| /* |
| * Driver for USB Mass Storage compliant devices |
| * |
| * Current development and maintenance by: |
| * (c) 1999-2002 Matthew Dharm (mdharm-usb@one-eyed-alien.net) |
| * |
| * Developed with the assistance of: |
| * (c) 2000 David L. Brown, Jr. (usb-storage@davidb.org) |
| * (c) 2000 Stephen J. Gowdy (SGowdy@lbl.gov) |
| * (c) 2002 Alan Stern <stern@rowland.org> |
| * |
| * Initial work by: |
| * (c) 1999 Michael Gee (michael@linuxspecific.com) |
| * |
| * This driver is based on the 'USB Mass Storage Class' document. This |
| * describes in detail the protocol used to communicate with such |
| * devices. Clearly, the designers had SCSI and ATAPI commands in |
| * mind when they created this document. The commands are all very |
| * similar to commands in the SCSI-II and ATAPI specifications. |
| * |
| * It is important to note that in a number of cases this class |
| * exhibits class-specific exemptions from the USB specification. |
| * Notably the usage of NAK, STALL and ACK differs from the norm, in |
| * that they are used to communicate wait, failed and OK on commands. |
| * |
| * Also, for certain devices, the interrupt endpoint is used to convey |
| * status of a command. |
| * |
| * Please see http://www.one-eyed-alien.net/~mdharm/linux-usb for more |
| * information about this driver. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License as published by the |
| * Free Software Foundation; either version 2, or (at your option) any |
| * later version. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License along |
| * with this program; if not, write to the Free Software Foundation, Inc., |
| * 675 Mass Ave, Cambridge, MA 02139, USA. |
| */ |
| |
| #include <linux/sched.h> |
| #include <linux/gfp.h> |
| #include <linux/errno.h> |
| #include <linux/export.h> |
| |
| #include <linux/usb/quirks.h> |
| |
| #include <scsi/scsi.h> |
| #include <scsi/scsi_eh.h> |
| #include <scsi/scsi_device.h> |
| |
| #include "usb.h" |
| #include "transport.h" |
| #include "protocol.h" |
| #include "scsiglue.h" |
| #include "debug.h" |
| |
| #include <linux/blkdev.h> |
| #include "../../scsi/sd.h" |
| |
| |
| /*********************************************************************** |
| * Data transfer routines |
| ***********************************************************************/ |
| |
| /* |
| * This is subtle, so pay attention: |
| * --------------------------------- |
| * We're very concerned about races with a command abort. Hanging this code |
| * is a sure fire way to hang the kernel. (Note that this discussion applies |
| * only to transactions resulting from a scsi queued-command, since only |
| * these transactions are subject to a scsi abort. Other transactions, such |
| * as those occurring during device-specific initialization, must be handled |
| * by a separate code path.) |
| * |
| * The abort function (usb_storage_command_abort() in scsiglue.c) first |
| * sets the machine state and the ABORTING bit in us->dflags to prevent |
| * new URBs from being submitted. It then calls usb_stor_stop_transport() |
| * below, which atomically tests-and-clears the URB_ACTIVE bit in us->dflags |
| * to see if the current_urb needs to be stopped. Likewise, the SG_ACTIVE |
| * bit is tested to see if the current_sg scatter-gather request needs to be |
| * stopped. The timeout callback routine does much the same thing. |
| * |
| * When a disconnect occurs, the DISCONNECTING bit in us->dflags is set to |
| * prevent new URBs from being submitted, and usb_stor_stop_transport() is |
| * called to stop any ongoing requests. |
| * |
| * The submit function first verifies that the submitting is allowed |
| * (neither ABORTING nor DISCONNECTING bits are set) and that the submit |
| * completes without errors, and only then sets the URB_ACTIVE bit. This |
| * prevents the stop_transport() function from trying to cancel the URB |
| * while the submit call is underway. Next, the submit function must test |
| * the flags to see if an abort or disconnect occurred during the submission |
| * or before the URB_ACTIVE bit was set. If so, it's essential to cancel |
| * the URB if it hasn't been cancelled already (i.e., if the URB_ACTIVE bit |
| * is still set). Either way, the function must then wait for the URB to |
| * finish. Note that the URB can still be in progress even after a call to |
| * usb_unlink_urb() returns. |
| * |
| * The idea is that (1) once the ABORTING or DISCONNECTING bit is set, |
| * either the stop_transport() function or the submitting function |
| * is guaranteed to call usb_unlink_urb() for an active URB, |
| * and (2) test_and_clear_bit() prevents usb_unlink_urb() from being |
| * called more than once or from being called during usb_submit_urb(). |
| */ |
| |
| /* |
| * This is the completion handler which will wake us up when an URB |
| * completes. |
| */ |
| static void usb_stor_blocking_completion(struct urb *urb) |
| { |
| struct completion *urb_done_ptr = urb->context; |
| |
| complete(urb_done_ptr); |
| } |
| |
| /* |
| * This is the common part of the URB message submission code |
| * |
| * All URBs from the usb-storage driver involved in handling a queued scsi |
| * command _must_ pass through this function (or something like it) for the |
| * abort mechanisms to work properly. |
| */ |
| static int usb_stor_msg_common(struct us_data *us, int timeout) |
| { |
| struct completion urb_done; |
| long timeleft; |
| int status; |
| |
| /* don't submit URBs during abort processing */ |
| if (test_bit(US_FLIDX_ABORTING, &us->dflags)) |
| return -EIO; |
| |
| /* set up data structures for the wakeup system */ |
| init_completion(&urb_done); |
| |
| /* fill the common fields in the URB */ |
| us->current_urb->context = &urb_done; |
| us->current_urb->transfer_flags = 0; |
| |
| /* |
| * we assume that if transfer_buffer isn't us->iobuf then it |
| * hasn't been mapped for DMA. Yes, this is clunky, but it's |
| * easier than always having the caller tell us whether the |
