| /* |
| * sun4i-ss-cipher.c - hardware cryptographic accelerator for Allwinner A20 SoC |
| * |
| * Copyright (C) 2013-2015 Corentin LABBE <clabbe.montjoie@gmail.com> |
| * |
| * This file add support for AES cipher with 128,192,256 bits |
| * keysize in CBC and ECB mode. |
| * Add support also for DES and 3DES in CBC and ECB mode. |
| * |
| * You could find the datasheet in Documentation/arm/sunxi/README |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| */ |
| #include "sun4i-ss.h" |
| |
| static int sun4i_ss_opti_poll(struct skcipher_request *areq) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); |
| struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); |
| struct sun4i_ss_ctx *ss = op->ss; |
| unsigned int ivsize = crypto_skcipher_ivsize(tfm); |
| struct sun4i_cipher_req_ctx *ctx = skcipher_request_ctx(areq); |
| u32 mode = ctx->mode; |
| /* when activating SS, the default FIFO space is SS_RX_DEFAULT(32) */ |
| u32 rx_cnt = SS_RX_DEFAULT; |
| u32 tx_cnt = 0; |
| u32 spaces; |
| u32 v; |
| int err = 0; |
| unsigned int i; |
| unsigned int ileft = areq->cryptlen; |
| unsigned int oleft = areq->cryptlen; |
| unsigned int todo; |
| struct sg_mapping_iter mi, mo; |
| unsigned int oi, oo; /* offset for in and out */ |
| unsigned long flags; |
| |
| if (!areq->cryptlen) |
| return 0; |
| |
| if (!areq->iv) { |
| dev_err_ratelimited(ss->dev, "ERROR: Empty IV\n"); |
| return -EINVAL; |
| } |
| |
| if (!areq->src || !areq->dst) { |
| dev_err_ratelimited(ss->dev, "ERROR: Some SGs are NULL\n"); |
| return -EINVAL; |
| } |
| |
| spin_lock_irqsave(&ss->slock, flags); |
| |
| for (i = 0; i < op->keylen; i += 4) |
| writel(*(op->key + i / 4), ss->base + SS_KEY0 + i); |
| |
| if (areq->iv) { |
| for (i = 0; i < 4 && i < ivsize / 4; i++) { |
| v = *(u32 *)(areq->iv + i * 4); |
| writel(v, ss->base + SS_IV0 + i * 4); |
| } |
| } |
| writel(mode, ss->base + SS_CTL); |
| |
| sg_miter_start(&mi, areq->src, sg_nents(areq->src), |
| SG_MITER_FROM_SG | SG_MITER_ATOMIC); |
| sg_miter_start(&mo, areq->dst, sg_nents(areq->dst), |
| SG_MITER_TO_SG | SG_MITER_ATOMIC); |
| sg_miter_next(&mi); |
| sg_miter_next(&mo); |
| if (!mi.addr || !mo.addr) { |
| dev_err_ratelimited(ss->dev, "ERROR: sg_miter return null\n"); |
| err = -EINVAL; |
| goto release_ss; |
| } |
| |
| ileft = areq->cryptlen / 4; |
| oleft = areq->cryptlen / 4; |
| oi = 0; |
| oo = 0; |
| do { |
| todo = min3(rx_cnt, ileft, (mi.length - oi) / 4); |
| if (todo) { |
| ileft -= todo; |
| writesl(ss->base + SS_RXFIFO, mi.addr + oi, todo); |
| oi += todo * 4; |
| } |
| if (oi == mi.length) { |
| sg_miter_next(&mi); |
| oi = 0; |
| } |
| |
| spaces = readl(ss->base + SS_FCSR); |
| rx_cnt = SS_RXFIFO_SPACES(spaces); |
| tx_cnt = SS_TXFIFO_SPACES(spaces); |
| |
| todo = min3(tx_cnt, oleft, (mo.length - oo) / 4); |
| if (todo) { |
| oleft -= todo; |
| readsl(ss->base + SS_TXFIFO, mo.addr + oo, todo); |
| oo += todo * 4; |
| } |
| if (oo == mo.length) { |
| sg_miter_next(&mo); |
| oo = 0; |
| } |
| } while (oleft); |
| |
| if (areq->iv) { |
| for (i = 0; i < 4 && i < ivsize / 4; i++) { |
| v = readl(ss->base + SS_IV0 + i * 4); |
| *(u32 *)(areq->iv + i * 4) = v; |
| } |
| } |
| |
| release_ss: |
