
 | 		 */ | 
 | 		temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); | 
 | 		xhci_write_64(xhci, temp_64 | ERST_EHB, | 
 | 				&xhci->ir_set->erst_dequeue); | 
 | 		spin_unlock(&xhci->lock); | 
 |  | 
 | 		return IRQ_HANDLED; | 
 | 	} | 
 |  | 
 | 	event_ring_deq = xhci->event_ring->dequeue; | 
 | 	/* FIXME this should be a delayed service routine | 
 | 	 * that clears the EHB. | 
 | 	 */ | 
 | 	while (xhci_handle_event(xhci) > 0) {} | 
 |  | 
 | 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); | 
 | 	/* If necessary, update the HW's version of the event ring deq ptr. */ | 
 | 	if (event_ring_deq != xhci->event_ring->dequeue) { | 
 | 		deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, | 
 | 				xhci->event_ring->dequeue); | 
 | 		if (deq == 0) | 
 | 			xhci_warn(xhci, "WARN something wrong with SW event " | 
 | 					"ring dequeue ptr.\n"); | 
 | 		/* Update HC event ring dequeue pointer */ | 
 | 		temp_64 &= ERST_PTR_MASK; | 
 | 		temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK); | 
 | 	} | 
 |  | 
 | 	/* Clear the event handler busy flag (RW1C); event ring is empty. */ | 
 | 	temp_64 |= ERST_EHB; | 
 | 	xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue); | 
 |  | 
 | 	spin_unlock(&xhci->lock); | 
 |  | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | irqreturn_t xhci_msi_irq(int irq, struct usb_hcd *hcd) | 
 | { | 
 | 	return xhci_irq(hcd); | 
 | } | 
 |  | 
 | /****		Endpoint Ring Operations	****/ | 
 |  | 
 | /* | 
 |  * Generic function for queueing a TRB on a ring. | 
 |  * The caller must have checked to make sure there's room on the ring. | 
 |  * | 
 |  * @more_trbs_coming:	Will you enqueue more TRBs before calling | 
 |  *			prepare_transfer()? | 
 |  */ | 
 | static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, | 
 | 		bool more_trbs_coming, | 
 | 		u32 field1, u32 field2, u32 field3, u32 field4) | 
 | { | 
 | 	struct xhci_generic_trb *trb; | 
 |  | 
 | 	trb = &ring->enqueue->generic; | 
 | 	trb->field[0] = cpu_to_le32(field1); | 
 | 	trb->field[1] = cpu_to_le32(field2); | 
 | 	trb->field[2] = cpu_to_le32(field3); | 
 | 	trb->field[3] = cpu_to_le32(field4); | 
 | 	inc_enq(xhci, ring, more_trbs_coming); | 
 | } | 
 |  | 
 | /* | 
 |  * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. | 
 |  * FIXME allocate segments if the ring is full. | 
 |  */ | 
 | static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, | 
 | 		u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) | 
 | { | 
 | 	unsigned int num_trbs_needed; | 
 |  | 
 | 	/* Make sure the endpoint has been added to xHC schedule */ | 
 | 	switch (ep_state) { | 
 | 	case EP_STATE_DISABLED: | 
 | 		/* | 
 | 		 * USB core changed config/interfaces without notifying us, | 
 | 		 * or hardware is reporting the wrong state. | 
 | 		 */ | 
 | 		xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); | 
 | 		return -ENOENT; | 
 | 	case EP_STATE_ERROR: | 
 | 		xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); | 
 | 		/* FIXME event handling code for error needs to clear it */ | 
 | 		/* XXX not sure if this should be -ENOENT or not */ | 
 | 		return -EINVAL; | 
 | 	case EP_STATE_HALTED: | 
 | 		xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); | 
 | 	case EP_STATE_STOPPED: | 
 | 	case EP_STATE_RUNNING: | 
 | 		break; | 
 | 	default: | 
 | 		xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); | 
 | 		/* | 
 | 		 * FIXME issue Configure Endpoint command to try to get the HC | 
 | 		 * back into a known state. | 
 | 		 */ | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	while (1) { | 
 | 		if (room_on_ring(xhci, ep_ring, num_trbs)) | 
 | 			break; | 
 |  | 
 | 		if (ep_ring == xhci->cmd_ring) { | 
 | 			xhci_err(xhci, "Do not support expand command ring\n"); | 
 | 			return -ENOMEM; | 
 | 		} | 
 |  | 
 | 		xhci_dbg(xhci, "ERROR no room on ep ring, " | 
 | 					"try ring expansion\n"); | 
 | 		num_trbs_needed = num_trbs - ep_ring->num_trbs_free; | 
 | 		if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed, | 
 | 					mem_flags)) { | 
 | 			xhci_err(xhci, "Ring expansion failed\n"); | 
 | 			return -ENOMEM; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (enqueue_is_link_trb(ep_ring)) { | 
 | 		struct xhci_ring *ring = ep_ring; | 
 | 		union xhci_trb *next; | 
 |  | 
 | 		next = ring->enqueue; | 
 |  | 
 | 		while (last_trb(xhci, ring, ring->enq_seg, next)) { | 
 | 			/* If we're not dealing with 0.95 hardware or isoc rings | 
 | 			 * on AMD 0.96 host, clear the chain bit. | 
 | 			 */ | 
 | 			if (!xhci_link_trb_quirk(xhci) && | 
 | 					!(ring->type == TYPE_ISOC && | 
 | 					 (xhci->quirks & XHCI_AMD_0x96_HOST))) | 
 | 				next->link.control &= cpu_to_le32(~TRB_CHAIN); | 
 | 			else | 
 | 				next->link.control |= cpu_to_le32(TRB_CHAIN); | 
 |  | 
 | 			wmb(); | 
 | 			next->link.control ^= cpu_to_le32(TRB_CYCLE); | 
 |  | 
 | 			/* Toggle the cycle bit after the last ring segment. */ | 
 | 			if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) { | 
 | 				ring->cycle_state = (ring->cycle_state ? 0 : 1); | 
 | 			} | 
 | 			ring->enq_seg = ring->enq_seg->next; | 
 | 			ring->enqueue = ring->enq_seg->trbs; | 
 | 			next = ring->enqueue; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int prepare_transfer(struct xhci_hcd *xhci, | 
 | 		struct xhci_virt_device *xdev, | 
 | 		unsigned int ep_index, | 
 | 		unsigned int stream_id, | 
 | 		unsigned int num_trbs, | 
 | 		struct urb *urb, | 
 | 		unsigned int td_index, | 
 | 		gfp_t mem_flags) | 
 | { | 
 | 	int ret; | 