| * transfer buffer has already been mapped. |
| */ |
| if (us->current_urb->transfer_buffer == us->iobuf) |
| us->current_urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; |
| us->current_urb->transfer_dma = us->iobuf_dma; |
| |
| /* submit the URB */ |
| status = usb_submit_urb(us->current_urb, GFP_NOIO); |
| if (status) { |
| /* something went wrong */ |
| return status; |
| } |
| |
| /* |
| * since the URB has been submitted successfully, it's now okay |
| * to cancel it |
| */ |
| set_bit(US_FLIDX_URB_ACTIVE, &us->dflags); |
| |
| /* did an abort occur during the submission? */ |
| if (test_bit(US_FLIDX_ABORTING, &us->dflags)) { |
| |
| /* cancel the URB, if it hasn't been cancelled already */ |
| if (test_and_clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags)) { |
| usb_stor_dbg(us, "-- cancelling URB\n"); |
| usb_unlink_urb(us->current_urb); |
| } |
| } |
| |
| /* wait for the completion of the URB */ |
| timeleft = wait_for_completion_interruptible_timeout( |
| &urb_done, timeout ? : MAX_SCHEDULE_TIMEOUT); |
| |
| clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags); |
| |
| if (timeleft <= 0) { |
| usb_stor_dbg(us, "%s -- cancelling URB\n", |
| timeleft == 0 ? "Timeout" : "Signal"); |
| usb_kill_urb(us->current_urb); |
| } |
| |
| /* return the URB status */ |
| return us->current_urb->status; |
| } |
| |
| /* |
| * Transfer one control message, with timeouts, and allowing early |
| * termination. Return codes are usual -Exxx, *not* USB_STOR_XFER_xxx. |
| */ |
| int usb_stor_control_msg(struct us_data *us, unsigned int pipe, |
| u8 request, u8 requesttype, u16 value, u16 index, |
| void *data, u16 size, int timeout) |
| { |
| int status; |
| |
| usb_stor_dbg(us, "rq=%02x rqtype=%02x value=%04x index=%02x len=%u\n", |
| request, requesttype, value, index, size); |
| |
| /* fill in the devrequest structure */ |
| us->cr->bRequestType = requesttype; |
| us->cr->bRequest = request; |
| us->cr->wValue = cpu_to_le16(value); |
| us->cr->wIndex = cpu_to_le16(index); |
| us->cr->wLength = cpu_to_le16(size); |
| |
| /* fill and submit the URB */ |
| usb_fill_control_urb(us->current_urb, us->pusb_dev, pipe, |
| (unsigned char*) us->cr, data, size, |
| usb_stor_blocking_completion, NULL); |
| status = usb_stor_msg_common(us, timeout); |
| |
| /* return the actual length of the data transferred if no error */ |
| if (status == 0) |
| status = us->current_urb->actual_length; |
| return status; |
| } |
| EXPORT_SYMBOL_GPL(usb_stor_control_msg); |
| |
| /* |
| * This is a version of usb_clear_halt() that allows early termination and |
| * doesn't read the status from the device -- this is because some devices |
| * crash their internal firmware when the status is requested after a halt. |
| * |
| * A definitive list of these 'bad' devices is too difficult to maintain or |
| * make complete enough to be useful. This problem was first observed on the |
| * Hagiwara FlashGate DUAL unit. However, bus traces reveal that neither |
| * MacOS nor Windows checks the status after clearing a halt. |
| * |
| * Since many vendors in this space limit their testing to interoperability |
| * with these two OSes, specification violations like this one are common. |
| */ |
| int usb_stor_clear_halt(struct us_data *us, unsigned int pipe) |
| { |
| int result; |
| int endp = usb_pipeendpoint(pipe); |
| |
| if (usb_pipein (pipe)) |
| endp |= USB_DIR_IN; |
| |
| result = usb_stor_control_msg(us, us->send_ctrl_pipe, |
| USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT, |
| USB_ENDPOINT_HALT, endp, |
| NULL, 0, 3*HZ); |
| |
| if (result >= 0) |
| usb_reset_endpoint(us->pusb_dev, endp); |
| |
| usb_stor_dbg(us, "result = %d\n", result); |
| return result; |
| } |
| EXPORT_SYMBOL_GPL(usb_stor_clear_halt); |
| |
| |
| /* |
| * Interpret the results of a URB transfer |
| * |
| * This function prints appropriate debugging messages, clears halts on |
| * non-control endpoints, and translates the status to the corresponding |
| * USB_STOR_XFER_xxx return code. |
| */ |
| static int interpret_urb_result(struct us_data *us, unsigned int pipe, |
| unsigned int length, int result, unsigned int partial) |
| { |
| usb_stor_dbg(us, "Status code %d; transferred %u/%u\n", |
| result, partial, length); |
| switch (result) { |
| |
| /* no error code; did we send all the data? */ |
| case 0: |
| if (partial != length) { |
| usb_stor_dbg(us, "-- short transfer\n"); |
| return USB_STOR_XFER_SHORT; |
| } |
| |
| usb_stor_dbg(us, "-- transfer complete\n"); |
| return USB_STOR_XFER_GOOD; |
| |
| /* stalled */ |
| case -EPIPE: |
| /* |
| * for control endpoints, (used by CB[I]) a stall indicates |
| * a failed command |
| */ |
| if (usb_pipecontrol(pipe)) { |
| usb_stor_dbg(us, "-- stall on control pipe\n"); |
| return USB_STOR_XFER_STALLED; |
| } |
| |
| /* for other sorts of endpoint, clear the stall */ |
| usb_stor_dbg(us, "clearing endpoint halt for pipe 0x%x\n", |
| pipe); |
| if (usb_stor_clear_halt(us, pipe) < 0) |
| return USB_STOR_XFER_ERROR; |
| return USB_STOR_XFER_STALLED; |
| |
| /* babble - the device tried to send more than we wanted to read */ |
| case -EOVERFLOW: |
| usb_stor_dbg(us, "-- babble\n"); |
| return USB_STOR_XFER_LONG; |
| |
| /* the transfer was cancelled by abort, disconnect, or timeout */ |
| case -ECONNRESET: |
| usb_stor_dbg(us, "-- transfer cancelled\n"); |
| return USB_STOR_XFER_ERROR; |
| |
| /* short scatter-gather read transfer */ |
| case -EREMOTEIO: |
| usb_stor_dbg(us, "-- short read transfer\n"); |
| return USB_STOR_XFER_SHORT; |
| |
| /* abort or disconnect in progress */ |
| case -EIO: |
| usb_stor_dbg(us, "-- abort or disconnect in progress\n"); |
| return USB_STOR_XFER_ERROR; |
| |
| /* the catch-all error case */ |
| default: |
| usb_stor_dbg(us, "-- unknown error\n"); |
| return USB_STOR_XFER_ERROR; |
| } |
| } |
| |
| /* |
| * Transfer one control message, without timeouts, but allowing early |
