| /* | 
 |  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) | 
 |  * | 
 |  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> | 
 |  * | 
 |  *  Interactivity improvements by Mike Galbraith | 
 |  *  (C) 2007 Mike Galbraith <efault@gmx.de> | 
 |  * | 
 |  *  Various enhancements by Dmitry Adamushko. | 
 |  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> | 
 |  * | 
 |  *  Group scheduling enhancements by Srivatsa Vaddagiri | 
 |  *  Copyright IBM Corporation, 2007 | 
 |  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> | 
 |  * | 
 |  *  Scaled math optimizations by Thomas Gleixner | 
 |  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> | 
 |  * | 
 |  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra | 
 |  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> | 
 |  */ | 
 |  | 
 | #include <linux/latencytop.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/cpumask.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/profile.h> | 
 | #include <linux/interrupt.h> | 
 |  | 
 | #include <trace/events/sched.h> | 
 |  | 
 | #include "sched.h" | 
 |  | 
 | /* | 
 |  * Targeted preemption latency for CPU-bound tasks: | 
 |  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) | 
 |  * | 
 |  * NOTE: this latency value is not the same as the concept of | 
 |  * 'timeslice length' - timeslices in CFS are of variable length | 
 |  * and have no persistent notion like in traditional, time-slice | 
 |  * based scheduling concepts. | 
 |  * | 
 |  * (to see the precise effective timeslice length of your workload, | 
 |  *  run vmstat and monitor the context-switches (cs) field) | 
 |  */ | 
 | unsigned int sysctl_sched_latency = 6000000ULL; | 
 | unsigned int normalized_sysctl_sched_latency = 6000000ULL; | 
 |  | 
 | /* | 
 |  * The initial- and re-scaling of tunables is configurable | 
 |  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) | 
 |  * | 
 |  * Options are: | 
 |  * SCHED_TUNABLESCALING_NONE - unscaled, always *1 | 
 |  * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) | 
 |  * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus | 
 |  */ | 
 | enum sched_tunable_scaling sysctl_sched_tunable_scaling | 
 | 	= SCHED_TUNABLESCALING_LOG; | 
 |  | 
 | /* | 
 |  * Minimal preemption granularity for CPU-bound tasks: | 
 |  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) | 
 |  */ | 
 | unsigned int sysctl_sched_min_granularity = 750000ULL; | 
 | unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; | 
 |  | 
 | /* | 
 |  * is kept at sysctl_sched_latency / sysctl_sched_min_granularity | 
 |  */ | 
 | static unsigned int sched_nr_latency = 8; | 
 |  | 
 | /* | 
 |  * After fork, child runs first. If set to 0 (default) then | 
 |  * parent will (try to) run first. | 
 |  */ | 
 | unsigned int sysctl_sched_child_runs_first __read_mostly; | 
 |  | 
 | /* | 
 |  * SCHED_OTHER wake-up granularity. | 
 |  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) | 
 |  * | 
 |  * This option delays the preemption effects of decoupled workloads | 
 |  * and reduces their over-scheduling. Synchronous workloads will still | 
 |  * have immediate wakeup/sleep latencies. | 
 |  */ | 
 | unsigned int sysctl_sched_wakeup_granularity = 1000000UL; | 
 | unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; | 
 |  | 
 | const_debug unsigned int sysctl_sched_migration_cost = 500000UL; | 
 |  | 
 | /* | 
 |  * The exponential sliding  window over which load is averaged for shares | 
 |  * distribution. | 
 |  * (default: 10msec) | 
 |  */ | 
 | unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL; | 
 |  | 
 | #ifdef CONFIG_CFS_BANDWIDTH | 
 | /* | 
 |  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool | 
 |  * each time a cfs_rq requests quota. | 
 |  * | 
 |  * Note: in the case that the slice exceeds the runtime remaining (either due | 
 |  * to consumption or the quota being specified to be smaller than the slice) | 
 |  * we will always only issue the remaining available time. | 
 |  * | 
 |  * default: 5 msec, units: microseconds | 
 |   */ | 
 | unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; | 
 | #endif | 
 |  | 
 | /* | 
 |  * Increase the granularity value when there are more CPUs, | 
 |  * because with more CPUs the 'effective latency' as visible | 
 |  * to users decreases. But the relationship is not linear, | 
 |  * so pick a second-best guess by going with the log2 of the | 
 |  * number of CPUs. | 
 |  * | 
 |  * This idea comes from the SD scheduler of Con Kolivas: | 
 |  */ | 
 | static int get_update_sysctl_factor(void) | 
 | { | 
 | 	unsigned int cpus = min_t(int, num_online_cpus(), 8); | 
 | 	unsigned int factor; | 
 |  | 
 | 	switch (sysctl_sched_tunable_scaling) { | 
 | 	case SCHED_TUNABLESCALING_NONE: | 
 | 		factor = 1; | 
 | 		break; | 
 | 	case SCHED_TUNABLESCALING_LINEAR: | 
 | 		factor = cpus; | 
 | 		break; | 
 | 	case SCHED_TUNABLESCALING_LOG: | 
 | 	default: | 
 | 		factor = 1 + ilog2(cpus); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return factor; | 
 | } | 
 |  | 
 | static void update_sysctl(void) | 
 | { | 
 | 	unsigned int factor = get_update_sysctl_factor(); | 
 |  | 
 | #define SET_SYSCTL(name) \ | 
 | 	(sysctl_##name = (factor) * normalized_sysctl_##name) | 
 | 	SET_SYSCTL(sched_min_granularity); | 
 | 	SET_SYSCTL(sched_latency); | 
 | 	SET_SYSCTL(sched_wakeup_granularity); | 
 | #undef SET_SYSCTL | 
 | } | 
 |  | 
 | void sched_init_granularity(void) | 
 | { | 
 | 	update_sysctl(); | 
 | } | 
 |  | 
 | #if BITS_PER_LONG == 32 | 
 | # define WMULT_CONST	(~0UL) | 
 | #else | 
 | # define WMULT_CONST	(1UL << 32) | 
 | #endif | 
 |  | 
 | #define WMULT_SHIFT	32 | 
 |  | 
 | /* | 
 |  * Shift right and round: | 
 |  */ | 
 | #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y)) | 
 |  | 
 | /* | 
 |  * delta *= weight / lw | 
 |  */ | 
 | static unsigned long | 
 | calc_delta_mine(unsigned long delta_exec, unsigned long weight, | 
 | 		struct load_weight *lw) | 
 | { | 
 | 	u64 tmp; | 
 |  | 
 | 	/* | 
 | 	 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched | 
 | 	 * entities since MIN_SHARES = 2. Treat weight as 1 if less than | 
 | 	 * 2^SCHED_LOAD_RESOLUTION. | 
 | 	 */ | 
 | 	if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION))) | 
 | 		tmp = (u64)delta_exec * scale_load_down(weight); | 
 | 	else | 
 | 		tmp = (u64)delta_exec; | 
 |  | 
 | 	if (!lw->inv_weight) { | 
 | 		unsigned long w = scale_load_down(lw->weight); | 
 |  | 
 | 		if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) | 
 | 			lw->inv_weight = 1; | 
 | 		else if (unlikely(!w)) | 
 | 			lw->inv_weight = WMULT_CONST; | 
 | 		else | 
 | 			lw->inv_weight = WMULT_CONST / w; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Check whether we'd overflow the 64-bit multiplication: | 
 | 	 */ | 
 | 	if (unlikely(tmp > WMULT_CONST)) | 
 | 		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight, | 
 | 			WMULT_SHIFT/2); | 
 | 	else | 
 | 		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT); | 
 |  | 
 | 	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX); | 
 | } | 
 |  | 
 |  | 
 | const struct sched_class fair_sched_class; | 
 |  | 
 | /************************************************************** | 
 |  * CFS operations on generic schedulable entities: | 
 |  */ | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 |  | 
 | /* cpu runqueue to which this cfs_rq is attached */ | 
 | static inline struct rq *rq_of(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	return cfs_rq->rq; | 
 | } | 
 |  | 
 | /* An entity is a task if it doesn't "own" a runqueue */ | 
 | #define entity_is_task(se)	(!se->my_q) | 
 |  | 
 | static inline struct task_struct *task_of(struct sched_entity *se) | 
 | { | 
 | #ifdef CONFIG_SCHED_DEBUG | 
 | 	WARN_ON_ONCE(!entity_is_task(se)); | 
 | #endif | 
 | 	return container_of(se, struct task_struct, se); | 
 | } | 
 |  | 
 | /* Walk up scheduling entities hierarchy */ | 
 | #define for_each_sched_entity(se) \ | 
 | 		for (; se; se = se->parent) | 
 |  | 
 | static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) | 
 | { | 
 | 	return p->se.cfs_rq; | 
 | } | 
 |  | 
 | /* runqueue on which this entity is (to be) queued */ | 
 | static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) | 
 | { | 
 | 	return se->cfs_rq; | 
 | } | 
 |  | 
 | /* runqueue "owned" by this group */ | 
 | static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) | 
 | { | 
 | 	return grp->my_q; | 
 | } | 
 |  | 
 | static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	if (!cfs_rq->on_list) { | 
 | 		/* | 
 | 		 * Ensure we either appear before our parent (if already | 
 | 		 * enqueued) or force our parent to appear after us when it is | 
 | 		 * enqueued.  The fact that we always enqueue bottom-up | 
 | 		 * reduces this to two cases. | 
 | 		 */ | 
 | 		if (cfs_rq->tg->parent && | 
 | 		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) { | 
 | 			list_add_rcu(&cfs_rq->leaf_cfs_rq_list, | 
 | 				&rq_of(cfs_rq)->leaf_cfs_rq_list); | 
 | 		} else { | 
 | 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, | 
 | 				&rq_of(cfs_rq)->leaf_cfs_rq_list); | 
 | 		} | 
 |  | 
 | 		cfs_rq->on_list = 1; | 
 | 	} | 
 | } | 
 |  | 
 | static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	if (cfs_rq->on_list) { | 
 | 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list); | 
 | 		cfs_rq->on_list = 0; | 
 | 	} | 
 | } | 
 |  | 
 | /* Iterate thr' all leaf cfs_rq's on a runqueue */ | 
 | #define for_each_leaf_cfs_rq(rq, cfs_rq) \ | 
 | 	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list) | 
 |  | 
 | /* Do the two (enqueued) entities belong to the same group ? */ | 
 | static inline int | 
 | is_same_group(struct sched_entity *se, struct sched_entity *pse) | 
 | { | 
 | 	if (se->cfs_rq == pse->cfs_rq) | 
 | 		return 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline struct sched_entity *parent_entity(struct sched_entity *se) | 
 | { | 
 | 	return se->parent; | 
 | } | 
 |  | 
 | /* return depth at which a sched entity is present in the hierarchy */ | 
 | static inline int depth_se(struct sched_entity *se) | 
 | { | 
 | 	int depth = 0; | 
 |  | 
 | 	for_each_sched_entity(se) | 
 | 		depth++; | 
 |  | 
 | 	return depth; | 
 | } | 
 |  | 
 | static void | 
 | find_matching_se(struct sched_entity **se, struct sched_entity **pse) | 
 | { | 
 | 	int se_depth, pse_depth; | 
 |  | 
 | 	/* | 
 | 	 * preemption test can be made between sibling entities who are in the | 
 | 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of | 
 | 	 * both tasks until we find their ancestors who are siblings of common | 
 | 	 * parent. | 
 | 	 */ | 
 |  | 
 | 	/* First walk up until both entities are at same depth */ | 
 | 	se_depth = depth_se(*se); | 
 | 	pse_depth = depth_se(*pse); | 
 |  | 
 | 	while (se_depth > pse_depth) { | 
 | 		se_depth--; | 
 | 		*se = parent_entity(*se); | 
 | 	} | 
 |  | 
 | 	while (pse_depth > se_depth) { | 
 | 		pse_depth--; | 
 | 		*pse = parent_entity(*pse); | 
 | 	} | 
 |  | 
 | 	while (!is_same_group(*se, *pse)) { | 
 | 		*se = parent_entity(*se); | 
 | 		*pse = parent_entity(*pse); | 
 | 	} | 
 | } | 
 |  | 
 | #else	/* !CONFIG_FAIR_GROUP_SCHED */ | 
 |  | 
 | static inline struct task_struct *task_of(struct sched_entity *se) | 
 | { | 
 | 	return container_of(se, struct task_struct, se); | 
 | } | 
 |  | 
 | static inline struct rq *rq_of(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	return container_of(cfs_rq, struct rq, cfs); | 
 | } | 
 |  | 
 | #define entity_is_task(se)	1 | 
 |  | 
 | #define for_each_sched_entity(se) \ | 
 | 		for (; se; se = NULL) | 
 |  | 
 | static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) | 
 | { | 
 | 	return &task_rq(p)->cfs; | 
 | } | 
 |  | 
 | static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) | 
 | { | 
 | 	struct task_struct *p = task_of(se); | 
 | 	struct rq *rq = task_rq(p); | 
 |  | 
 | 	return &rq->cfs; | 
 | } | 
 |  | 
 | /* runqueue "owned" by this group */ | 
 | static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) | 
 | { | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) | 
 | { | 
 | } | 
 |  | 
 | static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) | 
 | { | 
 | } | 
 |  | 
 | #define for_each_leaf_cfs_rq(rq, cfs_rq) \ | 
 | 		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL) | 
 |  | 
 | static inline int | 
 | is_same_group(struct sched_entity *se, struct sched_entity *pse) | 
 | { | 
 | 	return 1; | 
 | } | 
 |  | 
 | static inline struct sched_entity *parent_entity(struct sched_entity *se) | 
 | { | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static inline void | 
 | find_matching_se(struct sched_entity **se, struct sched_entity **pse) | 
 | { | 
 | } | 
 |  | 
 | #endif	/* CONFIG_FAIR_GROUP_SCHED */ | 
 |  | 
 | static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, | 
 | 				   unsigned long delta_exec); | 
 |  | 
 | /************************************************************** | 
 |  * Scheduling class tree data structure manipulation methods: | 
 |  */ | 
 |  | 
 | static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime) | 
 | { | 
 | 	s64 delta = (s64)(vruntime - min_vruntime); | 
 | 	if (delta > 0) | 
 | 		min_vruntime = vruntime; | 
 |  | 
 | 	return min_vruntime; | 
 | } | 
 |  | 
 | static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) | 
 | { | 
 | 	s64 delta = (s64)(vruntime - min_vruntime); | 
 | 	if (delta < 0) | 
 | 		min_vruntime = vruntime; | 
 |  | 
 | 	return min_vruntime; | 
 | } | 
 |  | 
 | static inline int entity_before(struct sched_entity *a, | 
 | 				struct sched_entity *b) | 
 | { | 
 | 	return (s64)(a->vruntime - b->vruntime) < 0; | 
 | } | 
 |  | 
 | static void update_min_vruntime(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	u64 vruntime = cfs_rq->min_vruntime; | 
 |  | 
 | 	if (cfs_rq->curr) | 
 | 		vruntime = cfs_rq->curr->vruntime; | 
 |  | 
 | 	if (cfs_rq->rb_leftmost) { | 
 | 		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost, | 
 | 						   struct sched_entity, | 
 | 						   run_node); | 
 |  | 
 | 		if (!cfs_rq->curr) | 
 | 			vruntime = se->vruntime; | 
 | 		else | 
 | 			vruntime = min_vruntime(vruntime, se->vruntime); | 
 | 	} | 
 |  | 
 | 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); | 
 | #ifndef CONFIG_64BIT | 
 | 	smp_wmb(); | 
 | 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; | 
 | #endif | 
 | } | 
 |  | 
 | /* | 
 |  * Enqueue an entity into the rb-tree: | 
 |  */ | 
 | static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node; | 
 | 	struct rb_node *parent = NULL; | 
 | 	struct sched_entity *entry; | 
 | 	int leftmost = 1; | 
 |  | 
 | 	/* | 
 | 	 * Find the right place in the rbtree: | 
 | 	 */ | 
 | 	while (*link) { | 
 | 		parent = *link; | 
 | 		entry = rb_entry(parent, struct sched_entity, run_node); | 
 | 		/* | 
 | 		 * We dont care about collisions. Nodes with | 
 | 		 * the same key stay together. | 
 | 		 */ | 
 | 		if (entity_before(se, entry)) { | 
 | 			link = &parent->rb_left; | 
 | 		} else { | 
 | 			link = &parent->rb_right; | 
 | 			leftmost = 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Maintain a cache of leftmost tree entries (it is frequently | 
 | 	 * used): | 
 | 	 */ | 
 | 	if (leftmost) | 
 | 		cfs_rq->rb_leftmost = &se->run_node; | 
 |  | 
 | 	rb_link_node(&se->run_node, parent, link); | 
 | 	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline); | 
 | } | 
 |  | 
 | static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | 	if (cfs_rq->rb_leftmost == &se->run_node) { | 
 | 		struct rb_node *next_node; | 
 |  | 
 | 		next_node = rb_next(&se->run_node); | 
 | 		cfs_rq->rb_leftmost = next_node; | 
 | 	} | 
 |  | 
 | 	rb_erase(&se->run_node, &cfs_rq->tasks_timeline); | 
 | } | 
 |  | 
 | struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	struct rb_node *left = cfs_rq->rb_leftmost; | 
 |  | 
 | 	if (!left) | 
 | 		return NULL; | 
 |  | 
 | 	return rb_entry(left, struct sched_entity, run_node); | 
 | } | 
 |  | 
 | static struct sched_entity *__pick_next_entity(struct sched_entity *se) | 
 | { | 
 | 	struct rb_node *next = rb_next(&se->run_node); | 
 |  | 
 | 	if (!next) | 
 | 		return NULL; | 
 |  | 
 | 	return rb_entry(next, struct sched_entity, run_node); | 
 | } | 
 |  | 
 | #ifdef CONFIG_SCHED_DEBUG | 
 | struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline); | 
 |  | 
 | 	if (!last) | 
 | 		return NULL; | 
 |  | 
 | 	return rb_entry(last, struct sched_entity, run_node); | 
 | } | 
 |  | 
 | /************************************************************** | 
 |  * Scheduling class statistics methods: | 
 |  */ | 
 |  | 
 | int sched_proc_update_handler(struct ctl_table *table, int write, | 
 | 		void __user *buffer, size_t *lenp, | 
 | 		loff_t *ppos) | 
 | { | 
 | 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); | 
 | 	int factor = get_update_sysctl_factor(); | 
 |  | 
 | 	if (ret || !write) | 
 | 		return ret; | 
 |  | 
 | 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, | 
 | 					sysctl_sched_min_granularity); | 
 |  | 
 | #define WRT_SYSCTL(name) \ | 
 | 	(normalized_sysctl_##name = sysctl_##name / (factor)) | 
 | 	WRT_SYSCTL(sched_min_granularity); | 
 | 	WRT_SYSCTL(sched_latency); | 
 | 	WRT_SYSCTL(sched_wakeup_granularity); | 
 | #undef WRT_SYSCTL | 
 |  | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * delta /= w | 
 |  */ | 
 | static inline unsigned long | 
 | calc_delta_fair(unsigned long delta, struct sched_entity *se) | 
 | { | 
 | 	if (unlikely(se->load.weight != NICE_0_LOAD)) | 
 | 		delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load); | 
 |  | 
 | 	return delta; | 
 | } | 
 |  | 
 | /* | 
 |  * The idea is to set a period in which each task runs once. | 
 |  * | 
 |  * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch | 
 |  * this period because otherwise the slices get too small. | 
 |  * | 
 |  * p = (nr <= nl) ? l : l*nr/nl | 
 |  */ | 
 | static u64 __sched_period(unsigned long nr_running) | 
 | { | 
 | 	u64 period = sysctl_sched_latency; | 
 | 	unsigned long nr_latency = sched_nr_latency; | 
 |  | 
 | 	if (unlikely(nr_running > nr_latency)) { | 
 | 		period = sysctl_sched_min_granularity; | 
 | 		period *= nr_running; | 
 | 	} | 
 |  | 
 | 	return period; | 
 | } | 
 |  | 
 | /* | 
 |  * We calculate the wall-time slice from the period by taking a part | 
 |  * proportional to the weight. | 
 |  * | 
 |  * s = p*P[w/rw] | 
 |  */ | 
 | static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); | 
 |  | 
 | 	for_each_sched_entity(se) { | 
 | 		struct load_weight *load; | 
 | 		struct load_weight lw; | 
 |  | 
 | 		cfs_rq = cfs_rq_of(se); | 
 | 		load = &cfs_rq->load; | 
 |  | 
 | 		if (unlikely(!se->on_rq)) { | 
 | 			lw = cfs_rq->load; | 
 |  | 
 | 			update_load_add(&lw, se->load.weight); | 
 | 			load = &lw; | 
 | 		} | 
 | 		slice = calc_delta_mine(slice, se->load.weight, load); | 
 | 	} | 
 | 	return slice; | 
 | } | 
 |  | 
 | /* | 
 |  * We calculate the vruntime slice of a to be inserted task | 
 |  * | 
 |  * vs = s/w | 
 |  */ | 
 | static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | 	return calc_delta_fair(sched_slice(cfs_rq, se), se); | 
 | } | 
 |  | 
 | static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update); | 
 | static void update_cfs_shares(struct cfs_rq *cfs_rq); | 
 |  | 
 | /* | 
 |  * Update the current task's runtime statistics. Skip current tasks that | 
 |  * are not in our scheduling class. | 
 |  */ | 
 | static inline void | 
 | __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr, | 
 | 	      unsigned long delta_exec) | 
 | { | 
 | 	unsigned long delta_exec_weighted; | 
 |  | 
 | 	schedstat_set(curr->statistics.exec_max, | 
 | 		      max((u64)delta_exec, curr->statistics.exec_max)); | 
 |  | 
 | 	curr->sum_exec_runtime += delta_exec; | 
 | 	schedstat_add(cfs_rq, exec_clock, delta_exec); | 
 | 	delta_exec_weighted = calc_delta_fair(delta_exec, curr); | 
 |  | 
 | 	curr->vruntime += delta_exec_weighted; | 
 | 	update_min_vruntime(cfs_rq); | 
 |  | 
 | #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED | 
 | 	cfs_rq->load_unacc_exec_time += delta_exec; | 
 | #endif | 
 | } | 
 |  | 
 | static void update_curr(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	struct sched_entity *curr = cfs_rq->curr; | 
 | 	u64 now = rq_of(cfs_rq)->clock_task; | 
 | 	unsigned long delta_exec; | 
 |  | 
 | 	if (unlikely(!curr)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Get the amount of time the current task was running | 
 | 	 * since the last time we changed load (this cannot | 
 | 	 * overflow on 32 bits): | 
 | 	 */ | 
 | 	delta_exec = (unsigned long)(now - curr->exec_start); | 
 | 	if (!delta_exec) | 
 | 		return; | 
 |  | 
 | 	__update_curr(cfs_rq, curr, delta_exec); | 
 | 	curr->exec_start = now; | 
 |  | 
 | 	if (entity_is_task(curr)) { | 
 | 		struct task_struct *curtask = task_of(curr); | 
 |  | 
 | 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); | 
 | 		cpuacct_charge(curtask, delta_exec); | 
 | 		account_group_exec_runtime(curtask, delta_exec); | 
 | 	} | 
 |  | 
 | 	account_cfs_rq_runtime(cfs_rq, delta_exec); | 
 | } | 
 |  | 
 | static inline void | 
 | update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | 	schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock); | 
 | } | 
 |  | 
 | /* | 
 |  * Task is being enqueued - update stats: | 
 |  */ | 
 | static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | 	/* | 
 | 	 * Are we enqueueing a waiting task? (for current tasks | 
 | 	 * a dequeue/enqueue event is a NOP) | 
 | 	 */ | 
 | 	if (se != cfs_rq->curr) | 
 | 		update_stats_wait_start(cfs_rq, se); | 
 | } | 
 |  | 
 | static void | 
 | update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | 	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max, | 
 | 			rq_of(cfs_rq)->clock - se->statistics.wait_start)); | 
 | 	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1); | 
 | 	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum + | 