 | 	struct urb_priv *urb_priv; | 
 | 	struct xhci_td	*td; | 
 | 	struct xhci_ring *ep_ring; | 
 | 	struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); | 
 |  | 
 | 	ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id); | 
 | 	if (!ep_ring) { | 
 | 		xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", | 
 | 				stream_id); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	ret = prepare_ring(xhci, ep_ring, | 
 | 			   le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK, | 
 | 			   num_trbs, mem_flags); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	urb_priv = urb->hcpriv; | 
 | 	td = urb_priv->td[td_index]; | 
 |  | 
 | 	INIT_LIST_HEAD(&td->td_list); | 
 | 	INIT_LIST_HEAD(&td->cancelled_td_list); | 
 |  | 
 | 	if (td_index == 0) { | 
 | 		ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); | 
 | 		if (unlikely(ret)) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	td->urb = urb; | 
 | 	/* Add this TD to the tail of the endpoint ring's TD list */ | 
 | 	list_add_tail(&td->td_list, &ep_ring->td_list); | 
 | 	td->start_seg = ep_ring->enq_seg; | 
 | 	td->first_trb = ep_ring->enqueue; | 
 |  | 
 | 	urb_priv->td[td_index] = td; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb) | 
 | { | 
 | 	int num_sgs, num_trbs, running_total, temp, i; | 
 | 	struct scatterlist *sg; | 
 |  | 
 | 	sg = NULL; | 
 | 	num_sgs = urb->num_mapped_sgs; | 
 | 	temp = urb->transfer_buffer_length; | 
 |  | 
 | 	num_trbs = 0; | 
 | 	for_each_sg(urb->sg, sg, num_sgs, i) { | 
 | 		unsigned int len = sg_dma_len(sg); | 
 |  | 
 | 		/* Scatter gather list entries may cross 64KB boundaries */ | 
 | 		running_total = TRB_MAX_BUFF_SIZE - | 
 | 			(sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1)); | 
 | 		running_total &= TRB_MAX_BUFF_SIZE - 1; | 
 | 		if (running_total != 0) | 
 | 			num_trbs++; | 
 |  | 
 | 		/* How many more 64KB chunks to transfer, how many more TRBs? */ | 
 | 		while (running_total < sg_dma_len(sg) && running_total < temp) { | 
 | 			num_trbs++; | 
 | 			running_total += TRB_MAX_BUFF_SIZE; | 
 | 		} | 
 | 		len = min_t(int, len, temp); | 
 | 		temp -= len; | 
 | 		if (temp == 0) | 
 | 			break; | 
 | 	} | 
 | 	return num_trbs; | 
 | } | 
 |  | 
 | static void check_trb_math(struct urb *urb, int num_trbs, int running_total) | 
 | { | 
 | 	if (num_trbs != 0) | 
 | 		dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of " | 
 | 				"TRBs, %d left\n", __func__, | 
 | 				urb->ep->desc.bEndpointAddress, num_trbs); | 
 | 	if (running_total != urb->transfer_buffer_length) | 
 | 		dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " | 
 | 				"queued %#x (%d), asked for %#x (%d)\n", | 
 | 				__func__, | 
 | 				urb->ep->desc.bEndpointAddress, | 
 | 				running_total, running_total, | 
 | 				urb->transfer_buffer_length, | 
 | 				urb->transfer_buffer_length); | 
 | } | 
 |  | 
 | static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, | 
 | 		unsigned int ep_index, unsigned int stream_id, int start_cycle, | 
 | 		struct xhci_generic_trb *start_trb) | 
 | { | 
 | 	/* | 
 | 	 * Pass all the TRBs to the hardware at once and make sure this write | 
 | 	 * isn't reordered. | 
 | 	 */ | 
 | 	wmb(); | 
 | 	if (start_cycle) | 
 | 		start_trb->field[3] |= cpu_to_le32(start_cycle); | 
 | 	else | 
 | 		start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); | 
 | 	xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); | 
 | } | 
 |  | 
 | /* | 
 |  * xHCI uses normal TRBs for both bulk and interrupt.  When the interrupt | 
 |  * endpoint is to be serviced, the xHC will consume (at most) one TD.  A TD | 
 |  * (comprised of sg list entries) can take several service intervals to | 
 |  * transmit. | 
 |  */ | 
 | int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, | 
 | 		struct urb *urb, int slot_id, unsigned int ep_index) | 
 | { | 
 | 	struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, | 
 | 			xhci->devs[slot_id]->out_ctx, ep_index); | 
 | 	int xhci_interval; | 
 | 	int ep_interval; | 
 |  | 
 | 	xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); | 
 | 	ep_interval = urb->interval; | 
 | 	/* Convert to microframes */ | 
 | 	if (urb->dev->speed == USB_SPEED_LOW || | 
 | 			urb->dev->speed == USB_SPEED_FULL) | 
 | 		ep_interval *= 8; | 
 | 	/* FIXME change this to a warning and a suggestion to use the new API | 
 | 	 * to set the polling interval (once the API is added). | 
 | 	 */ | 
 | 	if (xhci_interval != ep_interval) { | 
 | 		if (printk_ratelimit()) | 
 | 			dev_dbg(&urb->dev->dev, "Driver uses different interval" | 
 | 					" (%d microframe%s) than xHCI " | 
 | 					"(%d microframe%s)\n", | 
 | 					ep_interval, | 
 | 					ep_interval == 1 ? "" : "s", | 
 | 					xhci_interval, | 
 | 					xhci_interval == 1 ? "" : "s"); | 
 | 		urb->interval = xhci_interval; | 
 | 		/* Convert back to frames for LS/FS devices */ | 
 | 		if (urb->dev->speed == USB_SPEED_LOW || | 
 | 				urb->dev->speed == USB_SPEED_FULL) | 
 | 			urb->interval /= 8; | 
 | 	} | 
 | 	return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); | 
 | } | 
 |  | 
 | /* | 
 |  * The TD size is the number of bytes remaining in the TD (including this TRB), | 
 |  * right shifted by 10. | 
 |  * It must fit in bits 21:17, so it can't be bigger than 31. | 
 |  */ | 
 | static u32 xhci_td_remainder(unsigned int remainder) | 
 | { | 
 | 	u32 max = (1 << (21 - 17 + 1)) - 1; | 
 |  | 
 | 	if ((remainder >> 10) >= max) | 
 | 		return max << 17; | 
 | 	else | 
 | 		return (remainder >> 10) << 17; | 
 | } | 
 |  | 
 | /* | 