| * termination. Return codes are USB_STOR_XFER_xxx. |
| */ |
| int usb_stor_ctrl_transfer(struct us_data *us, unsigned int pipe, |
| u8 request, u8 requesttype, u16 value, u16 index, |
| void *data, u16 size) |
| { |
| int result; |
| |
| usb_stor_dbg(us, "rq=%02x rqtype=%02x value=%04x index=%02x len=%u\n", |
| request, requesttype, value, index, size); |
| |
| /* fill in the devrequest structure */ |
| us->cr->bRequestType = requesttype; |
| us->cr->bRequest = request; |
| us->cr->wValue = cpu_to_le16(value); |
| us->cr->wIndex = cpu_to_le16(index); |
| us->cr->wLength = cpu_to_le16(size); |
| |
| /* fill and submit the URB */ |
| usb_fill_control_urb(us->current_urb, us->pusb_dev, pipe, |
| (unsigned char*) us->cr, data, size, |
| usb_stor_blocking_completion, NULL); |
| result = usb_stor_msg_common(us, 0); |
| |
| return interpret_urb_result(us, pipe, size, result, |
| us->current_urb->actual_length); |
| } |
| EXPORT_SYMBOL_GPL(usb_stor_ctrl_transfer); |
| |
| /* |
| * Receive one interrupt buffer, without timeouts, but allowing early |
| * termination. Return codes are USB_STOR_XFER_xxx. |
| * |
| * This routine always uses us->recv_intr_pipe as the pipe and |
| * us->ep_bInterval as the interrupt interval. |
| */ |
| static int usb_stor_intr_transfer(struct us_data *us, void *buf, |
| unsigned int length) |
| { |
| int result; |
| unsigned int pipe = us->recv_intr_pipe; |
| unsigned int maxp; |
| |
| usb_stor_dbg(us, "xfer %u bytes\n", length); |
| |
| /* calculate the max packet size */ |
| maxp = usb_maxpacket(us->pusb_dev, pipe, usb_pipeout(pipe)); |
| if (maxp > length) |
| maxp = length; |
| |
| /* fill and submit the URB */ |
| usb_fill_int_urb(us->current_urb, us->pusb_dev, pipe, buf, |
| maxp, usb_stor_blocking_completion, NULL, |
| us->ep_bInterval); |
| result = usb_stor_msg_common(us, 0); |
| |
| return interpret_urb_result(us, pipe, length, result, |
| us->current_urb->actual_length); |
| } |
| |
| /* |
| * Transfer one buffer via bulk pipe, without timeouts, but allowing early |
| * termination. Return codes are USB_STOR_XFER_xxx. If the bulk pipe |
| * stalls during the transfer, the halt is automatically cleared. |
| */ |
| int usb_stor_bulk_transfer_buf(struct us_data *us, unsigned int pipe, |
| void *buf, unsigned int length, unsigned int *act_len) |
| { |
| int result; |
| |
| usb_stor_dbg(us, "xfer %u bytes\n", length); |
| |
| /* fill and submit the URB */ |
| usb_fill_bulk_urb(us->current_urb, us->pusb_dev, pipe, buf, length, |
| usb_stor_blocking_completion, NULL); |
| result = usb_stor_msg_common(us, 0); |
| |
| /* store the actual length of the data transferred */ |
| if (act_len) |
| *act_len = us->current_urb->actual_length; |
| return interpret_urb_result(us, pipe, length, result, |
| us->current_urb->actual_length); |
| } |
| EXPORT_SYMBOL_GPL(usb_stor_bulk_transfer_buf); |
| |
| /* |
| * Transfer a scatter-gather list via bulk transfer |
| * |
| * This function does basically the same thing as usb_stor_bulk_transfer_buf() |
| * above, but it uses the usbcore scatter-gather library. |
| */ |
| static int usb_stor_bulk_transfer_sglist(struct us_data *us, unsigned int pipe, |
| struct scatterlist *sg, int num_sg, unsigned int length, |
| unsigned int *act_len) |
| { |
| int result; |
| |
| /* don't submit s-g requests during abort processing */ |
| if (test_bit(US_FLIDX_ABORTING, &us->dflags)) |
| return USB_STOR_XFER_ERROR; |
| |
| /* initialize the scatter-gather request block */ |
| usb_stor_dbg(us, "xfer %u bytes, %d entries\n", length, num_sg); |
| result = usb_sg_init(&us->current_sg, us->pusb_dev, pipe, 0, |
| sg, num_sg, length, GFP_NOIO); |
| if (result) { |
| usb_stor_dbg(us, "usb_sg_init returned %d\n", result); |
| return USB_STOR_XFER_ERROR; |
| } |
| |
| /* |
| * since the block has been initialized successfully, it's now |
| * okay to cancel it |
| */ |
| set_bit(US_FLIDX_SG_ACTIVE, &us->dflags); |
| |
| /* did an abort occur during the submission? */ |
| if (test_bit(US_FLIDX_ABORTING, &us->dflags)) { |
| |
| /* cancel the request, if it hasn't been cancelled already */ |
| if (test_and_clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags)) { |
| usb_stor_dbg(us, "-- cancelling sg request\n"); |
| usb_sg_cancel(&us->current_sg); |
| } |
| } |
| |
| /* wait for the completion of the transfer */ |
| usb_sg_wait(&us->current_sg); |
| clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags); |
| |
| result = us->current_sg.status; |
| if (act_len) |
| *act_len = us->current_sg.bytes; |
| return interpret_urb_result(us, pipe, length, result, |
| us->current_sg.bytes); |
| } |
| |
| /* |
| * Common used function. Transfer a complete command |
| * via usb_stor_bulk_transfer_sglist() above. Set cmnd resid |
| */ |
| int usb_stor_bulk_srb(struct us_data* us, unsigned int pipe, |
| struct scsi_cmnd* srb) |
| { |
| unsigned int partial; |
| int result = usb_stor_bulk_transfer_sglist(us, pipe, scsi_sglist(srb), |
| scsi_sg_count(srb), scsi_bufflen(srb), |
| &partial); |
| |
| scsi_set_resid(srb, scsi_bufflen(srb) - partial); |
| return result; |
| } |
| EXPORT_SYMBOL_GPL(usb_stor_bulk_srb); |
| |
| /* |
| * Transfer an entire SCSI command's worth of data payload over the bulk |
| * pipe. |
| * |
| * Note that this uses usb_stor_bulk_transfer_buf() and |
| * usb_stor_bulk_transfer_sglist() to achieve its goals -- |
| * this function simply determines whether we're going to use |
| * scatter-gather or not, and acts appropriately. |
| */ |
| int usb_stor_bulk_transfer_sg(struct us_data* us, unsigned int pipe, |
| void *buf, unsigned int length_left, int use_sg, int *residual) |
| { |
| int result; |
| unsigned int partial; |
| |
| /* are we scatter-gathering? */ |
| if (use_sg) { |
| /* use the usb core scatter-gather primitives */ |
| result = usb_stor_bulk_transfer_sglist(us, pipe, |
| (struct scatterlist *) buf, use_sg, |
| length_left, &partial); |
| length_left -= partial; |
| } else { |
| /* no scatter-gather, just make the request */ |