| sg_miter_stop(&mi); |
| sg_miter_stop(&mo); |
| writel(0, ss->base + SS_CTL); |
| spin_unlock_irqrestore(&ss->slock, flags); |
| return err; |
| } |
| |
| /* Generic function that support SG with size not multiple of 4 */ |
| static int sun4i_ss_cipher_poll(struct skcipher_request *areq) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); |
| struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); |
| struct sun4i_ss_ctx *ss = op->ss; |
| int no_chunk = 1; |
| struct scatterlist *in_sg = areq->src; |
| struct scatterlist *out_sg = areq->dst; |
| unsigned int ivsize = crypto_skcipher_ivsize(tfm); |
| struct sun4i_cipher_req_ctx *ctx = skcipher_request_ctx(areq); |
| u32 mode = ctx->mode; |
| /* when activating SS, the default FIFO space is SS_RX_DEFAULT(32) */ |
| u32 rx_cnt = SS_RX_DEFAULT; |
| u32 tx_cnt = 0; |
| u32 v; |
| u32 spaces; |
| int err = 0; |
| unsigned int i; |
| unsigned int ileft = areq->cryptlen; |
| unsigned int oleft = areq->cryptlen; |
| unsigned int todo; |
| struct sg_mapping_iter mi, mo; |
| unsigned int oi, oo; /* offset for in and out */ |
| char buf[4 * SS_RX_MAX];/* buffer for linearize SG src */ |
| char bufo[4 * SS_TX_MAX]; /* buffer for linearize SG dst */ |
| unsigned int ob = 0; /* offset in buf */ |
| unsigned int obo = 0; /* offset in bufo*/ |
| unsigned int obl = 0; /* length of data in bufo */ |
| unsigned long flags; |
| |
| if (!areq->cryptlen) |
| return 0; |
| |
| if (!areq->iv) { |
| dev_err_ratelimited(ss->dev, "ERROR: Empty IV\n"); |
| return -EINVAL; |
| } |
| |
| if (!areq->src || !areq->dst) { |
| dev_err_ratelimited(ss->dev, "ERROR: Some SGs are NULL\n"); |
| return -EINVAL; |
| } |
| |
| /* |
| * if we have only SGs with size multiple of 4, |
| * we can use the SS optimized function |
| */ |
| while (in_sg && no_chunk == 1) { |
| if (in_sg->length % 4) |
| no_chunk = 0; |
| in_sg = sg_next(in_sg); |
| } |
| while (out_sg && no_chunk == 1) { |
| if (out_sg->length % 4) |
| no_chunk = 0; |
| out_sg = sg_next(out_sg); |
| } |
| |
| if (no_chunk == 1) |
| return sun4i_ss_opti_poll(areq); |
| |
| spin_lock_irqsave(&ss->slock, flags); |
| |
| for (i = 0; i < op->keylen; i += 4) |
| writel(*(op->key + i / 4), ss->base + SS_KEY0 + i); |
| |
| if (areq->iv) { |
| for (i = 0; i < 4 && i < ivsize / 4; i++) { |
| v = *(u32 *)(areq->iv + i * 4); |
| writel(v, ss->base + SS_IV0 + i * 4); |
| } |
| } |
| writel(mode, ss->base + SS_CTL); |
| |
| sg_miter_start(&mi, areq->src, sg_nents(areq->src), |
| SG_MITER_FROM_SG | SG_MITER_ATOMIC); |
| sg_miter_start(&mo, areq->dst, sg_nents(areq->dst), |
| SG_MITER_TO_SG | SG_MITER_ATOMIC); |
| sg_miter_next(&mi); |
| sg_miter_next(&mo); |
| if (!mi.addr || !mo.addr) { |
| dev_err_ratelimited(ss->dev, "ERROR: sg_miter return null\n"); |
| err = -EINVAL; |
| goto release_ss; |
| } |
| ileft = areq->cryptlen; |
| oleft = areq->cryptlen; |
| oi = 0; |
| oo = 0; |
| |
| while (oleft) { |
| if (ileft) { |
| /* |
| * todo is the number of consecutive 4byte word that we |
| * can read from current SG |
| */ |
| todo = min3(rx_cnt, ileft / 4, (mi.length - oi) / 4); |
| if (todo && !ob) { |
| writesl(ss->base + SS_RXFIFO, mi.addr + oi, |
| todo); |
| ileft -= todo * 4; |