 |  * For xHCI 1.0 host controllers, TD size is the number of max packet sized | 
 |  * packets remaining in the TD (*not* including this TRB). | 
 |  * | 
 |  * Total TD packet count = total_packet_count = | 
 |  *     DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) | 
 |  * | 
 |  * Packets transferred up to and including this TRB = packets_transferred = | 
 |  *     rounddown(total bytes transferred including this TRB / wMaxPacketSize) | 
 |  * | 
 |  * TD size = total_packet_count - packets_transferred | 
 |  * | 
 |  * It must fit in bits 21:17, so it can't be bigger than 31. | 
 |  * The last TRB in a TD must have the TD size set to zero. | 
 |  */ | 
 | static u32 xhci_v1_0_td_remainder(int running_total, int trb_buff_len, | 
 | 		unsigned int total_packet_count, struct urb *urb, | 
 | 		unsigned int num_trbs_left) | 
 | { | 
 | 	int packets_transferred; | 
 |  | 
 | 	/* One TRB with a zero-length data packet. */ | 
 | 	if (num_trbs_left == 0 || (running_total == 0 && trb_buff_len == 0)) | 
 | 		return 0; | 
 |  | 
 | 	/* All the TRB queueing functions don't count the current TRB in | 
 | 	 * running_total. | 
 | 	 */ | 
 | 	packets_transferred = (running_total + trb_buff_len) / | 
 | 		usb_endpoint_maxp(&urb->ep->desc); | 
 |  | 
 | 	if ((total_packet_count - packets_transferred) > 31) | 
 | 		return 31 << 17; | 
 | 	return (total_packet_count - packets_transferred) << 17; | 
 | } | 
 |  | 
 | static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags, | 
 | 		struct urb *urb, int slot_id, unsigned int ep_index) | 
 | { | 
 | 	struct xhci_ring *ep_ring; | 
 | 	unsigned int num_trbs; | 
 | 	struct urb_priv *urb_priv; | 
 | 	struct xhci_td *td; | 
 | 	struct scatterlist *sg; | 
 | 	int num_sgs; | 
 | 	int trb_buff_len, this_sg_len, running_total; | 
 | 	unsigned int total_packet_count; | 
 | 	bool first_trb; | 
 | 	u64 addr; | 
 | 	bool more_trbs_coming; | 
 |  | 
 | 	struct xhci_generic_trb *start_trb; | 
 | 	int start_cycle; | 
 |  | 
 | 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb); | 
 | 	if (!ep_ring) | 
 | 		return -EINVAL; | 
 |  | 
 | 	num_trbs = count_sg_trbs_needed(xhci, urb); | 
 | 	num_sgs = urb->num_mapped_sgs; | 
 | 	total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length, | 
 | 			usb_endpoint_maxp(&urb->ep->desc)); | 
 |  | 
 | 	trb_buff_len = prepare_transfer(xhci, xhci->devs[slot_id], | 
 | 			ep_index, urb->stream_id, | 
 | 			num_trbs, urb, 0, mem_flags); | 
 | 	if (trb_buff_len < 0) | 
 | 		return trb_buff_len; | 
 |  | 
 | 	urb_priv = urb->hcpriv; | 
 | 	td = urb_priv->td[0]; | 
 |  | 
 | 	/* | 
 | 	 * Don't give the first TRB to the hardware (by toggling the cycle bit) | 
 | 	 * until we've finished creating all the other TRBs.  The ring's cycle | 
 | 	 * state may change as we enqueue the other TRBs, so save it too. | 
 | 	 */ | 
 | 	start_trb = &ep_ring->enqueue->generic; | 
 | 	start_cycle = ep_ring->cycle_state; | 
 |  | 
 | 	running_total = 0; | 
 | 	/* | 
 | 	 * How much data is in the first TRB? | 
 | 	 * | 
 | 	 * There are three forces at work for TRB buffer pointers and lengths: | 
 | 	 * 1. We don't want to walk off the end of this sg-list entry buffer. | 
 | 	 * 2. The transfer length that the driver requested may be smaller than | 
 | 	 *    the amount of memory allocated for this scatter-gather list. | 
 | 	 * 3. TRBs buffers can't cross 64KB boundaries. | 
 | 	 */ | 
 | 	sg = urb->sg; | 
 | 	addr = (u64) sg_dma_address(sg); | 
 | 	this_sg_len = sg_dma_len(sg); | 
 | 	trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1)); | 
 | 	trb_buff_len = min_t(int, trb_buff_len, this_sg_len); | 
 | 	if (trb_buff_len > urb->transfer_buffer_length) | 
 | 		trb_buff_len = urb->transfer_buffer_length; | 
 |  | 
 | 	first_trb = true; | 
 | 	/* Queue the first TRB, even if it's zero-length */ | 
 | 	do { | 
 | 		u32 field = 0; | 
 | 		u32 length_field = 0; | 
 | 		u32 remainder = 0; | 
 |  | 
 | 		/* Don't change the cycle bit of the first TRB until later */ | 
 | 		if (first_trb) { | 
 | 			first_trb = false; | 
 | 			if (start_cycle == 0) | 
 | 				field |= 0x1; | 
 | 		} else | 
 | 			field |= ep_ring->cycle_state; | 
 |  | 
 | 		/* Chain all the TRBs together; clear the chain bit in the last | 
 | 		 * TRB to indicate it's the last TRB in the chain. | 
 | 		 */ | 
 | 		if (num_trbs > 1) { | 
 | 			field |= TRB_CHAIN; | 
 | 		} else { | 
 | 			/* FIXME - add check for ZERO_PACKET flag before this */ | 
 | 			td->last_trb = ep_ring->enqueue; | 
 | 			field |= TRB_IOC; | 
 | 		} | 
 |  | 
 | 		/* Only set interrupt on short packet for IN endpoints */ | 
 | 		if (usb_urb_dir_in(urb)) | 
 | 			field |= TRB_ISP; | 
 |  | 
 | 		if (TRB_MAX_BUFF_SIZE - | 
 | 				(addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) { | 
 | 			xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n"); | 
 | 			xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n", | 
 | 					(unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1), | 
 | 					(unsigned int) addr + trb_buff_len); | 
 | 		} | 
 |  | 
 | 		/* Set the TRB length, TD size, and interrupter fields. */ | 
 | 		if (xhci->hci_version < 0x100) { | 
 | 			remainder = xhci_td_remainder( | 
 | 					urb->transfer_buffer_length - | 
 | 					running_total); | 
 | 		} else { | 
 | 			remainder = xhci_v1_0_td_remainder(running_total, | 
 | 					trb_buff_len, total_packet_count, urb, | 
 | 					num_trbs - 1); | 
 | 		} | 
 | 		length_field = TRB_LEN(trb_buff_len) | | 
 | 			remainder | | 
 | 			TRB_INTR_TARGET(0); | 
 |  | 
 | 		if (num_trbs > 1) | 