 | 			rq_of(cfs_rq)->clock - se->statistics.wait_start); | 
 | #ifdef CONFIG_SCHEDSTATS | 
 | 	if (entity_is_task(se)) { | 
 | 		trace_sched_stat_wait(task_of(se), | 
 | 			rq_of(cfs_rq)->clock - se->statistics.wait_start); | 
 | 	} | 
 | #endif | 
 | 	schedstat_set(se->statistics.wait_start, 0); | 
 | } | 
 |  | 
 | static inline void | 
 | update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | 	/* | 
 | 	 * Mark the end of the wait period if dequeueing a | 
 | 	 * waiting task: | 
 | 	 */ | 
 | 	if (se != cfs_rq->curr) | 
 | 		update_stats_wait_end(cfs_rq, se); | 
 | } | 
 |  | 
 | /* | 
 |  * We are picking a new current task - update its stats: | 
 |  */ | 
 | static inline void | 
 | update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | 	/* | 
 | 	 * We are starting a new run period: | 
 | 	 */ | 
 | 	se->exec_start = rq_of(cfs_rq)->clock_task; | 
 | } | 
 |  | 
 | /************************************************** | 
 |  * Scheduling class queueing methods: | 
 |  */ | 
 |  | 
 | #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED | 
 | static void | 
 | add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight) | 
 | { | 
 | 	cfs_rq->task_weight += weight; | 
 | } | 
 | #else | 
 | static inline void | 
 | add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight) | 
 | { | 
 | } | 
 | #endif | 
 |  | 
 | static void | 
 | account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | 	update_load_add(&cfs_rq->load, se->load.weight); | 
 | 	if (!parent_entity(se)) | 
 | 		update_load_add(&rq_of(cfs_rq)->load, se->load.weight); | 
 | 	if (entity_is_task(se)) { | 
 | 		add_cfs_task_weight(cfs_rq, se->load.weight); | 
 | 		list_add(&se->group_node, &cfs_rq->tasks); | 
 | 	} | 
 | 	cfs_rq->nr_running++; | 
 | } | 
 |  | 
 | static void | 
 | account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | 	update_load_sub(&cfs_rq->load, se->load.weight); | 
 | 	if (!parent_entity(se)) | 
 | 		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight); | 
 | 	if (entity_is_task(se)) { | 
 | 		add_cfs_task_weight(cfs_rq, -se->load.weight); | 
 | 		list_del_init(&se->group_node); | 
 | 	} | 
 | 	cfs_rq->nr_running--; | 
 | } | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | /* we need this in update_cfs_load and load-balance functions below */ | 
 | static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); | 
 | # ifdef CONFIG_SMP | 
 | static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq, | 
 | 					    int global_update) | 
 | { | 
 | 	struct task_group *tg = cfs_rq->tg; | 
 | 	long load_avg; | 
 |  | 
 | 	load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1); | 
 | 	load_avg -= cfs_rq->load_contribution; | 
 |  | 
 | 	if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) { | 
 | 		atomic_add(load_avg, &tg->load_weight); | 
 | 		cfs_rq->load_contribution += load_avg; | 
 | 	} | 
 | } | 
 |  | 
 | static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update) | 
 | { | 
 | 	u64 period = sysctl_sched_shares_window; | 
 | 	u64 now, delta; | 
 | 	unsigned long load = cfs_rq->load.weight; | 
 |  | 
 | 	if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq)) | 
 | 		return; | 
 |  | 
 | 	now = rq_of(cfs_rq)->clock_task; | 
 | 	delta = now - cfs_rq->load_stamp; | 
 |  | 
 | 	/* truncate load history at 4 idle periods */ | 
 | 	if (cfs_rq->load_stamp > cfs_rq->load_last && | 
 | 	    now - cfs_rq->load_last > 4 * period) { | 
 | 		cfs_rq->load_period = 0; | 
 | 		cfs_rq->load_avg = 0; | 
 | 		delta = period - 1; | 
 | 	} | 
 |  | 
 | 	cfs_rq->load_stamp = now; | 
 | 	cfs_rq->load_unacc_exec_time = 0; | 
 | 	cfs_rq->load_period += delta; | 
 | 	if (load) { | 
 | 		cfs_rq->load_last = now; | 
 | 		cfs_rq->load_avg += delta * load; | 
 | 	} | 
 |  | 
 | 	/* consider updating load contribution on each fold or truncate */ | 
 | 	if (global_update || cfs_rq->load_period > period | 
 | 	    || !cfs_rq->load_period) | 
 | 		update_cfs_rq_load_contribution(cfs_rq, global_update); | 
 |  | 
 | 	while (cfs_rq->load_period > period) { | 
 | 		/* | 
 | 		 * Inline assembly required to prevent the compiler | 
 | 		 * optimising this loop into a divmod call. | 
 | 		 * See __iter_div_u64_rem() for another example of this. | 
 | 		 */ | 
 | 		asm("" : "+rm" (cfs_rq->load_period)); | 
 | 		cfs_rq->load_period /= 2; | 
 | 		cfs_rq->load_avg /= 2; | 
 | 	} | 
 |  | 
 | 	if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg) | 
 | 		list_del_leaf_cfs_rq(cfs_rq); | 
 | } | 
 |  | 
 | static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq) | 
 | { | 
 | 	long tg_weight; | 
 |  | 
 | 	/* | 
 | 	 * Use this CPU's actual weight instead of the last load_contribution | 
 | 	 * to gain a more accurate current total weight. See | 
 | 	 * update_cfs_rq_load_contribution(). | 
 | 	 */ | 
 | 	tg_weight = atomic_read(&tg->load_weight); | 
 | 	tg_weight -= cfs_rq->load_contribution; | 
 | 	tg_weight += cfs_rq->load.weight; | 
 |  | 
 | 	return tg_weight; | 
 | } | 
 |  | 
 | static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) | 
 | { | 
 | 	long tg_weight, load, shares; | 
 |  | 
 | 	tg_weight = calc_tg_weight(tg, cfs_rq); | 
 | 	load = cfs_rq->load.weight; | 
 |  | 
 | 	shares = (tg->shares * load); | 
 | 	if (tg_weight) | 
 | 		shares /= tg_weight; | 
 |  | 
 | 	if (shares < MIN_SHARES) | 
 | 		shares = MIN_SHARES; | 
 | 	if (shares > tg->shares) | 
 | 		shares = tg->shares; | 
 |  | 
 | 	return shares; | 
 | } | 
 |  | 
 | static void update_entity_shares_tick(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) { | 
 | 		update_cfs_load(cfs_rq, 0); | 
 | 		update_cfs_shares(cfs_rq); | 
 | 	} | 
 | } | 
 | # else /* CONFIG_SMP */ | 
 | static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update) | 
 | { | 
 | } | 
 |  | 
 | static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) | 
 | { | 
 | 	return tg->shares; | 
 | } | 
 |  | 
 | static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq) | 
 | { | 
 | } | 
 | # endif /* CONFIG_SMP */ | 
 | static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, | 
 | 			    unsigned long weight) | 
 | { | 
 | 	if (se->on_rq) { | 
 | 		/* commit outstanding execution time */ | 
 | 		if (cfs_rq->curr == se) | 
 | 			update_curr(cfs_rq); | 
 | 		account_entity_dequeue(cfs_rq, se); | 
 | 	} | 
 |  | 
 | 	update_load_set(&se->load, weight); | 
 |  | 
 | 	if (se->on_rq) | 
 | 		account_entity_enqueue(cfs_rq, se); | 
 | } | 
 |  | 
 | static void update_cfs_shares(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	struct task_group *tg; | 
 | 	struct sched_entity *se; | 
 | 	long shares; | 
 |  | 
 | 	tg = cfs_rq->tg; | 
 | 	se = tg->se[cpu_of(rq_of(cfs_rq))]; | 
 | 	if (!se || throttled_hierarchy(cfs_rq)) | 
 | 		return; | 
 | #ifndef CONFIG_SMP | 
 | 	if (likely(se->load.weight == tg->shares)) | 
 | 		return; | 
 | #endif | 
 | 	shares = calc_cfs_shares(cfs_rq, tg); | 
 |  | 
 | 	reweight_entity(cfs_rq_of(se), se, shares); | 
 | } | 
 | #else /* CONFIG_FAIR_GROUP_SCHED */ | 
 | static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update) | 
 | { | 
 | } | 
 |  | 
 | static inline void update_cfs_shares(struct cfs_rq *cfs_rq) | 
 | { | 
 | } | 
 |  | 
 | static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq) | 
 | { | 
 | } | 
 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 
 |  | 
 | static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | #ifdef CONFIG_SCHEDSTATS | 
 | 	struct task_struct *tsk = NULL; | 
 |  | 
 | 	if (entity_is_task(se)) | 
 | 		tsk = task_of(se); | 
 |  | 
 | 	if (se->statistics.sleep_start) { | 
 | 		u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start; | 
 |  | 
 | 		if ((s64)delta < 0) | 
 | 			delta = 0; | 
 |  | 
 | 		if (unlikely(delta > se->statistics.sleep_max)) | 
 | 			se->statistics.sleep_max = delta; | 
 |  | 
 | 		se->statistics.sum_sleep_runtime += delta; | 
 |  | 
 | 		if (tsk) { | 
 | 			account_scheduler_latency(tsk, delta >> 10, 1); | 
 | 			trace_sched_stat_sleep(tsk, delta); | 
 | 		} | 
 | 	} | 
 | 	if (se->statistics.block_start) { | 
 | 		u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start; | 
 |  | 
 | 		if ((s64)delta < 0) | 
 | 			delta = 0; | 
 |  | 
 | 		if (unlikely(delta > se->statistics.block_max)) | 
 | 			se->statistics.block_max = delta; | 
 |  | 
 | 		se->statistics.sum_sleep_runtime += delta; | 
 |  | 
 | 		if (tsk) { | 
 | 			if (tsk->in_iowait) { | 
 | 				se->statistics.iowait_sum += delta; | 
 | 				se->statistics.iowait_count++; | 
 | 				trace_sched_stat_iowait(tsk, delta); | 
 | 			} | 
 |  | 
 | 			trace_sched_stat_blocked(tsk, delta); | 
 |  | 
 | 			/* | 
 | 			 * Blocking time is in units of nanosecs, so shift by | 
 | 			 * 20 to get a milliseconds-range estimation of the | 
 | 			 * amount of time that the task spent sleeping: | 
 | 			 */ | 
 | 			if (unlikely(prof_on == SLEEP_PROFILING)) { | 
 | 				profile_hits(SLEEP_PROFILING, | 
 | 						(void *)get_wchan(tsk), | 
 | 						delta >> 20); | 
 | 			} | 
 | 			account_scheduler_latency(tsk, delta >> 10, 0); | 
 | 		} | 
 | 	} | 
 | #endif | 
 | } | 
 |  | 
 | static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | #ifdef CONFIG_SCHED_DEBUG | 
 | 	s64 d = se->vruntime - cfs_rq->min_vruntime; | 
 |  | 
 | 	if (d < 0) | 
 | 		d = -d; | 
 |  | 
 | 	if (d > 3*sysctl_sched_latency) | 
 | 		schedstat_inc(cfs_rq, nr_spread_over); | 
 | #endif | 
 | } | 
 |  | 
 | static void | 
 | place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) | 
 | { | 
 | 	u64 vruntime = cfs_rq->min_vruntime; | 
 |  | 
 | 	/* | 
 | 	 * The 'current' period is already promised to the current tasks, | 
 | 	 * however the extra weight of the new task will slow them down a | 
 | 	 * little, place the new task so that it fits in the slot that | 
 | 	 * stays open at the end. | 
 | 	 */ | 
 | 	if (initial && sched_feat(START_DEBIT)) | 
 | 		vruntime += sched_vslice(cfs_rq, se); | 
 |  | 
 | 	/* sleeps up to a single latency don't count. */ | 
 | 	if (!initial) { | 
 | 		unsigned long thresh = sysctl_sched_latency; | 
 |  | 
 | 		/* | 
 | 		 * Halve their sleep time's effect, to allow | 
 | 		 * for a gentler effect of sleepers: | 
 | 		 */ | 
 | 		if (sched_feat(GENTLE_FAIR_SLEEPERS)) | 
 | 			thresh >>= 1; | 
 |  | 
 | 		vruntime -= thresh; | 
 | 	} | 
 |  | 
 | 	/* ensure we never gain time by being placed backwards. */ | 
 | 	vruntime = max_vruntime(se->vruntime, vruntime); | 
 |  | 
 | 	se->vruntime = vruntime; | 
 | } | 
 |  | 
 | static void check_enqueue_throttle(struct cfs_rq *cfs_rq); | 
 |  | 
 | static void | 
 | enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) | 
 | { | 
 | 	/* | 
 | 	 * Update the normalized vruntime before updating min_vruntime | 
 | 	 * through callig update_curr(). | 
 | 	 */ | 
 | 	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING)) | 
 | 		se->vruntime += cfs_rq->min_vruntime; | 
 |  | 
 | 	/* | 
 | 	 * Update run-time statistics of the 'current'. | 
 | 	 */ | 
 | 	update_curr(cfs_rq); | 
 | 	update_cfs_load(cfs_rq, 0); | 
 | 	account_entity_enqueue(cfs_rq, se); | 
 | 	update_cfs_shares(cfs_rq); | 
 |  | 
 | 	if (flags & ENQUEUE_WAKEUP) { | 
 | 		place_entity(cfs_rq, se, 0); | 
 | 		enqueue_sleeper(cfs_rq, se); | 
 | 	} | 
 |  | 
 | 	update_stats_enqueue(cfs_rq, se); | 
 | 	check_spread(cfs_rq, se); | 
 | 	if (se != cfs_rq->curr) | 
 | 		__enqueue_entity(cfs_rq, se); | 
 | 	se->on_rq = 1; | 
 |  | 
 | 	if (cfs_rq->nr_running == 1) { | 
 | 		list_add_leaf_cfs_rq(cfs_rq); | 
 | 		check_enqueue_throttle(cfs_rq); | 
 | 	} | 
 | } | 
 |  | 
 | static void __clear_buddies_last(struct sched_entity *se) | 
 | { | 
 | 	for_each_sched_entity(se) { | 
 | 		struct cfs_rq *cfs_rq = cfs_rq_of(se); | 
 | 		if (cfs_rq->last == se) | 
 | 			cfs_rq->last = NULL; | 
 | 		else | 
 | 			break; | 
 | 	} | 
 | } | 
 |  | 
 | static void __clear_buddies_next(struct sched_entity *se) | 
 | { | 
 | 	for_each_sched_entity(se) { | 
 | 		struct cfs_rq *cfs_rq = cfs_rq_of(se); | 
 | 		if (cfs_rq->next == se) | 
 | 			cfs_rq->next = NULL; | 
 | 		else | 
 | 			break; | 
 | 	} | 
 | } | 
 |  | 
 | static void __clear_buddies_skip(struct sched_entity *se) | 
 | { | 
 | 	for_each_sched_entity(se) { | 
 | 		struct cfs_rq *cfs_rq = cfs_rq_of(se); | 
 | 		if (cfs_rq->skip == se) | 
 | 			cfs_rq->skip = NULL; | 
 | 		else | 
 | 			break; | 
 | 	} | 
 | } | 
 |  | 
 | static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | 	if (cfs_rq->last == se) | 
 | 		__clear_buddies_last(se); | 
 |  | 
 | 	if (cfs_rq->next == se) | 
 | 		__clear_buddies_next(se); | 
 |  | 
 | 	if (cfs_rq->skip == se) | 
 | 		__clear_buddies_skip(se); | 
 | } | 
 |  | 
 | static void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); | 
 |  | 
 | static void | 
 | dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) | 
 | { | 
 | 	/* | 
 | 	 * Update run-time statistics of the 'current'. | 
 | 	 */ | 
 | 	update_curr(cfs_rq); | 
 |  | 
 | 	update_stats_dequeue(cfs_rq, se); | 
 | 	if (flags & DEQUEUE_SLEEP) { | 
 | #ifdef CONFIG_SCHEDSTATS | 
 | 		if (entity_is_task(se)) { | 
 | 			struct task_struct *tsk = task_of(se); | 
 |  | 
 | 			if (tsk->state & TASK_INTERRUPTIBLE) | 
 | 				se->statistics.sleep_start = rq_of(cfs_rq)->clock; | 
 | 			if (tsk->state & TASK_UNINTERRUPTIBLE) | 
 | 				se->statistics.block_start = rq_of(cfs_rq)->clock; | 
 | 		} | 
 | #endif | 
 | 	} | 
 |  | 
 | 	clear_buddies(cfs_rq, se); | 
 |  | 
 | 	if (se != cfs_rq->curr) | 
 | 		__dequeue_entity(cfs_rq, se); | 
 | 	se->on_rq = 0; | 
 | 	update_cfs_load(cfs_rq, 0); | 
 | 	account_entity_dequeue(cfs_rq, se); | 
 |  | 
 | 	/* | 
 | 	 * Normalize the entity after updating the min_vruntime because the | 
 | 	 * update can refer to the ->curr item and we need to reflect this | 
 | 	 * movement in our normalized position. | 
 | 	 */ | 
 | 	if (!(flags & DEQUEUE_SLEEP)) | 
 | 		se->vruntime -= cfs_rq->min_vruntime; | 
 |  | 
 | 	/* return excess runtime on last dequeue */ | 
 | 	return_cfs_rq_runtime(cfs_rq); | 
 |  | 
 | 	update_min_vruntime(cfs_rq); | 
 | 	update_cfs_shares(cfs_rq); | 
 | } | 
 |  | 
 | /* | 
 |  * Preempt the current task with a newly woken task if needed: | 
 |  */ | 
 | static void | 
 | check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) | 
 | { | 
 | 	unsigned long ideal_runtime, delta_exec; | 
 | 	struct sched_entity *se; | 
 | 	s64 delta; | 
 |  | 
 | 	ideal_runtime = sched_slice(cfs_rq, curr); | 
 | 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; | 
 | 	if (delta_exec > ideal_runtime) { | 
 | 		resched_task(rq_of(cfs_rq)->curr); | 
 | 		/* | 
 | 		 * The current task ran long enough, ensure it doesn't get | 
 | 		 * re-elected due to buddy favours. | 
 | 		 */ | 
 | 		clear_buddies(cfs_rq, curr); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Ensure that a task that missed wakeup preemption by a | 
 | 	 * narrow margin doesn't have to wait for a full slice. | 
 | 	 * This also mitigates buddy induced latencies under load. | 
 | 	 */ | 
 | 	if (delta_exec < sysctl_sched_min_granularity) | 
 | 		return; | 
 |  | 
 | 	se = __pick_first_entity(cfs_rq); | 
 | 	delta = curr->vruntime - se->vruntime; | 
 |  | 
 | 	if (delta < 0) | 
 | 		return; | 
 |  | 
 | 	if (delta > ideal_runtime) | 
 | 		resched_task(rq_of(cfs_rq)->curr); | 
 | } | 
 |  | 
 | static void | 
 | set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | 	/* 'current' is not kept within the tree. */ | 
 | 	if (se->on_rq) { | 
 | 		/* | 
 | 		 * Any task has to be enqueued before it get to execute on | 
 | 		 * a CPU. So account for the time it spent waiting on the | 
 | 		 * runqueue. | 
 | 		 */ | 
 | 		update_stats_wait_end(cfs_rq, se); | 
 | 		__dequeue_entity(cfs_rq, se); | 
 | 	} | 
 |  | 
 | 	update_stats_curr_start(cfs_rq, se); | 
 | 	cfs_rq->curr = se; | 
 | #ifdef CONFIG_SCHEDSTATS | 
 | 	/* | 
 | 	 * Track our maximum slice length, if the CPU's load is at | 
 | 	 * least twice that of our own weight (i.e. dont track it | 
 | 	 * when there are only lesser-weight tasks around): | 
 | 	 */ | 
 | 	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { | 
 | 		se->statistics.slice_max = max(se->statistics.slice_max, | 
 | 			se->sum_exec_runtime - se->prev_sum_exec_runtime); | 
 | 	} | 
 | #endif | 
 | 	se->prev_sum_exec_runtime = se->sum_exec_runtime; | 
 | } | 
 |  | 
 | static int | 
 | wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); | 
 |  | 
 | /* | 
 |  * Pick the next process, keeping these things in mind, in this order: | 
 |  * 1) keep things fair between processes/task groups | 
 |  * 2) pick the "next" process, since someone really wants that to run | 
 |  * 3) pick the "last" process, for cache locality | 
 |  * 4) do not run the "skip" process, if something else is available | 
 |  */ | 
 | static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	struct sched_entity *se = __pick_first_entity(cfs_rq); | 
 | 	struct sched_entity *left = se; | 
 |  | 
 | 	/* | 
 | 	 * Avoid running the skip buddy, if running something else can | 
 | 	 * be done without getting too unfair. | 
 | 	 */ | 
 | 	if (cfs_rq->skip == se) { | 
 | 		struct sched_entity *second = __pick_next_entity(se); | 
 | 		if (second && wakeup_preempt_entity(second, left) < 1) | 
 | 			se = second; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Prefer last buddy, try to return the CPU to a preempted task. | 
 | 	 */ | 
 | 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) | 
 | 		se = cfs_rq->last; | 
 |  | 
 | 	/* | 
 | 	 * Someone really wants this to run. If it's not unfair, run it. | 
 | 	 */ | 
 | 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) | 
 | 		se = cfs_rq->next; | 
 |  | 
 | 	clear_buddies(cfs_rq, se); | 
 |  | 
 | 	return se; | 
 | } | 
 |  | 
 | static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq); | 
 |  | 
 | static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) | 
 | { | 
 | 	/* | 
 | 	 * If still on the runqueue then deactivate_task() | 
 | 	 * was not called and update_curr() has to be done: | 
 | 	 */ | 
 | 	if (prev->on_rq) | 
 | 		update_curr(cfs_rq); | 
 |  | 
 | 	/* throttle cfs_rqs exceeding runtime */ | 
 | 	check_cfs_rq_runtime(cfs_rq); | 
 |  | 
 | 	check_spread(cfs_rq, prev); | 
 | 	if (prev->on_rq) { | 
 | 		update_stats_wait_start(cfs_rq, prev); | 
 | 		/* Put 'current' back into the tree. */ | 
 | 		__enqueue_entity(cfs_rq, prev); | 
 | 	} | 
 | 	cfs_rq->curr = NULL; | 
 | } | 
 |  | 
 | static void | 
 | entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) | 
 | { | 
 | 	/* | 
 | 	 * Update run-time statistics of the 'current'. | 
 | 	 */ | 
 | 	update_curr(cfs_rq); | 
 |  | 
 | 	/* | 
 | 	 * Update share accounting for long-running entities. | 
 | 	 */ | 
 | 	update_entity_shares_tick(cfs_rq); | 
 |  | 
 | #ifdef CONFIG_SCHED_HRTICK | 
 | 	/* | 
 | 	 * queued ticks are scheduled to match the slice, so don't bother | 
 | 	 * validating it and just reschedule. | 
 | 	 */ | 
 | 	if (queued) { | 
 | 		resched_task(rq_of(cfs_rq)->curr); | 
 | 		return; | 
 | 	} | 
 | 	/* | 
 | 	 * don't let the period tick interfere with the hrtick preemption | 
 | 	 */ | 
 | 	if (!sched_feat(DOUBLE_TICK) && | 
 | 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) | 
 | 		return; | 
 | #endif | 
 |  | 
 | 	if (cfs_rq->nr_running > 1) | 
 | 		check_preempt_tick(cfs_rq, curr); | 
 | } | 
 |  | 
 |  | 
 | /************************************************** | 
 |  * CFS bandwidth control machinery | 
 |  */ | 
 |  | 
 | #ifdef CONFIG_CFS_BANDWIDTH | 
 |  | 
 | #ifdef HAVE_JUMP_LABEL | 
 | static struct jump_label_key __cfs_bandwidth_used; | 
 |  | 
 | static inline bool cfs_bandwidth_used(void) | 
 | { | 
 | 	return static_branch(&__cfs_bandwidth_used); | 
 | } | 
 |  | 
 | void account_cfs_bandwidth_used(int enabled, int was_enabled) | 
 | { | 
 | 	/* only need to count groups transitioning between enabled/!enabled */ | 
 | 	if (enabled && !was_enabled) | 
 | 		jump_label_inc(&__cfs_bandwidth_used); | 
 | 	else if (!enabled && was_enabled) | 
 | 		jump_label_dec(&__cfs_bandwidth_used); | 
 | } | 
 | #else /* HAVE_JUMP_LABEL */ | 
 | static bool cfs_bandwidth_used(void) | 
 | { | 
 | 	return true; | 
 | } | 
 |  | 
 | void account_cfs_bandwidth_used(int enabled, int was_enabled) {} | 
 | #endif /* HAVE_JUMP_LABEL */ | 
 |  | 
 | /* | 
 |  * default period for cfs group bandwidth. | 
 |  * default: 0.1s, units: nanoseconds | 
 |  */ | 
 | static inline u64 default_cfs_period(void) | 
 | { | 
 | 	return 100000000ULL; | 
 | } | 
 |  | 
 | static inline u64 sched_cfs_bandwidth_slice(void) | 
 | { | 
 | 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; | 
 | } | 
 |  | 
 | /* | 
 |  * Replenish runtime according to assigned quota and update expiration time. | 
 |  * We use sched_clock_cpu directly instead of rq->clock to avoid adding | 
 |  * additional synchronization around rq->lock. | 
 |  * | 
 |  * requires cfs_b->lock | 
 |  */ | 
 | void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) | 
 | { | 
 | 	u64 now; | 
 |  | 
 | 	if (cfs_b->quota == RUNTIME_INF) | 
 | 		return; | 
 |  | 
 | 	now = sched_clock_cpu(smp_processor_id()); | 
 | 	cfs_b->runtime = cfs_b->quota; | 
 | 	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period); | 
 | } | 
 |  | 
 | static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) | 
 | { | 
 | 	return &tg->cfs_bandwidth; | 
 | } | 
 |  | 
 | /* returns 0 on failure to allocate runtime */ | 
 | static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	struct task_group *tg = cfs_rq->tg; | 
 | 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); | 
 | 	u64 amount = 0, min_amount, expires; | 
 |  | 
 | 	/* note: this is a positive sum as runtime_remaining <= 0 */ | 
 | 	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; | 
 |  | 
 | 	raw_spin_lock(&cfs_b->lock); | 
 | 	if (cfs_b->quota == RUNTIME_INF) | 
 | 		amount = min_amount; | 
 | 	else { | 
 | 		/* | 
 | 		 * If the bandwidth pool has become inactive, then at least one | 
 | 		 * period must have elapsed since the last consumption. | 
 | 		 * Refresh the global state and ensure bandwidth timer becomes | 