| oi += todo * 4; |
| } else { |
| /* |
| * not enough consecutive bytes, so we need to |
| * linearize in buf. todo is in bytes |
| * After that copy, if we have a multiple of 4 |
| * we need to be able to write all buf in one |
| * pass, so it is why we min() with rx_cnt |
| */ |
| todo = min3(rx_cnt * 4 - ob, ileft, |
| mi.length - oi); |
| memcpy(buf + ob, mi.addr + oi, todo); |
| ileft -= todo; |
| oi += todo; |
| ob += todo; |
| if (!(ob % 4)) { |
| writesl(ss->base + SS_RXFIFO, buf, |
| ob / 4); |
| ob = 0; |
| } |
| } |
| if (oi == mi.length) { |
| sg_miter_next(&mi); |
| oi = 0; |
| } |
| } |
| |
| spaces = readl(ss->base + SS_FCSR); |
| rx_cnt = SS_RXFIFO_SPACES(spaces); |
| tx_cnt = SS_TXFIFO_SPACES(spaces); |
| dev_dbg(ss->dev, "%x %u/%u %u/%u cnt=%u %u/%u %u/%u cnt=%u %u\n", |
| mode, |
| oi, mi.length, ileft, areq->cryptlen, rx_cnt, |
| oo, mo.length, oleft, areq->cryptlen, tx_cnt, ob); |
| |
| if (!tx_cnt) |
| continue; |
| /* todo in 4bytes word */ |
| todo = min3(tx_cnt, oleft / 4, (mo.length - oo) / 4); |
| if (todo) { |
| readsl(ss->base + SS_TXFIFO, mo.addr + oo, todo); |
| oleft -= todo * 4; |
| oo += todo * 4; |
| if (oo == mo.length) { |
| sg_miter_next(&mo); |
| oo = 0; |
| } |
| } else { |
| /* |
| * read obl bytes in bufo, we read at maximum for |
| * emptying the device |
| */ |
| readsl(ss->base + SS_TXFIFO, bufo, tx_cnt); |
| obl = tx_cnt * 4; |
| obo = 0; |
| do { |
| /* |
| * how many bytes we can copy ? |
| * no more than remaining SG size |
| * no more than remaining buffer |
| * no need to test against oleft |
| */ |
| todo = min(mo.length - oo, obl - obo); |
| memcpy(mo.addr + oo, bufo + obo, todo); |
| oleft -= todo; |
| obo += todo; |
| oo += todo; |
| if (oo == mo.length) { |
| sg_miter_next(&mo); |
| oo = 0; |
| } |
| } while (obo < obl); |
| /* bufo must be fully used here */ |
| } |
| } |
| if (areq->iv) { |
| for (i = 0; i < 4 && i < ivsize / 4; i++) { |
| v = readl(ss->base + SS_IV0 + i * 4); |
| *(u32 *)(areq->iv + i * 4) = v; |
| } |
| } |
| |
| release_ss: |
| sg_miter_stop(&mi); |
| sg_miter_stop(&mo); |
| writel(0, ss->base + SS_CTL); |
| spin_unlock_irqrestore(&ss->slock, flags); |
| |
| return err; |
| } |
| |
| /* CBC AES */ |
| int sun4i_ss_cbc_aes_encrypt(struct skcipher_request *areq) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); |
| struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); |
| struct sun4i_cipher_req_ctx *rctx = skcipher_request_ctx(areq); |
| |
| rctx->mode = SS_OP_AES | SS_CBC | SS_ENABLED | SS_ENCRYPTION | |
| op->keymode; |
| return sun4i_ss_cipher_poll(areq); |
| } |
| |
| int sun4i_ss_cbc_aes_decrypt(struct skcipher_request *areq) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); |
| struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); |
| struct sun4i_cipher_req_ctx *rctx = skcipher_request_ctx(areq); |
| |
| rctx->mode = SS_OP_AES | SS_CBC | SS_ENABLED | SS_DECRYPTION | |
| op->keymode; |
| return sun4i_ss_cipher_poll(areq); |
| } |
| |
| /* ECB AES */ |
| int sun4i_ss_ecb_aes_encrypt(struct skcipher_request *areq) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); |
| struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); |