 | 			more_trbs_coming = true; | 
 | 		else | 
 | 			more_trbs_coming = false; | 
 | 		queue_trb(xhci, ep_ring, more_trbs_coming, | 
 | 				lower_32_bits(addr), | 
 | 				upper_32_bits(addr), | 
 | 				length_field, | 
 | 				field | TRB_TYPE(TRB_NORMAL)); | 
 | 		--num_trbs; | 
 | 		running_total += trb_buff_len; | 
 |  | 
 | 		/* Calculate length for next transfer -- | 
 | 		 * Are we done queueing all the TRBs for this sg entry? | 
 | 		 */ | 
 | 		this_sg_len -= trb_buff_len; | 
 | 		if (this_sg_len == 0) { | 
 | 			--num_sgs; | 
 | 			if (num_sgs == 0) | 
 | 				break; | 
 | 			sg = sg_next(sg); | 
 | 			addr = (u64) sg_dma_address(sg); | 
 | 			this_sg_len = sg_dma_len(sg); | 
 | 		} else { | 
 | 			addr += trb_buff_len; | 
 | 		} | 
 |  | 
 | 		trb_buff_len = TRB_MAX_BUFF_SIZE - | 
 | 			(addr & (TRB_MAX_BUFF_SIZE - 1)); | 
 | 		trb_buff_len = min_t(int, trb_buff_len, this_sg_len); | 
 | 		if (running_total + trb_buff_len > urb->transfer_buffer_length) | 
 | 			trb_buff_len = | 
 | 				urb->transfer_buffer_length - running_total; | 
 | 	} while (running_total < urb->transfer_buffer_length); | 
 |  | 
 | 	check_trb_math(urb, num_trbs, running_total); | 
 | 	giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, | 
 | 			start_cycle, start_trb); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* This is very similar to what ehci-q.c qtd_fill() does */ | 
 | int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, | 
 | 		struct urb *urb, int slot_id, unsigned int ep_index) | 
 | { | 
 | 	struct xhci_ring *ep_ring; | 
 | 	struct urb_priv *urb_priv; | 
 | 	struct xhci_td *td; | 
 | 	int num_trbs; | 
 | 	struct xhci_generic_trb *start_trb; | 
 | 	bool first_trb; | 
 | 	bool more_trbs_coming; | 
 | 	int start_cycle; | 
 | 	u32 field, length_field; | 
 |  | 
 | 	int running_total, trb_buff_len, ret; | 
 | 	unsigned int total_packet_count; | 
 | 	u64 addr; | 
 |  | 
 | 	if (urb->num_sgs) | 
 | 		return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index); | 
 |  | 
 | 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb); | 
 | 	if (!ep_ring) | 
 | 		return -EINVAL; | 
 |  | 
 | 	num_trbs = 0; | 
 | 	/* How much data is (potentially) left before the 64KB boundary? */ | 
 | 	running_total = TRB_MAX_BUFF_SIZE - | 
 | 		(urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1)); | 
 | 	running_total &= TRB_MAX_BUFF_SIZE - 1; | 
 |  | 
 | 	/* If there's some data on this 64KB chunk, or we have to send a | 
 | 	 * zero-length transfer, we need at least one TRB | 
 | 	 */ | 
 | 	if (running_total != 0 || urb->transfer_buffer_length == 0) | 
 | 		num_trbs++; | 
 | 	/* How many more 64KB chunks to transfer, how many more TRBs? */ | 
 | 	while (running_total < urb->transfer_buffer_length) { | 
 | 		num_trbs++; | 
 | 		running_total += TRB_MAX_BUFF_SIZE; | 
 | 	} | 
 | 	/* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */ | 
 |  | 
 | 	ret = prepare_transfer(xhci, xhci->devs[slot_id], | 
 | 			ep_index, urb->stream_id, | 
 | 			num_trbs, urb, 0, mem_flags); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 | 	urb_priv = urb->hcpriv; | 
 | 	td = urb_priv->td[0]; | 
 |  | 
 | 	/* | 
 | 	 * Don't give the first TRB to the hardware (by toggling the cycle bit) | 
 | 	 * until we've finished creating all the other TRBs.  The ring's cycle | 
 | 	 * state may change as we enqueue the other TRBs, so save it too. | 
 | 	 */ | 
 | 	start_trb = &ep_ring->enqueue->generic; | 
 | 	start_cycle = ep_ring->cycle_state; | 
 |  | 
 | 	running_total = 0; | 
 | 	total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length, | 
 | 			usb_endpoint_maxp(&urb->ep->desc)); | 
 | 	/* How much data is in the first TRB? */ | 
 | 	addr = (u64) urb->transfer_dma; | 
 | 	trb_buff_len = TRB_MAX_BUFF_SIZE - | 
 | 		(urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1)); | 
 | 	if (trb_buff_len > urb->transfer_buffer_length) | 
 | 		trb_buff_len = urb->transfer_buffer_length; | 
 |  | 
 | 	first_trb = true; | 
 |  | 
 | 	/* Queue the first TRB, even if it's zero-length */ | 
 | 	do { | 
 | 		u32 remainder = 0; | 
 | 		field = 0; | 
 |  | 
 | 		/* Don't change the cycle bit of the first TRB until later */ | 
 | 		if (first_trb) { | 
 | 			first_trb = false; | 
 | 			if (start_cycle == 0) | 
 | 				field |= 0x1; | 
 | 		} else | 
 | 			field |= ep_ring->cycle_state; | 
 |  | 
 | 		/* Chain all the TRBs together; clear the chain bit in the last | 
 | 		 * TRB to indicate it's the last TRB in the chain. | 
 | 		 */ | 
 | 		if (num_trbs > 1) { | 
 | 			field |= TRB_CHAIN; | 
 | 		} else { | 
 | 			/* FIXME - add check for ZERO_PACKET flag before this */ | 
 | 			td->last_trb = ep_ring->enqueue; | 
 | 			field |= TRB_IOC; | 
 | 		} | 
 |  | 
 | 		/* Only set interrupt on short packet for IN endpoints */ | 
 | 		if (usb_urb_dir_in(urb)) | 
 | 			field |= TRB_ISP; | 
 |  | 
 | 		/* Set the TRB length, TD size, and interrupter fields. */ | 
 | 		if (xhci->hci_version < 0x100) { | 
 | 			remainder = xhci_td_remainder( | 
 | 					urb->transfer_buffer_length - | 
 | 					running_total); | 
 | 		} else { | 
 | 			remainder = xhci_v1_0_td_remainder(running_total, | 
 | 					trb_buff_len, total_packet_count, urb, | 
 | 					num_trbs - 1); | 
 | 		} | 
 | 		length_field = TRB_LEN(trb_buff_len) | | 
 | 			remainder | | 
 | 			TRB_INTR_TARGET(0); | 
 |  | 
 | 		if (num_trbs > 1) | 
 | 			more_trbs_coming = true; | 
 | 		else | 
 | 			more_trbs_coming = false; | 
 | 		queue_trb(xhci, ep_ring, more_trbs_coming, | 
 | 				lower_32_bits(addr), | 
 | 				upper_32_bits(addr), | 