| result = usb_stor_bulk_transfer_buf(us, pipe, buf, |
| length_left, &partial); |
| length_left -= partial; |
| } |
| |
| /* store the residual and return the error code */ |
| if (residual) |
| *residual = length_left; |
| return result; |
| } |
| EXPORT_SYMBOL_GPL(usb_stor_bulk_transfer_sg); |
| |
| /*********************************************************************** |
| * Transport routines |
| ***********************************************************************/ |
| |
| /* |
| * There are so many devices that report the capacity incorrectly, |
| * this routine was written to counteract some of the resulting |
| * problems. |
| */ |
| static void last_sector_hacks(struct us_data *us, struct scsi_cmnd *srb) |
| { |
| struct gendisk *disk; |
| struct scsi_disk *sdkp; |
| u32 sector; |
| |
| /* To Report "Medium Error: Record Not Found */ |
| static unsigned char record_not_found[18] = { |
| [0] = 0x70, /* current error */ |
| [2] = MEDIUM_ERROR, /* = 0x03 */ |
| [7] = 0x0a, /* additional length */ |
| [12] = 0x14 /* Record Not Found */ |
| }; |
| |
| /* |
| * If last-sector problems can't occur, whether because the |
| * capacity was already decremented or because the device is |
| * known to report the correct capacity, then we don't need |
| * to do anything. |
| */ |
| if (!us->use_last_sector_hacks) |
| return; |
| |
| /* Was this command a READ(10) or a WRITE(10)? */ |
| if (srb->cmnd[0] != READ_10 && srb->cmnd[0] != WRITE_10) |
| goto done; |
| |
| /* Did this command access the last sector? */ |
| sector = (srb->cmnd[2] << 24) | (srb->cmnd[3] << 16) | |
| (srb->cmnd[4] << 8) | (srb->cmnd[5]); |
| disk = srb->request->rq_disk; |
| if (!disk) |
| goto done; |
| sdkp = scsi_disk(disk); |
| if (!sdkp) |
| goto done; |
| if (sector + 1 != sdkp->capacity) |
| goto done; |
| |
| if (srb->result == SAM_STAT_GOOD && scsi_get_resid(srb) == 0) { |
| |
| /* |
| * The command succeeded. We know this device doesn't |
| * have the last-sector bug, so stop checking it. |
| */ |
| us->use_last_sector_hacks = 0; |
| |
| } else { |
| /* |
| * The command failed. Allow up to 3 retries in case this |
| * is some normal sort of failure. After that, assume the |
| * capacity is wrong and we're trying to access the sector |
| * beyond the end. Replace the result code and sense data |
| * with values that will cause the SCSI core to fail the |
| * command immediately, instead of going into an infinite |
| * (or even just a very long) retry loop. |
| */ |
| if (++us->last_sector_retries < 3) |
| return; |
| srb->result = SAM_STAT_CHECK_CONDITION; |
| memcpy(srb->sense_buffer, record_not_found, |
| sizeof(record_not_found)); |
| } |
| |
| done: |
| /* |
| * Don't reset the retry counter for TEST UNIT READY commands, |
| * because they get issued after device resets which might be |
| * caused by a failed last-sector access. |
| */ |
| if (srb->cmnd[0] != TEST_UNIT_READY) |
| us->last_sector_retries = 0; |
| } |
| |
| /* |
| * Invoke the transport and basic error-handling/recovery methods |
| * |
| * This is used by the protocol layers to actually send the message to |
| * the device and receive the response. |
| */ |
| void usb_stor_invoke_transport(struct scsi_cmnd *srb, struct us_data *us) |
| { |
| int need_auto_sense; |
| int result; |
| |
| /* send the command to the transport layer */ |
| scsi_set_resid(srb, 0); |
| result = us->transport(srb, us); |
| |
| /* |
| * if the command gets aborted by the higher layers, we need to |
| * short-circuit all other processing |
| */ |
| if (test_bit(US_FLIDX_TIMED_OUT, &us->dflags)) { |
| usb_stor_dbg(us, "-- command was aborted\n"); |
| srb->result = DID_ABORT << 16; |
| goto Handle_Errors; |
| } |
| |
| /* if there is a transport error, reset and don't auto-sense */ |
| if (result == USB_STOR_TRANSPORT_ERROR) { |
| usb_stor_dbg(us, "-- transport indicates error, resetting\n"); |
| srb->result = DID_ERROR << 16; |
| goto Handle_Errors; |
| } |
| |
| /* if the transport provided its own sense data, don't auto-sense */ |
| if (result == USB_STOR_TRANSPORT_NO_SENSE) { |
| srb->result = SAM_STAT_CHECK_CONDITION; |
| last_sector_hacks(us, srb); |
| return; |
| } |
| |
| srb->result = SAM_STAT_GOOD; |
| |
| /* |
| * Determine if we need to auto-sense |
| * |
| * I normally don't use a flag like this, but it's almost impossible |
| * to understand what's going on here if I don't. |
| */ |
| need_auto_sense = 0; |
| |
| /* |
| * If we're running the CB transport, which is incapable |
| * of determining status on its own, we will auto-sense |
| * unless the operation involved a data-in transfer. Devices |
| * can signal most data-in errors by stalling the bulk-in pipe. |
| */ |
| if ((us->protocol == USB_PR_CB || us->protocol == USB_PR_DPCM_USB) && |
| srb->sc_data_direction != DMA_FROM_DEVICE) { |
| usb_stor_dbg(us, "-- CB transport device requiring auto-sense\n"); |
| need_auto_sense = 1; |
| } |
| |
| /* |
| * If we have a failure, we're going to do a REQUEST_SENSE |
| * automatically. Note that we differentiate between a command |
| * "failure" and an "error" in the transport mechanism. |
| */ |
| if (result == USB_STOR_TRANSPORT_FAILED) { |
| usb_stor_dbg(us, "-- transport indicates command failure\n"); |
| need_auto_sense = 1; |
| } |
| |
| /* |
| * Determine if this device is SAT by seeing if the |
| * command executed successfully. Otherwise we'll have |
| * to wait for at least one CHECK_CONDITION to determine |
| * SANE_SENSE support |
| */ |
| if (unlikely((srb->cmnd[0] == ATA_16 || srb->cmnd[0] == ATA_12) && |
| result == USB_STOR_TRANSPORT_GOOD && |
| !(us->fflags & US_FL_SANE_SENSE) && |
| !(us->fflags & US_FL_BAD_SENSE) && |
| !(srb->cmnd[2] & 0x20))) { |
| usb_stor_dbg(us, "-- SAT supported, increasing auto-sense\n"); |
| us->fflags |= US_FL_SANE_SENSE; |
| } |
| |
| /* |
| * A short transfer on a command where we don't expect it |
| * is unusual, but it doesn't mean we need to auto-sense. |
| */ |
| if ((scsi_get_resid(srb) > 0) && |