 | 		 * active. | 
 | 		 */ | 
 | 		if (!cfs_b->timer_active) { | 
 | 			__refill_cfs_bandwidth_runtime(cfs_b); | 
 | 			__start_cfs_bandwidth(cfs_b); | 
 | 		} | 
 |  | 
 | 		if (cfs_b->runtime > 0) { | 
 | 			amount = min(cfs_b->runtime, min_amount); | 
 | 			cfs_b->runtime -= amount; | 
 | 			cfs_b->idle = 0; | 
 | 		} | 
 | 	} | 
 | 	expires = cfs_b->runtime_expires; | 
 | 	raw_spin_unlock(&cfs_b->lock); | 
 |  | 
 | 	cfs_rq->runtime_remaining += amount; | 
 | 	/* | 
 | 	 * we may have advanced our local expiration to account for allowed | 
 | 	 * spread between our sched_clock and the one on which runtime was | 
 | 	 * issued. | 
 | 	 */ | 
 | 	if ((s64)(expires - cfs_rq->runtime_expires) > 0) | 
 | 		cfs_rq->runtime_expires = expires; | 
 |  | 
 | 	return cfs_rq->runtime_remaining > 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Note: This depends on the synchronization provided by sched_clock and the | 
 |  * fact that rq->clock snapshots this value. | 
 |  */ | 
 | static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); | 
 | 	struct rq *rq = rq_of(cfs_rq); | 
 |  | 
 | 	/* if the deadline is ahead of our clock, nothing to do */ | 
 | 	if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0)) | 
 | 		return; | 
 |  | 
 | 	if (cfs_rq->runtime_remaining < 0) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * If the local deadline has passed we have to consider the | 
 | 	 * possibility that our sched_clock is 'fast' and the global deadline | 
 | 	 * has not truly expired. | 
 | 	 * | 
 | 	 * Fortunately we can check determine whether this the case by checking | 
 | 	 * whether the global deadline has advanced. | 
 | 	 */ | 
 |  | 
 | 	if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) { | 
 | 		/* extend local deadline, drift is bounded above by 2 ticks */ | 
 | 		cfs_rq->runtime_expires += TICK_NSEC; | 
 | 	} else { | 
 | 		/* global deadline is ahead, expiration has passed */ | 
 | 		cfs_rq->runtime_remaining = 0; | 
 | 	} | 
 | } | 
 |  | 
 | static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, | 
 | 				     unsigned long delta_exec) | 
 | { | 
 | 	/* dock delta_exec before expiring quota (as it could span periods) */ | 
 | 	cfs_rq->runtime_remaining -= delta_exec; | 
 | 	expire_cfs_rq_runtime(cfs_rq); | 
 |  | 
 | 	if (likely(cfs_rq->runtime_remaining > 0)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * if we're unable to extend our runtime we resched so that the active | 
 | 	 * hierarchy can be throttled | 
 | 	 */ | 
 | 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) | 
 | 		resched_task(rq_of(cfs_rq)->curr); | 
 | } | 
 |  | 
 | static __always_inline void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, | 
 | 						   unsigned long delta_exec) | 
 | { | 
 | 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) | 
 | 		return; | 
 |  | 
 | 	__account_cfs_rq_runtime(cfs_rq, delta_exec); | 
 | } | 
 |  | 
 | static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	return cfs_bandwidth_used() && cfs_rq->throttled; | 
 | } | 
 |  | 
 | /* check whether cfs_rq, or any parent, is throttled */ | 
 | static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	return cfs_bandwidth_used() && cfs_rq->throttle_count; | 
 | } | 
 |  | 
 | /* | 
 |  * Ensure that neither of the group entities corresponding to src_cpu or | 
 |  * dest_cpu are members of a throttled hierarchy when performing group | 
 |  * load-balance operations. | 
 |  */ | 
 | static inline int throttled_lb_pair(struct task_group *tg, | 
 | 				    int src_cpu, int dest_cpu) | 
 | { | 
 | 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq; | 
 |  | 
 | 	src_cfs_rq = tg->cfs_rq[src_cpu]; | 
 | 	dest_cfs_rq = tg->cfs_rq[dest_cpu]; | 
 |  | 
 | 	return throttled_hierarchy(src_cfs_rq) || | 
 | 	       throttled_hierarchy(dest_cfs_rq); | 
 | } | 
 |  | 
 | /* updated child weight may affect parent so we have to do this bottom up */ | 
 | static int tg_unthrottle_up(struct task_group *tg, void *data) | 
 | { | 
 | 	struct rq *rq = data; | 
 | 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; | 
 |  | 
 | 	cfs_rq->throttle_count--; | 
 | #ifdef CONFIG_SMP | 
 | 	if (!cfs_rq->throttle_count) { | 
 | 		u64 delta = rq->clock_task - cfs_rq->load_stamp; | 
 |  | 
 | 		/* leaving throttled state, advance shares averaging windows */ | 
 | 		cfs_rq->load_stamp += delta; | 
 | 		cfs_rq->load_last += delta; | 
 |  | 
 | 		/* update entity weight now that we are on_rq again */ | 
 | 		update_cfs_shares(cfs_rq); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int tg_throttle_down(struct task_group *tg, void *data) | 
 | { | 
 | 	struct rq *rq = data; | 
 | 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; | 
 |  | 
 | 	/* group is entering throttled state, record last load */ | 
 | 	if (!cfs_rq->throttle_count) | 
 | 		update_cfs_load(cfs_rq, 0); | 
 | 	cfs_rq->throttle_count++; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void throttle_cfs_rq(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	struct rq *rq = rq_of(cfs_rq); | 
 | 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); | 
 | 	struct sched_entity *se; | 
 | 	long task_delta, dequeue = 1; | 
 |  | 
 | 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; | 
 |  | 
 | 	/* account load preceding throttle */ | 
 | 	rcu_read_lock(); | 
 | 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	task_delta = cfs_rq->h_nr_running; | 
 | 	for_each_sched_entity(se) { | 
 | 		struct cfs_rq *qcfs_rq = cfs_rq_of(se); | 
 | 		/* throttled entity or throttle-on-deactivate */ | 
 | 		if (!se->on_rq) | 
 | 			break; | 
 |  | 
 | 		if (dequeue) | 
 | 			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); | 
 | 		qcfs_rq->h_nr_running -= task_delta; | 
 |  | 
 | 		if (qcfs_rq->load.weight) | 
 | 			dequeue = 0; | 
 | 	} | 
 |  | 
 | 	if (!se) | 
 | 		rq->nr_running -= task_delta; | 
 |  | 
 | 	cfs_rq->throttled = 1; | 
 | 	cfs_rq->throttled_timestamp = rq->clock; | 
 | 	raw_spin_lock(&cfs_b->lock); | 
 | 	list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); | 
 | 	raw_spin_unlock(&cfs_b->lock); | 
 | } | 
 |  | 
 | void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	struct rq *rq = rq_of(cfs_rq); | 
 | 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); | 
 | 	struct sched_entity *se; | 
 | 	int enqueue = 1; | 
 | 	long task_delta; | 
 |  | 
 | 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; | 
 |  | 
 | 	cfs_rq->throttled = 0; | 
 | 	raw_spin_lock(&cfs_b->lock); | 
 | 	cfs_b->throttled_time += rq->clock - cfs_rq->throttled_timestamp; | 
 | 	list_del_rcu(&cfs_rq->throttled_list); | 
 | 	raw_spin_unlock(&cfs_b->lock); | 
 | 	cfs_rq->throttled_timestamp = 0; | 
 |  | 
 | 	update_rq_clock(rq); | 
 | 	/* update hierarchical throttle state */ | 
 | 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); | 
 |  | 
 | 	if (!cfs_rq->load.weight) | 
 | 		return; | 
 |  | 
 | 	task_delta = cfs_rq->h_nr_running; | 
 | 	for_each_sched_entity(se) { | 
 | 		if (se->on_rq) | 
 | 			enqueue = 0; | 
 |  | 
 | 		cfs_rq = cfs_rq_of(se); | 
 | 		if (enqueue) | 
 | 			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); | 
 | 		cfs_rq->h_nr_running += task_delta; | 
 |  | 
 | 		if (cfs_rq_throttled(cfs_rq)) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	if (!se) | 
 | 		rq->nr_running += task_delta; | 
 |  | 
 | 	/* determine whether we need to wake up potentially idle cpu */ | 
 | 	if (rq->curr == rq->idle && rq->cfs.nr_running) | 
 | 		resched_task(rq->curr); | 
 | } | 
 |  | 
 | static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, | 
 | 		u64 remaining, u64 expires) | 
 | { | 
 | 	struct cfs_rq *cfs_rq; | 
 | 	u64 runtime = remaining; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, | 
 | 				throttled_list) { | 
 | 		struct rq *rq = rq_of(cfs_rq); | 
 |  | 
 | 		raw_spin_lock(&rq->lock); | 
 | 		if (!cfs_rq_throttled(cfs_rq)) | 
 | 			goto next; | 
 |  | 
 | 		runtime = -cfs_rq->runtime_remaining + 1; | 
 | 		if (runtime > remaining) | 
 | 			runtime = remaining; | 
 | 		remaining -= runtime; | 
 |  | 
 | 		cfs_rq->runtime_remaining += runtime; | 
 | 		cfs_rq->runtime_expires = expires; | 
 |  | 
 | 		/* we check whether we're throttled above */ | 
 | 		if (cfs_rq->runtime_remaining > 0) | 
 | 			unthrottle_cfs_rq(cfs_rq); | 
 |  | 
 | next: | 
 | 		raw_spin_unlock(&rq->lock); | 
 |  | 
 | 		if (!remaining) | 
 | 			break; | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return remaining; | 
 | } | 
 |  | 
 | /* | 
 |  * Responsible for refilling a task_group's bandwidth and unthrottling its | 
 |  * cfs_rqs as appropriate. If there has been no activity within the last | 
 |  * period the timer is deactivated until scheduling resumes; cfs_b->idle is | 
 |  * used to track this state. | 
 |  */ | 
 | static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun) | 
 | { | 
 | 	u64 runtime, runtime_expires; | 
 | 	int idle = 1, throttled; | 
 |  | 
 | 	raw_spin_lock(&cfs_b->lock); | 
 | 	/* no need to continue the timer with no bandwidth constraint */ | 
 | 	if (cfs_b->quota == RUNTIME_INF) | 
 | 		goto out_unlock; | 
 |  | 
 | 	throttled = !list_empty(&cfs_b->throttled_cfs_rq); | 
 | 	/* idle depends on !throttled (for the case of a large deficit) */ | 
 | 	idle = cfs_b->idle && !throttled; | 
 | 	cfs_b->nr_periods += overrun; | 
 |  | 
 | 	/* if we're going inactive then everything else can be deferred */ | 
 | 	if (idle) | 
 | 		goto out_unlock; | 
 |  | 
 | 	__refill_cfs_bandwidth_runtime(cfs_b); | 
 |  | 
 | 	if (!throttled) { | 
 | 		/* mark as potentially idle for the upcoming period */ | 
 | 		cfs_b->idle = 1; | 
 | 		goto out_unlock; | 
 | 	} | 
 |  | 
 | 	/* account preceding periods in which throttling occurred */ | 
 | 	cfs_b->nr_throttled += overrun; | 
 |  | 
 | 	/* | 
 | 	 * There are throttled entities so we must first use the new bandwidth | 
 | 	 * to unthrottle them before making it generally available.  This | 
 | 	 * ensures that all existing debts will be paid before a new cfs_rq is | 
 | 	 * allowed to run. | 
 | 	 */ | 
 | 	runtime = cfs_b->runtime; | 
 | 	runtime_expires = cfs_b->runtime_expires; | 
 | 	cfs_b->runtime = 0; | 
 |  | 
 | 	/* | 
 | 	 * This check is repeated as we are holding onto the new bandwidth | 
 | 	 * while we unthrottle.  This can potentially race with an unthrottled | 
 | 	 * group trying to acquire new bandwidth from the global pool. | 
 | 	 */ | 
 | 	while (throttled && runtime > 0) { | 
 | 		raw_spin_unlock(&cfs_b->lock); | 
 | 		/* we can't nest cfs_b->lock while distributing bandwidth */ | 
 | 		runtime = distribute_cfs_runtime(cfs_b, runtime, | 
 | 						 runtime_expires); | 
 | 		raw_spin_lock(&cfs_b->lock); | 
 |  | 
 | 		throttled = !list_empty(&cfs_b->throttled_cfs_rq); | 
 | 	} | 
 |  | 
 | 	/* return (any) remaining runtime */ | 
 | 	cfs_b->runtime = runtime; | 
 | 	/* | 
 | 	 * While we are ensured activity in the period following an | 
 | 	 * unthrottle, this also covers the case in which the new bandwidth is | 
 | 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the | 
 | 	 * timer to remain active while there are any throttled entities.) | 
 | 	 */ | 
 | 	cfs_b->idle = 0; | 
 | out_unlock: | 
 | 	if (idle) | 
 | 		cfs_b->timer_active = 0; | 
 | 	raw_spin_unlock(&cfs_b->lock); | 
 |  | 
 | 	return idle; | 
 | } | 
 |  | 
 | /* a cfs_rq won't donate quota below this amount */ | 
 | static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; | 
 | /* minimum remaining period time to redistribute slack quota */ | 
 | static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; | 
 | /* how long we wait to gather additional slack before distributing */ | 
 | static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; | 
 |  | 
 | /* are we near the end of the current quota period? */ | 
 | static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) | 
 | { | 
 | 	struct hrtimer *refresh_timer = &cfs_b->period_timer; | 
 | 	u64 remaining; | 
 |  | 
 | 	/* if the call-back is running a quota refresh is already occurring */ | 
 | 	if (hrtimer_callback_running(refresh_timer)) | 
 | 		return 1; | 
 |  | 
 | 	/* is a quota refresh about to occur? */ | 
 | 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); | 
 | 	if (remaining < min_expire) | 
 | 		return 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) | 
 | { | 
 | 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; | 
 |  | 
 | 	/* if there's a quota refresh soon don't bother with slack */ | 
 | 	if (runtime_refresh_within(cfs_b, min_left)) | 
 | 		return; | 
 |  | 
 | 	start_bandwidth_timer(&cfs_b->slack_timer, | 
 | 				ns_to_ktime(cfs_bandwidth_slack_period)); | 
 | } | 
 |  | 
 | /* we know any runtime found here is valid as update_curr() precedes return */ | 
 | static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); | 
 | 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; | 
 |  | 
 | 	if (slack_runtime <= 0) | 
 | 		return; | 
 |  | 
 | 	raw_spin_lock(&cfs_b->lock); | 
 | 	if (cfs_b->quota != RUNTIME_INF && | 
 | 	    cfs_rq->runtime_expires == cfs_b->runtime_expires) { | 
 | 		cfs_b->runtime += slack_runtime; | 
 |  | 
 | 		/* we are under rq->lock, defer unthrottling using a timer */ | 
 | 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() && | 
 | 		    !list_empty(&cfs_b->throttled_cfs_rq)) | 
 | 			start_cfs_slack_bandwidth(cfs_b); | 
 | 	} | 
 | 	raw_spin_unlock(&cfs_b->lock); | 
 |  | 
 | 	/* even if it's not valid for return we don't want to try again */ | 
 | 	cfs_rq->runtime_remaining -= slack_runtime; | 
 | } | 
 |  | 
 | static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	if (!cfs_bandwidth_used()) | 
 | 		return; | 
 |  | 
 | 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) | 
 | 		return; | 
 |  | 
 | 	__return_cfs_rq_runtime(cfs_rq); | 
 | } | 
 |  | 
 | /* | 
 |  * This is done with a timer (instead of inline with bandwidth return) since | 
 |  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. | 
 |  */ | 
 | static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) | 
 | { | 
 | 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); | 
 | 	u64 expires; | 
 |  | 
 | 	/* confirm we're still not at a refresh boundary */ | 
 | 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) | 
 | 		return; | 
 |  | 
 | 	raw_spin_lock(&cfs_b->lock); | 
 | 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) { | 
 | 		runtime = cfs_b->runtime; | 
 | 		cfs_b->runtime = 0; | 
 | 	} | 
 | 	expires = cfs_b->runtime_expires; | 
 | 	raw_spin_unlock(&cfs_b->lock); | 
 |  | 
 | 	if (!runtime) | 
 | 		return; | 
 |  | 
 | 	runtime = distribute_cfs_runtime(cfs_b, runtime, expires); | 
 |  | 
 | 	raw_spin_lock(&cfs_b->lock); | 
 | 	if (expires == cfs_b->runtime_expires) | 
 | 		cfs_b->runtime = runtime; | 
 | 	raw_spin_unlock(&cfs_b->lock); | 
 | } | 
 |  | 
 | /* | 
 |  * When a group wakes up we want to make sure that its quota is not already | 
 |  * expired/exceeded, otherwise it may be allowed to steal additional ticks of | 
 |  * runtime as update_curr() throttling can not not trigger until it's on-rq. | 
 |  */ | 
 | static void check_enqueue_throttle(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	if (!cfs_bandwidth_used()) | 
 | 		return; | 
 |  | 
 | 	/* an active group must be handled by the update_curr()->put() path */ | 
 | 	if (!cfs_rq->runtime_enabled || cfs_rq->curr) | 
 | 		return; | 
 |  | 
 | 	/* ensure the group is not already throttled */ | 
 | 	if (cfs_rq_throttled(cfs_rq)) | 
 | 		return; | 
 |  | 
 | 	/* update runtime allocation */ | 
 | 	account_cfs_rq_runtime(cfs_rq, 0); | 
 | 	if (cfs_rq->runtime_remaining <= 0) | 
 | 		throttle_cfs_rq(cfs_rq); | 
 | } | 
 |  | 
 | /* conditionally throttle active cfs_rq's from put_prev_entity() */ | 
 | static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	if (!cfs_bandwidth_used()) | 
 | 		return; | 
 |  | 
 | 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * it's possible for a throttled entity to be forced into a running | 
 | 	 * state (e.g. set_curr_task), in this case we're finished. | 
 | 	 */ | 
 | 	if (cfs_rq_throttled(cfs_rq)) | 
 | 		return; | 
 |  | 
 | 	throttle_cfs_rq(cfs_rq); | 
 | } | 
 |  | 
 | static inline u64 default_cfs_period(void); | 
 | static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun); | 
 | static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b); | 
 |  | 
 | static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) | 
 | { | 
 | 	struct cfs_bandwidth *cfs_b = | 
 | 		container_of(timer, struct cfs_bandwidth, slack_timer); | 
 | 	do_sched_cfs_slack_timer(cfs_b); | 
 |  | 
 | 	return HRTIMER_NORESTART; | 
 | } | 
 |  | 
 | static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) | 
 | { | 
 | 	struct cfs_bandwidth *cfs_b = | 
 | 		container_of(timer, struct cfs_bandwidth, period_timer); | 
 | 	ktime_t now; | 
 | 	int overrun; | 
 | 	int idle = 0; | 
 |  | 
 | 	for (;;) { | 
 | 		now = hrtimer_cb_get_time(timer); | 
 | 		overrun = hrtimer_forward(timer, now, cfs_b->period); | 
 |  | 
 | 		if (!overrun) | 
 | 			break; | 
 |  | 
 | 		idle = do_sched_cfs_period_timer(cfs_b, overrun); | 
 | 	} | 
 |  | 
 | 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; | 
 | } | 
 |  | 
 | void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) | 
 | { | 
 | 	raw_spin_lock_init(&cfs_b->lock); | 
 | 	cfs_b->runtime = 0; | 
 | 	cfs_b->quota = RUNTIME_INF; | 
 | 	cfs_b->period = ns_to_ktime(default_cfs_period()); | 
 |  | 
 | 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); | 
 | 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | 
 | 	cfs_b->period_timer.function = sched_cfs_period_timer; | 
 | 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | 
 | 	cfs_b->slack_timer.function = sched_cfs_slack_timer; | 
 | } | 
 |  | 
 | static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	cfs_rq->runtime_enabled = 0; | 
 | 	INIT_LIST_HEAD(&cfs_rq->throttled_list); | 
 | } | 
 |  | 
 | /* requires cfs_b->lock, may release to reprogram timer */ | 
 | void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) | 
 | { | 
 | 	/* | 
 | 	 * The timer may be active because we're trying to set a new bandwidth | 
 | 	 * period or because we're racing with the tear-down path | 
 | 	 * (timer_active==0 becomes visible before the hrtimer call-back | 
 | 	 * terminates).  In either case we ensure that it's re-programmed | 
 | 	 */ | 
 | 	while (unlikely(hrtimer_active(&cfs_b->period_timer))) { | 
 | 		raw_spin_unlock(&cfs_b->lock); | 
 | 		/* ensure cfs_b->lock is available while we wait */ | 
 | 		hrtimer_cancel(&cfs_b->period_timer); | 
 |  | 
 | 		raw_spin_lock(&cfs_b->lock); | 
 | 		/* if someone else restarted the timer then we're done */ | 
 | 		if (cfs_b->timer_active) | 
 | 			return; | 
 | 	} | 
 |  | 
 | 	cfs_b->timer_active = 1; | 
 | 	start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period); | 
 | } | 
 |  | 
 | static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) | 
 | { | 
 | 	hrtimer_cancel(&cfs_b->period_timer); | 
 | 	hrtimer_cancel(&cfs_b->slack_timer); | 
 | } | 
 |  | 
 | void unthrottle_offline_cfs_rqs(struct rq *rq) | 
 | { | 
 | 	struct cfs_rq *cfs_rq; | 
 |  | 
 | 	for_each_leaf_cfs_rq(rq, cfs_rq) { | 
 | 		struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); | 
 |  | 
 | 		if (!cfs_rq->runtime_enabled) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * clock_task is not advancing so we just need to make sure | 
 | 		 * there's some valid quota amount | 
 | 		 */ | 
 | 		cfs_rq->runtime_remaining = cfs_b->quota; | 
 | 		if (cfs_rq_throttled(cfs_rq)) | 
 | 			unthrottle_cfs_rq(cfs_rq); | 
 | 	} | 
 | } | 
 |  | 
 | #else /* CONFIG_CFS_BANDWIDTH */ | 
 | static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, | 
 | 				     unsigned long delta_exec) {} | 
 | static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} | 
 | static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} | 
 | static void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} | 
 |  | 
 | static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int throttled_lb_pair(struct task_group *tg, | 
 | 				    int src_cpu, int dest_cpu) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} | 
 | #endif | 
 |  | 
 | static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) | 
 | { | 
 | 	return NULL; | 
 | } | 
 | static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} | 
 | void unthrottle_offline_cfs_rqs(struct rq *rq) {} | 
 |  | 
 | #endif /* CONFIG_CFS_BANDWIDTH */ | 
 |  | 
 | /************************************************** | 
 |  * CFS operations on tasks: | 
 |  */ | 
 |  | 
 | #ifdef CONFIG_SCHED_HRTICK | 
 | static void hrtick_start_fair(struct rq *rq, struct task_struct *p) | 
 | { | 
 | 	struct sched_entity *se = &p->se; | 
 | 	struct cfs_rq *cfs_rq = cfs_rq_of(se); | 
 |  | 
 | 	WARN_ON(task_rq(p) != rq); | 
 |  | 
 | 	if (cfs_rq->nr_running > 1) { | 
 | 		u64 slice = sched_slice(cfs_rq, se); | 
 | 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; | 
 | 		s64 delta = slice - ran; | 
 |  | 
 | 		if (delta < 0) { | 
 | 			if (rq->curr == p) | 
 | 				resched_task(p); | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Don't schedule slices shorter than 10000ns, that just | 
 | 		 * doesn't make sense. Rely on vruntime for fairness. | 
 | 		 */ | 
 | 		if (rq->curr != p) | 
 | 			delta = max_t(s64, 10000LL, delta); | 
 |  | 
 | 		hrtick_start(rq, delta); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * called from enqueue/dequeue and updates the hrtick when the | 
 |  * current task is from our class and nr_running is low enough | 
 |  * to matter. | 
 |  */ | 
 | static void hrtick_update(struct rq *rq) | 
 | { | 
 | 	struct task_struct *curr = rq->curr; | 
 |  | 
 | 	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) | 
 | 		return; | 
 |  | 
 | 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) | 
 | 		hrtick_start_fair(rq, curr); | 
 | } | 
 | #else /* !CONFIG_SCHED_HRTICK */ | 
 | static inline void | 