 | 				length_field, | 
 | 				field | TRB_TYPE(TRB_NORMAL)); | 
 | 		--num_trbs; | 
 | 		running_total += trb_buff_len; | 
 |  | 
 | 		/* Calculate length for next transfer */ | 
 | 		addr += trb_buff_len; | 
 | 		trb_buff_len = urb->transfer_buffer_length - running_total; | 
 | 		if (trb_buff_len > TRB_MAX_BUFF_SIZE) | 
 | 			trb_buff_len = TRB_MAX_BUFF_SIZE; | 
 | 	} while (running_total < urb->transfer_buffer_length); | 
 |  | 
 | 	check_trb_math(urb, num_trbs, running_total); | 
 | 	giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, | 
 | 			start_cycle, start_trb); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Caller must have locked xhci->lock */ | 
 | int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, | 
 | 		struct urb *urb, int slot_id, unsigned int ep_index) | 
 | { | 
 | 	struct xhci_ring *ep_ring; | 
 | 	int num_trbs; | 
 | 	int ret; | 
 | 	struct usb_ctrlrequest *setup; | 
 | 	struct xhci_generic_trb *start_trb; | 
 | 	int start_cycle; | 
 | 	u32 field, length_field; | 
 | 	struct urb_priv *urb_priv; | 
 | 	struct xhci_td *td; | 
 |  | 
 | 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb); | 
 | 	if (!ep_ring) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * Need to copy setup packet into setup TRB, so we can't use the setup | 
 | 	 * DMA address. | 
 | 	 */ | 
 | 	if (!urb->setup_packet) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* 1 TRB for setup, 1 for status */ | 
 | 	num_trbs = 2; | 
 | 	/* | 
 | 	 * Don't need to check if we need additional event data and normal TRBs, | 
 | 	 * since data in control transfers will never get bigger than 16MB | 
 | 	 * XXX: can we get a buffer that crosses 64KB boundaries? | 
 | 	 */ | 
 | 	if (urb->transfer_buffer_length > 0) | 
 | 		num_trbs++; | 
 | 	ret = prepare_transfer(xhci, xhci->devs[slot_id], | 
 | 			ep_index, urb->stream_id, | 
 | 			num_trbs, urb, 0, mem_flags); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 | 	urb_priv = urb->hcpriv; | 
 | 	td = urb_priv->td[0]; | 
 |  | 
 | 	/* | 
 | 	 * Don't give the first TRB to the hardware (by toggling the cycle bit) | 
 | 	 * until we've finished creating all the other TRBs.  The ring's cycle | 
 | 	 * state may change as we enqueue the other TRBs, so save it too. | 
 | 	 */ | 
 | 	start_trb = &ep_ring->enqueue->generic; | 
 | 	start_cycle = ep_ring->cycle_state; | 
 |  | 
 | 	/* Queue setup TRB - see section 6.4.1.2.1 */ | 
 | 	/* FIXME better way to translate setup_packet into two u32 fields? */ | 
 | 	setup = (struct usb_ctrlrequest *) urb->setup_packet; | 
 | 	field = 0; | 
 | 	field |= TRB_IDT | TRB_TYPE(TRB_SETUP); | 
 | 	if (start_cycle == 0) | 
 | 		field |= 0x1; | 
 |  | 
 | 	/* xHCI 1.0 6.4.1.2.1: Transfer Type field */ | 
 | 	if (xhci->hci_version == 0x100) { | 
 | 		if (urb->transfer_buffer_length > 0) { | 
 | 			if (setup->bRequestType & USB_DIR_IN) | 
 | 				field |= TRB_TX_TYPE(TRB_DATA_IN); | 
 | 			else | 
 | 				field |= TRB_TX_TYPE(TRB_DATA_OUT); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	queue_trb(xhci, ep_ring, true, | 
 | 		  setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, | 
 | 		  le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, | 
 | 		  TRB_LEN(8) | TRB_INTR_TARGET(0), | 
 | 		  /* Immediate data in pointer */ | 
 | 		  field); | 
 |  | 
 | 	/* If there's data, queue data TRBs */ | 
 | 	/* Only set interrupt on short packet for IN endpoints */ | 
 | 	if (usb_urb_dir_in(urb)) | 
 | 		field = TRB_ISP | TRB_TYPE(TRB_DATA); | 
 | 	else | 
 | 		field = TRB_TYPE(TRB_DATA); | 
 |  | 
 | 	length_field = TRB_LEN(urb->transfer_buffer_length) | | 
 | 		xhci_td_remainder(urb->transfer_buffer_length) | | 
 | 		TRB_INTR_TARGET(0); | 
 | 	if (urb->transfer_buffer_length > 0) { | 
 | 		if (setup->bRequestType & USB_DIR_IN) | 
 | 			field |= TRB_DIR_IN; | 
 | 		queue_trb(xhci, ep_ring, true, | 
 | 				lower_32_bits(urb->transfer_dma), | 
 | 				upper_32_bits(urb->transfer_dma), | 
 | 				length_field, | 
 | 				field | ep_ring->cycle_state); | 
 | 	} | 
 |  | 
 | 	/* Save the DMA address of the last TRB in the TD */ | 
 | 	td->last_trb = ep_ring->enqueue; | 
 |  | 
 | 	/* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ | 
 | 	/* If the device sent data, the status stage is an OUT transfer */ | 
 | 	if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) | 
 | 		field = 0; | 
 | 	else | 
 | 		field = TRB_DIR_IN; | 
 | 	queue_trb(xhci, ep_ring, false, | 
 | 			0, | 
 | 			0, | 
 | 			TRB_INTR_TARGET(0), | 
 | 			/* Event on completion */ | 
 | 			field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); | 
 |  | 
 | 	giveback_first_trb(xhci, slot_id, ep_index, 0, | 
 | 			start_cycle, start_trb); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int count_isoc_trbs_needed(struct xhci_hcd *xhci, | 
 | 		struct urb *urb, int i) | 
 | { | 
 | 	int num_trbs = 0; | 
 | 	u64 addr, td_len; | 
 |  | 
 | 	addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); | 
 | 	td_len = urb->iso_frame_desc[i].length; | 
 |  | 
 | 	num_trbs = DIV_ROUND_UP(td_len + (addr & (TRB_MAX_BUFF_SIZE - 1)), | 
 | 			TRB_MAX_BUFF_SIZE); | 
 | 	if (num_trbs == 0) | 
 | 		num_trbs++; | 
 |  | 
 | 	return num_trbs; | 
 | } | 
 |  | 
 | /* | 
 |  * The transfer burst count field of the isochronous TRB defines the number of | 
 |  * bursts that are required to move all packets in this TD.  Only SuperSpeed | 
 |  * devices can burst up to bMaxBurst number of packets per service interval. | 
 |  * This field is zero based, meaning a value of zero in the field means one | 