| struct sun4i_cipher_req_ctx *rctx = skcipher_request_ctx(areq); |
| |
| rctx->mode = SS_OP_AES | SS_ECB | SS_ENABLED | SS_ENCRYPTION | |
| op->keymode; |
| return sun4i_ss_cipher_poll(areq); |
| } |
| |
| int sun4i_ss_ecb_aes_decrypt(struct skcipher_request *areq) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); |
| struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); |
| struct sun4i_cipher_req_ctx *rctx = skcipher_request_ctx(areq); |
| |
| rctx->mode = SS_OP_AES | SS_ECB | SS_ENABLED | SS_DECRYPTION | |
| op->keymode; |
| return sun4i_ss_cipher_poll(areq); |
| } |
| |
| /* CBC DES */ |
| int sun4i_ss_cbc_des_encrypt(struct skcipher_request *areq) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); |
| struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); |
| struct sun4i_cipher_req_ctx *rctx = skcipher_request_ctx(areq); |
| |
| rctx->mode = SS_OP_DES | SS_CBC | SS_ENABLED | SS_ENCRYPTION | |
| op->keymode; |
| return sun4i_ss_cipher_poll(areq); |
| } |
| |
| int sun4i_ss_cbc_des_decrypt(struct skcipher_request *areq) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); |
| struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); |
| struct sun4i_cipher_req_ctx *rctx = skcipher_request_ctx(areq); |
| |
| rctx->mode = SS_OP_DES | SS_CBC | SS_ENABLED | SS_DECRYPTION | |
| op->keymode; |
| return sun4i_ss_cipher_poll(areq); |
| } |
| |
| /* ECB DES */ |
| int sun4i_ss_ecb_des_encrypt(struct skcipher_request *areq) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); |
| struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); |
| struct sun4i_cipher_req_ctx *rctx = skcipher_request_ctx(areq); |
| |
| rctx->mode = SS_OP_DES | SS_ECB | SS_ENABLED | SS_ENCRYPTION | |
| op->keymode; |
| return sun4i_ss_cipher_poll(areq); |
| } |
| |
| int sun4i_ss_ecb_des_decrypt(struct skcipher_request *areq) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); |
| struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); |
| struct sun4i_cipher_req_ctx *rctx = skcipher_request_ctx(areq); |
| |
| rctx->mode = SS_OP_DES | SS_ECB | SS_ENABLED | SS_DECRYPTION | |
| op->keymode; |
| return sun4i_ss_cipher_poll(areq); |
| } |
| |
| /* CBC 3DES */ |
| int sun4i_ss_cbc_des3_encrypt(struct skcipher_request *areq) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); |
| struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); |
| struct sun4i_cipher_req_ctx *rctx = skcipher_request_ctx(areq); |
| |
| rctx->mode = SS_OP_3DES | SS_CBC | SS_ENABLED | SS_ENCRYPTION | |
| op->keymode; |
| return sun4i_ss_cipher_poll(areq); |
| } |
| |
| int sun4i_ss_cbc_des3_decrypt(struct skcipher_request *areq) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); |
| struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); |
| struct sun4i_cipher_req_ctx *rctx = skcipher_request_ctx(areq); |
| |
| rctx->mode = SS_OP_3DES | SS_CBC | SS_ENABLED | SS_DECRYPTION | |
| op->keymode; |
| return sun4i_ss_cipher_poll(areq); |
| } |
| |
| /* ECB 3DES */ |
| int sun4i_ss_ecb_des3_encrypt(struct skcipher_request *areq) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); |
| struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); |