 | hrtick_start_fair(struct rq *rq, struct task_struct *p) | 
 | { | 
 | } | 
 |  | 
 | static inline void hrtick_update(struct rq *rq) | 
 | { | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * The enqueue_task method is called before nr_running is | 
 |  * increased. Here we update the fair scheduling stats and | 
 |  * then put the task into the rbtree: | 
 |  */ | 
 | static void | 
 | enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) | 
 | { | 
 | 	struct cfs_rq *cfs_rq; | 
 | 	struct sched_entity *se = &p->se; | 
 |  | 
 | 	for_each_sched_entity(se) { | 
 | 		if (se->on_rq) | 
 | 			break; | 
 | 		cfs_rq = cfs_rq_of(se); | 
 | 		enqueue_entity(cfs_rq, se, flags); | 
 |  | 
 | 		/* | 
 | 		 * end evaluation on encountering a throttled cfs_rq | 
 | 		 * | 
 | 		 * note: in the case of encountering a throttled cfs_rq we will | 
 | 		 * post the final h_nr_running increment below. | 
 | 		*/ | 
 | 		if (cfs_rq_throttled(cfs_rq)) | 
 | 			break; | 
 | 		cfs_rq->h_nr_running++; | 
 |  | 
 | 		flags = ENQUEUE_WAKEUP; | 
 | 	} | 
 |  | 
 | 	for_each_sched_entity(se) { | 
 | 		cfs_rq = cfs_rq_of(se); | 
 | 		cfs_rq->h_nr_running++; | 
 |  | 
 | 		if (cfs_rq_throttled(cfs_rq)) | 
 | 			break; | 
 |  | 
 | 		update_cfs_load(cfs_rq, 0); | 
 | 		update_cfs_shares(cfs_rq); | 
 | 	} | 
 |  | 
 | 	if (!se) | 
 | 		inc_nr_running(rq); | 
 | 	hrtick_update(rq); | 
 | } | 
 |  | 
 | static void set_next_buddy(struct sched_entity *se); | 
 |  | 
 | /* | 
 |  * The dequeue_task method is called before nr_running is | 
 |  * decreased. We remove the task from the rbtree and | 
 |  * update the fair scheduling stats: | 
 |  */ | 
 | static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) | 
 | { | 
 | 	struct cfs_rq *cfs_rq; | 
 | 	struct sched_entity *se = &p->se; | 
 | 	int task_sleep = flags & DEQUEUE_SLEEP; | 
 |  | 
 | 	for_each_sched_entity(se) { | 
 | 		cfs_rq = cfs_rq_of(se); | 
 | 		dequeue_entity(cfs_rq, se, flags); | 
 |  | 
 | 		/* | 
 | 		 * end evaluation on encountering a throttled cfs_rq | 
 | 		 * | 
 | 		 * note: in the case of encountering a throttled cfs_rq we will | 
 | 		 * post the final h_nr_running decrement below. | 
 | 		*/ | 
 | 		if (cfs_rq_throttled(cfs_rq)) | 
 | 			break; | 
 | 		cfs_rq->h_nr_running--; | 
 |  | 
 | 		/* Don't dequeue parent if it has other entities besides us */ | 
 | 		if (cfs_rq->load.weight) { | 
 | 			/* | 
 | 			 * Bias pick_next to pick a task from this cfs_rq, as | 
 | 			 * p is sleeping when it is within its sched_slice. | 
 | 			 */ | 
 | 			if (task_sleep && parent_entity(se)) | 
 | 				set_next_buddy(parent_entity(se)); | 
 |  | 
 | 			/* avoid re-evaluating load for this entity */ | 
 | 			se = parent_entity(se); | 
 | 			break; | 
 | 		} | 
 | 		flags |= DEQUEUE_SLEEP; | 
 | 	} | 
 |  | 
 | 	for_each_sched_entity(se) { | 
 | 		cfs_rq = cfs_rq_of(se); | 
 | 		cfs_rq->h_nr_running--; | 
 |  | 
 | 		if (cfs_rq_throttled(cfs_rq)) | 
 | 			break; | 
 |  | 
 | 		update_cfs_load(cfs_rq, 0); | 
 | 		update_cfs_shares(cfs_rq); | 
 | 	} | 
 |  | 
 | 	if (!se) | 
 | 		dec_nr_running(rq); | 
 | 	hrtick_update(rq); | 
 | } | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | /* Used instead of source_load when we know the type == 0 */ | 
 | static unsigned long weighted_cpuload(const int cpu) | 
 | { | 
 | 	return cpu_rq(cpu)->load.weight; | 
 | } | 
 |  | 
 | /* | 
 |  * Return a low guess at the load of a migration-source cpu weighted | 
 |  * according to the scheduling class and "nice" value. | 
 |  * | 
 |  * We want to under-estimate the load of migration sources, to | 
 |  * balance conservatively. | 
 |  */ | 
 | static unsigned long source_load(int cpu, int type) | 
 | { | 
 | 	struct rq *rq = cpu_rq(cpu); | 
 | 	unsigned long total = weighted_cpuload(cpu); | 
 |  | 
 | 	if (type == 0 || !sched_feat(LB_BIAS)) | 
 | 		return total; | 
 |  | 
 | 	return min(rq->cpu_load[type-1], total); | 
 | } | 
 |  | 
 | /* | 
 |  * Return a high guess at the load of a migration-target cpu weighted | 
 |  * according to the scheduling class and "nice" value. | 
 |  */ | 
 | static unsigned long target_load(int cpu, int type) | 
 | { | 
 | 	struct rq *rq = cpu_rq(cpu); | 
 | 	unsigned long total = weighted_cpuload(cpu); | 
 |  | 
 | 	if (type == 0 || !sched_feat(LB_BIAS)) | 
 | 		return total; | 
 |  | 
 | 	return max(rq->cpu_load[type-1], total); | 
 | } | 
 |  | 
 | static unsigned long power_of(int cpu) | 
 | { | 
 | 	return cpu_rq(cpu)->cpu_power; | 
 | } | 
 |  | 
 | static unsigned long cpu_avg_load_per_task(int cpu) | 
 | { | 
 | 	struct rq *rq = cpu_rq(cpu); | 
 | 	unsigned long nr_running = ACCESS_ONCE(rq->nr_running); | 
 |  | 
 | 	if (nr_running) | 
 | 		return rq->load.weight / nr_running; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | static void task_waking_fair(struct task_struct *p) | 
 | { | 
 | 	struct sched_entity *se = &p->se; | 
 | 	struct cfs_rq *cfs_rq = cfs_rq_of(se); | 
 | 	u64 min_vruntime; | 
 |  | 
 | #ifndef CONFIG_64BIT | 
 | 	u64 min_vruntime_copy; | 
 |  | 
 | 	do { | 
 | 		min_vruntime_copy = cfs_rq->min_vruntime_copy; | 
 | 		smp_rmb(); | 
 | 		min_vruntime = cfs_rq->min_vruntime; | 
 | 	} while (min_vruntime != min_vruntime_copy); | 
 | #else | 
 | 	min_vruntime = cfs_rq->min_vruntime; | 
 | #endif | 
 |  | 
 | 	se->vruntime -= min_vruntime; | 
 | } | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | /* | 
 |  * effective_load() calculates the load change as seen from the root_task_group | 
 |  * | 
 |  * Adding load to a group doesn't make a group heavier, but can cause movement | 
 |  * of group shares between cpus. Assuming the shares were perfectly aligned one | 
 |  * can calculate the shift in shares. | 
 |  * | 
 |  * Calculate the effective load difference if @wl is added (subtracted) to @tg | 
 |  * on this @cpu and results in a total addition (subtraction) of @wg to the | 
 |  * total group weight. | 
 |  * | 
 |  * Given a runqueue weight distribution (rw_i) we can compute a shares | 
 |  * distribution (s_i) using: | 
 |  * | 
 |  *   s_i = rw_i / \Sum rw_j						(1) | 
 |  * | 
 |  * Suppose we have 4 CPUs and our @tg is a direct child of the root group and | 
 |  * has 7 equal weight tasks, distributed as below (rw_i), with the resulting | 
 |  * shares distribution (s_i): | 
 |  * | 
 |  *   rw_i = {   2,   4,   1,   0 } | 
 |  *   s_i  = { 2/7, 4/7, 1/7,   0 } | 
 |  * | 
 |  * As per wake_affine() we're interested in the load of two CPUs (the CPU the | 
 |  * task used to run on and the CPU the waker is running on), we need to | 
 |  * compute the effect of waking a task on either CPU and, in case of a sync | 
 |  * wakeup, compute the effect of the current task going to sleep. | 
 |  * | 
 |  * So for a change of @wl to the local @cpu with an overall group weight change | 
 |  * of @wl we can compute the new shares distribution (s'_i) using: | 
 |  * | 
 |  *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2) | 
 |  * | 
 |  * Suppose we're interested in CPUs 0 and 1, and want to compute the load | 
 |  * differences in waking a task to CPU 0. The additional task changes the | 
 |  * weight and shares distributions like: | 
 |  * | 
 |  *   rw'_i = {   3,   4,   1,   0 } | 
 |  *   s'_i  = { 3/8, 4/8, 1/8,   0 } | 
 |  * | 
 |  * We can then compute the difference in effective weight by using: | 
 |  * | 
 |  *   dw_i = S * (s'_i - s_i)						(3) | 
 |  * | 
 |  * Where 'S' is the group weight as seen by its parent. | 
 |  * | 
 |  * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7) | 
 |  * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 - | 
 |  * 4/7) times the weight of the group. | 
 |  */ | 
 | static long effective_load(struct task_group *tg, int cpu, long wl, long wg) | 
 | { | 
 | 	struct sched_entity *se = tg->se[cpu]; | 
 |  | 
 | 	if (!tg->parent)	/* the trivial, non-cgroup case */ | 
 | 		return wl; | 
 |  | 
 | 	for_each_sched_entity(se) { | 
 | 		long w, W; | 
 |  | 
 | 		tg = se->my_q->tg; | 
 |  | 
 | 		/* | 
 | 		 * W = @wg + \Sum rw_j | 
 | 		 */ | 
 | 		W = wg + calc_tg_weight(tg, se->my_q); | 
 |  | 
 | 		/* | 
 | 		 * w = rw_i + @wl | 
 | 		 */ | 
 | 		w = se->my_q->load.weight + wl; | 
 |  | 
 | 		/* | 
 | 		 * wl = S * s'_i; see (2) | 
 | 		 */ | 
 | 		if (W > 0 && w < W) | 
 | 			wl = (w * tg->shares) / W; | 
 | 		else | 
 | 			wl = tg->shares; | 
 |  | 
 | 		/* | 
 | 		 * Per the above, wl is the new se->load.weight value; since | 
 | 		 * those are clipped to [MIN_SHARES, ...) do so now. See | 
 | 		 * calc_cfs_shares(). | 
 | 		 */ | 
 | 		if (wl < MIN_SHARES) | 
 | 			wl = MIN_SHARES; | 
 |  | 
 | 		/* | 
 | 		 * wl = dw_i = S * (s'_i - s_i); see (3) | 
 | 		 */ | 
 | 		wl -= se->load.weight; | 
 |  | 
 | 		/* | 
 | 		 * Recursively apply this logic to all parent groups to compute | 
 | 		 * the final effective load change on the root group. Since | 
 | 		 * only the @tg group gets extra weight, all parent groups can | 
 | 		 * only redistribute existing shares. @wl is the shift in shares | 
 | 		 * resulting from this level per the above. | 
 | 		 */ | 
 | 		wg = 0; | 
 | 	} | 
 |  | 
 | 	return wl; | 
 | } | 
 | #else | 
 |  | 
 | static inline unsigned long effective_load(struct task_group *tg, int cpu, | 
 | 		unsigned long wl, unsigned long wg) | 
 | { | 
 | 	return wl; | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) | 
 | { | 
 | 	s64 this_load, load; | 
 | 	int idx, this_cpu, prev_cpu; | 
 | 	unsigned long tl_per_task; | 
 | 	struct task_group *tg; | 
 | 	unsigned long weight; | 
 | 	int balanced; | 
 |  | 
 | 	idx	  = sd->wake_idx; | 
 | 	this_cpu  = smp_processor_id(); | 
 | 	prev_cpu  = task_cpu(p); | 
 | 	load	  = source_load(prev_cpu, idx); | 
 | 	this_load = target_load(this_cpu, idx); | 
 |  | 
 | 	/* | 
 | 	 * If sync wakeup then subtract the (maximum possible) | 
 | 	 * effect of the currently running task from the load | 
 | 	 * of the current CPU: | 
 | 	 */ | 
 | 	if (sync) { | 
 | 		tg = task_group(current); | 
 | 		weight = current->se.load.weight; | 
 |  | 
 | 		this_load += effective_load(tg, this_cpu, -weight, -weight); | 
 | 		load += effective_load(tg, prev_cpu, 0, -weight); | 
 | 	} | 
 |  | 
 | 	tg = task_group(p); | 
 | 	weight = p->se.load.weight; | 
 |  | 
 | 	/* | 
 | 	 * In low-load situations, where prev_cpu is idle and this_cpu is idle | 
 | 	 * due to the sync cause above having dropped this_load to 0, we'll | 
 | 	 * always have an imbalance, but there's really nothing you can do | 
 | 	 * about that, so that's good too. | 
 | 	 * | 
 | 	 * Otherwise check if either cpus are near enough in load to allow this | 
 | 	 * task to be woken on this_cpu. | 
 | 	 */ | 
 | 	if (this_load > 0) { | 
 | 		s64 this_eff_load, prev_eff_load; | 
 |  | 
 | 		this_eff_load = 100; | 
 | 		this_eff_load *= power_of(prev_cpu); | 
 | 		this_eff_load *= this_load + | 
 | 			effective_load(tg, this_cpu, weight, weight); | 
 |  | 
 | 		prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2; | 
 | 		prev_eff_load *= power_of(this_cpu); | 
 | 		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight); | 
 |  | 
 | 		balanced = this_eff_load <= prev_eff_load; | 
 | 	} else | 
 | 		balanced = true; | 
 |  | 
 | 	/* | 
 | 	 * If the currently running task will sleep within | 
 | 	 * a reasonable amount of time then attract this newly | 
 | 	 * woken task: | 
 | 	 */ | 
 | 	if (sync && balanced) | 
 | 		return 1; | 
 |  | 
 | 	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts); | 
 | 	tl_per_task = cpu_avg_load_per_task(this_cpu); | 
 |  | 
 | 	if (balanced || | 
 | 	    (this_load <= load && | 
 | 	     this_load + target_load(prev_cpu, idx) <= tl_per_task)) { | 
 | 		/* | 
 | 		 * This domain has SD_WAKE_AFFINE and | 
 | 		 * p is cache cold in this domain, and | 
 | 		 * there is no bad imbalance. | 
 | 		 */ | 
 | 		schedstat_inc(sd, ttwu_move_affine); | 
 | 		schedstat_inc(p, se.statistics.nr_wakeups_affine); | 
 |  | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * find_idlest_group finds and returns the least busy CPU group within the | 
 |  * domain. | 
 |  */ | 
 | static struct sched_group * | 
 | find_idlest_group(struct sched_domain *sd, struct task_struct *p, | 
 | 		  int this_cpu, int load_idx) | 
 | { | 
 | 	struct sched_group *idlest = NULL, *group = sd->groups; | 
 | 	unsigned long min_load = ULONG_MAX, this_load = 0; | 
 | 	int imbalance = 100 + (sd->imbalance_pct-100)/2; | 
 |  | 
 | 	do { | 
 | 		unsigned long load, avg_load; | 
 | 		int local_group; | 
 | 		int i; | 
 |  | 
 | 		/* Skip over this group if it has no CPUs allowed */ | 
 | 		if (!cpumask_intersects(sched_group_cpus(group), | 
 | 					tsk_cpus_allowed(p))) | 
 | 			continue; | 
 |  | 
 | 		local_group = cpumask_test_cpu(this_cpu, | 
 | 					       sched_group_cpus(group)); | 
 |  | 
 | 		/* Tally up the load of all CPUs in the group */ | 
 | 		avg_load = 0; | 
 |  | 
 | 		for_each_cpu(i, sched_group_cpus(group)) { | 
 | 			/* Bias balancing toward cpus of our domain */ | 
 | 			if (local_group) | 
 | 				load = source_load(i, load_idx); | 
 | 			else | 
 | 				load = target_load(i, load_idx); | 
 |  | 
 | 			avg_load += load; | 
 | 		} | 
 |  | 
 | 		/* Adjust by relative CPU power of the group */ | 
 | 		avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power; | 
 |  | 
 | 		if (local_group) { | 
 | 			this_load = avg_load; | 
 | 		} else if (avg_load < min_load) { | 
 | 			min_load = avg_load; | 
 | 			idlest = group; | 
 | 		} | 
 | 	} while (group = group->next, group != sd->groups); | 
 |  | 
 | 	if (!idlest || 100*this_load < imbalance*min_load) | 
 | 		return NULL; | 
 | 	return idlest; | 
 | } | 
 |  | 
 | /* | 
 |  * find_idlest_cpu - find the idlest cpu among the cpus in group. | 
 |  */ | 
 | static int | 
 | find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) | 
 | { | 
 | 	unsigned long load, min_load = ULONG_MAX; | 
 | 	int idlest = -1; | 
 | 	int i; | 
 |  | 
 | 	/* Traverse only the allowed CPUs */ | 
 | 	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) { | 
 | 		load = weighted_cpuload(i); | 
 |  | 
 | 		if (load < min_load || (load == min_load && i == this_cpu)) { | 
 | 			min_load = load; | 
 | 			idlest = i; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return idlest; | 
 | } | 
 |  | 
 | /* | 
 |  * Try and locate an idle CPU in the sched_domain. | 
 |  */ | 
 | static int select_idle_sibling(struct task_struct *p, int target) | 
 | { | 
 | 	int cpu = smp_processor_id(); | 
 | 	int prev_cpu = task_cpu(p); | 
 | 	struct sched_domain *sd; | 
 | 	struct sched_group *sg; | 
 | 	int i; | 
 |  | 
 | 	/* | 
 | 	 * If the task is going to be woken-up on this cpu and if it is | 
 | 	 * already idle, then it is the right target. | 
 | 	 */ | 
 | 	if (target == cpu && idle_cpu(cpu)) | 
 | 		return cpu; | 
 |  | 
 | 	/* | 
 | 	 * If the task is going to be woken-up on the cpu where it previously | 
 | 	 * ran and if it is currently idle, then it the right target. | 
 | 	 */ | 
 | 	if (target == prev_cpu && idle_cpu(prev_cpu)) | 
 | 		return prev_cpu; | 
 |  | 
 | 	/* | 
 | 	 * Otherwise, iterate the domains and find an elegible idle cpu. | 
 | 	 */ | 
 | 	rcu_read_lock(); | 
 |  | 
 | 	sd = rcu_dereference(per_cpu(sd_llc, target)); | 
 | 	for_each_lower_domain(sd) { | 
 | 		sg = sd->groups; | 
 | 		do { | 
 | 			if (!cpumask_intersects(sched_group_cpus(sg), | 
 | 						tsk_cpus_allowed(p))) | 
 | 				goto next; | 
 |  | 
 | 			for_each_cpu(i, sched_group_cpus(sg)) { | 
 | 				if (!idle_cpu(i)) | 
 | 					goto next; | 
 | 			} | 
 |  | 
 | 			target = cpumask_first_and(sched_group_cpus(sg), | 
 | 					tsk_cpus_allowed(p)); | 
 | 			goto done; | 
 | next: | 
 | 			sg = sg->next; | 
 | 		} while (sg != sd->groups); | 
 | 	} | 
 | done: | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return target; | 
 | } | 
 |  | 
 | /* | 
 |  * sched_balance_self: balance the current task (running on cpu) in domains | 
 |  * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and | 
 |  * SD_BALANCE_EXEC. | 
 |  * | 
 |  * Balance, ie. select the least loaded group. | 
 |  * | 
 |  * Returns the target CPU number, or the same CPU if no balancing is needed. | 
 |  * | 
 |  * preempt must be disabled. | 
 |  */ | 
 | static int | 
 | select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags) | 
 | { | 
 | 	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; | 
 | 	int cpu = smp_processor_id(); | 
 | 	int prev_cpu = task_cpu(p); | 
 | 	int new_cpu = cpu; | 
 | 	int want_affine = 0; | 
 | 	int want_sd = 1; | 
 | 	int sync = wake_flags & WF_SYNC; | 
 |  | 
 | 	if (p->rt.nr_cpus_allowed == 1) | 
 | 		return prev_cpu; | 
 |  | 
 | 	if (sd_flag & SD_BALANCE_WAKE) { | 
 | 		if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) | 
 | 			want_affine = 1; | 
 | 		new_cpu = prev_cpu; | 
 | 	} | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	for_each_domain(cpu, tmp) { | 
 | 		if (!(tmp->flags & SD_LOAD_BALANCE)) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * If power savings logic is enabled for a domain, see if we | 
 | 		 * are not overloaded, if so, don't balance wider. | 
 | 		 */ | 
 | 		if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) { | 
 | 			unsigned long power = 0; | 
 | 			unsigned long nr_running = 0; | 
 | 			unsigned long capacity; | 
 | 			int i; | 
 |  | 
 | 			for_each_cpu(i, sched_domain_span(tmp)) { | 
 | 				power += power_of(i); | 
 | 				nr_running += cpu_rq(i)->cfs.nr_running; | 
 | 			} | 
 |  | 
 | 			capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE); | 
 |  | 
 | 			if (tmp->flags & SD_POWERSAVINGS_BALANCE) | 
 | 				nr_running /= 2; | 
 |  | 
 | 			if (nr_running < capacity) | 
 | 				want_sd = 0; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * If both cpu and prev_cpu are part of this domain, | 
 | 		 * cpu is a valid SD_WAKE_AFFINE target. | 
 | 		 */ | 
 | 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && | 
 | 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { | 
 | 			affine_sd = tmp; | 
 | 			want_affine = 0; | 
 | 		} | 
 |  | 
 | 		if (!want_sd && !want_affine) | 
 | 			break; | 
 |  | 
 | 		if (!(tmp->flags & sd_flag)) | 
 | 			continue; | 
 |  | 
 | 		if (want_sd) | 
 | 			sd = tmp; | 
 | 	} | 
 |  | 
 | 	if (affine_sd) { | 
 | 		if (cpu == prev_cpu || wake_affine(affine_sd, p, sync)) | 
 | 			prev_cpu = cpu; | 
 |  | 
 | 		new_cpu = select_idle_sibling(p, prev_cpu); | 
 | 		goto unlock; | 
 | 	} | 
 |  | 
 | 	while (sd) { | 
 | 		int load_idx = sd->forkexec_idx; | 
 | 		struct sched_group *group; | 
 | 		int weight; | 
 |  | 
 | 		if (!(sd->flags & sd_flag)) { | 
 | 			sd = sd->child; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (sd_flag & SD_BALANCE_WAKE) | 
 | 			load_idx = sd->wake_idx; | 
 |  | 
 | 		group = find_idlest_group(sd, p, cpu, load_idx); | 
 | 		if (!group) { | 
 | 			sd = sd->child; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		new_cpu = find_idlest_cpu(group, p, cpu); | 
 | 		if (new_cpu == -1 || new_cpu == cpu) { | 
 | 			/* Now try balancing at a lower domain level of cpu */ | 
 | 			sd = sd->child; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* Now try balancing at a lower domain level of new_cpu */ | 
 | 		cpu = new_cpu; | 
 | 		weight = sd->span_weight; | 
 | 		sd = NULL; | 
 | 		for_each_domain(cpu, tmp) { | 
 | 			if (weight <= tmp->span_weight) | 
 | 				break; | 
 | 			if (tmp->flags & sd_flag) | 
 | 				sd = tmp; | 
 | 		} | 
 | 		/* while loop will break here if sd == NULL */ | 
 | 	} | 
 | unlock: | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return new_cpu; | 
 | } | 
 | #endif /* CONFIG_SMP */ | 
 |  | 
 | static unsigned long | 
 | wakeup_gran(struct sched_entity *curr, struct sched_entity *se) | 
 | { | 
 | 	unsigned long gran = sysctl_sched_wakeup_granularity; | 
 |  | 
 | 	/* | 
 | 	 * Since its curr running now, convert the gran from real-time | 
 | 	 * to virtual-time in his units. | 
 | 	 * | 
 | 	 * By using 'se' instead of 'curr' we penalize light tasks, so | 
 | 	 * they get preempted easier. That is, if 'se' < 'curr' then | 
 | 	 * the resulting gran will be larger, therefore penalizing the | 
 | 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will | 
 | 	 * be smaller, again penalizing the lighter task. | 
 | 	 * | 
 | 	 * This is especially important for buddies when the leftmost | 
 | 	 * task is higher priority than the buddy. | 
 | 	 */ | 
 | 	return calc_delta_fair(gran, se); | 
 | } | 
 |  | 
 | /* | 
 |  * Should 'se' preempt 'curr'. | 
 |  * | 
 |  *             |s1 | 
 |  *        |s2 | 
 |  *   |s3 | 
 |  *         g | 
 |  *      |<--->|c | 
 |  * | 
 |  *  w(c, s1) = -1 | 
 |  *  w(c, s2) =  0 | 
 |  *  w(c, s3) =  1 | 
 |  * | 
 |  */ | 
 | static int | 
 | wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) | 
 | { | 
 | 	s64 gran, vdiff = curr->vruntime - se->vruntime; | 
 |  | 
 | 	if (vdiff <= 0) | 
 | 		return -1; | 
 |  | 
 | 	gran = wakeup_gran(curr, se); | 
 | 	if (vdiff > gran) | 
 | 		return 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void set_last_buddy(struct sched_entity *se) | 
 | { | 
 | 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) | 
 | 		return; | 
 |  | 
 | 	for_each_sched_entity(se) | 
 | 		cfs_rq_of(se)->last = se; | 
 | } | 
 |  | 
 | static void set_next_buddy(struct sched_entity *se) | 
 | { | 
 | 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) | 
 | 		return; | 
 |  | 
 | 	for_each_sched_entity(se) | 
 | 		cfs_rq_of(se)->next = se; | 
 | } | 
 |  | 
 | static void set_skip_buddy(struct sched_entity *se) | 
 | { | 
 | 	for_each_sched_entity(se) | 
 | 		cfs_rq_of(se)->skip = se; | 
 | } | 
 |  | 
 | /* | 
 |  * Preempt the current task with a newly woken task if needed: | 
 |  */ | 
 | static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) | 
 | { | 
 | 	struct task_struct *curr = rq->curr; | 
 | 	struct sched_entity *se = &curr->se, *pse = &p->se; | 
 | 	struct cfs_rq *cfs_rq = task_cfs_rq(curr); | 
 | 	int scale = cfs_rq->nr_running >= sched_nr_latency; | 
 | 	int next_buddy_marked = 0; | 
 |  | 