 |  * burst.  Basically, for everything but SuperSpeed devices, this field will be | 
 |  * zero.  Only xHCI 1.0 host controllers support this field. | 
 |  */ | 
 | static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, | 
 | 		struct usb_device *udev, | 
 | 		struct urb *urb, unsigned int total_packet_count) | 
 | { | 
 | 	unsigned int max_burst; | 
 |  | 
 | 	if (xhci->hci_version < 0x100 || udev->speed != USB_SPEED_SUPER) | 
 | 		return 0; | 
 |  | 
 | 	max_burst = urb->ep->ss_ep_comp.bMaxBurst; | 
 | 	return roundup(total_packet_count, max_burst + 1) - 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Returns the number of packets in the last "burst" of packets.  This field is | 
 |  * valid for all speeds of devices.  USB 2.0 devices can only do one "burst", so | 
 |  * the last burst packet count is equal to the total number of packets in the | 
 |  * TD.  SuperSpeed endpoints can have up to 3 bursts.  All but the last burst | 
 |  * must contain (bMaxBurst + 1) number of packets, but the last burst can | 
 |  * contain 1 to (bMaxBurst + 1) packets. | 
 |  */ | 
 | static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, | 
 | 		struct usb_device *udev, | 
 | 		struct urb *urb, unsigned int total_packet_count) | 
 | { | 
 | 	unsigned int max_burst; | 
 | 	unsigned int residue; | 
 |  | 
 | 	if (xhci->hci_version < 0x100) | 
 | 		return 0; | 
 |  | 
 | 	switch (udev->speed) { | 
 | 	case USB_SPEED_SUPER: | 
 | 		/* bMaxBurst is zero based: 0 means 1 packet per burst */ | 
 | 		max_burst = urb->ep->ss_ep_comp.bMaxBurst; | 
 | 		residue = total_packet_count % (max_burst + 1); | 
 | 		/* If residue is zero, the last burst contains (max_burst + 1) | 
 | 		 * number of packets, but the TLBPC field is zero-based. | 
 | 		 */ | 
 | 		if (residue == 0) | 
 | 			return max_burst; | 
 | 		return residue - 1; | 
 | 	default: | 
 | 		if (total_packet_count == 0) | 
 | 			return 0; | 
 | 		return total_packet_count - 1; | 
 | 	} | 
 | } | 
 |  | 
 | /* This is for isoc transfer */ | 
 | static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, | 
 | 		struct urb *urb, int slot_id, unsigned int ep_index) | 
 | { | 
 | 	struct xhci_ring *ep_ring; | 
 | 	struct urb_priv *urb_priv; | 
 | 	struct xhci_td *td; | 
 | 	int num_tds, trbs_per_td; | 
 | 	struct xhci_generic_trb *start_trb; | 
 | 	bool first_trb; | 
 | 	int start_cycle; | 
 | 	u32 field, length_field; | 
 | 	int running_total, trb_buff_len, td_len, td_remain_len, ret; | 
 | 	u64 start_addr, addr; | 
 | 	int i, j; | 
 | 	bool more_trbs_coming; | 
 |  | 
 | 	ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; | 
 |  | 
 | 	num_tds = urb->number_of_packets; | 
 | 	if (num_tds < 1) { | 
 | 		xhci_dbg(xhci, "Isoc URB with zero packets?\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	start_addr = (u64) urb->transfer_dma; | 
 | 	start_trb = &ep_ring->enqueue->generic; | 
 | 	start_cycle = ep_ring->cycle_state; | 
 |  | 
 | 	urb_priv = urb->hcpriv; | 
 | 	/* Queue the first TRB, even if it's zero-length */ | 
 | 	for (i = 0; i < num_tds; i++) { | 
 | 		unsigned int total_packet_count; | 
 | 		unsigned int burst_count; | 
 | 		unsigned int residue; | 
 |  | 
 | 		first_trb = true; | 
 | 		running_total = 0; | 
 | 		addr = start_addr + urb->iso_frame_desc[i].offset; | 
 | 		td_len = urb->iso_frame_desc[i].length; | 
 | 		td_remain_len = td_len; | 
 | 		total_packet_count = DIV_ROUND_UP(td_len, | 
 | 				usb_endpoint_maxp(&urb->ep->desc)); | 
 | 		/* A zero-length transfer still involves at least one packet. */ | 
 | 		if (total_packet_count == 0) | 
 | 			total_packet_count++; | 
 | 		burst_count = xhci_get_burst_count(xhci, urb->dev, urb, | 
 | 				total_packet_count); | 
 | 		residue = xhci_get_last_burst_packet_count(xhci, | 
 | 				urb->dev, urb, total_packet_count); | 
 |  | 
 | 		trbs_per_td = count_isoc_trbs_needed(xhci, urb, i); | 
 |  | 
 | 		ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, | 
 | 				urb->stream_id, trbs_per_td, urb, i, mem_flags); | 
 | 		if (ret < 0) { | 
 | 			if (i == 0) | 
 | 				return ret; | 
 | 			goto cleanup; | 
 | 		} | 
 |  | 
 | 		td = urb_priv->td[i]; | 
 | 		for (j = 0; j < trbs_per_td; j++) { | 
 | 			u32 remainder = 0; | 
 | 			field = TRB_TBC(burst_count) | TRB_TLBPC(residue); | 
 |  | 
 | 			if (first_trb) { | 
 | 				/* Queue the isoc TRB */ | 
 | 				field |= TRB_TYPE(TRB_ISOC); | 
 | 				/* Assume URB_ISO_ASAP is set */ | 
 | 				field |= TRB_SIA; | 
 | 				if (i == 0) { | 
 | 					if (start_cycle == 0) | 
 | 						field |= 0x1; | 
 | 				} else | 
 | 					field |= ep_ring->cycle_state; | 
 | 				first_trb = false; | 
 | 			} else { | 
 | 				/* Queue other normal TRBs */ | 
 | 				field |= TRB_TYPE(TRB_NORMAL); | 
 | 				field |= ep_ring->cycle_state; | 
 | 			} | 
 |  | 
 | 			/* Only set interrupt on short packet for IN EPs */ | 
 | 			if (usb_urb_dir_in(urb)) | 
 | 				field |= TRB_ISP; | 
 |  | 
 | 			/* Chain all the TRBs together; clear the chain bit in | 
 | 			 * the last TRB to indicate it's the last TRB in the | 
 | 			 * chain. | 
 | 			 */ | 
 | 			if (j < trbs_per_td - 1) { | 
 | 				field |= TRB_CHAIN; | 
 | 				more_trbs_coming = true; | 
 | 			} else { | 
 | 				td->last_trb = ep_ring->enqueue; | 
 | 				field |= TRB_IOC; | 
 | 				if (xhci->hci_version == 0x100 && | 
 | 						!(xhci->quirks & | 
 | 							XHCI_AVOID_BEI)) { | 
 | 					/* Set BEI bit except for the last td */ | 
 | 					if (i < num_tds - 1) | 
 | 						field |= TRB_BEI; | 
 | 				} | 
 | 				more_trbs_coming = false; | 
