|  | /* | 
|  | *  arch/sparc64/mm/init.c | 
|  | * | 
|  | *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu) | 
|  | *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz) | 
|  | */ | 
|  |  | 
|  | #include <linux/extable.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/bootmem.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/initrd.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/poison.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/kprobes.h> | 
|  | #include <linux/cache.h> | 
|  | #include <linux/sort.h> | 
|  | #include <linux/ioport.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/memblock.h> | 
|  | #include <linux/mmzone.h> | 
|  | #include <linux/gfp.h> | 
|  |  | 
|  | #include <asm/head.h> | 
|  | #include <asm/page.h> | 
|  | #include <asm/pgalloc.h> | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/oplib.h> | 
|  | #include <asm/iommu.h> | 
|  | #include <asm/io.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <asm/mmu_context.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/dma.h> | 
|  | #include <asm/starfire.h> | 
|  | #include <asm/tlb.h> | 
|  | #include <asm/spitfire.h> | 
|  | #include <asm/sections.h> | 
|  | #include <asm/tsb.h> | 
|  | #include <asm/hypervisor.h> | 
|  | #include <asm/prom.h> | 
|  | #include <asm/mdesc.h> | 
|  | #include <asm/cpudata.h> | 
|  | #include <asm/setup.h> | 
|  | #include <asm/irq.h> | 
|  |  | 
|  | #include "init_64.h" | 
|  |  | 
|  | unsigned long kern_linear_pte_xor[4] __read_mostly; | 
|  | static unsigned long page_cache4v_flag; | 
|  |  | 
|  | /* A bitmap, two bits for every 256MB of physical memory.  These two | 
|  | * bits determine what page size we use for kernel linear | 
|  | * translations.  They form an index into kern_linear_pte_xor[].  The | 
|  | * value in the indexed slot is XOR'd with the TLB miss virtual | 
|  | * address to form the resulting TTE.  The mapping is: | 
|  | * | 
|  | *	0	==>	4MB | 
|  | *	1	==>	256MB | 
|  | *	2	==>	2GB | 
|  | *	3	==>	16GB | 
|  | * | 
|  | * All sun4v chips support 256MB pages.  Only SPARC-T4 and later | 
|  | * support 2GB pages, and hopefully future cpus will support the 16GB | 
|  | * pages as well.  For slots 2 and 3, we encode a 256MB TTE xor there | 
|  | * if these larger page sizes are not supported by the cpu. | 
|  | * | 
|  | * It would be nice to determine this from the machine description | 
|  | * 'cpu' properties, but we need to have this table setup before the | 
|  | * MDESC is initialized. | 
|  | */ | 
|  |  | 
|  | #ifndef CONFIG_DEBUG_PAGEALLOC | 
|  | /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings. | 
|  | * Space is allocated for this right after the trap table in | 
|  | * arch/sparc64/kernel/head.S | 
|  | */ | 
|  | extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES]; | 
|  | #endif | 
|  | extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES]; | 
|  |  | 
|  | static unsigned long cpu_pgsz_mask; | 
|  |  | 
|  | #define MAX_BANKS	1024 | 
|  |  | 
|  | static struct linux_prom64_registers pavail[MAX_BANKS]; | 
|  | static int pavail_ents; | 
|  |  | 
|  | u64 numa_latency[MAX_NUMNODES][MAX_NUMNODES]; | 
|  |  | 
|  | static int cmp_p64(const void *a, const void *b) | 
|  | { | 
|  | const struct linux_prom64_registers *x = a, *y = b; | 
|  |  | 
|  | if (x->phys_addr > y->phys_addr) | 
|  | return 1; | 
|  | if (x->phys_addr < y->phys_addr) | 
|  | return -1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __init read_obp_memory(const char *property, | 
|  | struct linux_prom64_registers *regs, | 
|  | int *num_ents) | 
|  | { | 
|  | phandle node = prom_finddevice("/memory"); | 
|  | int prop_size = prom_getproplen(node, property); | 
|  | int ents, ret, i; | 
|  |  | 
|  | ents = prop_size / sizeof(struct linux_prom64_registers); | 
|  | if (ents > MAX_BANKS) { | 
|  | prom_printf("The machine has more %s property entries than " | 
|  | "this kernel can support (%d).\n", | 
|  | property, MAX_BANKS); | 
|  | prom_halt(); | 
|  | } | 
|  |  | 
|  | ret = prom_getproperty(node, property, (char *) regs, prop_size); | 
|  | if (ret == -1) { | 
|  | prom_printf("Couldn't get %s property from /memory.\n", | 
|  | property); | 
|  | prom_halt(); | 
|  | } | 
|  |  | 