 | 	if (unlikely(se == pse)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * This is possible from callers such as pull_task(), in which we | 
 | 	 * unconditionally check_prempt_curr() after an enqueue (which may have | 
 | 	 * lead to a throttle).  This both saves work and prevents false | 
 | 	 * next-buddy nomination below. | 
 | 	 */ | 
 | 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) | 
 | 		return; | 
 |  | 
 | 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { | 
 | 		set_next_buddy(pse); | 
 | 		next_buddy_marked = 1; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We can come here with TIF_NEED_RESCHED already set from new task | 
 | 	 * wake up path. | 
 | 	 * | 
 | 	 * Note: this also catches the edge-case of curr being in a throttled | 
 | 	 * group (e.g. via set_curr_task), since update_curr() (in the | 
 | 	 * enqueue of curr) will have resulted in resched being set.  This | 
 | 	 * prevents us from potentially nominating it as a false LAST_BUDDY | 
 | 	 * below. | 
 | 	 */ | 
 | 	if (test_tsk_need_resched(curr)) | 
 | 		return; | 
 |  | 
 | 	/* Idle tasks are by definition preempted by non-idle tasks. */ | 
 | 	if (unlikely(curr->policy == SCHED_IDLE) && | 
 | 	    likely(p->policy != SCHED_IDLE)) | 
 | 		goto preempt; | 
 |  | 
 | 	/* | 
 | 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption | 
 | 	 * is driven by the tick): | 
 | 	 */ | 
 | 	if (unlikely(p->policy != SCHED_NORMAL)) | 
 | 		return; | 
 |  | 
 | 	find_matching_se(&se, &pse); | 
 | 	update_curr(cfs_rq_of(se)); | 
 | 	BUG_ON(!pse); | 
 | 	if (wakeup_preempt_entity(se, pse) == 1) { | 
 | 		/* | 
 | 		 * Bias pick_next to pick the sched entity that is | 
 | 		 * triggering this preemption. | 
 | 		 */ | 
 | 		if (!next_buddy_marked) | 
 | 			set_next_buddy(pse); | 
 | 		goto preempt; | 
 | 	} | 
 |  | 
 | 	return; | 
 |  | 
 | preempt: | 
 | 	resched_task(curr); | 
 | 	/* | 
 | 	 * Only set the backward buddy when the current task is still | 
 | 	 * on the rq. This can happen when a wakeup gets interleaved | 
 | 	 * with schedule on the ->pre_schedule() or idle_balance() | 
 | 	 * point, either of which can * drop the rq lock. | 
 | 	 * | 
 | 	 * Also, during early boot the idle thread is in the fair class, | 
 | 	 * for obvious reasons its a bad idea to schedule back to it. | 
 | 	 */ | 
 | 	if (unlikely(!se->on_rq || curr == rq->idle)) | 
 | 		return; | 
 |  | 
 | 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) | 
 | 		set_last_buddy(se); | 
 | } | 
 |  | 
 | static struct task_struct *pick_next_task_fair(struct rq *rq) | 
 | { | 
 | 	struct task_struct *p; | 
 | 	struct cfs_rq *cfs_rq = &rq->cfs; | 
 | 	struct sched_entity *se; | 
 |  | 
 | 	if (!cfs_rq->nr_running) | 
 | 		return NULL; | 
 |  | 
 | 	do { | 
 | 		se = pick_next_entity(cfs_rq); | 
 | 		set_next_entity(cfs_rq, se); | 
 | 		cfs_rq = group_cfs_rq(se); | 
 | 	} while (cfs_rq); | 
 |  | 
 | 	p = task_of(se); | 
 | 	if (hrtick_enabled(rq)) | 
 | 		hrtick_start_fair(rq, p); | 
 |  | 
 | 	return p; | 
 | } | 
 |  | 
 | /* | 
 |  * Account for a descheduled task: | 
 |  */ | 
 | static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) | 
 | { | 
 | 	struct sched_entity *se = &prev->se; | 
 | 	struct cfs_rq *cfs_rq; | 
 |  | 
 | 	for_each_sched_entity(se) { | 
 | 		cfs_rq = cfs_rq_of(se); | 
 | 		put_prev_entity(cfs_rq, se); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * sched_yield() is very simple | 
 |  * | 
 |  * The magic of dealing with the ->skip buddy is in pick_next_entity. | 
 |  */ | 
 | static void yield_task_fair(struct rq *rq) | 
 | { | 
 | 	struct task_struct *curr = rq->curr; | 
 | 	struct cfs_rq *cfs_rq = task_cfs_rq(curr); | 
 | 	struct sched_entity *se = &curr->se; | 
 |  | 
 | 	/* | 
 | 	 * Are we the only task in the tree? | 
 | 	 */ | 
 | 	if (unlikely(rq->nr_running == 1)) | 
 | 		return; | 
 |  | 
 | 	clear_buddies(cfs_rq, se); | 
 |  | 
 | 	if (curr->policy != SCHED_BATCH) { | 
 | 		update_rq_clock(rq); | 
 | 		/* | 
 | 		 * Update run-time statistics of the 'current'. | 
 | 		 */ | 
 | 		update_curr(cfs_rq); | 
 | 		/* | 
 | 		 * Tell update_rq_clock() that we've just updated, | 
 | 		 * so we don't do microscopic update in schedule() | 
 | 		 * and double the fastpath cost. | 
 | 		 */ | 
 | 		 rq->skip_clock_update = 1; | 
 | 	} | 
 |  | 
 | 	set_skip_buddy(se); | 
 | } | 
 |  | 
 | static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) | 
 | { | 
 | 	struct sched_entity *se = &p->se; | 
 |  | 
 | 	/* throttled hierarchies are not runnable */ | 
 | 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) | 
 | 		return false; | 
 |  | 
 | 	/* Tell the scheduler that we'd really like pse to run next. */ | 
 | 	set_next_buddy(se); | 
 |  | 
 | 	yield_task_fair(rq); | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | /************************************************** | 
 |  * Fair scheduling class load-balancing methods: | 
 |  */ | 
 |  | 
 | /* | 
 |  * pull_task - move a task from a remote runqueue to the local runqueue. | 
 |  * Both runqueues must be locked. | 
 |  */ | 
 | static void pull_task(struct rq *src_rq, struct task_struct *p, | 
 | 		      struct rq *this_rq, int this_cpu) | 
 | { | 
 | 	deactivate_task(src_rq, p, 0); | 
 | 	set_task_cpu(p, this_cpu); | 
 | 	activate_task(this_rq, p, 0); | 
 | 	check_preempt_curr(this_rq, p, 0); | 
 | } | 
 |  | 
 | /* | 
 |  * Is this task likely cache-hot: | 
 |  */ | 
 | static int | 
 | task_hot(struct task_struct *p, u64 now, struct sched_domain *sd) | 
 | { | 
 | 	s64 delta; | 
 |  | 
 | 	if (p->sched_class != &fair_sched_class) | 
 | 		return 0; | 
 |  | 
 | 	if (unlikely(p->policy == SCHED_IDLE)) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Buddy candidates are cache hot: | 
 | 	 */ | 
 | 	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running && | 
 | 			(&p->se == cfs_rq_of(&p->se)->next || | 
 | 			 &p->se == cfs_rq_of(&p->se)->last)) | 
 | 		return 1; | 
 |  | 
 | 	if (sysctl_sched_migration_cost == -1) | 
 | 		return 1; | 
 | 	if (sysctl_sched_migration_cost == 0) | 
 | 		return 0; | 
 |  | 
 | 	delta = now - p->se.exec_start; | 
 |  | 
 | 	return delta < (s64)sysctl_sched_migration_cost; | 
 | } | 
 |  | 
 | #define LBF_ALL_PINNED	0x01 | 
 | #define LBF_NEED_BREAK	0x02	/* clears into HAD_BREAK */ | 
 | #define LBF_HAD_BREAK	0x04 | 
 | #define LBF_HAD_BREAKS	0x0C	/* count HAD_BREAKs overflows into ABORT */ | 
 | #define LBF_ABORT	0x10 | 
 |  | 
 | /* | 
 |  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? | 
 |  */ | 
 | static | 
 | int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, | 
 | 		     struct sched_domain *sd, enum cpu_idle_type idle, | 
 | 		     int *lb_flags) | 
 | { | 
 | 	int tsk_cache_hot = 0; | 
 | 	/* | 
 | 	 * We do not migrate tasks that are: | 
 | 	 * 1) running (obviously), or | 
 | 	 * 2) cannot be migrated to this CPU due to cpus_allowed, or | 
 | 	 * 3) are cache-hot on their current CPU. | 
 | 	 */ | 
 | 	if (!cpumask_test_cpu(this_cpu, tsk_cpus_allowed(p))) { | 
 | 		schedstat_inc(p, se.statistics.nr_failed_migrations_affine); | 
 | 		return 0; | 
 | 	} | 
 | 	*lb_flags &= ~LBF_ALL_PINNED; | 
 |  | 
 | 	if (task_running(rq, p)) { | 
 | 		schedstat_inc(p, se.statistics.nr_failed_migrations_running); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Aggressive migration if: | 
 | 	 * 1) task is cache cold, or | 
 | 	 * 2) too many balance attempts have failed. | 
 | 	 */ | 
 |  | 
 | 	tsk_cache_hot = task_hot(p, rq->clock_task, sd); | 
 | 	if (!tsk_cache_hot || | 
 | 		sd->nr_balance_failed > sd->cache_nice_tries) { | 
 | #ifdef CONFIG_SCHEDSTATS | 
 | 		if (tsk_cache_hot) { | 
 | 			schedstat_inc(sd, lb_hot_gained[idle]); | 
 | 			schedstat_inc(p, se.statistics.nr_forced_migrations); | 
 | 		} | 
 | #endif | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	if (tsk_cache_hot) { | 
 | 		schedstat_inc(p, se.statistics.nr_failed_migrations_hot); | 
 | 		return 0; | 
 | 	} | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * move_one_task tries to move exactly one task from busiest to this_rq, as | 
 |  * part of active balancing operations within "domain". | 
 |  * Returns 1 if successful and 0 otherwise. | 
 |  * | 
 |  * Called with both runqueues locked. | 
 |  */ | 
 | static int | 
 | move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, | 
 | 	      struct sched_domain *sd, enum cpu_idle_type idle) | 
 | { | 
 | 	struct task_struct *p, *n; | 
 | 	struct cfs_rq *cfs_rq; | 
 | 	int pinned = 0; | 
 |  | 
 | 	for_each_leaf_cfs_rq(busiest, cfs_rq) { | 
 | 		list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) { | 
 | 			if (throttled_lb_pair(task_group(p), | 
 | 					      busiest->cpu, this_cpu)) | 
 | 				break; | 
 |  | 
 | 			if (!can_migrate_task(p, busiest, this_cpu, | 
 | 						sd, idle, &pinned)) | 
 | 				continue; | 
 |  | 
 | 			pull_task(busiest, p, this_rq, this_cpu); | 
 | 			/* | 
 | 			 * Right now, this is only the second place pull_task() | 
 | 			 * is called, so we can safely collect pull_task() | 
 | 			 * stats here rather than inside pull_task(). | 
 | 			 */ | 
 | 			schedstat_inc(sd, lb_gained[idle]); | 
 | 			return 1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static unsigned long | 
 | balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | 
 | 	      unsigned long max_load_move, struct sched_domain *sd, | 
 | 	      enum cpu_idle_type idle, int *lb_flags, | 
 | 	      struct cfs_rq *busiest_cfs_rq) | 
 | { | 
 | 	int loops = 0, pulled = 0; | 
 | 	long rem_load_move = max_load_move; | 
 | 	struct task_struct *p, *n; | 
 |  | 
 | 	if (max_load_move == 0) | 
 | 		goto out; | 
 |  | 
 | 	list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) { | 
 | 		if (loops++ > sysctl_sched_nr_migrate) { | 
 | 			*lb_flags |= LBF_NEED_BREAK; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if ((p->se.load.weight >> 1) > rem_load_move || | 
 | 		    !can_migrate_task(p, busiest, this_cpu, sd, idle, | 
 | 				      lb_flags)) | 
 | 			continue; | 
 |  | 
 | 		pull_task(busiest, p, this_rq, this_cpu); | 
 | 		pulled++; | 
 | 		rem_load_move -= p->se.load.weight; | 
 |  | 
 | #ifdef CONFIG_PREEMPT | 
 | 		/* | 
 | 		 * NEWIDLE balancing is a source of latency, so preemptible | 
 | 		 * kernels will stop after the first task is pulled to minimize | 
 | 		 * the critical section. | 
 | 		 */ | 
 | 		if (idle == CPU_NEWLY_IDLE) { | 
 | 			*lb_flags |= LBF_ABORT; | 
 | 			break; | 
 | 		} | 
 | #endif | 
 |  | 
 | 		/* | 
 | 		 * We only want to steal up to the prescribed amount of | 
 | 		 * weighted load. | 
 | 		 */ | 
 | 		if (rem_load_move <= 0) | 
 | 			break; | 
 | 	} | 
 | out: | 
 | 	/* | 
 | 	 * Right now, this is one of only two places pull_task() is called, | 
 | 	 * so we can safely collect pull_task() stats here rather than | 
 | 	 * inside pull_task(). | 
 | 	 */ | 
 | 	schedstat_add(sd, lb_gained[idle], pulled); | 
 |  | 
 | 	return max_load_move - rem_load_move; | 
 | } | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | /* | 
 |  * update tg->load_weight by folding this cpu's load_avg | 
 |  */ | 
 | static int update_shares_cpu(struct task_group *tg, int cpu) | 
 | { | 
 | 	struct cfs_rq *cfs_rq; | 
 | 	unsigned long flags; | 
 | 	struct rq *rq; | 
 |  | 
 | 	if (!tg->se[cpu]) | 
 | 		return 0; | 
 |  | 
 | 	rq = cpu_rq(cpu); | 
 | 	cfs_rq = tg->cfs_rq[cpu]; | 
 |  | 
 | 	raw_spin_lock_irqsave(&rq->lock, flags); | 
 |  | 
 | 	update_rq_clock(rq); | 
 | 	update_cfs_load(cfs_rq, 1); | 
 |  | 
 | 	/* | 
 | 	 * We need to update shares after updating tg->load_weight in | 
 | 	 * order to adjust the weight of groups with long running tasks. | 
 | 	 */ | 
 | 	update_cfs_shares(cfs_rq); | 
 |  | 
 | 	raw_spin_unlock_irqrestore(&rq->lock, flags); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void update_shares(int cpu) | 
 | { | 
 | 	struct cfs_rq *cfs_rq; | 
 | 	struct rq *rq = cpu_rq(cpu); | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	/* | 
 | 	 * Iterates the task_group tree in a bottom up fashion, see | 
 | 	 * list_add_leaf_cfs_rq() for details. | 
 | 	 */ | 
 | 	for_each_leaf_cfs_rq(rq, cfs_rq) { | 
 | 		/* throttled entities do not contribute to load */ | 
 | 		if (throttled_hierarchy(cfs_rq)) | 
 | 			continue; | 
 |  | 
 | 		update_shares_cpu(cfs_rq->tg, cpu); | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | /* | 
 |  * Compute the cpu's hierarchical load factor for each task group. | 
 |  * This needs to be done in a top-down fashion because the load of a child | 
 |  * group is a fraction of its parents load. | 
 |  */ | 
 | static int tg_load_down(struct task_group *tg, void *data) | 
 | { | 
 | 	unsigned long load; | 
 | 	long cpu = (long)data; | 
 |  | 
 | 	if (!tg->parent) { | 
 | 		load = cpu_rq(cpu)->load.weight; | 
 | 	} else { | 
 | 		load = tg->parent->cfs_rq[cpu]->h_load; | 
 | 		load *= tg->se[cpu]->load.weight; | 
 | 		load /= tg->parent->cfs_rq[cpu]->load.weight + 1; | 
 | 	} | 
 |  | 
 | 	tg->cfs_rq[cpu]->h_load = load; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void update_h_load(long cpu) | 
 | { | 
 | 	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu); | 
 | } | 
 |  | 
 | static unsigned long | 
 | load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, | 
 | 		  unsigned long max_load_move, | 
 | 		  struct sched_domain *sd, enum cpu_idle_type idle, | 
 | 		  int *lb_flags) | 
 | { | 
 | 	long rem_load_move = max_load_move; | 
 | 	struct cfs_rq *busiest_cfs_rq; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	update_h_load(cpu_of(busiest)); | 
 |  | 
 | 	for_each_leaf_cfs_rq(busiest, busiest_cfs_rq) { | 
 | 		unsigned long busiest_h_load = busiest_cfs_rq->h_load; | 
 | 		unsigned long busiest_weight = busiest_cfs_rq->load.weight; | 
 | 		u64 rem_load, moved_load; | 
 |  | 
 | 		if (*lb_flags & (LBF_NEED_BREAK|LBF_ABORT)) | 
 | 			break; | 
 |  | 
 | 		/* | 
 | 		 * empty group or part of a throttled hierarchy | 
 | 		 */ | 
 | 		if (!busiest_cfs_rq->task_weight || | 
 | 		    throttled_lb_pair(busiest_cfs_rq->tg, cpu_of(busiest), this_cpu)) | 
 | 			continue; | 
 |  | 
 | 		rem_load = (u64)rem_load_move * busiest_weight; | 
 | 		rem_load = div_u64(rem_load, busiest_h_load + 1); | 
 |  | 
 | 		moved_load = balance_tasks(this_rq, this_cpu, busiest, | 
 | 				rem_load, sd, idle, lb_flags, | 
 | 				busiest_cfs_rq); | 
 |  | 
 | 		if (!moved_load) | 
 | 			continue; | 
 |  | 
 | 		moved_load *= busiest_h_load; | 
 | 		moved_load = div_u64(moved_load, busiest_weight + 1); | 
 |  | 
 | 		rem_load_move -= moved_load; | 
 | 		if (rem_load_move < 0) | 
 | 			break; | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return max_load_move - rem_load_move; | 
 | } | 
 | #else | 
 | static inline void update_shares(int cpu) | 
 | { | 
 | } | 
 |  | 
 | static unsigned long | 
 | load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, | 
 | 		  unsigned long max_load_move, | 
 | 		  struct sched_domain *sd, enum cpu_idle_type idle, | 
 | 		  int *lb_flags) | 
 | { | 
 | 	return balance_tasks(this_rq, this_cpu, busiest, | 
 | 			max_load_move, sd, idle, lb_flags, | 
 | 			&busiest->cfs); | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * move_tasks tries to move up to max_load_move weighted load from busiest to | 
 |  * this_rq, as part of a balancing operation within domain "sd". | 
 |  * Returns 1 if successful and 0 otherwise. | 
 |  * | 
 |  * Called with both runqueues locked. | 
 |  */ | 
 | static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | 
 | 		      unsigned long max_load_move, | 
 | 		      struct sched_domain *sd, enum cpu_idle_type idle, | 
 | 		      int *lb_flags) | 
 | { | 
 | 	unsigned long total_load_moved = 0, load_moved; | 
 |  | 
 | 	do { | 
 | 		load_moved = load_balance_fair(this_rq, this_cpu, busiest, | 
 | 				max_load_move - total_load_moved, | 
 | 				sd, idle, lb_flags); | 
 |  | 
 | 		total_load_moved += load_moved; | 
 |  | 
 | 		if (*lb_flags & (LBF_NEED_BREAK|LBF_ABORT)) | 
 | 			break; | 
 |  | 
 | #ifdef CONFIG_PREEMPT | 
 | 		/* | 
 | 		 * NEWIDLE balancing is a source of latency, so preemptible | 
 | 		 * kernels will stop after the first task is pulled to minimize | 
 | 		 * the critical section. | 
 | 		 */ | 
 | 		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running) { | 
 | 			*lb_flags |= LBF_ABORT; | 
 | 			break; | 
 | 		} | 
 | #endif | 
 | 	} while (load_moved && max_load_move > total_load_moved); | 
 |  | 
 | 	return total_load_moved > 0; | 
 | } | 
 |  | 
 | /********** Helpers for find_busiest_group ************************/ | 
 | /* | 
 |  * sd_lb_stats - Structure to store the statistics of a sched_domain | 
 |  * 		during load balancing. | 
 |  */ | 
 | struct sd_lb_stats { | 
 | 	struct sched_group *busiest; /* Busiest group in this sd */ | 
 | 	struct sched_group *this;  /* Local group in this sd */ | 
 | 	unsigned long total_load;  /* Total load of all groups in sd */ | 
 | 	unsigned long total_pwr;   /*	Total power of all groups in sd */ | 
 | 	unsigned long avg_load;	   /* Average load across all groups in sd */ | 
 |  | 
 | 	/** Statistics of this group */ | 
 | 	unsigned long this_load; | 
 | 	unsigned long this_load_per_task; | 
 | 	unsigned long this_nr_running; | 
 | 	unsigned long this_has_capacity; | 
 | 	unsigned int  this_idle_cpus; | 
 |  | 
 | 	/* Statistics of the busiest group */ | 
 | 	unsigned int  busiest_idle_cpus; | 
 | 	unsigned long max_load; | 
 | 	unsigned long busiest_load_per_task; | 
 | 	unsigned long busiest_nr_running; | 
 | 	unsigned long busiest_group_capacity; | 
 | 	unsigned long busiest_has_capacity; | 
 | 	unsigned int  busiest_group_weight; | 
 |  | 
 | 	int group_imb; /* Is there imbalance in this sd */ | 
 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | 
 | 	int power_savings_balance; /* Is powersave balance needed for this sd */ | 
 | 	struct sched_group *group_min; /* Least loaded group in sd */ | 
 | 	struct sched_group *group_leader; /* Group which relieves group_min */ | 
 | 	unsigned long min_load_per_task; /* load_per_task in group_min */ | 
 | 	unsigned long leader_nr_running; /* Nr running of group_leader */ | 
 | 	unsigned long min_nr_running; /* Nr running of group_min */ | 
 | #endif | 
 | }; | 
 |  | 
 | /* | 
 |  * sg_lb_stats - stats of a sched_group required for load_balancing | 
 |  */ | 
 | struct sg_lb_stats { | 
 | 	unsigned long avg_load; /*Avg load across the CPUs of the group */ | 
 | 	unsigned long group_load; /* Total load over the CPUs of the group */ | 
 | 	unsigned long sum_nr_running; /* Nr tasks running in the group */ | 
 | 	unsigned long sum_weighted_load; /* Weighted load of group's tasks */ | 
 | 	unsigned long group_capacity; | 
 | 	unsigned long idle_cpus; | 
 | 	unsigned long group_weight; | 
 | 	int group_imb; /* Is there an imbalance in the group ? */ | 
 | 	int group_has_capacity; /* Is there extra capacity in the group? */ | 
 | }; | 
 |  | 
 | /** | 
 |  * get_sd_load_idx - Obtain the load index for a given sched domain. | 
 |  * @sd: The sched_domain whose load_idx is to be obtained. | 
 |  * @idle: The Idle status of the CPU for whose sd load_icx is obtained. | 
 |  */ | 
 | static inline int get_sd_load_idx(struct sched_domain *sd, | 
 | 					enum cpu_idle_type idle) | 
 | { | 
 | 	int load_idx; | 
 |  | 
 | 	switch (idle) { | 
 | 	case CPU_NOT_IDLE: | 
 | 		load_idx = sd->busy_idx; | 
 | 		break; | 
 |  | 
 | 	case CPU_NEWLY_IDLE: | 
 | 		load_idx = sd->newidle_idx; | 
 | 		break; | 
 | 	default: | 
 | 		load_idx = sd->idle_idx; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return load_idx; | 
 | } | 
 |  | 
 |  | 
 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | 
 | /** | 
 |  * init_sd_power_savings_stats - Initialize power savings statistics for | 
 |  * the given sched_domain, during load balancing. | 
 |  * | 
 |  * @sd: Sched domain whose power-savings statistics are to be initialized. | 
 |  * @sds: Variable containing the statistics for sd. | 
 |  * @idle: Idle status of the CPU at which we're performing load-balancing. | 
 |  */ | 
 | static inline void init_sd_power_savings_stats(struct sched_domain *sd, | 
 | 	struct sd_lb_stats *sds, enum cpu_idle_type idle) | 
 | { | 
 | 	/* | 
 | 	 * Busy processors will not participate in power savings | 
 | 	 * balance. | 
 | 	 */ | 
 | 	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE)) | 
 | 		sds->power_savings_balance = 0; | 
 | 	else { | 
 | 		sds->power_savings_balance = 1; | 
 | 		sds->min_nr_running = ULONG_MAX; | 
 | 		sds->leader_nr_running = 0; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * update_sd_power_savings_stats - Update the power saving stats for a | 
 |  * sched_domain while performing load balancing. | 
 |  * | 
 |  * @group: sched_group belonging to the sched_domain under consideration. | 
 |  * @sds: Variable containing the statistics of the sched_domain | 
 |  * @local_group: Does group contain the CPU for which we're performing | 
 |  * 		load balancing ? | 
 |  * @sgs: Variable containing the statistics of the group. | 
 |  */ | 
 | static inline void update_sd_power_savings_stats(struct sched_group *group, | 
 | 	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) | 
 | { | 
 |  | 
 | 	if (!sds->power_savings_balance) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * If the local group is idle or completely loaded | 
 | 	 * no need to do power savings balance at this domain | 
 | 	 */ | 
 | 	if (local_group && (sds->this_nr_running >= sgs->group_capacity || | 
 | 				!sds->this_nr_running)) | 
 | 		sds->power_savings_balance = 0; | 
 |  | 
 | 	/* | 
 | 	 * If a group is already running at full capacity or idle, | 
 | 	 * don't include that group in power savings calculations | 
 | 	 */ | 
 | 	if (!sds->power_savings_balance || | 
 | 		sgs->sum_nr_running >= sgs->group_capacity || | 
 | 		!sgs->sum_nr_running) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Calculate the group which has the least non-idle load. | 
 | 	 * This is the group from where we need to pick up the load | 
 | 	 * for saving power | 
 | 	 */ | 