 | 			} | 
 |  | 
 | 			/* Calculate TRB length */ | 
 | 			trb_buff_len = TRB_MAX_BUFF_SIZE - | 
 | 				(addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1)); | 
 | 			if (trb_buff_len > td_remain_len) | 
 | 				trb_buff_len = td_remain_len; | 
 |  | 
 | 			/* Set the TRB length, TD size, & interrupter fields. */ | 
 | 			if (xhci->hci_version < 0x100) { | 
 | 				remainder = xhci_td_remainder( | 
 | 						td_len - running_total); | 
 | 			} else { | 
 | 				remainder = xhci_v1_0_td_remainder( | 
 | 						running_total, trb_buff_len, | 
 | 						total_packet_count, urb, | 
 | 						(trbs_per_td - j - 1)); | 
 | 			} | 
 | 			length_field = TRB_LEN(trb_buff_len) | | 
 | 				remainder | | 
 | 				TRB_INTR_TARGET(0); | 
 |  | 
 | 			queue_trb(xhci, ep_ring, more_trbs_coming, | 
 | 				lower_32_bits(addr), | 
 | 				upper_32_bits(addr), | 
 | 				length_field, | 
 | 				field); | 
 | 			running_total += trb_buff_len; | 
 |  | 
 | 			addr += trb_buff_len; | 
 | 			td_remain_len -= trb_buff_len; | 
 | 		} | 
 |  | 
 | 		/* Check TD length */ | 
 | 		if (running_total != td_len) { | 
 | 			xhci_err(xhci, "ISOC TD length unmatch\n"); | 
 | 			ret = -EINVAL; | 
 | 			goto cleanup; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { | 
 | 		if (xhci->quirks & XHCI_AMD_PLL_FIX) | 
 | 			usb_amd_quirk_pll_disable(); | 
 | 	} | 
 | 	xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; | 
 |  | 
 | 	giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, | 
 | 			start_cycle, start_trb); | 
 | 	return 0; | 
 | cleanup: | 
 | 	/* Clean up a partially enqueued isoc transfer. */ | 
 |  | 
 | 	for (i--; i >= 0; i--) | 
 | 		list_del_init(&urb_priv->td[i]->td_list); | 
 |  | 
 | 	/* Use the first TD as a temporary variable to turn the TDs we've queued | 
 | 	 * into No-ops with a software-owned cycle bit. That way the hardware | 
 | 	 * won't accidentally start executing bogus TDs when we partially | 
 | 	 * overwrite them.  td->first_trb and td->start_seg are already set. | 
 | 	 */ | 
 | 	urb_priv->td[0]->last_trb = ep_ring->enqueue; | 
 | 	/* Every TRB except the first & last will have its cycle bit flipped. */ | 
 | 	td_to_noop(xhci, ep_ring, urb_priv->td[0], true); | 
 |  | 
 | 	/* Reset the ring enqueue back to the first TRB and its cycle bit. */ | 
 | 	ep_ring->enqueue = urb_priv->td[0]->first_trb; | 
 | 	ep_ring->enq_seg = urb_priv->td[0]->start_seg; | 
 | 	ep_ring->cycle_state = start_cycle; | 
 | 	ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp; | 
 | 	usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Check transfer ring to guarantee there is enough room for the urb. | 
 |  * Update ISO URB start_frame and interval. | 
 |  * Update interval as xhci_queue_intr_tx does. Just use xhci frame_index to | 
 |  * update the urb->start_frame by now. | 
 |  * Always assume URB_ISO_ASAP set, and NEVER use urb->start_frame as input. | 
 |  */ | 
 | int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, | 
 | 		struct urb *urb, int slot_id, unsigned int ep_index) | 
 | { | 
 | 	struct xhci_virt_device *xdev; | 
 | 	struct xhci_ring *ep_ring; | 
 | 	struct xhci_ep_ctx *ep_ctx; | 
 | 	int start_frame; | 
 | 	int xhci_interval; | 
 | 	int ep_interval; | 
 | 	int num_tds, num_trbs, i; | 
 | 	int ret; | 
 |  | 
 | 	xdev = xhci->devs[slot_id]; | 
 | 	ep_ring = xdev->eps[ep_index].ring; | 
 | 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); | 
 |  | 
 | 	num_trbs = 0; | 
 | 	num_tds = urb->number_of_packets; | 
 | 	for (i = 0; i < num_tds; i++) | 
 | 		num_trbs += count_isoc_trbs_needed(xhci, urb, i); | 
 |  | 
 | 	/* Check the ring to guarantee there is enough room for the whole urb. | 
 | 	 * Do not insert any td of the urb to the ring if the check failed. | 
 | 	 */ | 
 | 	ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK, | 
 | 			   num_trbs, mem_flags); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	start_frame = xhci_readl(xhci, &xhci->run_regs->microframe_index); | 
 | 	start_frame &= 0x3fff; | 
 |  | 
 | 	urb->start_frame = start_frame; | 
 | 	if (urb->dev->speed == USB_SPEED_LOW || | 
 | 			urb->dev->speed == USB_SPEED_FULL) | 
 | 		urb->start_frame >>= 3; | 
 |  | 
 | 	xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); | 
 | 	ep_interval = urb->interval; | 
 | 	/* Convert to microframes */ | 
 | 	if (urb->dev->speed == USB_SPEED_LOW || | 
 | 			urb->dev->speed == USB_SPEED_FULL) | 
 | 		ep_interval *= 8; | 
 | 	/* FIXME change this to a warning and a suggestion to use the new API | 
 | 	 * to set the polling interval (once the API is added). | 
 | 	 */ | 
 | 	if (xhci_interval != ep_interval) { | 
 | 		if (printk_ratelimit()) | 
 | 			dev_dbg(&urb->dev->dev, "Driver uses different interval" | 
 | 					" (%d microframe%s) than xHCI " | 
 | 					"(%d microframe%s)\n", | 
 | 					ep_interval, | 
 | 					ep_interval == 1 ? "" : "s", | 
 | 					xhci_interval, | 
 | 					xhci_interval == 1 ? "" : "s"); | 
 | 		urb->interval = xhci_interval; | 
 | 		/* Convert back to frames for LS/FS devices */ | 
 | 		if (urb->dev->speed == USB_SPEED_LOW || | 
 | 				urb->dev->speed == USB_SPEED_FULL) | 
 | 			urb->interval /= 8; | 
 | 	} | 
 | 	ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free; | 
 |  | 
 | 	return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); | 
 | } | 
 |  | 
 | /****		Command Ring Operations		****/ | 
 |  | 
 | /* Generic function for queueing a command TRB on the command ring. | 
 |  * Check to make sure there's room on the command ring for one command TRB. | 