| struct sun4i_cipher_req_ctx *rctx = skcipher_request_ctx(areq); |
| |
| rctx->mode = SS_OP_3DES | SS_ECB | SS_ENABLED | SS_ENCRYPTION | |
| op->keymode; |
| return sun4i_ss_cipher_poll(areq); |
| } |
| |
| int sun4i_ss_ecb_des3_decrypt(struct skcipher_request *areq) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); |
| struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); |
| struct sun4i_cipher_req_ctx *rctx = skcipher_request_ctx(areq); |
| |
| rctx->mode = SS_OP_3DES | SS_ECB | SS_ENABLED | SS_DECRYPTION | |
| op->keymode; |
| return sun4i_ss_cipher_poll(areq); |
| } |
| |
| int sun4i_ss_cipher_init(struct crypto_tfm *tfm) |
| { |
| struct sun4i_tfm_ctx *op = crypto_tfm_ctx(tfm); |
| struct sun4i_ss_alg_template *algt; |
| |
| memset(op, 0, sizeof(struct sun4i_tfm_ctx)); |
| |
| algt = container_of(tfm->__crt_alg, struct sun4i_ss_alg_template, |
| alg.crypto.base); |
| op->ss = algt->ss; |
| |
| crypto_skcipher_set_reqsize(__crypto_skcipher_cast(tfm), |
| sizeof(struct sun4i_cipher_req_ctx)); |
| |
| return 0; |
| } |
| |
| /* check and set the AES key, prepare the mode to be used */ |
| int sun4i_ss_aes_setkey(struct crypto_skcipher *tfm, const u8 *key, |
| unsigned int keylen) |
| { |
| struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); |
| struct sun4i_ss_ctx *ss = op->ss; |
| |
| switch (keylen) { |
| case 128 / 8: |
| op->keymode = SS_AES_128BITS; |
| break; |
| case 192 / 8: |
| op->keymode = SS_AES_192BITS; |
| break; |
| case 256 / 8: |
| op->keymode = SS_AES_256BITS; |
| break; |
| default: |
| dev_err(ss->dev, "ERROR: Invalid keylen %u\n", keylen); |
| crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); |
| return -EINVAL; |
| } |
| op->keylen = keylen; |
| memcpy(op->key, key, keylen); |
| return 0; |
| } |
| |
| /* check and set the DES key, prepare the mode to be used */ |
| int sun4i_ss_des_setkey(struct crypto_skcipher *tfm, const u8 *key, |
| unsigned int keylen) |
| { |
| struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); |
| struct sun4i_ss_ctx *ss = op->ss; |
| u32 flags; |
| u32 tmp[DES_EXPKEY_WORDS]; |
| int ret; |
| |
| if (unlikely(keylen != DES_KEY_SIZE)) { |
| dev_err(ss->dev, "Invalid keylen %u\n", keylen); |
| crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); |
| return -EINVAL; |
| } |
| |
| flags = crypto_skcipher_get_flags(tfm); |
| |
| ret = des_ekey(tmp, key); |
| if (unlikely(!ret) && (flags & CRYPTO_TFM_REQ_WEAK_KEY)) { |
| crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_WEAK_KEY); |
| dev_dbg(ss->dev, "Weak key %u\n", keylen); |
| return -EINVAL; |
| } |
| |
| op->keylen = keylen; |
| memcpy(op->key, key, keylen); |
| return 0; |
| } |
| |
| /* check and set the 3DES key, prepare the mode to be used */ |
| int sun4i_ss_des3_setkey(struct crypto_skcipher *tfm, const u8 *key, |
| unsigned int keylen) |
| { |
| struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); |
| struct sun4i_ss_ctx *ss = op->ss; |
| |
| if (unlikely(keylen != 3 * DES_KEY_SIZE)) { |
| dev_err(ss->dev, "Invalid keylen %u\n", keylen); |
| crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); |
| return -EINVAL; |
| } |
| op->keylen = keylen; |
| memcpy(op->key, key, keylen); |
| return 0; |
| } |