 | 	if ((sgs->sum_nr_running < sds->min_nr_running) || | 
 | 	    (sgs->sum_nr_running == sds->min_nr_running && | 
 | 	     group_first_cpu(group) > group_first_cpu(sds->group_min))) { | 
 | 		sds->group_min = group; | 
 | 		sds->min_nr_running = sgs->sum_nr_running; | 
 | 		sds->min_load_per_task = sgs->sum_weighted_load / | 
 | 						sgs->sum_nr_running; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Calculate the group which is almost near its | 
 | 	 * capacity but still has some space to pick up some load | 
 | 	 * from other group and save more power | 
 | 	 */ | 
 | 	if (sgs->sum_nr_running + 1 > sgs->group_capacity) | 
 | 		return; | 
 |  | 
 | 	if (sgs->sum_nr_running > sds->leader_nr_running || | 
 | 	    (sgs->sum_nr_running == sds->leader_nr_running && | 
 | 	     group_first_cpu(group) < group_first_cpu(sds->group_leader))) { | 
 | 		sds->group_leader = group; | 
 | 		sds->leader_nr_running = sgs->sum_nr_running; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * check_power_save_busiest_group - see if there is potential for some power-savings balance | 
 |  * @sds: Variable containing the statistics of the sched_domain | 
 |  *	under consideration. | 
 |  * @this_cpu: Cpu at which we're currently performing load-balancing. | 
 |  * @imbalance: Variable to store the imbalance. | 
 |  * | 
 |  * Description: | 
 |  * Check if we have potential to perform some power-savings balance. | 
 |  * If yes, set the busiest group to be the least loaded group in the | 
 |  * sched_domain, so that it's CPUs can be put to idle. | 
 |  * | 
 |  * Returns 1 if there is potential to perform power-savings balance. | 
 |  * Else returns 0. | 
 |  */ | 
 | static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, | 
 | 					int this_cpu, unsigned long *imbalance) | 
 | { | 
 | 	if (!sds->power_savings_balance) | 
 | 		return 0; | 
 |  | 
 | 	if (sds->this != sds->group_leader || | 
 | 			sds->group_leader == sds->group_min) | 
 | 		return 0; | 
 |  | 
 | 	*imbalance = sds->min_load_per_task; | 
 | 	sds->busiest = sds->group_min; | 
 |  | 
 | 	return 1; | 
 |  | 
 | } | 
 | #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ | 
 | static inline void init_sd_power_savings_stats(struct sched_domain *sd, | 
 | 	struct sd_lb_stats *sds, enum cpu_idle_type idle) | 
 | { | 
 | 	return; | 
 | } | 
 |  | 
 | static inline void update_sd_power_savings_stats(struct sched_group *group, | 
 | 	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) | 
 | { | 
 | 	return; | 
 | } | 
 |  | 
 | static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, | 
 | 					int this_cpu, unsigned long *imbalance) | 
 | { | 
 | 	return 0; | 
 | } | 
 | #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ | 
 |  | 
 |  | 
 | unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu) | 
 | { | 
 | 	return SCHED_POWER_SCALE; | 
 | } | 
 |  | 
 | unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu) | 
 | { | 
 | 	return default_scale_freq_power(sd, cpu); | 
 | } | 
 |  | 
 | unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu) | 
 | { | 
 | 	unsigned long weight = sd->span_weight; | 
 | 	unsigned long smt_gain = sd->smt_gain; | 
 |  | 
 | 	smt_gain /= weight; | 
 |  | 
 | 	return smt_gain; | 
 | } | 
 |  | 
 | unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu) | 
 | { | 
 | 	return default_scale_smt_power(sd, cpu); | 
 | } | 
 |  | 
 | unsigned long scale_rt_power(int cpu) | 
 | { | 
 | 	struct rq *rq = cpu_rq(cpu); | 
 | 	u64 total, available; | 
 |  | 
 | 	total = sched_avg_period() + (rq->clock - rq->age_stamp); | 
 |  | 
 | 	if (unlikely(total < rq->rt_avg)) { | 
 | 		/* Ensures that power won't end up being negative */ | 
 | 		available = 0; | 
 | 	} else { | 
 | 		available = total - rq->rt_avg; | 
 | 	} | 
 |  | 
 | 	if (unlikely((s64)total < SCHED_POWER_SCALE)) | 
 | 		total = SCHED_POWER_SCALE; | 
 |  | 
 | 	total >>= SCHED_POWER_SHIFT; | 
 |  | 
 | 	return div_u64(available, total); | 
 | } | 
 |  | 
 | static void update_cpu_power(struct sched_domain *sd, int cpu) | 
 | { | 
 | 	unsigned long weight = sd->span_weight; | 
 | 	unsigned long power = SCHED_POWER_SCALE; | 
 | 	struct sched_group *sdg = sd->groups; | 
 |  | 
 | 	if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) { | 
 | 		if (sched_feat(ARCH_POWER)) | 
 | 			power *= arch_scale_smt_power(sd, cpu); | 
 | 		else | 
 | 			power *= default_scale_smt_power(sd, cpu); | 
 |  | 
 | 		power >>= SCHED_POWER_SHIFT; | 
 | 	} | 
 |  | 
 | 	sdg->sgp->power_orig = power; | 
 |  | 
 | 	if (sched_feat(ARCH_POWER)) | 
 | 		power *= arch_scale_freq_power(sd, cpu); | 
 | 	else | 
 | 		power *= default_scale_freq_power(sd, cpu); | 
 |  | 
 | 	power >>= SCHED_POWER_SHIFT; | 
 |  | 
 | 	power *= scale_rt_power(cpu); | 
 | 	power >>= SCHED_POWER_SHIFT; | 
 |  | 
 | 	if (!power) | 
 | 		power = 1; | 
 |  | 
 | 	cpu_rq(cpu)->cpu_power = power; | 
 | 	sdg->sgp->power = power; | 
 | } | 
 |  | 
 | void update_group_power(struct sched_domain *sd, int cpu) | 
 | { | 
 | 	struct sched_domain *child = sd->child; | 
 | 	struct sched_group *group, *sdg = sd->groups; | 
 | 	unsigned long power; | 
 |  | 
 | 	if (!child) { | 
 | 		update_cpu_power(sd, cpu); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	power = 0; | 
 |  | 
 | 	group = child->groups; | 
 | 	do { | 
 | 		power += group->sgp->power; | 
 | 		group = group->next; | 
 | 	} while (group != child->groups); | 
 |  | 
 | 	sdg->sgp->power = power; | 
 | } | 
 |  | 
 | /* | 
 |  * Try and fix up capacity for tiny siblings, this is needed when | 
 |  * things like SD_ASYM_PACKING need f_b_g to select another sibling | 
 |  * which on its own isn't powerful enough. | 
 |  * | 
 |  * See update_sd_pick_busiest() and check_asym_packing(). | 
 |  */ | 
 | static inline int | 
 | fix_small_capacity(struct sched_domain *sd, struct sched_group *group) | 
 | { | 
 | 	/* | 
 | 	 * Only siblings can have significantly less than SCHED_POWER_SCALE | 
 | 	 */ | 
 | 	if (!(sd->flags & SD_SHARE_CPUPOWER)) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * If ~90% of the cpu_power is still there, we're good. | 
 | 	 */ | 
 | 	if (group->sgp->power * 32 > group->sgp->power_orig * 29) | 
 | 		return 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * update_sg_lb_stats - Update sched_group's statistics for load balancing. | 
 |  * @sd: The sched_domain whose statistics are to be updated. | 
 |  * @group: sched_group whose statistics are to be updated. | 
 |  * @this_cpu: Cpu for which load balance is currently performed. | 
 |  * @idle: Idle status of this_cpu | 
 |  * @load_idx: Load index of sched_domain of this_cpu for load calc. | 
 |  * @local_group: Does group contain this_cpu. | 
 |  * @cpus: Set of cpus considered for load balancing. | 
 |  * @balance: Should we balance. | 
 |  * @sgs: variable to hold the statistics for this group. | 
 |  */ | 
 | static inline void update_sg_lb_stats(struct sched_domain *sd, | 
 | 			struct sched_group *group, int this_cpu, | 
 | 			enum cpu_idle_type idle, int load_idx, | 
 | 			int local_group, const struct cpumask *cpus, | 
 | 			int *balance, struct sg_lb_stats *sgs) | 
 | { | 
 | 	unsigned long load, max_cpu_load, min_cpu_load, max_nr_running; | 
 | 	int i; | 
 | 	unsigned int balance_cpu = -1, first_idle_cpu = 0; | 
 | 	unsigned long avg_load_per_task = 0; | 
 |  | 
 | 	if (local_group) | 
 | 		balance_cpu = group_first_cpu(group); | 
 |  | 
 | 	/* Tally up the load of all CPUs in the group */ | 
 | 	max_cpu_load = 0; | 
 | 	min_cpu_load = ~0UL; | 
 | 	max_nr_running = 0; | 
 |  | 
 | 	for_each_cpu_and(i, sched_group_cpus(group), cpus) { | 
 | 		struct rq *rq = cpu_rq(i); | 
 |  | 
 | 		/* Bias balancing toward cpus of our domain */ | 
 | 		if (local_group) { | 
 | 			if (idle_cpu(i) && !first_idle_cpu) { | 
 | 				first_idle_cpu = 1; | 
 | 				balance_cpu = i; | 
 | 			} | 
 |  | 
 | 			load = target_load(i, load_idx); | 
 | 		} else { | 
 | 			load = source_load(i, load_idx); | 
 | 			if (load > max_cpu_load) { | 
 | 				max_cpu_load = load; | 
 | 				max_nr_running = rq->nr_running; | 
 | 			} | 
 | 			if (min_cpu_load > load) | 
 | 				min_cpu_load = load; | 
 | 		} | 
 |  | 
 | 		sgs->group_load += load; | 
 | 		sgs->sum_nr_running += rq->nr_running; | 
 | 		sgs->sum_weighted_load += weighted_cpuload(i); | 
 | 		if (idle_cpu(i)) | 
 | 			sgs->idle_cpus++; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * First idle cpu or the first cpu(busiest) in this sched group | 
 | 	 * is eligible for doing load balancing at this and above | 
 | 	 * domains. In the newly idle case, we will allow all the cpu's | 
 | 	 * to do the newly idle load balance. | 
 | 	 */ | 
 | 	if (idle != CPU_NEWLY_IDLE && local_group) { | 
 | 		if (balance_cpu != this_cpu) { | 
 | 			*balance = 0; | 
 | 			return; | 
 | 		} | 
 | 		update_group_power(sd, this_cpu); | 
 | 	} | 
 |  | 
 | 	/* Adjust by relative CPU power of the group */ | 
 | 	sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power; | 
 |  | 
 | 	/* | 
 | 	 * Consider the group unbalanced when the imbalance is larger | 
 | 	 * than the average weight of a task. | 
 | 	 * | 
 | 	 * APZ: with cgroup the avg task weight can vary wildly and | 
 | 	 *      might not be a suitable number - should we keep a | 
 | 	 *      normalized nr_running number somewhere that negates | 
 | 	 *      the hierarchy? | 
 | 	 */ | 
 | 	if (sgs->sum_nr_running) | 
 | 		avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; | 
 |  | 
 | 	if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1) | 
 | 		sgs->group_imb = 1; | 
 |  | 
 | 	sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power, | 
 | 						SCHED_POWER_SCALE); | 
 | 	if (!sgs->group_capacity) | 
 | 		sgs->group_capacity = fix_small_capacity(sd, group); | 
 | 	sgs->group_weight = group->group_weight; | 
 |  | 
 | 	if (sgs->group_capacity > sgs->sum_nr_running) | 
 | 		sgs->group_has_capacity = 1; | 
 | } | 
 |  | 
 | /** | 
 |  * update_sd_pick_busiest - return 1 on busiest group | 
 |  * @sd: sched_domain whose statistics are to be checked | 
 |  * @sds: sched_domain statistics | 
 |  * @sg: sched_group candidate to be checked for being the busiest | 
 |  * @sgs: sched_group statistics | 
 |  * @this_cpu: the current cpu | 
 |  * | 
 |  * Determine if @sg is a busier group than the previously selected | 
 |  * busiest group. | 
 |  */ | 
 | static bool update_sd_pick_busiest(struct sched_domain *sd, | 
 | 				   struct sd_lb_stats *sds, | 
 | 				   struct sched_group *sg, | 
 | 				   struct sg_lb_stats *sgs, | 
 | 				   int this_cpu) | 
 | { | 
 | 	if (sgs->avg_load <= sds->max_load) | 
 | 		return false; | 
 |  | 
 | 	if (sgs->sum_nr_running > sgs->group_capacity) | 
 | 		return true; | 
 |  | 
 | 	if (sgs->group_imb) | 
 | 		return true; | 
 |  | 
 | 	/* | 
 | 	 * ASYM_PACKING needs to move all the work to the lowest | 
 | 	 * numbered CPUs in the group, therefore mark all groups | 
 | 	 * higher than ourself as busy. | 
 | 	 */ | 
 | 	if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running && | 
 | 	    this_cpu < group_first_cpu(sg)) { | 
 | 		if (!sds->busiest) | 
 | 			return true; | 
 |  | 
 | 		if (group_first_cpu(sds->busiest) > group_first_cpu(sg)) | 
 | 			return true; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | /** | 
 |  * update_sd_lb_stats - Update sched_domain's statistics for load balancing. | 
 |  * @sd: sched_domain whose statistics are to be updated. | 
 |  * @this_cpu: Cpu for which load balance is currently performed. | 
 |  * @idle: Idle status of this_cpu | 
 |  * @cpus: Set of cpus considered for load balancing. | 
 |  * @balance: Should we balance. | 
 |  * @sds: variable to hold the statistics for this sched_domain. | 
 |  */ | 
 | static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu, | 
 | 			enum cpu_idle_type idle, const struct cpumask *cpus, | 
 | 			int *balance, struct sd_lb_stats *sds) | 
 | { | 
 | 	struct sched_domain *child = sd->child; | 
 | 	struct sched_group *sg = sd->groups; | 
 | 	struct sg_lb_stats sgs; | 
 | 	int load_idx, prefer_sibling = 0; | 
 |  | 
 | 	if (child && child->flags & SD_PREFER_SIBLING) | 
 | 		prefer_sibling = 1; | 
 |  | 
 | 	init_sd_power_savings_stats(sd, sds, idle); | 
 | 	load_idx = get_sd_load_idx(sd, idle); | 
 |  | 
 | 	do { | 
 | 		int local_group; | 
 |  | 
 | 		local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg)); | 
 | 		memset(&sgs, 0, sizeof(sgs)); | 
 | 		update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx, | 
 | 				local_group, cpus, balance, &sgs); | 
 |  | 
 | 		if (local_group && !(*balance)) | 
 | 			return; | 
 |  | 
 | 		sds->total_load += sgs.group_load; | 
 | 		sds->total_pwr += sg->sgp->power; | 
 |  | 
 | 		/* | 
 | 		 * In case the child domain prefers tasks go to siblings | 
 | 		 * first, lower the sg capacity to one so that we'll try | 
 | 		 * and move all the excess tasks away. We lower the capacity | 
 | 		 * of a group only if the local group has the capacity to fit | 
 | 		 * these excess tasks, i.e. nr_running < group_capacity. The | 
 | 		 * extra check prevents the case where you always pull from the | 
 | 		 * heaviest group when it is already under-utilized (possible | 
 | 		 * with a large weight task outweighs the tasks on the system). | 
 | 		 */ | 
 | 		if (prefer_sibling && !local_group && sds->this_has_capacity) | 
 | 			sgs.group_capacity = min(sgs.group_capacity, 1UL); | 
 |  | 
 | 		if (local_group) { | 
 | 			sds->this_load = sgs.avg_load; | 
 | 			sds->this = sg; | 
 | 			sds->this_nr_running = sgs.sum_nr_running; | 
 | 			sds->this_load_per_task = sgs.sum_weighted_load; | 
 | 			sds->this_has_capacity = sgs.group_has_capacity; | 
 | 			sds->this_idle_cpus = sgs.idle_cpus; | 
 | 		} else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) { | 
 | 			sds->max_load = sgs.avg_load; | 
 | 			sds->busiest = sg; | 
 | 			sds->busiest_nr_running = sgs.sum_nr_running; | 
 | 			sds->busiest_idle_cpus = sgs.idle_cpus; | 
 | 			sds->busiest_group_capacity = sgs.group_capacity; | 
 | 			sds->busiest_load_per_task = sgs.sum_weighted_load; | 
 | 			sds->busiest_has_capacity = sgs.group_has_capacity; | 
 | 			sds->busiest_group_weight = sgs.group_weight; | 
 | 			sds->group_imb = sgs.group_imb; | 
 | 		} | 
 |  | 
 | 		update_sd_power_savings_stats(sg, sds, local_group, &sgs); | 
 | 		sg = sg->next; | 
 | 	} while (sg != sd->groups); | 
 | } | 
 |  | 
 | /** | 
 |  * check_asym_packing - Check to see if the group is packed into the | 
 |  *			sched doman. | 
 |  * | 
 |  * This is primarily intended to used at the sibling level.  Some | 
 |  * cores like POWER7 prefer to use lower numbered SMT threads.  In the | 
 |  * case of POWER7, it can move to lower SMT modes only when higher | 
 |  * threads are idle.  When in lower SMT modes, the threads will | 
 |  * perform better since they share less core resources.  Hence when we | 
 |  * have idle threads, we want them to be the higher ones. | 
 |  * | 
 |  * This packing function is run on idle threads.  It checks to see if | 
 |  * the busiest CPU in this domain (core in the P7 case) has a higher | 
 |  * CPU number than the packing function is being run on.  Here we are | 
 |  * assuming lower CPU number will be equivalent to lower a SMT thread | 
 |  * number. | 
 |  * | 
 |  * Returns 1 when packing is required and a task should be moved to | 
 |  * this CPU.  The amount of the imbalance is returned in *imbalance. | 
 |  * | 
 |  * @sd: The sched_domain whose packing is to be checked. | 
 |  * @sds: Statistics of the sched_domain which is to be packed | 
 |  * @this_cpu: The cpu at whose sched_domain we're performing load-balance. | 
 |  * @imbalance: returns amount of imbalanced due to packing. | 
 |  */ | 
 | static int check_asym_packing(struct sched_domain *sd, | 
 | 			      struct sd_lb_stats *sds, | 
 | 			      int this_cpu, unsigned long *imbalance) | 
 | { | 
 | 	int busiest_cpu; | 
 |  | 
 | 	if (!(sd->flags & SD_ASYM_PACKING)) | 
 | 		return 0; | 
 |  | 
 | 	if (!sds->busiest) | 
 | 		return 0; | 
 |  | 
 | 	busiest_cpu = group_first_cpu(sds->busiest); | 
 | 	if (this_cpu > busiest_cpu) | 
 | 		return 0; | 
 |  | 
 | 	*imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->sgp->power, | 
 | 				       SCHED_POWER_SCALE); | 
 | 	return 1; | 
 | } | 
 |  | 
 | /** | 
 |  * fix_small_imbalance - Calculate the minor imbalance that exists | 
 |  *			amongst the groups of a sched_domain, during | 
 |  *			load balancing. | 
 |  * @sds: Statistics of the sched_domain whose imbalance is to be calculated. | 
 |  * @this_cpu: The cpu at whose sched_domain we're performing load-balance. | 
 |  * @imbalance: Variable to store the imbalance. | 
 |  */ | 
 | static inline void fix_small_imbalance(struct sd_lb_stats *sds, | 
 | 				int this_cpu, unsigned long *imbalance) | 
 | { | 
 | 	unsigned long tmp, pwr_now = 0, pwr_move = 0; | 
 | 	unsigned int imbn = 2; | 
 | 	unsigned long scaled_busy_load_per_task; | 
 |  | 
 | 	if (sds->this_nr_running) { | 
 | 		sds->this_load_per_task /= sds->this_nr_running; | 
 | 		if (sds->busiest_load_per_task > | 
 | 				sds->this_load_per_task) | 
 | 			imbn = 1; | 
 | 	} else | 
 | 		sds->this_load_per_task = | 
 | 			cpu_avg_load_per_task(this_cpu); | 
 |  | 
 | 	scaled_busy_load_per_task = sds->busiest_load_per_task | 
 | 					 * SCHED_POWER_SCALE; | 
 | 	scaled_busy_load_per_task /= sds->busiest->sgp->power; | 
 |  | 
 | 	if (sds->max_load - sds->this_load + scaled_busy_load_per_task >= | 
 | 			(scaled_busy_load_per_task * imbn)) { | 
 | 		*imbalance = sds->busiest_load_per_task; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * OK, we don't have enough imbalance to justify moving tasks, | 
 | 	 * however we may be able to increase total CPU power used by | 
 | 	 * moving them. | 
 | 	 */ | 
 |  | 
 | 	pwr_now += sds->busiest->sgp->power * | 
 | 			min(sds->busiest_load_per_task, sds->max_load); | 
 | 	pwr_now += sds->this->sgp->power * | 
 | 			min(sds->this_load_per_task, sds->this_load); | 
 | 	pwr_now /= SCHED_POWER_SCALE; | 
 |  | 
 | 	/* Amount of load we'd subtract */ | 
 | 	tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) / | 
 | 		sds->busiest->sgp->power; | 
 | 	if (sds->max_load > tmp) | 
 | 		pwr_move += sds->busiest->sgp->power * | 
 | 			min(sds->busiest_load_per_task, sds->max_load - tmp); | 
 |  | 
 | 	/* Amount of load we'd add */ | 
 | 	if (sds->max_load * sds->busiest->sgp->power < | 
 | 		sds->busiest_load_per_task * SCHED_POWER_SCALE) | 
 | 		tmp = (sds->max_load * sds->busiest->sgp->power) / | 
 | 			sds->this->sgp->power; | 
 | 	else | 
 | 		tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) / | 
 | 			sds->this->sgp->power; | 
 | 	pwr_move += sds->this->sgp->power * | 
 | 			min(sds->this_load_per_task, sds->this_load + tmp); | 
 | 	pwr_move /= SCHED_POWER_SCALE; | 
 |  | 
 | 	/* Move if we gain throughput */ | 
 | 	if (pwr_move > pwr_now) | 
 | 		*imbalance = sds->busiest_load_per_task; | 
 | } | 
 |  | 
 | /** | 
 |  * calculate_imbalance - Calculate the amount of imbalance present within the | 
 |  *			 groups of a given sched_domain during load balance. | 
 |  * @sds: statistics of the sched_domain whose imbalance is to be calculated. | 
 |  * @this_cpu: Cpu for which currently load balance is being performed. | 
 |  * @imbalance: The variable to store the imbalance. | 
 |  */ | 
 | static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu, | 
 | 		unsigned long *imbalance) | 
 | { | 
 | 	unsigned long max_pull, load_above_capacity = ~0UL; | 
 |  | 
 | 	sds->busiest_load_per_task /= sds->busiest_nr_running; | 
 | 	if (sds->group_imb) { | 
 | 		sds->busiest_load_per_task = | 
 | 			min(sds->busiest_load_per_task, sds->avg_load); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * In the presence of smp nice balancing, certain scenarios can have | 
 | 	 * max load less than avg load(as we skip the groups at or below | 
 | 	 * its cpu_power, while calculating max_load..) | 
 | 	 */ | 
 | 	if (sds->max_load < sds->avg_load) { | 
 | 		*imbalance = 0; | 
 | 		return fix_small_imbalance(sds, this_cpu, imbalance); | 
 | 	} | 
 |  | 
 | 	if (!sds->group_imb) { | 
 | 		/* | 
 | 		 * Don't want to pull so many tasks that a group would go idle. | 
 | 		 */ | 
 | 		load_above_capacity = (sds->busiest_nr_running - | 
 | 						sds->busiest_group_capacity); | 
 |  | 
 | 		load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE); | 
 |  | 
 | 		load_above_capacity /= sds->busiest->sgp->power; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We're trying to get all the cpus to the average_load, so we don't | 
 | 	 * want to push ourselves above the average load, nor do we wish to | 
 | 	 * reduce the max loaded cpu below the average load. At the same time, | 
 | 	 * we also don't want to reduce the group load below the group capacity | 
 | 	 * (so that we can implement power-savings policies etc). Thus we look | 
 | 	 * for the minimum possible imbalance. | 
 | 	 * Be careful of negative numbers as they'll appear as very large values | 
 | 	 * with unsigned longs. | 
 | 	 */ | 
 | 	max_pull = min(sds->max_load - sds->avg_load, load_above_capacity); | 
 |  | 
 | 	/* How much load to actually move to equalise the imbalance */ | 
 | 	*imbalance = min(max_pull * sds->busiest->sgp->power, | 
 | 		(sds->avg_load - sds->this_load) * sds->this->sgp->power) | 
 | 			/ SCHED_POWER_SCALE; | 
 |  | 
 | 	/* | 
 | 	 * if *imbalance is less than the average load per runnable task | 
 | 	 * there is no guarantee that any tasks will be moved so we'll have | 
 | 	 * a think about bumping its value to force at least one task to be | 
 | 	 * moved | 
 | 	 */ | 
 | 	if (*imbalance < sds->busiest_load_per_task) | 
 | 		return fix_small_imbalance(sds, this_cpu, imbalance); | 
 |  | 
 | } | 
 |  | 
 | /******* find_busiest_group() helpers end here *********************/ | 
 |  | 
 | /** | 
 |  * find_busiest_group - Returns the busiest group within the sched_domain | 
 |  * if there is an imbalance. If there isn't an imbalance, and | 