 |  * Also check that there's room reserved for commands that must not fail. | 
 |  * If this is a command that must not fail, meaning command_must_succeed = TRUE, | 
 |  * then only check for the number of reserved spots. | 
 |  * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB | 
 |  * because the command event handler may want to resubmit a failed command. | 
 |  */ | 
 | static int queue_command(struct xhci_hcd *xhci, u32 field1, u32 field2, | 
 | 		u32 field3, u32 field4, bool command_must_succeed) | 
 | { | 
 | 	int reserved_trbs = xhci->cmd_ring_reserved_trbs; | 
 | 	int ret; | 
 |  | 
 | 	if (!command_must_succeed) | 
 | 		reserved_trbs++; | 
 |  | 
 | 	ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, | 
 | 			reserved_trbs, GFP_ATOMIC); | 
 | 	if (ret < 0) { | 
 | 		xhci_err(xhci, "ERR: No room for command on command ring\n"); | 
 | 		if (command_must_succeed) | 
 | 			xhci_err(xhci, "ERR: Reserved TRB counting for " | 
 | 					"unfailable commands failed.\n"); | 
 | 		return ret; | 
 | 	} | 
 | 	queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, | 
 | 			field4 | xhci->cmd_ring->cycle_state); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Queue a slot enable or disable request on the command ring */ | 
 | int xhci_queue_slot_control(struct xhci_hcd *xhci, u32 trb_type, u32 slot_id) | 
 | { | 
 | 	return queue_command(xhci, 0, 0, 0, | 
 | 			TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); | 
 | } | 
 |  | 
 | /* Queue an address device command TRB */ | 
 | int xhci_queue_address_device(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr, | 
 | 		u32 slot_id) | 
 | { | 
 | 	return queue_command(xhci, lower_32_bits(in_ctx_ptr), | 
 | 			upper_32_bits(in_ctx_ptr), 0, | 
 | 			TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id), | 
 | 			false); | 
 | } | 
 |  | 
 | int xhci_queue_vendor_command(struct xhci_hcd *xhci, | 
 | 		u32 field1, u32 field2, u32 field3, u32 field4) | 
 | { | 
 | 	return queue_command(xhci, field1, field2, field3, field4, false); | 
 | } | 
 |  | 
 | /* Queue a reset device command TRB */ | 
 | int xhci_queue_reset_device(struct xhci_hcd *xhci, u32 slot_id) | 
 | { | 
 | 	return queue_command(xhci, 0, 0, 0, | 
 | 			TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), | 
 | 			false); | 
 | } | 
 |  | 
 | /* Queue a configure endpoint command TRB */ | 
 | int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr, | 
 | 		u32 slot_id, bool command_must_succeed) | 
 | { | 
 | 	return queue_command(xhci, lower_32_bits(in_ctx_ptr), | 
 | 			upper_32_bits(in_ctx_ptr), 0, | 
 | 			TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), | 
 | 			command_must_succeed); | 
 | } | 
 |  | 
 | /* Queue an evaluate context command TRB */ | 
 | int xhci_queue_evaluate_context(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr, | 
 | 		u32 slot_id, bool command_must_succeed) | 
 | { | 
 | 	return queue_command(xhci, lower_32_bits(in_ctx_ptr), | 
 | 			upper_32_bits(in_ctx_ptr), 0, | 
 | 			TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), | 
 | 			command_must_succeed); | 
 | } | 
 |  | 
 | /* | 
 |  * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop | 
 |  * activity on an endpoint that is about to be suspended. | 
 |  */ | 
 | int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, int slot_id, | 
 | 		unsigned int ep_index, int suspend) | 
 | { | 
 | 	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); | 
 | 	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); | 
 | 	u32 type = TRB_TYPE(TRB_STOP_RING); | 
 | 	u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); | 
 |  | 
 | 	return queue_command(xhci, 0, 0, 0, | 
 | 			trb_slot_id | trb_ep_index | type | trb_suspend, false); | 
 | } | 
 |  | 
 | /* Set Transfer Ring Dequeue Pointer command. | 
 |  * This should not be used for endpoints that have streams enabled. | 
 |  */ | 
 | static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id, | 
 | 		unsigned int ep_index, unsigned int stream_id, | 
 | 		struct xhci_segment *deq_seg, | 
 | 		union xhci_trb *deq_ptr, u32 cycle_state) | 
 | { | 
 | 	dma_addr_t addr; | 
 | 	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); | 
 | 	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); | 
 | 	u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id); | 
 | 	u32 type = TRB_TYPE(TRB_SET_DEQ); | 
 | 	struct xhci_virt_ep *ep; | 
 |  | 
 | 	addr = xhci_trb_virt_to_dma(deq_seg, deq_ptr); | 
 | 	if (addr == 0) { | 
 | 		xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); | 
 | 		xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n", | 
 | 				deq_seg, deq_ptr); | 
 | 		return 0; | 
 | 	} | 
 | 	ep = &xhci->devs[slot_id]->eps[ep_index]; | 
 | 	if ((ep->ep_state & SET_DEQ_PENDING)) { | 
 | 		xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); | 
 | 		xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n"); | 
 | 		return 0; | 
 | 	} | 
 | 	ep->queued_deq_seg = deq_seg; | 
 | 	ep->queued_deq_ptr = deq_ptr; | 
 | 	return queue_command(xhci, lower_32_bits(addr) | cycle_state, | 
 | 			upper_32_bits(addr), trb_stream_id, | 
 | 			trb_slot_id | trb_ep_index | type, false); | 
 | } | 
 |  | 
 | int xhci_queue_reset_ep(struct xhci_hcd *xhci, int slot_id, | 
 | 		unsigned int ep_index) | 
 | { | 
 | 	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); | 
 | 	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); | 
 | 	u32 type = TRB_TYPE(TRB_RESET_EP); | 
 |  | 
 | 	return queue_command(xhci, 0, 0, 0, trb_slot_id | trb_ep_index | type, | 
 | 			false); | 
 | } |