| !((srb->cmnd[0] == REQUEST_SENSE) || |
| (srb->cmnd[0] == INQUIRY) || |
| (srb->cmnd[0] == MODE_SENSE) || |
| (srb->cmnd[0] == LOG_SENSE) || |
| (srb->cmnd[0] == MODE_SENSE_10))) { |
| usb_stor_dbg(us, "-- unexpectedly short transfer\n"); |
| } |
| |
| /* Now, if we need to do the auto-sense, let's do it */ |
| if (need_auto_sense) { |
| int temp_result; |
| struct scsi_eh_save ses; |
| int sense_size = US_SENSE_SIZE; |
| struct scsi_sense_hdr sshdr; |
| const u8 *scdd; |
| u8 fm_ili; |
| |
| /* device supports and needs bigger sense buffer */ |
| if (us->fflags & US_FL_SANE_SENSE) |
| sense_size = ~0; |
| Retry_Sense: |
| usb_stor_dbg(us, "Issuing auto-REQUEST_SENSE\n"); |
| |
| scsi_eh_prep_cmnd(srb, &ses, NULL, 0, sense_size); |
| |
| /* FIXME: we must do the protocol translation here */ |
| if (us->subclass == USB_SC_RBC || us->subclass == USB_SC_SCSI || |
| us->subclass == USB_SC_CYP_ATACB) |
| srb->cmd_len = 6; |
| else |
| srb->cmd_len = 12; |
| |
| /* issue the auto-sense command */ |
| scsi_set_resid(srb, 0); |
| temp_result = us->transport(us->srb, us); |
| |
| /* let's clean up right away */ |
| scsi_eh_restore_cmnd(srb, &ses); |
| |
| if (test_bit(US_FLIDX_TIMED_OUT, &us->dflags)) { |
| usb_stor_dbg(us, "-- auto-sense aborted\n"); |
| srb->result = DID_ABORT << 16; |
| |
| /* If SANE_SENSE caused this problem, disable it */ |
| if (sense_size != US_SENSE_SIZE) { |
| us->fflags &= ~US_FL_SANE_SENSE; |
| us->fflags |= US_FL_BAD_SENSE; |
| } |
| goto Handle_Errors; |
| } |
| |
| /* |
| * Some devices claim to support larger sense but fail when |
| * trying to request it. When a transport failure happens |
| * using US_FS_SANE_SENSE, we always retry with a standard |
| * (small) sense request. This fixes some USB GSM modems |
| */ |
| if (temp_result == USB_STOR_TRANSPORT_FAILED && |
| sense_size != US_SENSE_SIZE) { |
| usb_stor_dbg(us, "-- auto-sense failure, retry small sense\n"); |
| sense_size = US_SENSE_SIZE; |
| us->fflags &= ~US_FL_SANE_SENSE; |
| us->fflags |= US_FL_BAD_SENSE; |
| goto Retry_Sense; |
| } |
| |
| /* Other failures */ |
| if (temp_result != USB_STOR_TRANSPORT_GOOD) { |
| usb_stor_dbg(us, "-- auto-sense failure\n"); |
| |
| /* |
| * we skip the reset if this happens to be a |
| * multi-target device, since failure of an |
| * auto-sense is perfectly valid |
| */ |
| srb->result = DID_ERROR << 16; |
| if (!(us->fflags & US_FL_SCM_MULT_TARG)) |
| goto Handle_Errors; |
| return; |
| } |
| |
| /* |
| * If the sense data returned is larger than 18-bytes then we |
| * assume this device supports requesting more in the future. |
| * The response code must be 70h through 73h inclusive. |
| */ |
| if (srb->sense_buffer[7] > (US_SENSE_SIZE - 8) && |
| !(us->fflags & US_FL_SANE_SENSE) && |
| !(us->fflags & US_FL_BAD_SENSE) && |
| (srb->sense_buffer[0] & 0x7C) == 0x70) { |
| usb_stor_dbg(us, "-- SANE_SENSE support enabled\n"); |
| us->fflags |= US_FL_SANE_SENSE; |
| |
| /* |
| * Indicate to the user that we truncated their sense |
| * because we didn't know it supported larger sense. |
| */ |
| usb_stor_dbg(us, "-- Sense data truncated to %i from %i\n", |
| US_SENSE_SIZE, |
| srb->sense_buffer[7] + 8); |
| srb->sense_buffer[7] = (US_SENSE_SIZE - 8); |
| } |
| |
| scsi_normalize_sense(srb->sense_buffer, SCSI_SENSE_BUFFERSIZE, |
| &sshdr); |
| |
| usb_stor_dbg(us, "-- Result from auto-sense is %d\n", |
| temp_result); |
| usb_stor_dbg(us, "-- code: 0x%x, key: 0x%x, ASC: 0x%x, ASCQ: 0x%x\n", |
| sshdr.response_code, sshdr.sense_key, |
| sshdr.asc, sshdr.ascq); |
| #ifdef CONFIG_USB_STORAGE_DEBUG |
| usb_stor_show_sense(us, sshdr.sense_key, sshdr.asc, sshdr.ascq); |
| #endif |
| |
| /* set the result so the higher layers expect this data */ |
| srb->result = SAM_STAT_CHECK_CONDITION; |
| |
| scdd = scsi_sense_desc_find(srb->sense_buffer, |
| SCSI_SENSE_BUFFERSIZE, 4); |
| fm_ili = (scdd ? scdd[3] : srb->sense_buffer[2]) & 0xA0; |
| |
| /* |
| * We often get empty sense data. This could indicate that |
| * everything worked or that there was an unspecified |
| * problem. We have to decide which. |
| */ |
| if (sshdr.sense_key == 0 && sshdr.asc == 0 && sshdr.ascq == 0 && |
| fm_ili == 0) { |
| /* |
| * If things are really okay, then let's show that. |
| * Zero out the sense buffer so the higher layers |
| * won't realize we did an unsolicited auto-sense. |
| */ |
| if (result == USB_STOR_TRANSPORT_GOOD) { |
| srb->result = SAM_STAT_GOOD; |
| srb->sense_buffer[0] = 0x0; |
| |
| /* |
| * If there was a problem, report an unspecified |
| * hardware error to prevent the higher layers from |
| * entering an infinite retry loop. |
| */ |
| } else { |
| srb->result = DID_ERROR << 16; |
| if ((sshdr.response_code & 0x72) == 0x72) |
| srb->sense_buffer[1] = HARDWARE_ERROR; |
| else |
| srb->sense_buffer[2] = HARDWARE_ERROR; |
| } |
| } |
| } |
| |
| /* |
| * Some devices don't work or return incorrect data the first |
| * time they get a READ(10) command, or for the first READ(10) |
| * after a media change. If the INITIAL_READ10 flag is set, |
| * keep track of whether READ(10) commands succeed. If the |
| * previous one succeeded and this one failed, set the REDO_READ10 |
| * flag to force a retry. |
| */ |
| if (unlikely((us->fflags & US_FL_INITIAL_READ10) && |
| srb->cmnd[0] == READ_10)) { |
| if (srb->result == SAM_STAT_GOOD) { |
| set_bit(US_FLIDX_READ10_WORKED, &us->dflags); |
| } else if (test_bit(US_FLIDX_READ10_WORKED, &us->dflags)) { |
| clear_bit(US_FLIDX_READ10_WORKED, &us->dflags); |
| set_bit(US_FLIDX_REDO_READ10, &us->dflags); |
| } |
| |
| /* |
| * Next, if the REDO_READ10 flag is set, return a result |
| * code that will cause the SCSI core to retry the READ(10) |
| * command immediately. |
| */ |
| if (test_bit(US_FLIDX_REDO_READ10, &us->dflags)) { |
| clear_bit(US_FLIDX_REDO_READ10, &us->dflags); |
| srb->result = DID_IMM_RETRY << 16; |
| srb->sense_buffer[0] = 0; |
| } |
| } |
| |
| /* Did we transfer less than the minimum amount required? */ |