 |  * the user has opted for power-savings, it returns a group whose | 
 |  * CPUs can be put to idle by rebalancing those tasks elsewhere, if | 
 |  * such a group exists. | 
 |  * | 
 |  * Also calculates the amount of weighted load which should be moved | 
 |  * to restore balance. | 
 |  * | 
 |  * @sd: The sched_domain whose busiest group is to be returned. | 
 |  * @this_cpu: The cpu for which load balancing is currently being performed. | 
 |  * @imbalance: Variable which stores amount of weighted load which should | 
 |  *		be moved to restore balance/put a group to idle. | 
 |  * @idle: The idle status of this_cpu. | 
 |  * @cpus: The set of CPUs under consideration for load-balancing. | 
 |  * @balance: Pointer to a variable indicating if this_cpu | 
 |  *	is the appropriate cpu to perform load balancing at this_level. | 
 |  * | 
 |  * Returns:	- the busiest group if imbalance exists. | 
 |  *		- If no imbalance and user has opted for power-savings balance, | 
 |  *		   return the least loaded group whose CPUs can be | 
 |  *		   put to idle by rebalancing its tasks onto our group. | 
 |  */ | 
 | static struct sched_group * | 
 | find_busiest_group(struct sched_domain *sd, int this_cpu, | 
 | 		   unsigned long *imbalance, enum cpu_idle_type idle, | 
 | 		   const struct cpumask *cpus, int *balance) | 
 | { | 
 | 	struct sd_lb_stats sds; | 
 |  | 
 | 	memset(&sds, 0, sizeof(sds)); | 
 |  | 
 | 	/* | 
 | 	 * Compute the various statistics relavent for load balancing at | 
 | 	 * this level. | 
 | 	 */ | 
 | 	update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds); | 
 |  | 
 | 	/* | 
 | 	 * this_cpu is not the appropriate cpu to perform load balancing at | 
 | 	 * this level. | 
 | 	 */ | 
 | 	if (!(*balance)) | 
 | 		goto ret; | 
 |  | 
 | 	if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) && | 
 | 	    check_asym_packing(sd, &sds, this_cpu, imbalance)) | 
 | 		return sds.busiest; | 
 |  | 
 | 	/* There is no busy sibling group to pull tasks from */ | 
 | 	if (!sds.busiest || sds.busiest_nr_running == 0) | 
 | 		goto out_balanced; | 
 |  | 
 | 	sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr; | 
 |  | 
 | 	/* | 
 | 	 * If the busiest group is imbalanced the below checks don't | 
 | 	 * work because they assumes all things are equal, which typically | 
 | 	 * isn't true due to cpus_allowed constraints and the like. | 
 | 	 */ | 
 | 	if (sds.group_imb) | 
 | 		goto force_balance; | 
 |  | 
 | 	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */ | 
 | 	if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity && | 
 | 			!sds.busiest_has_capacity) | 
 | 		goto force_balance; | 
 |  | 
 | 	/* | 
 | 	 * If the local group is more busy than the selected busiest group | 
 | 	 * don't try and pull any tasks. | 
 | 	 */ | 
 | 	if (sds.this_load >= sds.max_load) | 
 | 		goto out_balanced; | 
 |  | 
 | 	/* | 
 | 	 * Don't pull any tasks if this group is already above the domain | 
 | 	 * average load. | 
 | 	 */ | 
 | 	if (sds.this_load >= sds.avg_load) | 
 | 		goto out_balanced; | 
 |  | 
 | 	if (idle == CPU_IDLE) { | 
 | 		/* | 
 | 		 * This cpu is idle. If the busiest group load doesn't | 
 | 		 * have more tasks than the number of available cpu's and | 
 | 		 * there is no imbalance between this and busiest group | 
 | 		 * wrt to idle cpu's, it is balanced. | 
 | 		 */ | 
 | 		if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) && | 
 | 		    sds.busiest_nr_running <= sds.busiest_group_weight) | 
 | 			goto out_balanced; | 
 | 	} else { | 
 | 		/* | 
 | 		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use | 
 | 		 * imbalance_pct to be conservative. | 
 | 		 */ | 
 | 		if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load) | 
 | 			goto out_balanced; | 
 | 	} | 
 |  | 
 | force_balance: | 
 | 	/* Looks like there is an imbalance. Compute it */ | 
 | 	calculate_imbalance(&sds, this_cpu, imbalance); | 
 | 	return sds.busiest; | 
 |  | 
 | out_balanced: | 
 | 	/* | 
 | 	 * There is no obvious imbalance. But check if we can do some balancing | 
 | 	 * to save power. | 
 | 	 */ | 
 | 	if (check_power_save_busiest_group(&sds, this_cpu, imbalance)) | 
 | 		return sds.busiest; | 
 | ret: | 
 | 	*imbalance = 0; | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * find_busiest_queue - find the busiest runqueue among the cpus in group. | 
 |  */ | 
 | static struct rq * | 
 | find_busiest_queue(struct sched_domain *sd, struct sched_group *group, | 
 | 		   enum cpu_idle_type idle, unsigned long imbalance, | 
 | 		   const struct cpumask *cpus) | 
 | { | 
 | 	struct rq *busiest = NULL, *rq; | 
 | 	unsigned long max_load = 0; | 
 | 	int i; | 
 |  | 
 | 	for_each_cpu(i, sched_group_cpus(group)) { | 
 | 		unsigned long power = power_of(i); | 
 | 		unsigned long capacity = DIV_ROUND_CLOSEST(power, | 
 | 							   SCHED_POWER_SCALE); | 
 | 		unsigned long wl; | 
 |  | 
 | 		if (!capacity) | 
 | 			capacity = fix_small_capacity(sd, group); | 
 |  | 
 | 		if (!cpumask_test_cpu(i, cpus)) | 
 | 			continue; | 
 |  | 
 | 		rq = cpu_rq(i); | 
 | 		wl = weighted_cpuload(i); | 
 |  | 
 | 		/* | 
 | 		 * When comparing with imbalance, use weighted_cpuload() | 
 | 		 * which is not scaled with the cpu power. | 
 | 		 */ | 
 | 		if (capacity && rq->nr_running == 1 && wl > imbalance) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * For the load comparisons with the other cpu's, consider | 
 | 		 * the weighted_cpuload() scaled with the cpu power, so that | 
 | 		 * the load can be moved away from the cpu that is potentially | 
 | 		 * running at a lower capacity. | 
 | 		 */ | 
 | 		wl = (wl * SCHED_POWER_SCALE) / power; | 
 |  | 
 | 		if (wl > max_load) { | 
 | 			max_load = wl; | 
 | 			busiest = rq; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return busiest; | 
 | } | 
 |  | 
 | /* | 
 |  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but | 
 |  * so long as it is large enough. | 
 |  */ | 
 | #define MAX_PINNED_INTERVAL	512 | 
 |  | 
 | /* Working cpumask for load_balance and load_balance_newidle. */ | 
 | DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask); | 
 |  | 
 | static int need_active_balance(struct sched_domain *sd, int idle, | 
 | 			       int busiest_cpu, int this_cpu) | 
 | { | 
 | 	if (idle == CPU_NEWLY_IDLE) { | 
 |  | 
 | 		/* | 
 | 		 * ASYM_PACKING needs to force migrate tasks from busy but | 
 | 		 * higher numbered CPUs in order to pack all tasks in the | 
 | 		 * lowest numbered CPUs. | 
 | 		 */ | 
 | 		if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu) | 
 | 			return 1; | 
 |  | 
 | 		/* | 
 | 		 * The only task running in a non-idle cpu can be moved to this | 
 | 		 * cpu in an attempt to completely freeup the other CPU | 
 | 		 * package. | 
 | 		 * | 
 | 		 * The package power saving logic comes from | 
 | 		 * find_busiest_group(). If there are no imbalance, then | 
 | 		 * f_b_g() will return NULL. However when sched_mc={1,2} then | 
 | 		 * f_b_g() will select a group from which a running task may be | 
 | 		 * pulled to this cpu in order to make the other package idle. | 
 | 		 * If there is no opportunity to make a package idle and if | 
 | 		 * there are no imbalance, then f_b_g() will return NULL and no | 
 | 		 * action will be taken in load_balance_newidle(). | 
 | 		 * | 
 | 		 * Under normal task pull operation due to imbalance, there | 
 | 		 * will be more than one task in the source run queue and | 
 | 		 * move_tasks() will succeed.  ld_moved will be true and this | 
 | 		 * active balance code will not be triggered. | 
 | 		 */ | 
 | 		if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP) | 
 | 			return 0; | 
 | 	} | 
 |  | 
 | 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); | 
 | } | 
 |  | 
 | static int active_load_balance_cpu_stop(void *data); | 
 |  | 
 | /* | 
 |  * Check this_cpu to ensure it is balanced within domain. Attempt to move | 
 |  * tasks if there is an imbalance. | 
 |  */ | 
 | static int load_balance(int this_cpu, struct rq *this_rq, | 
 | 			struct sched_domain *sd, enum cpu_idle_type idle, | 
 | 			int *balance) | 
 | { | 
 | 	int ld_moved, lb_flags = 0, active_balance = 0; | 
 | 	struct sched_group *group; | 
 | 	unsigned long imbalance; | 
 | 	struct rq *busiest; | 
 | 	unsigned long flags; | 
 | 	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask); | 
 |  | 
 | 	cpumask_copy(cpus, cpu_active_mask); | 
 |  | 
 | 	schedstat_inc(sd, lb_count[idle]); | 
 |  | 
 | redo: | 
 | 	group = find_busiest_group(sd, this_cpu, &imbalance, idle, | 
 | 				   cpus, balance); | 
 |  | 
 | 	if (*balance == 0) | 
 | 		goto out_balanced; | 
 |  | 
 | 	if (!group) { | 
 | 		schedstat_inc(sd, lb_nobusyg[idle]); | 
 | 		goto out_balanced; | 
 | 	} | 
 |  | 
 | 	busiest = find_busiest_queue(sd, group, idle, imbalance, cpus); | 
 | 	if (!busiest) { | 
 | 		schedstat_inc(sd, lb_nobusyq[idle]); | 
 | 		goto out_balanced; | 
 | 	} | 
 |  | 
 | 	BUG_ON(busiest == this_rq); | 
 |  | 
 | 	schedstat_add(sd, lb_imbalance[idle], imbalance); | 
 |  | 
 | 	ld_moved = 0; | 
 | 	if (busiest->nr_running > 1) { | 
 | 		/* | 
 | 		 * Attempt to move tasks. If find_busiest_group has found | 
 | 		 * an imbalance but busiest->nr_running <= 1, the group is | 
 | 		 * still unbalanced. ld_moved simply stays zero, so it is | 
 | 		 * correctly treated as an imbalance. | 
 | 		 */ | 
 | 		lb_flags |= LBF_ALL_PINNED; | 
 | 		local_irq_save(flags); | 
 | 		double_rq_lock(this_rq, busiest); | 
 | 		ld_moved = move_tasks(this_rq, this_cpu, busiest, | 
 | 				      imbalance, sd, idle, &lb_flags); | 
 | 		double_rq_unlock(this_rq, busiest); | 
 | 		local_irq_restore(flags); | 
 |  | 
 | 		/* | 
 | 		 * some other cpu did the load balance for us. | 
 | 		 */ | 
 | 		if (ld_moved && this_cpu != smp_processor_id()) | 
 | 			resched_cpu(this_cpu); | 
 |  | 
 | 		if (lb_flags & LBF_ABORT) | 
 | 			goto out_balanced; | 
 |  | 
 | 		if (lb_flags & LBF_NEED_BREAK) { | 
 | 			lb_flags += LBF_HAD_BREAK - LBF_NEED_BREAK; | 
 | 			if (lb_flags & LBF_ABORT) | 
 | 				goto out_balanced; | 
 | 			goto redo; | 
 | 		} | 
 |  | 
 | 		/* All tasks on this runqueue were pinned by CPU affinity */ | 
 | 		if (unlikely(lb_flags & LBF_ALL_PINNED)) { | 
 | 			cpumask_clear_cpu(cpu_of(busiest), cpus); | 
 | 			if (!cpumask_empty(cpus)) | 
 | 				goto redo; | 
 | 			goto out_balanced; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!ld_moved) { | 
 | 		schedstat_inc(sd, lb_failed[idle]); | 
 | 		/* | 
 | 		 * Increment the failure counter only on periodic balance. | 
 | 		 * We do not want newidle balance, which can be very | 
 | 		 * frequent, pollute the failure counter causing | 
 | 		 * excessive cache_hot migrations and active balances. | 
 | 		 */ | 
 | 		if (idle != CPU_NEWLY_IDLE) | 
 | 			sd->nr_balance_failed++; | 
 |  | 
 | 		if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) { | 
 | 			raw_spin_lock_irqsave(&busiest->lock, flags); | 
 |  | 
 | 			/* don't kick the active_load_balance_cpu_stop, | 
 | 			 * if the curr task on busiest cpu can't be | 
 | 			 * moved to this_cpu | 
 | 			 */ | 
 | 			if (!cpumask_test_cpu(this_cpu, | 
 | 					tsk_cpus_allowed(busiest->curr))) { | 
 | 				raw_spin_unlock_irqrestore(&busiest->lock, | 
 | 							    flags); | 
 | 				lb_flags |= LBF_ALL_PINNED; | 
 | 				goto out_one_pinned; | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * ->active_balance synchronizes accesses to | 
 | 			 * ->active_balance_work.  Once set, it's cleared | 
 | 			 * only after active load balance is finished. | 
 | 			 */ | 
 | 			if (!busiest->active_balance) { | 
 | 				busiest->active_balance = 1; | 
 | 				busiest->push_cpu = this_cpu; | 
 | 				active_balance = 1; | 
 | 			} | 
 | 			raw_spin_unlock_irqrestore(&busiest->lock, flags); | 
 |  | 
 | 			if (active_balance) | 
 | 				stop_one_cpu_nowait(cpu_of(busiest), | 
 | 					active_load_balance_cpu_stop, busiest, | 
 | 					&busiest->active_balance_work); | 
 |  | 
 | 			/* | 
 | 			 * We've kicked active balancing, reset the failure | 
 | 			 * counter. | 
 | 			 */ | 
 | 			sd->nr_balance_failed = sd->cache_nice_tries+1; | 
 | 		} | 
 | 	} else | 
 | 		sd->nr_balance_failed = 0; | 
 |  | 
 | 	if (likely(!active_balance)) { | 
 | 		/* We were unbalanced, so reset the balancing interval */ | 
 | 		sd->balance_interval = sd->min_interval; | 
 | 	} else { | 
 | 		/* | 
 | 		 * If we've begun active balancing, start to back off. This | 
 | 		 * case may not be covered by the all_pinned logic if there | 
 | 		 * is only 1 task on the busy runqueue (because we don't call | 
 | 		 * move_tasks). | 
 | 		 */ | 
 | 		if (sd->balance_interval < sd->max_interval) | 
 | 			sd->balance_interval *= 2; | 
 | 	} | 
 |  | 
 | 	goto out; | 
 |  | 
 | out_balanced: | 
 | 	schedstat_inc(sd, lb_balanced[idle]); | 
 |  | 
 | 	sd->nr_balance_failed = 0; | 
 |  | 
 | out_one_pinned: | 
 | 	/* tune up the balancing interval */ | 
 | 	if (((lb_flags & LBF_ALL_PINNED) && | 
 | 			sd->balance_interval < MAX_PINNED_INTERVAL) || | 
 | 			(sd->balance_interval < sd->max_interval)) | 
 | 		sd->balance_interval *= 2; | 
 |  | 
 | 	ld_moved = 0; | 
 | out: | 
 | 	return ld_moved; | 
 | } | 
 |  | 
 | /* | 
 |  * idle_balance is called by schedule() if this_cpu is about to become | 
 |  * idle. Attempts to pull tasks from other CPUs. | 
 |  */ | 
 | void idle_balance(int this_cpu, struct rq *this_rq) | 
 | { | 
 | 	struct sched_domain *sd; | 
 | 	int pulled_task = 0; | 
 | 	unsigned long next_balance = jiffies + HZ; | 
 |  | 
 | 	this_rq->idle_stamp = this_rq->clock; | 
 |  | 
 | 	if (this_rq->avg_idle < sysctl_sched_migration_cost) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Drop the rq->lock, but keep IRQ/preempt disabled. | 
 | 	 */ | 
 | 	raw_spin_unlock(&this_rq->lock); | 
 |  | 
 | 	update_shares(this_cpu); | 
 | 	rcu_read_lock(); | 
 | 	for_each_domain(this_cpu, sd) { | 
 | 		unsigned long interval; | 
 | 		int balance = 1; | 
 |  | 
 | 		if (!(sd->flags & SD_LOAD_BALANCE)) | 
 | 			continue; | 
 |  | 
 | 		if (sd->flags & SD_BALANCE_NEWIDLE) { | 
 | 			/* If we've pulled tasks over stop searching: */ | 
 | 			pulled_task = load_balance(this_cpu, this_rq, | 
 | 						   sd, CPU_NEWLY_IDLE, &balance); | 
 | 		} | 
 |  | 
 | 		interval = msecs_to_jiffies(sd->balance_interval); | 
 | 		if (time_after(next_balance, sd->last_balance + interval)) | 
 | 			next_balance = sd->last_balance + interval; | 
 | 		if (pulled_task) { | 
 | 			this_rq->idle_stamp = 0; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	raw_spin_lock(&this_rq->lock); | 
 |  | 
 | 	if (pulled_task || time_after(jiffies, this_rq->next_balance)) { | 
 | 		/* | 
 | 		 * We are going idle. next_balance may be set based on | 
 | 		 * a busy processor. So reset next_balance. | 
 | 		 */ | 
 | 		this_rq->next_balance = next_balance; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * active_load_balance_cpu_stop is run by cpu stopper. It pushes | 
 |  * running tasks off the busiest CPU onto idle CPUs. It requires at | 
 |  * least 1 task to be running on each physical CPU where possible, and | 
 |  * avoids physical / logical imbalances. | 
 |  */ | 
 | static int active_load_balance_cpu_stop(void *data) | 
 | { | 
 | 	struct rq *busiest_rq = data; | 
 | 	int busiest_cpu = cpu_of(busiest_rq); | 
 | 	int target_cpu = busiest_rq->push_cpu; | 
 | 	struct rq *target_rq = cpu_rq(target_cpu); | 
 | 	struct sched_domain *sd; | 
 |  | 
 | 	raw_spin_lock_irq(&busiest_rq->lock); | 
 |  | 
 | 	/* make sure the requested cpu hasn't gone down in the meantime */ | 
 | 	if (unlikely(busiest_cpu != smp_processor_id() || | 
 | 		     !busiest_rq->active_balance)) | 
 | 		goto out_unlock; | 
 |  | 
 | 	/* Is there any task to move? */ | 
 | 	if (busiest_rq->nr_running <= 1) | 
 | 		goto out_unlock; | 
 |  | 
 | 	/* | 
 | 	 * This condition is "impossible", if it occurs | 
 | 	 * we need to fix it. Originally reported by | 
 | 	 * Bjorn Helgaas on a 128-cpu setup. | 
 | 	 */ | 
 | 	BUG_ON(busiest_rq == target_rq); | 
 |  | 
 | 	/* move a task from busiest_rq to target_rq */ | 
 | 	double_lock_balance(busiest_rq, target_rq); | 
 |  | 
 | 	/* Search for an sd spanning us and the target CPU. */ | 
 | 	rcu_read_lock(); | 
 | 	for_each_domain(target_cpu, sd) { | 
 | 		if ((sd->flags & SD_LOAD_BALANCE) && | 
 | 		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) | 
 | 				break; | 
 | 	} | 
 |  | 
 | 	if (likely(sd)) { | 
 | 		schedstat_inc(sd, alb_count); | 
 |  | 
 | 		if (move_one_task(target_rq, target_cpu, busiest_rq, | 
 | 				  sd, CPU_IDLE)) | 
 | 			schedstat_inc(sd, alb_pushed); | 
 | 		else | 
 | 			schedstat_inc(sd, alb_failed); | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | 	double_unlock_balance(busiest_rq, target_rq); | 
 | out_unlock: | 
 | 	busiest_rq->active_balance = 0; | 
 | 	raw_spin_unlock_irq(&busiest_rq->lock); | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_NO_HZ | 
 | /* | 
 |  * idle load balancing details | 
 |  * - When one of the busy CPUs notice that there may be an idle rebalancing | 
 |  *   needed, they will kick the idle load balancer, which then does idle | 
 |  *   load balancing for all the idle CPUs. | 
 |  */ | 
 | static struct { | 
 | 	cpumask_var_t idle_cpus_mask; | 
 | 	atomic_t nr_cpus; | 
 | 	unsigned long next_balance;     /* in jiffy units */ | 
 | } nohz ____cacheline_aligned; | 
 |  | 
 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | 
 | /** | 
 |  * lowest_flag_domain - Return lowest sched_domain containing flag. | 
 |  * @cpu:	The cpu whose lowest level of sched domain is to | 
 |  *		be returned. | 
 |  * @flag:	The flag to check for the lowest sched_domain | 
 |  *		for the given cpu. | 
 |  * | 
 |  * Returns the lowest sched_domain of a cpu which contains the given flag. | 
 |  */ | 
 | static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) | 
 | { | 
 | 	struct sched_domain *sd; | 
 |  | 
 | 	for_each_domain(cpu, sd) | 
 | 		if (sd->flags & flag) | 
 | 			break; | 
 |  | 
 | 	return sd; | 
 | } | 
 |  | 
 | /** | 
 |  * for_each_flag_domain - Iterates over sched_domains containing the flag. | 
 |  * @cpu:	The cpu whose domains we're iterating over. | 
 |  * @sd:		variable holding the value of the power_savings_sd | 
 |  *		for cpu. | 
 |  * @flag:	The flag to filter the sched_domains to be iterated. | 
 |  * | 
 |  * Iterates over all the scheduler domains for a given cpu that has the 'flag' | 
 |  * set, starting from the lowest sched_domain to the highest. | 
 |  */ | 
 | #define for_each_flag_domain(cpu, sd, flag) \ | 
 | 	for (sd = lowest_flag_domain(cpu, flag); \ | 
 | 		(sd && (sd->flags & flag)); sd = sd->parent) | 
 |  | 
 | /** | 
 |  * find_new_ilb - Finds the optimum idle load balancer for nomination. | 
 |  * @cpu:	The cpu which is nominating a new idle_load_balancer. | 
 |  * | 
 |  * Returns:	Returns the id of the idle load balancer if it exists, | 
 |  *		Else, returns >= nr_cpu_ids. | 
 |  * | 
 |  * This algorithm picks the idle load balancer such that it belongs to a | 
 |  * semi-idle powersavings sched_domain. The idea is to try and avoid | 
 |  * completely idle packages/cores just for the purpose of idle load balancing | 
 |  * when there are other idle cpu's which are better suited for that job. | 
 |  */ | 
 | static int find_new_ilb(int cpu) | 
 | { | 
 | 	int ilb = cpumask_first(nohz.idle_cpus_mask); | 
 | 	struct sched_group *ilbg; | 
 | 	struct sched_domain *sd; | 
 |  | 
 | 	/* | 
 | 	 * Have idle load balancer selection from semi-idle packages only | 
 | 	 * when power-aware load balancing is enabled | 
 | 	 */ | 
 | 	if (!(sched_smt_power_savings || sched_mc_power_savings)) | 
 | 		goto out_done; | 
 |  | 
 | 	/* | 
 | 	 * Optimize for the case when we have no idle CPUs or only one | 
 | 	 * idle CPU. Don't walk the sched_domain hierarchy in such cases | 
 | 	 */ | 
 | 	if (cpumask_weight(nohz.idle_cpus_mask) < 2) | 
 | 		goto out_done; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) { | 
 | 		ilbg = sd->groups; | 
 |  | 
 | 		do { | 
 | 			if (ilbg->group_weight != | 
 | 				atomic_read(&ilbg->sgp->nr_busy_cpus)) { | 
 | 				ilb = cpumask_first_and(nohz.idle_cpus_mask, | 
 | 							sched_group_cpus(ilbg)); | 
 | 				goto unlock; | 
 | 			} | 
 |  | 
 | 			ilbg = ilbg->next; | 
 |  | 
 | 		} while (ilbg != sd->groups); | 
 | 	} | 
 | unlock: | 
 | 	rcu_read_unlock(); | 
 |  | 
 | out_done: | 
 | 	if (ilb < nr_cpu_ids && idle_cpu(ilb)) | 
 | 		return ilb; | 
 |  | 
 | 	return nr_cpu_ids; | 
 | } | 
 | #else /*  (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */ | 
 | static inline int find_new_ilb(int call_cpu) | 
 | { | 
 | 	return nr_cpu_ids; | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * Kick a CPU to do the nohz balancing, if it is time for it. We pick the | 
 |  * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle | 
 |  * CPU (if there is one). | 
 |  */ | 
 | static void nohz_balancer_kick(int cpu) | 
 | { | 
 | 	int ilb_cpu; | 
 |  | 
 | 	nohz.next_balance++; | 
 |  | 
 | 	ilb_cpu = find_new_ilb(cpu); | 
 |  | 
 | 	if (ilb_cpu >= nr_cpu_ids) | 
 | 		return; | 
 |  | 
 | 	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu))) | 
 | 		return; | 
 | 	/* | 
 | 	 * Use smp_send_reschedule() instead of resched_cpu(). | 
 | 	 * This way we generate a sched IPI on the target cpu which | 
 | 	 * is idle. And the softirq performing nohz idle load balance | 
 | 	 * will be run before returning from the IPI. | 
 | 	 */ | 
 | 	smp_send_reschedule(ilb_cpu); | 
 | 	return; | 
 | } | 
 |  | 
 | static inline void clear_nohz_tick_stopped(int cpu) | 
 | { | 
 | 	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) { | 
 | 		cpumask_clear_cpu(cpu, nohz.idle_cpus_mask); | 
 | 		atomic_dec(&nohz.nr_cpus); | 
 | 		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); | 
 | 	} | 
 | } | 
 |  | 
 | static inline void set_cpu_sd_state_busy(void) | 
 | { | 
 | 	struct sched_domain *sd; | 
 | 	int cpu = smp_processor_id(); | 
 |  | 
 | 	if (!test_bit(NOHZ_IDLE, nohz_flags(cpu))) | 
 | 		return; | 
