| /* |
| * Copyright (c) 2014, NVIDIA CORPORATION. All rights reserved. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER |
| * DEALINGS IN THE SOFTWARE. |
| */ |
| #define gk20a_volt(p) container_of((p), struct gk20a_volt, base) |
| #include "priv.h" |
| |
| #include <core/tegra.h> |
| |
| struct cvb_coef { |
| int c0; |
| int c1; |
| int c2; |
| int c3; |
| int c4; |
| int c5; |
| }; |
| |
| struct gk20a_volt { |
| struct nvkm_volt base; |
| struct regulator *vdd; |
| }; |
| |
| const struct cvb_coef gk20a_cvb_coef[] = { |
| /* MHz, c0, c1, c2, c3, c4, c5 */ |
| /* 72 */ { 1209886, -36468, 515, 417, -13123, 203}, |
| /* 108 */ { 1130804, -27659, 296, 298, -10834, 221}, |
| /* 180 */ { 1162871, -27110, 247, 238, -10681, 268}, |
| /* 252 */ { 1220458, -28654, 247, 179, -10376, 298}, |
| /* 324 */ { 1280953, -30204, 247, 119, -9766, 304}, |
| /* 396 */ { 1344547, -31777, 247, 119, -8545, 292}, |
| /* 468 */ { 1420168, -34227, 269, 60, -7172, 256}, |
| /* 540 */ { 1490757, -35955, 274, 60, -5188, 197}, |
| /* 612 */ { 1599112, -42583, 398, 0, -1831, 119}, |
| /* 648 */ { 1366986, -16459, -274, 0, -3204, 72}, |
| /* 684 */ { 1391884, -17078, -274, -60, -1526, 30}, |
| /* 708 */ { 1415522, -17497, -274, -60, -458, 0}, |
| /* 756 */ { 1464061, -18331, -274, -119, 1831, -72}, |
| /* 804 */ { 1524225, -20064, -254, -119, 4272, -155}, |
| /* 852 */ { 1608418, -21643, -269, 0, 763, -48}, |
| }; |
| |
| /** |
| * cvb_mv = ((c2 * speedo / s_scale + c1) * speedo / s_scale + c0) |
| */ |
| static inline int |
| gk20a_volt_get_cvb_voltage(int speedo, int s_scale, const struct cvb_coef *coef) |
| { |
| int mv; |
| |
| mv = DIV_ROUND_CLOSEST(coef->c2 * speedo, s_scale); |
| mv = DIV_ROUND_CLOSEST((mv + coef->c1) * speedo, s_scale) + coef->c0; |
| return mv; |
| } |
| |
| /** |
| * cvb_t_mv = |
| * ((c2 * speedo / s_scale + c1) * speedo / s_scale + c0) + |
| * ((c3 * speedo / s_scale + c4 + c5 * T / t_scale) * T / t_scale) |
| */ |
| static inline int |
| gk20a_volt_get_cvb_t_voltage(int speedo, int temp, int s_scale, int t_scale, |
| const struct cvb_coef *coef) |
| { |
| int cvb_mv, mv; |
| |
| cvb_mv = gk20a_volt_get_cvb_voltage(speedo, s_scale, coef); |
| |
| mv = DIV_ROUND_CLOSEST(coef->c3 * speedo, s_scale) + coef->c4 + |
| DIV_ROUND_CLOSEST(coef->c5 * temp, t_scale); |
| mv = DIV_ROUND_CLOSEST(mv * temp, t_scale) + cvb_mv; |
| return mv; |
| } |
| |
| static int |
| gk20a_volt_calc_voltage(const struct cvb_coef *coef, int speedo) |
| { |
| int mv; |
| |
| mv = gk20a_volt_get_cvb_t_voltage(speedo, -10, 100, 10, coef); |
| mv = DIV_ROUND_UP(mv, 1000); |
| |
| return mv * 1000; |
| } |
| |
| static int |
| gk20a_volt_vid_get(struct nvkm_volt *base) |
| { |
| struct gk20a_volt *volt = gk20a_volt(base); |
| int i, uv; |
| |
| uv = regulator_get_voltage(volt->vdd); |
| |
| for (i = 0; i < volt->base.vid_nr; i++) |
| if (volt->base.vid[i].uv >= uv) |
| return i; |
| |
| return -EINVAL; |
| } |
| |
| static int |
| gk20a_volt_vid_set(struct nvkm_volt *base, u8 vid) |
| { |
| struct gk20a_volt *volt = gk20a_volt(base); |
| struct nvkm_subdev *subdev = &volt->base.subdev; |
| |
| nvkm_debug(subdev, "set voltage as %duv\n", volt->base.vid[vid].uv); |
| return regulator_set_voltage(volt->vdd, volt->base.vid[vid].uv, 1200000); |
| } |
| |
| static int |
| gk20a_volt_set_id(struct nvkm_volt *base, u8 id, int condition) |
| { |
| struct gk20a_volt *volt = gk20a_volt(base); |
| struct nvkm_subdev *subdev = &volt->base.subdev; |
| int prev_uv = regulator_get_voltage(volt->vdd); |
| int target_uv = volt->base.vid[id].uv; |
| int ret; |
| |
| nvkm_debug(subdev, "prev=%d, target=%d, condition=%d\n", |
| prev_uv, target_uv, condition); |
| if (!condition || |
| (condition < 0 && target_uv < prev_uv) || |
| (condition > 0 && target_uv > prev_uv)) { |
| ret = gk20a_volt_vid_set(&volt->base, volt->base.vid[id].vid); |
| } else { |
| ret = 0; |
| } |
| |
| return ret; |
| } |
| |
| static const struct nvkm_volt_func |
| gk20a_volt = { |
| .vid_get = gk20a_volt_vid_get, |
| .vid_set = gk20a_volt_vid_set, |
| .set_id = gk20a_volt_set_id, |
| }; |
| |
| int |
| gk20a_volt_new(struct nvkm_device *device, int index, struct nvkm_volt **pvolt) |
| { |
| struct nvkm_device_tegra *tdev = device->func->tegra(device); |
| struct gk20a_volt *volt; |
| int i, uv; |
| |
| if (!(volt = kzalloc(sizeof(*volt), GFP_KERNEL))) |
| return -ENOMEM; |
| |
| nvkm_volt_ctor(&gk20a_volt, device, index, &volt->base); |
| *pvolt = &volt->base; |
| |
| uv = regulator_get_voltage(tdev->vdd); |
| nvkm_info(&volt->base.subdev, "The default voltage is %duV\n", uv); |
| |
| volt->vdd = tdev->vdd; |
| |
| volt->base.vid_nr = ARRAY_SIZE(gk20a_cvb_coef); |
| nvkm_debug(&volt->base.subdev, "%s - vid_nr = %d\n", __func__, |
| volt->base.vid_nr); |
| for (i = 0; i < volt->base.vid_nr; i++) { |
| volt->base.vid[i].vid = i; |
| volt->base.vid[i].uv = |
| gk20a_volt_calc_voltage(&gk20a_cvb_coef[i], |
| tdev->gpu_speedo); |
| nvkm_debug(&volt->base.subdev, "%2d: vid=%d, uv=%d\n", i, |
| volt->base.vid[i].vid, volt->base.vid[i].uv); |
| } |
| |
| return 0; |
| } |