| if ((srb->result == SAM_STAT_GOOD || srb->sense_buffer[2] == 0) && |
| scsi_bufflen(srb) - scsi_get_resid(srb) < srb->underflow) |
| srb->result = DID_ERROR << 16; |
| |
| last_sector_hacks(us, srb); |
| return; |
| |
| /* |
| * Error and abort processing: try to resynchronize with the device |
| * by issuing a port reset. If that fails, try a class-specific |
| * device reset. |
| */ |
| Handle_Errors: |
| |
| /* |
| * Set the RESETTING bit, and clear the ABORTING bit so that |
| * the reset may proceed. |
| */ |
| scsi_lock(us_to_host(us)); |
| set_bit(US_FLIDX_RESETTING, &us->dflags); |
| clear_bit(US_FLIDX_ABORTING, &us->dflags); |
| scsi_unlock(us_to_host(us)); |
| |
| /* |
| * We must release the device lock because the pre_reset routine |
| * will want to acquire it. |
| */ |
| mutex_unlock(&us->dev_mutex); |
| result = usb_stor_port_reset(us); |
| mutex_lock(&us->dev_mutex); |
| |
| if (result < 0) { |
| scsi_lock(us_to_host(us)); |
| usb_stor_report_device_reset(us); |
| scsi_unlock(us_to_host(us)); |
| us->transport_reset(us); |
| } |
| clear_bit(US_FLIDX_RESETTING, &us->dflags); |
| last_sector_hacks(us, srb); |
| } |
| |
| /* Stop the current URB transfer */ |
| void usb_stor_stop_transport(struct us_data *us) |
| { |
| /* |
| * If the state machine is blocked waiting for an URB, |
| * let's wake it up. The test_and_clear_bit() call |
| * guarantees that if a URB has just been submitted, |
| * it won't be cancelled more than once. |
| */ |
| if (test_and_clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags)) { |
| usb_stor_dbg(us, "-- cancelling URB\n"); |
| usb_unlink_urb(us->current_urb); |
| } |
| |
| /* If we are waiting for a scatter-gather operation, cancel it. */ |
| if (test_and_clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags)) { |
| usb_stor_dbg(us, "-- cancelling sg request\n"); |
| usb_sg_cancel(&us->current_sg); |
| } |
| } |
| |
| /* |
| * Control/Bulk and Control/Bulk/Interrupt transport |
| */ |
| |
| int usb_stor_CB_transport(struct scsi_cmnd *srb, struct us_data *us) |
| { |
| unsigned int transfer_length = scsi_bufflen(srb); |
| unsigned int pipe = 0; |
| int result; |
| |
| /* COMMAND STAGE */ |
| /* let's send the command via the control pipe */ |
| /* |
| * Command is sometime (f.e. after scsi_eh_prep_cmnd) on the stack. |
| * Stack may be vmallocated. So no DMA for us. Make a copy. |
| */ |
| memcpy(us->iobuf, srb->cmnd, srb->cmd_len); |
| result = usb_stor_ctrl_transfer(us, us->send_ctrl_pipe, |
| US_CBI_ADSC, |
| USB_TYPE_CLASS | USB_RECIP_INTERFACE, 0, |
| us->ifnum, us->iobuf, srb->cmd_len); |
| |
| /* check the return code for the command */ |
| usb_stor_dbg(us, "Call to usb_stor_ctrl_transfer() returned %d\n", |
| result); |
| |
| /* if we stalled the command, it means command failed */ |
| if (result == USB_STOR_XFER_STALLED) { |
| return USB_STOR_TRANSPORT_FAILED; |
| } |
| |
| /* Uh oh... serious problem here */ |
| if (result != USB_STOR_XFER_GOOD) { |
| return USB_STOR_TRANSPORT_ERROR; |
| } |
| |
| /* DATA STAGE */ |
| /* transfer the data payload for this command, if one exists*/ |
| if (transfer_length) { |
| pipe = srb->sc_data_direction == DMA_FROM_DEVICE ? |
| us->recv_bulk_pipe : us->send_bulk_pipe; |
| result = usb_stor_bulk_srb(us, pipe, srb); |
| usb_stor_dbg(us, "CBI data stage result is 0x%x\n", result); |
| |
| /* if we stalled the data transfer it means command failed */ |
| if (result == USB_STOR_XFER_STALLED) |
| return USB_STOR_TRANSPORT_FAILED; |
| if (result > USB_STOR_XFER_STALLED) |
| return USB_STOR_TRANSPORT_ERROR; |
| } |
| |
| /* STATUS STAGE */ |
| |
| /* |
| * NOTE: CB does not have a status stage. Silly, I know. So |
| * we have to catch this at a higher level. |
| */ |
| if (us->protocol != USB_PR_CBI) |
| return USB_STOR_TRANSPORT_GOOD; |
| |
| result = usb_stor_intr_transfer(us, us->iobuf, 2); |
| usb_stor_dbg(us, "Got interrupt data (0x%x, 0x%x)\n", |
| us->iobuf[0], us->iobuf[1]); |
| if (result != USB_STOR_XFER_GOOD) |
| return USB_STOR_TRANSPORT_ERROR; |
| |
| /* |
| * UFI gives us ASC and ASCQ, like a request sense |
| * |
| * REQUEST_SENSE and INQUIRY don't affect the sense data on UFI |
| * devices, so we ignore the information for those commands. Note |
| * that this means we could be ignoring a real error on these |
| * commands, but that can't be helped. |
| */ |
| if (us->subclass == USB_SC_UFI) { |
| if (srb->cmnd[0] == REQUEST_SENSE || |
| srb->cmnd[0] == INQUIRY) |
| return USB_STOR_TRANSPORT_GOOD; |
| if (us->iobuf[0]) |
| goto Failed; |
| return USB_STOR_TRANSPORT_GOOD; |
| } |
| |
| /* |
| * If not UFI, we interpret the data as a result code |
| * The first byte should always be a 0x0. |
| * |
| * Some bogus devices don't follow that rule. They stuff the ASC |
| * into the first byte -- so if it's non-zero, call it a failure. |
| */ |
| if (us->iobuf[0]) { |
| usb_stor_dbg(us, "CBI IRQ data showed reserved bType 0x%x\n", |
| us->iobuf[0]); |
| goto Failed; |
| |
| } |
| |
| /* The second byte & 0x0F should be 0x0 for good, otherwise error */ |
| switch (us->iobuf[1] & 0x0F) { |
| case 0x00: |
| return USB_STOR_TRANSPORT_GOOD; |
| case 0x01: |
| goto Failed; |
| } |
| return USB_STOR_TRANSPORT_ERROR; |
| |
| /* |
| * the CBI spec requires that the bulk pipe must be cleared |
| * following any data-in/out command failure (section 2.4.3.1.3) |
| */ |
| Failed: |
| if (pipe) |
| usb_stor_clear_halt(us, pipe); |
| return USB_STOR_TRANSPORT_FAILED; |
| } |
| EXPORT_SYMBOL_GPL(usb_stor_CB_transport); |
| |
| /* |
| * Bulk only transport |
| */ |
| |
| /* Determine what the maximum LUN supported is */ |
| int usb_stor_Bulk_max_lun(struct us_data *us) |
| { |
| int result; |
| |
| /* issue the command */ |
| us->iobuf[0] = 0; |
| result = usb_stor_control_msg(us, us->recv_ctrl_pipe, |
| US_BULK_GET_MAX_LUN, |
| USB_DIR_IN | USB_TYPE_CLASS | |
| USB_RECIP_INTERFACE, |
| 0, us->ifnum, us->iobuf, 1, 10*HZ); |
| |
| usb_stor_dbg(us, "GetMaxLUN command result is %d, data is %d\n", |