 | 	clear_bit(NOHZ_IDLE, nohz_flags(cpu)); | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	for_each_domain(cpu, sd) | 
 | 		atomic_inc(&sd->groups->sgp->nr_busy_cpus); | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | void set_cpu_sd_state_idle(void) | 
 | { | 
 | 	struct sched_domain *sd; | 
 | 	int cpu = smp_processor_id(); | 
 |  | 
 | 	if (test_bit(NOHZ_IDLE, nohz_flags(cpu))) | 
 | 		return; | 
 | 	set_bit(NOHZ_IDLE, nohz_flags(cpu)); | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	for_each_domain(cpu, sd) | 
 | 		atomic_dec(&sd->groups->sgp->nr_busy_cpus); | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | /* | 
 |  * This routine will record that this cpu is going idle with tick stopped. | 
 |  * This info will be used in performing idle load balancing in the future. | 
 |  */ | 
 | void select_nohz_load_balancer(int stop_tick) | 
 | { | 
 | 	int cpu = smp_processor_id(); | 
 |  | 
 | 	/* | 
 | 	 * If this cpu is going down, then nothing needs to be done. | 
 | 	 */ | 
 | 	if (!cpu_active(cpu)) | 
 | 		return; | 
 |  | 
 | 	if (stop_tick) { | 
 | 		if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu))) | 
 | 			return; | 
 |  | 
 | 		cpumask_set_cpu(cpu, nohz.idle_cpus_mask); | 
 | 		atomic_inc(&nohz.nr_cpus); | 
 | 		set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); | 
 | 	} | 
 | 	return; | 
 | } | 
 |  | 
 | static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb, | 
 | 					unsigned long action, void *hcpu) | 
 | { | 
 | 	switch (action & ~CPU_TASKS_FROZEN) { | 
 | 	case CPU_DYING: | 
 | 		clear_nohz_tick_stopped(smp_processor_id()); | 
 | 		return NOTIFY_OK; | 
 | 	default: | 
 | 		return NOTIFY_DONE; | 
 | 	} | 
 | } | 
 | #endif | 
 |  | 
 | static DEFINE_SPINLOCK(balancing); | 
 |  | 
 | static unsigned long __read_mostly max_load_balance_interval = HZ/10; | 
 |  | 
 | /* | 
 |  * Scale the max load_balance interval with the number of CPUs in the system. | 
 |  * This trades load-balance latency on larger machines for less cross talk. | 
 |  */ | 
 | void update_max_interval(void) | 
 | { | 
 | 	max_load_balance_interval = HZ*num_online_cpus()/10; | 
 | } | 
 |  | 
 | /* | 
 |  * It checks each scheduling domain to see if it is due to be balanced, | 
 |  * and initiates a balancing operation if so. | 
 |  * | 
 |  * Balancing parameters are set up in arch_init_sched_domains. | 
 |  */ | 
 | static void rebalance_domains(int cpu, enum cpu_idle_type idle) | 
 | { | 
 | 	int balance = 1; | 
 | 	struct rq *rq = cpu_rq(cpu); | 
 | 	unsigned long interval; | 
 | 	struct sched_domain *sd; | 
 | 	/* Earliest time when we have to do rebalance again */ | 
 | 	unsigned long next_balance = jiffies + 60*HZ; | 
 | 	int update_next_balance = 0; | 
 | 	int need_serialize; | 
 |  | 
 | 	update_shares(cpu); | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	for_each_domain(cpu, sd) { | 
 | 		if (!(sd->flags & SD_LOAD_BALANCE)) | 
 | 			continue; | 
 |  | 
 | 		interval = sd->balance_interval; | 
 | 		if (idle != CPU_IDLE) | 
 | 			interval *= sd->busy_factor; | 
 |  | 
 | 		/* scale ms to jiffies */ | 
 | 		interval = msecs_to_jiffies(interval); | 
 | 		interval = clamp(interval, 1UL, max_load_balance_interval); | 
 |  | 
 | 		need_serialize = sd->flags & SD_SERIALIZE; | 
 |  | 
 | 		if (need_serialize) { | 
 | 			if (!spin_trylock(&balancing)) | 
 | 				goto out; | 
 | 		} | 
 |  | 
 | 		if (time_after_eq(jiffies, sd->last_balance + interval)) { | 
 | 			if (load_balance(cpu, rq, sd, idle, &balance)) { | 
 | 				/* | 
 | 				 * We've pulled tasks over so either we're no | 
 | 				 * longer idle. | 
 | 				 */ | 
 | 				idle = CPU_NOT_IDLE; | 
 | 			} | 
 | 			sd->last_balance = jiffies; | 
 | 		} | 
 | 		if (need_serialize) | 
 | 			spin_unlock(&balancing); | 
 | out: | 
 | 		if (time_after(next_balance, sd->last_balance + interval)) { | 
 | 			next_balance = sd->last_balance + interval; | 
 | 			update_next_balance = 1; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Stop the load balance at this level. There is another | 
 | 		 * CPU in our sched group which is doing load balancing more | 
 | 		 * actively. | 
 | 		 */ | 
 | 		if (!balance) | 
 | 			break; | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	/* | 
 | 	 * next_balance will be updated only when there is a need. | 
 | 	 * When the cpu is attached to null domain for ex, it will not be | 
 | 	 * updated. | 
 | 	 */ | 
 | 	if (likely(update_next_balance)) | 
 | 		rq->next_balance = next_balance; | 
 | } | 
 |  | 
 | #ifdef CONFIG_NO_HZ | 
 | /* | 
 |  * In CONFIG_NO_HZ case, the idle balance kickee will do the | 
 |  * rebalancing for all the cpus for whom scheduler ticks are stopped. | 
 |  */ | 
 | static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) | 
 | { | 
 | 	struct rq *this_rq = cpu_rq(this_cpu); | 
 | 	struct rq *rq; | 
 | 	int balance_cpu; | 
 |  | 
 | 	if (idle != CPU_IDLE || | 
 | 	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu))) | 
 | 		goto end; | 
 |  | 
 | 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { | 
 | 		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * If this cpu gets work to do, stop the load balancing | 
 | 		 * work being done for other cpus. Next load | 
 | 		 * balancing owner will pick it up. | 
 | 		 */ | 
 | 		if (need_resched()) | 
 | 			break; | 
 |  | 
 | 		raw_spin_lock_irq(&this_rq->lock); | 
 | 		update_rq_clock(this_rq); | 
 | 		update_cpu_load(this_rq); | 
 | 		raw_spin_unlock_irq(&this_rq->lock); | 
 |  | 
 | 		rebalance_domains(balance_cpu, CPU_IDLE); | 
 |  | 
 | 		rq = cpu_rq(balance_cpu); | 
 | 		if (time_after(this_rq->next_balance, rq->next_balance)) | 
 | 			this_rq->next_balance = rq->next_balance; | 
 | 	} | 
 | 	nohz.next_balance = this_rq->next_balance; | 
 | end: | 
 | 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)); | 
 | } | 
 |  | 
 | /* | 
 |  * Current heuristic for kicking the idle load balancer in the presence | 
 |  * of an idle cpu is the system. | 
 |  *   - This rq has more than one task. | 
 |  *   - At any scheduler domain level, this cpu's scheduler group has multiple | 
 |  *     busy cpu's exceeding the group's power. | 
 |  *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler | 
 |  *     domain span are idle. | 
 |  */ | 
 | static inline int nohz_kick_needed(struct rq *rq, int cpu) | 
 | { | 
 | 	unsigned long now = jiffies; | 
 | 	struct sched_domain *sd; | 
 |  | 
 | 	if (unlikely(idle_cpu(cpu))) | 
 | 		return 0; | 
 |  | 
 |        /* | 
 | 	* We may be recently in ticked or tickless idle mode. At the first | 
 | 	* busy tick after returning from idle, we will update the busy stats. | 
 | 	*/ | 
 | 	set_cpu_sd_state_busy(); | 
 | 	clear_nohz_tick_stopped(cpu); | 
 |  | 
 | 	/* | 
 | 	 * None are in tickless mode and hence no need for NOHZ idle load | 
 | 	 * balancing. | 
 | 	 */ | 
 | 	if (likely(!atomic_read(&nohz.nr_cpus))) | 
 | 		return 0; | 
 |  | 
 | 	if (time_before(now, nohz.next_balance)) | 
 | 		return 0; | 
 |  | 
 | 	if (rq->nr_running >= 2) | 
 | 		goto need_kick; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	for_each_domain(cpu, sd) { | 
 | 		struct sched_group *sg = sd->groups; | 
 | 		struct sched_group_power *sgp = sg->sgp; | 
 | 		int nr_busy = atomic_read(&sgp->nr_busy_cpus); | 
 |  | 
 | 		if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1) | 
 | 			goto need_kick_unlock; | 
 |  | 
 | 		if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight | 
 | 		    && (cpumask_first_and(nohz.idle_cpus_mask, | 
 | 					  sched_domain_span(sd)) < cpu)) | 
 | 			goto need_kick_unlock; | 
 |  | 
 | 		if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING))) | 
 | 			break; | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | 	return 0; | 
 |  | 
 | need_kick_unlock: | 
 | 	rcu_read_unlock(); | 
 | need_kick: | 
 | 	return 1; | 
 | } | 
 | #else | 
 | static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { } | 
 | #endif | 
 |  | 
 | /* | 
 |  * run_rebalance_domains is triggered when needed from the scheduler tick. | 
 |  * Also triggered for nohz idle balancing (with nohz_balancing_kick set). | 
 |  */ | 
 | static void run_rebalance_domains(struct softirq_action *h) | 
 | { | 
 | 	int this_cpu = smp_processor_id(); | 
 | 	struct rq *this_rq = cpu_rq(this_cpu); | 
 | 	enum cpu_idle_type idle = this_rq->idle_balance ? | 
 | 						CPU_IDLE : CPU_NOT_IDLE; | 
 |  | 
 | 	rebalance_domains(this_cpu, idle); | 
 |  | 
 | 	/* | 
 | 	 * If this cpu has a pending nohz_balance_kick, then do the | 
 | 	 * balancing on behalf of the other idle cpus whose ticks are | 
 | 	 * stopped. | 
 | 	 */ | 
 | 	nohz_idle_balance(this_cpu, idle); | 
 | } | 
 |  | 
 | static inline int on_null_domain(int cpu) | 
 | { | 
 | 	return !rcu_dereference_sched(cpu_rq(cpu)->sd); | 
 | } | 
 |  | 
 | /* | 
 |  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. | 
 |  */ | 
 | void trigger_load_balance(struct rq *rq, int cpu) | 
 | { | 
 | 	/* Don't need to rebalance while attached to NULL domain */ | 
 | 	if (time_after_eq(jiffies, rq->next_balance) && | 
 | 	    likely(!on_null_domain(cpu))) | 
 | 		raise_softirq(SCHED_SOFTIRQ); | 
 | #ifdef CONFIG_NO_HZ | 
 | 	if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu))) | 
 | 		nohz_balancer_kick(cpu); | 
 | #endif | 
 | } | 
 |  | 
 | static void rq_online_fair(struct rq *rq) | 
 | { | 
 | 	update_sysctl(); | 
 | } | 
 |  | 
 | static void rq_offline_fair(struct rq *rq) | 
 | { | 
 | 	update_sysctl(); | 
 | } | 
 |  | 
 | #endif /* CONFIG_SMP */ | 
 |  | 
 | /* | 
 |  * scheduler tick hitting a task of our scheduling class: | 
 |  */ | 
 | static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) | 
 | { | 
 | 	struct cfs_rq *cfs_rq; | 
 | 	struct sched_entity *se = &curr->se; | 
 |  | 
 | 	for_each_sched_entity(se) { | 
 | 		cfs_rq = cfs_rq_of(se); | 
 | 		entity_tick(cfs_rq, se, queued); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * called on fork with the child task as argument from the parent's context | 
 |  *  - child not yet on the tasklist | 
 |  *  - preemption disabled | 
 |  */ | 
 | static void task_fork_fair(struct task_struct *p) | 
 | { | 
 | 	struct cfs_rq *cfs_rq; | 
 | 	struct sched_entity *se = &p->se, *curr; | 
 | 	int this_cpu = smp_processor_id(); | 
 | 	struct rq *rq = this_rq(); | 
 | 	unsigned long flags; | 
 |  | 
 | 	raw_spin_lock_irqsave(&rq->lock, flags); | 
 |  | 
 | 	update_rq_clock(rq); | 
 |  | 
 | 	cfs_rq = task_cfs_rq(current); | 
 | 	curr = cfs_rq->curr; | 
 |  | 
 | 	if (unlikely(task_cpu(p) != this_cpu)) { | 
 | 		rcu_read_lock(); | 
 | 		__set_task_cpu(p, this_cpu); | 
 | 		rcu_read_unlock(); | 
 | 	} | 
 |  | 
 | 	update_curr(cfs_rq); | 
 |  | 
 | 	if (curr) | 
 | 		se->vruntime = curr->vruntime; | 
 | 	place_entity(cfs_rq, se, 1); | 
 |  | 
 | 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { | 
 | 		/* | 
 | 		 * Upon rescheduling, sched_class::put_prev_task() will place | 
 | 		 * 'current' within the tree based on its new key value. | 
 | 		 */ | 
 | 		swap(curr->vruntime, se->vruntime); | 
 | 		resched_task(rq->curr); | 
 | 	} | 
 |  | 
 | 	se->vruntime -= cfs_rq->min_vruntime; | 
 |  | 
 | 	raw_spin_unlock_irqrestore(&rq->lock, flags); | 
 | } | 
 |  | 
 | /* | 
 |  * Priority of the task has changed. Check to see if we preempt | 
 |  * the current task. | 
 |  */ | 
 | static void | 
 | prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) | 
 | { | 
 | 	if (!p->se.on_rq) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Reschedule if we are currently running on this runqueue and | 
 | 	 * our priority decreased, or if we are not currently running on | 
 | 	 * this runqueue and our priority is higher than the current's | 
 | 	 */ | 
 | 	if (rq->curr == p) { | 
 | 		if (p->prio > oldprio) | 
 | 			resched_task(rq->curr); | 
 | 	} else | 
 | 		check_preempt_curr(rq, p, 0); | 
 | } | 
 |  | 
 | static void switched_from_fair(struct rq *rq, struct task_struct *p) | 
 | { | 
 | 	struct sched_entity *se = &p->se; | 
 | 	struct cfs_rq *cfs_rq = cfs_rq_of(se); | 
 |  | 
 | 	/* | 
 | 	 * Ensure the task's vruntime is normalized, so that when its | 
 | 	 * switched back to the fair class the enqueue_entity(.flags=0) will | 
 | 	 * do the right thing. | 
 | 	 * | 
 | 	 * If it was on_rq, then the dequeue_entity(.flags=0) will already | 
 | 	 * have normalized the vruntime, if it was !on_rq, then only when | 
 | 	 * the task is sleeping will it still have non-normalized vruntime. | 
 | 	 */ | 
 | 	if (!se->on_rq && p->state != TASK_RUNNING) { | 
 | 		/* | 
 | 		 * Fix up our vruntime so that the current sleep doesn't | 
 | 		 * cause 'unlimited' sleep bonus. | 
 | 		 */ | 
 | 		place_entity(cfs_rq, se, 0); | 
 | 		se->vruntime -= cfs_rq->min_vruntime; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * We switched to the sched_fair class. | 
 |  */ | 
 | static void switched_to_fair(struct rq *rq, struct task_struct *p) | 
 | { | 
 | 	if (!p->se.on_rq) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * We were most likely switched from sched_rt, so | 
 | 	 * kick off the schedule if running, otherwise just see | 
 | 	 * if we can still preempt the current task. | 
 | 	 */ | 
 | 	if (rq->curr == p) | 
 | 		resched_task(rq->curr); | 
 | 	else | 
 | 		check_preempt_curr(rq, p, 0); | 
 | } | 
 |  | 
 | /* Account for a task changing its policy or group. | 
 |  * | 
 |  * This routine is mostly called to set cfs_rq->curr field when a task | 
 |  * migrates between groups/classes. | 
 |  */ | 
 | static void set_curr_task_fair(struct rq *rq) | 
 | { | 
 | 	struct sched_entity *se = &rq->curr->se; | 
 |  | 
 | 	for_each_sched_entity(se) { | 
 | 		struct cfs_rq *cfs_rq = cfs_rq_of(se); | 
 |  | 
 | 		set_next_entity(cfs_rq, se); | 
 | 		/* ensure bandwidth has been allocated on our new cfs_rq */ | 
 | 		account_cfs_rq_runtime(cfs_rq, 0); | 
 | 	} | 
 | } | 
 |  | 
 | void init_cfs_rq(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	cfs_rq->tasks_timeline = RB_ROOT; | 
 | 	INIT_LIST_HEAD(&cfs_rq->tasks); | 
 | 	cfs_rq->min_vruntime = (u64)(-(1LL << 20)); | 
 | #ifndef CONFIG_64BIT | 
 | 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; | 
 | #endif | 
 | } | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | static void task_move_group_fair(struct task_struct *p, int on_rq) | 
 | { | 
 | 	/* | 
 | 	 * If the task was not on the rq at the time of this cgroup movement | 
 | 	 * it must have been asleep, sleeping tasks keep their ->vruntime | 
 | 	 * absolute on their old rq until wakeup (needed for the fair sleeper | 
 | 	 * bonus in place_entity()). | 
 | 	 * | 
 | 	 * If it was on the rq, we've just 'preempted' it, which does convert | 
 | 	 * ->vruntime to a relative base. | 
 | 	 * | 
 | 	 * Make sure both cases convert their relative position when migrating | 
 | 	 * to another cgroup's rq. This does somewhat interfere with the | 
 | 	 * fair sleeper stuff for the first placement, but who cares. | 
 | 	 */ | 
 | 	/* | 
 | 	 * When !on_rq, vruntime of the task has usually NOT been normalized. | 
 | 	 * But there are some cases where it has already been normalized: | 
 | 	 * | 
 | 	 * - Moving a forked child which is waiting for being woken up by | 
 | 	 *   wake_up_new_task(). | 
 | 	 * - Moving a task which has been woken up by try_to_wake_up() and | 
 | 	 *   waiting for actually being woken up by sched_ttwu_pending(). | 
 | 	 * | 
 | 	 * To prevent boost or penalty in the new cfs_rq caused by delta | 
 | 	 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment. | 
 | 	 */ | 
 | 	if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING)) | 
 | 		on_rq = 1; | 
 |  | 
 | 	if (!on_rq) | 
 | 		p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime; | 
 | 	set_task_rq(p, task_cpu(p)); | 
 | 	if (!on_rq) | 
 | 		p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime; | 
 | } | 
 |  | 
 | void free_fair_sched_group(struct task_group *tg) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); | 
 |  | 
 | 	for_each_possible_cpu(i) { | 
 | 		if (tg->cfs_rq) | 
 | 			kfree(tg->cfs_rq[i]); | 
 | 		if (tg->se) | 
 | 			kfree(tg->se[i]); | 
 | 	} | 
 |  | 
 | 	kfree(tg->cfs_rq); | 
 | 	kfree(tg->se); | 
 | } | 
 |  | 
 | int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) | 
 | { | 
 | 	struct cfs_rq *cfs_rq; | 
 | 	struct sched_entity *se; | 
 | 	int i; | 
 |  | 
 | 	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); | 
 | 	if (!tg->cfs_rq) | 
 | 		goto err; | 
 | 	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); | 
 | 	if (!tg->se) | 
 | 		goto err; | 
 |  | 
 | 	tg->shares = NICE_0_LOAD; | 
 |  | 
 | 	init_cfs_bandwidth(tg_cfs_bandwidth(tg)); | 
 |  | 
 | 	for_each_possible_cpu(i) { | 
 | 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq), | 
 | 				      GFP_KERNEL, cpu_to_node(i)); | 
 | 		if (!cfs_rq) | 
 | 			goto err; | 
 |  | 
 | 		se = kzalloc_node(sizeof(struct sched_entity), | 
 | 				  GFP_KERNEL, cpu_to_node(i)); | 
 | 		if (!se) | 
 | 			goto err_free_rq; | 
 |  | 
 | 		init_cfs_rq(cfs_rq); | 
 | 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); | 
 | 	} | 
 |  | 
 | 	return 1; | 
 |  | 
 | err_free_rq: | 
 | 	kfree(cfs_rq); | 
 | err: | 
 | 	return 0; | 
 | } | 
 |  | 
 | void unregister_fair_sched_group(struct task_group *tg, int cpu) | 
 | { | 
 | 	struct rq *rq = cpu_rq(cpu); | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* | 
 | 	* Only empty task groups can be destroyed; so we can speculatively | 
 | 	* check on_list without danger of it being re-added. | 
 | 	*/ | 
 | 	if (!tg->cfs_rq[cpu]->on_list) | 
 | 		return; | 
 |  | 
 | 	raw_spin_lock_irqsave(&rq->lock, flags); | 
 | 	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); | 
 | 	raw_spin_unlock_irqrestore(&rq->lock, flags); | 
 | } | 
 |  | 
 | void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, | 
 | 			struct sched_entity *se, int cpu, | 
 | 			struct sched_entity *parent) | 
 | { | 
 | 	struct rq *rq = cpu_rq(cpu); | 
 |  | 
 | 	cfs_rq->tg = tg; | 
 | 	cfs_rq->rq = rq; | 
 | #ifdef CONFIG_SMP | 
 | 	/* allow initial update_cfs_load() to truncate */ | 
 | 	cfs_rq->load_stamp = 1; | 
 | #endif | 
 | 	init_cfs_rq_runtime(cfs_rq); | 
 |  | 
 | 	tg->cfs_rq[cpu] = cfs_rq; | 
 | 	tg->se[cpu] = se; | 
 |  | 
 | 	/* se could be NULL for root_task_group */ | 
 | 	if (!se) | 
 | 		return; | 
 |  | 
 | 	if (!parent) | 
 | 		se->cfs_rq = &rq->cfs; | 
 | 	else | 
 | 		se->cfs_rq = parent->my_q; | 
 |  | 
 | 	se->my_q = cfs_rq; | 
 | 	update_load_set(&se->load, 0); | 
 | 	se->parent = parent; | 
 | } | 
 |  | 
 | static DEFINE_MUTEX(shares_mutex); | 
 |  | 
 | int sched_group_set_shares(struct task_group *tg, unsigned long shares) | 
 | { | 
 | 	int i; | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* | 
 | 	 * We can't change the weight of the root cgroup. | 
 | 	 */ | 
 | 	if (!tg->se[0]) | 
 | 		return -EINVAL; | 
 |  | 
 | 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); | 
 |  | 
 | 	mutex_lock(&shares_mutex); | 
 | 	if (tg->shares == shares) | 
 | 		goto done; | 
 |  | 
 | 	tg->shares = shares; | 
 | 	for_each_possible_cpu(i) { | 
 | 		struct rq *rq = cpu_rq(i); | 
 | 		struct sched_entity *se; | 
 |  | 
 | 		se = tg->se[i]; | 
 | 		/* Propagate contribution to hierarchy */ | 
 | 		raw_spin_lock_irqsave(&rq->lock, flags); | 
 | 		for_each_sched_entity(se) | 
 | 			update_cfs_shares(group_cfs_rq(se)); | 
 | 		raw_spin_unlock_irqrestore(&rq->lock, flags); | 
 | 	} | 
 |  | 
 | done: | 
 | 	mutex_unlock(&shares_mutex); | 
 | 	return 0; | 
 | } | 
 | #else /* CONFIG_FAIR_GROUP_SCHED */ | 
 |  | 
 | void free_fair_sched_group(struct task_group *tg) { } | 
 |  | 
 | int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) | 
 | { | 
 | 	return 1; | 
 | } | 
 |  | 
 | void unregister_fair_sched_group(struct task_group *tg, int cpu) { } | 
 |  | 
 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 
 |  | 
 |  | 
 | static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) | 
 | { | 
 | 	struct sched_entity *se = &task->se; | 
 | 	unsigned int rr_interval = 0; | 
 |  | 
 | 	/* | 
 | 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise | 
 | 	 * idle runqueue: | 
 | 	 */ | 
 | 	if (rq->cfs.load.weight) | 
 | 		rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se)); | 
 |  | 
 | 	return rr_interval; | 
 | } | 
 |  | 
 | /* | 
 |  * All the scheduling class methods: | 
 |  */ | 
 | const struct sched_class fair_sched_class = { | 
 | 	.next			= &idle_sched_class, | 
 | 	.enqueue_task		= enqueue_task_fair, | 
 | 	.dequeue_task		= dequeue_task_fair, | 
 | 	.yield_task		= yield_task_fair, | 
 | 	.yield_to_task		= yield_to_task_fair, | 
 |  | 
 | 	.check_preempt_curr	= check_preempt_wakeup, | 
 |  | 
 | 	.pick_next_task		= pick_next_task_fair, | 
 | 	.put_prev_task		= put_prev_task_fair, | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	.select_task_rq		= select_task_rq_fair, | 
 |  | 
 | 	.rq_online		= rq_online_fair, | 
 | 	.rq_offline		= rq_offline_fair, | 
 |  | 
 | 	.task_waking		= task_waking_fair, | 
 | #endif | 
 |  | 
 | 	.set_curr_task          = set_curr_task_fair, | 
 | 	.task_tick		= task_tick_fair, | 
 | 	.task_fork		= task_fork_fair, | 
 |  | 
 | 	.prio_changed		= prio_changed_fair, | 
 | 	.switched_from		= switched_from_fair, | 
 | 	.switched_to		= switched_to_fair, | 
 |  | 
 | 	.get_rr_interval	= get_rr_interval_fair, | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | 	.task_move_group	= task_move_group_fair, | 
 | #endif | 
 | }; | 
 |  | 
 | #ifdef CONFIG_SCHED_DEBUG | 
 | void print_cfs_stats(struct seq_file *m, int cpu) | 
 | { | 
 | 	struct cfs_rq *cfs_rq; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq) | 
 | 		print_cfs_rq(m, cpu, cfs_rq); | 
 | 	rcu_read_unlock(); | 
 | } | 
 | #endif | 
 |  | 
 | __init void init_sched_fair_class(void) | 
 | { | 
 | #ifdef CONFIG_SMP | 
 | 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); | 
 |  | 
 | #ifdef CONFIG_NO_HZ | 
 | 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); | 
 | 	cpu_notifier(sched_ilb_notifier, 0); | 
 | #endif | 
 | #endif /* SMP */ | 
 |  | 
 | } |