| result, us->iobuf[0]); |
| |
| /* |
| * If we have a successful request, return the result if valid. The |
| * CBW LUN field is 4 bits wide, so the value reported by the device |
| * should fit into that. |
| */ |
| if (result > 0) { |
| if (us->iobuf[0] < 16) { |
| return us->iobuf[0]; |
| } else { |
| dev_info(&us->pusb_intf->dev, |
| "Max LUN %d is not valid, using 0 instead", |
| us->iobuf[0]); |
| } |
| } |
| |
| /* |
| * Some devices don't like GetMaxLUN. They may STALL the control |
| * pipe, they may return a zero-length result, they may do nothing at |
| * all and timeout, or they may fail in even more bizarrely creative |
| * ways. In these cases the best approach is to use the default |
| * value: only one LUN. |
| */ |
| return 0; |
| } |
| |
| int usb_stor_Bulk_transport(struct scsi_cmnd *srb, struct us_data *us) |
| { |
| struct bulk_cb_wrap *bcb = (struct bulk_cb_wrap *) us->iobuf; |
| struct bulk_cs_wrap *bcs = (struct bulk_cs_wrap *) us->iobuf; |
| unsigned int transfer_length = scsi_bufflen(srb); |
| unsigned int residue; |
| int result; |
| int fake_sense = 0; |
| unsigned int cswlen; |
| unsigned int cbwlen = US_BULK_CB_WRAP_LEN; |
| |
| /* Take care of BULK32 devices; set extra byte to 0 */ |
| if (unlikely(us->fflags & US_FL_BULK32)) { |
| cbwlen = 32; |
| us->iobuf[31] = 0; |
| } |
| |
| /* set up the command wrapper */ |
| bcb->Signature = cpu_to_le32(US_BULK_CB_SIGN); |
| bcb->DataTransferLength = cpu_to_le32(transfer_length); |
| bcb->Flags = srb->sc_data_direction == DMA_FROM_DEVICE ? |
| US_BULK_FLAG_IN : 0; |
| bcb->Tag = ++us->tag; |
| bcb->Lun = srb->device->lun; |
| if (us->fflags & US_FL_SCM_MULT_TARG) |
| bcb->Lun |= srb->device->id << 4; |
| bcb->Length = srb->cmd_len; |
| |
| /* copy the command payload */ |
| memset(bcb->CDB, 0, sizeof(bcb->CDB)); |
| memcpy(bcb->CDB, srb->cmnd, bcb->Length); |
| |
| /* send it to out endpoint */ |
| usb_stor_dbg(us, "Bulk Command S 0x%x T 0x%x L %d F %d Trg %d LUN %d CL %d\n", |
| le32_to_cpu(bcb->Signature), bcb->Tag, |
| le32_to_cpu(bcb->DataTransferLength), bcb->Flags, |
| (bcb->Lun >> 4), (bcb->Lun & 0x0F), |
| bcb->Length); |
| result = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, |
| bcb, cbwlen, NULL); |
| usb_stor_dbg(us, "Bulk command transfer result=%d\n", result); |
| if (result != USB_STOR_XFER_GOOD) |
| return USB_STOR_TRANSPORT_ERROR; |
| |
| /* DATA STAGE */ |
| /* send/receive data payload, if there is any */ |
| |
| /* |
| * Some USB-IDE converter chips need a 100us delay between the |
| * command phase and the data phase. Some devices need a little |
| * more than that, probably because of clock rate inaccuracies. |
| */ |
| if (unlikely(us->fflags & US_FL_GO_SLOW)) |
| usleep_range(125, 150); |
| |
| if (transfer_length) { |
| unsigned int pipe = srb->sc_data_direction == DMA_FROM_DEVICE ? |
| us->recv_bulk_pipe : us->send_bulk_pipe; |
| result = usb_stor_bulk_srb(us, pipe, srb); |
| usb_stor_dbg(us, "Bulk data transfer result 0x%x\n", result); |
| if (result == USB_STOR_XFER_ERROR) |
| return USB_STOR_TRANSPORT_ERROR; |
| |
| /* |
| * If the device tried to send back more data than the |
| * amount requested, the spec requires us to transfer |
| * the CSW anyway. Since there's no point retrying the |
| * the command, we'll return fake sense data indicating |
| * Illegal Request, Invalid Field in CDB. |
| */ |
| if (result == USB_STOR_XFER_LONG) |
| fake_sense = 1; |
| |
| /* |
| * Sometimes a device will mistakenly skip the data phase |
| * and go directly to the status phase without sending a |
| * zero-length packet. If we get a 13-byte response here, |
| * check whether it really is a CSW. |
| */ |
| if (result == USB_STOR_XFER_SHORT && |
| srb->sc_data_direction == DMA_FROM_DEVICE && |
| transfer_length - scsi_get_resid(srb) == |
| US_BULK_CS_WRAP_LEN) { |
| struct scatterlist *sg = NULL; |
| unsigned int offset = 0; |
| |
| if (usb_stor_access_xfer_buf((unsigned char *) bcs, |
| US_BULK_CS_WRAP_LEN, srb, &sg, |
| &offset, FROM_XFER_BUF) == |
| US_BULK_CS_WRAP_LEN && |
| bcs->Signature == |
| cpu_to_le32(US_BULK_CS_SIGN)) { |
| usb_stor_dbg(us, "Device skipped data phase\n"); |
| scsi_set_resid(srb, transfer_length); |
| goto skipped_data_phase; |
| } |
| } |
| } |
| |
| /* |
| * See flow chart on pg 15 of the Bulk Only Transport spec for |
| * an explanation of how this code works. |
| */ |
| |
| /* get CSW for device status */ |
| usb_stor_dbg(us, "Attempting to get CSW...\n"); |
| result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, |
| bcs, US_BULK_CS_WRAP_LEN, &cswlen); |
| |
| /* |
| * Some broken devices add unnecessary zero-length packets to the |
| * end of their data transfers. Such packets show up as 0-length |
| * CSWs. If we encounter such a thing, try to read the CSW again. |
| */ |
| if (result == USB_STOR_XFER_SHORT && cswlen == 0) { |
| usb_stor_dbg(us, "Received 0-length CSW; retrying...\n"); |
| result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, |
| bcs, US_BULK_CS_WRAP_LEN, &cswlen); |
| } |
| |
| /* did the attempt to read the CSW fail? */ |
| if (result == USB_STOR_XFER_STALLED) { |
| |
| /* get the status again */ |
| usb_stor_dbg(us, "Attempting to get CSW (2nd try)...\n"); |
| result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, |
| bcs, US_BULK_CS_WRAP_LEN, NULL); |
| } |
| |
| /* if we still have a failure at this point, we're in trouble */ |
| usb_stor_dbg(us, "Bulk status result = %d\n", result); |
| if (result != USB_STOR_XFER_GOOD) |
| return USB_STOR_TRANSPORT_ERROR; |
| |
| skipped_data_phase: |
| /* check bulk status */ |
| residue = le32_to_cpu(bcs->Residue); |
| usb_stor_dbg(us, "Bulk Status S 0x%x T 0x%x R %u Stat 0x%x\n", |
| le32_to_cpu(bcs->Signature), bcs->Tag, |
| residue, bcs->Status); |
| if (!(bcs->Tag == us->tag || (us->fflags & US_FL_BULK_IGNORE_TAG)) || |
| bcs->Status > US_BULK_STAT_PHASE) { |
| usb_stor_dbg(us, "Bulk logical error\n"); |
| return USB_STOR_TRANSPORT_ERROR; |
| } |
| |
| /* |
| * Some broken devices report odd signatures, so we do not check them |
| * for validity against the spec. We store the first one we see, |
| * and check subsequent transfers for validity against this signature. |
| */ |
| if (!us->bcs_signature) { |
| us->bcs_signature = bcs->Signature; |
| if (us->bcs_signature != cpu_to_le32(US_BULK_CS_SIGN)) |
| usb_stor_dbg(us, "Learnt BCS signature 0x%08X\n", |
| le32_to_cpu(us->bcs_signature)); |
| } else if (bcs->Signature != us->bcs_signature) { |
| usb_stor_dbg(us, "Signature mismatch: got %08X, expecting %08X\n", |
| le32_to_cpu(bcs->Signature), |
| le32_to_cpu(us->bcs_signature)); |
| return USB_STOR_TRANSPORT_ERROR; |
| } |
| |
| /* |
| * try to compute the actual residue, based on how much data |
| * was really transferred and what the device tells us |
| */ |
| if (residue && !(us->fflags & US_FL_IGNORE_RESIDUE)) { |
| |
| /* |
| * Heuristically detect devices that generate bogus residues |
| * by seeing what happens with INQUIRY and READ CAPACITY |
| * commands. |
| */ |
| if (bcs->Status == US_BULK_STAT_OK && |
| scsi_get_resid(srb) == 0 && |
| ((srb->cmnd[0] == INQUIRY && |
| transfer_length == 36) || |
| (srb->cmnd[0] == READ_CAPACITY && |
| transfer_length == 8))) { |
| us->fflags |= US_FL_IGNORE_RESIDUE; |
| |
| } else { |
| residue = min(residue, transfer_length); |
| scsi_set_resid(srb, max(scsi_get_resid(srb), |
| (int) residue)); |
| } |
| } |
| |
| /* based on the status code, we report good or bad */ |
| switch (bcs->Status) { |
| case US_BULK_STAT_OK: |
| /* device babbled -- return fake sense data */ |
| if (fake_sense) { |
| memcpy(srb->sense_buffer, |
| usb_stor_sense_invalidCDB, |
| sizeof(usb_stor_sense_invalidCDB)); |
| return USB_STOR_TRANSPORT_NO_SENSE; |
| } |
| |
| /* command good -- note that data could be short */ |
| return USB_STOR_TRANSPORT_GOOD; |
| |
| case US_BULK_STAT_FAIL: |
| /* command failed */ |
| return USB_STOR_TRANSPORT_FAILED; |
| |
| case US_BULK_STAT_PHASE: |
| /* |
| * phase error -- note that a transport reset will be |
| * invoked by the invoke_transport() function |
| */ |
| return USB_STOR_TRANSPORT_ERROR; |
| } |
| |
| /* we should never get here, but if we do, we're in trouble */ |
| return USB_STOR_TRANSPORT_ERROR; |
| } |
| EXPORT_SYMBOL_GPL(usb_stor_Bulk_transport); |
| |
| /*********************************************************************** |
| * Reset routines |
| ***********************************************************************/ |
| |
| /* |
| * This is the common part of the device reset code. |
| * |
| * It's handy that every transport mechanism uses the control endpoint for |
| * resets. |
| * |
| * Basically, we send a reset with a 5-second timeout, so we don't get |
| * jammed attempting to do the reset. |
| */ |
| static int usb_stor_reset_common(struct us_data *us, |
| u8 request, u8 requesttype, |
| u16 value, u16 index, void *data, u16 size) |
| { |
| int result; |
| int result2; |
| |
| if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) { |
| usb_stor_dbg(us, "No reset during disconnect\n"); |
| return -EIO; |
| } |
| |
| result = usb_stor_control_msg(us, us->send_ctrl_pipe, |
| request, requesttype, value, index, data, size, |
| 5*HZ); |
| if (result < 0) { |
| usb_stor_dbg(us, "Soft reset failed: %d\n", result); |
| return result; |
| } |
| |
| /* |
| * Give the device some time to recover from the reset, |
| * but don't delay disconnect processing. |
| */ |
| wait_event_interruptible_timeout(us->delay_wait, |
| test_bit(US_FLIDX_DISCONNECTING, &us->dflags), |
| HZ*6); |
| if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) { |
| usb_stor_dbg(us, "Reset interrupted by disconnect\n"); |
| return -EIO; |
| } |
| |
| usb_stor_dbg(us, "Soft reset: clearing bulk-in endpoint halt\n"); |
| result = usb_stor_clear_halt(us, us->recv_bulk_pipe); |
| |
| usb_stor_dbg(us, "Soft reset: clearing bulk-out endpoint halt\n"); |
| result2 = usb_stor_clear_halt(us, us->send_bulk_pipe); |
| |
| /* return a result code based on the result of the clear-halts */ |
| if (result >= 0) |
| result = result2; |
| if (result < 0) |
| usb_stor_dbg(us, "Soft reset failed\n"); |
| else |
| usb_stor_dbg(us, "Soft reset done\n"); |
| return result; |
| } |
| |
| /* This issues a CB[I] Reset to the device in question */ |
| #define CB_RESET_CMD_SIZE 12 |
| |
| int usb_stor_CB_reset(struct us_data *us) |
| { |
| memset(us->iobuf, 0xFF, CB_RESET_CMD_SIZE); |
| us->iobuf[0] = SEND_DIAGNOSTIC; |
| us->iobuf[1] = 4; |
| return usb_stor_reset_common(us, US_CBI_ADSC, |
| USB_TYPE_CLASS | USB_RECIP_INTERFACE, |
| 0, us->ifnum, us->iobuf, CB_RESET_CMD_SIZE); |
| } |
| EXPORT_SYMBOL_GPL(usb_stor_CB_reset); |
| |
| /* |
| * This issues a Bulk-only Reset to the device in question, including |
| * clearing the subsequent endpoint halts that may occur. |
| */ |
| int usb_stor_Bulk_reset(struct us_data *us) |
| { |
| return usb_stor_reset_common(us, US_BULK_RESET_REQUEST, |
| USB_TYPE_CLASS | USB_RECIP_INTERFACE, |
| 0, us->ifnum, NULL, 0); |
| } |
| EXPORT_SYMBOL_GPL(usb_stor_Bulk_reset); |
| |
| /* |
| * Issue a USB port reset to the device. The caller must not hold |
| * us->dev_mutex. |
| */ |
| int usb_stor_port_reset(struct us_data *us) |
| { |
| int result; |
| |
| /*for these devices we must use the class specific method */ |
| if (us->pusb_dev->quirks & USB_QUIRK_RESET) |
| return -EPERM; |
| |
| result = usb_lock_device_for_reset(us->pusb_dev, us->pusb_intf); |
| if (result < 0) |
| usb_stor_dbg(us, "unable to lock device for reset: %d\n", |
| result); |
| else { |
| /* Were we disconnected while waiting for the lock? */ |
| if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) { |
| result = -EIO; |
| usb_stor_dbg(us, "No reset during disconnect\n"); |
| } else { |
| result = usb_reset_device(us->pusb_dev); |
| usb_stor_dbg(us, "usb_reset_device returns %d\n", |
| result); |
| } |
| usb_unlock_device(us->pusb_dev); |
| } |
| return result; |
| } |