|  | /* Sanitize what we got from the firmware, by page aligning | 
|  | * everything. | 
|  | */ | 
|  | for (i = 0; i < ents; i++) { | 
|  | unsigned long base, size; | 
|  |  | 
|  | base = regs[i].phys_addr; | 
|  | size = regs[i].reg_size; | 
|  |  | 
|  | size &= PAGE_MASK; | 
|  | if (base & ~PAGE_MASK) { | 
|  | unsigned long new_base = PAGE_ALIGN(base); | 
|  |  | 
|  | size -= new_base - base; | 
|  | if ((long) size < 0L) | 
|  | size = 0UL; | 
|  | base = new_base; | 
|  | } | 
|  | if (size == 0UL) { | 
|  | /* If it is empty, simply get rid of it. | 
|  | * This simplifies the logic of the other | 
|  | * functions that process these arrays. | 
|  | */ | 
|  | memmove(®s[i], ®s[i + 1], | 
|  | (ents - i - 1) * sizeof(regs[0])); | 
|  | i--; | 
|  | ents--; | 
|  | continue; | 
|  | } | 
|  | regs[i].phys_addr = base; | 
|  | regs[i].reg_size = size; | 
|  | } | 
|  |  | 
|  | *num_ents = ents; | 
|  |  | 
|  | sort(regs, ents, sizeof(struct linux_prom64_registers), | 
|  | cmp_p64, NULL); | 
|  | } | 
|  |  | 
|  | /* Kernel physical address base and size in bytes.  */ | 
|  | unsigned long kern_base __read_mostly; | 
|  | unsigned long kern_size __read_mostly; | 
|  |  | 
|  | /* Initial ramdisk setup */ | 
|  | extern unsigned long sparc_ramdisk_image64; | 
|  | extern unsigned int sparc_ramdisk_image; | 
|  | extern unsigned int sparc_ramdisk_size; | 
|  |  | 
|  | struct page *mem_map_zero __read_mostly; | 
|  | EXPORT_SYMBOL(mem_map_zero); | 
|  |  | 
|  | unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly; | 
|  |  | 
|  | unsigned long sparc64_kern_pri_context __read_mostly; | 
|  | unsigned long sparc64_kern_pri_nuc_bits __read_mostly; | 
|  | unsigned long sparc64_kern_sec_context __read_mostly; | 
|  |  | 
|  | int num_kernel_image_mappings; | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_DCFLUSH | 
|  | atomic_t dcpage_flushes = ATOMIC_INIT(0); | 
|  | #ifdef CONFIG_SMP | 
|  | atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0); | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | inline void flush_dcache_page_impl(struct page *page) | 
|  | { | 
|  | BUG_ON(tlb_type == hypervisor); | 
|  | #ifdef CONFIG_DEBUG_DCFLUSH | 
|  | atomic_inc(&dcpage_flushes); | 
|  | #endif | 
|  |  | 
|  | #ifdef DCACHE_ALIASING_POSSIBLE | 
|  | __flush_dcache_page(page_address(page), | 
|  | ((tlb_type == spitfire) && | 
|  | page_mapping(page) != NULL)); | 
|  | #else | 
|  | if (page_mapping(page) != NULL && | 
|  | tlb_type == spitfire) | 
|  | __flush_icache_page(__pa(page_address(page))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #define PG_dcache_dirty		PG_arch_1 | 
|  | #define PG_dcache_cpu_shift	32UL | 
|  | #define PG_dcache_cpu_mask	\ | 
|  | ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL) | 
|  |  | 
|  | #define dcache_dirty_cpu(page) \ | 
|  | (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask) | 
|  |  | 
|  | static inline void set_dcache_dirty(struct page *page, int this_cpu) | 
|  | { | 
|  | unsigned long mask = this_cpu; | 
|  | unsigned long non_cpu_bits; | 
|  |  | 
|  | non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift); | 
|  | mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty); | 
|  |  | 
|  | __asm__ __volatile__("1:\n\t" | 
|  | "ldx	[%2], %%g7\n\t" | 
|  | "and	%%g7, %1, %%g1\n\t" | 
|  | "or	%%g1, %0, %%g1\n\t" | 
|  | "casx	[%2], %%g7, %%g1\n\t" | 
|  | "cmp	%%g7, %%g1\n\t" | 
|  | "bne,pn	%%xcc, 1b\n\t" | 
|  | " nop" | 
|  | : /* no outputs */ | 
|  | : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags) | 
|  | : "g1", "g7"); | 
|  | } | 
|  |  | 
|  | static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu) | 
|  | { | 
|  | unsigned long mask = (1UL << PG_dcache_dirty); | 
|  |  | 
|  | __asm__ __volatile__("! test_and_clear_dcache_dirty\n" | 
|  | "1:\n\t" | 
|  | "ldx	[%2], %%g7\n\t" | 
|  | "srlx	%%g7, %4, %%g1\n\t" | 
|  | "and	%%g1, %3, %%g1\n\t" | 
|  | "cmp	%%g1, %0\n\t" | 
|  | "bne,pn	%%icc, 2f\n\t" | 
|  | " andn	%%g7, %1, %%g1\n\t" | 
|  | "casx	[%2], %%g7, %%g1\n\t" | 
|  | "cmp	%%g7, %%g1\n\t" | 
|  | "bne,pn	%%xcc, 1b\n\t" | 
|  | " nop\n" | 
|  | "2:" | 
|  | : /* no outputs */ | 
|  | : "r" (cpu), "r" (mask), "r" (&page->flags), | 
|  | "i" (PG_dcache_cpu_mask), | 
|  | "i" (PG_dcache_cpu_shift) | 
|  | : "g1", "g7"); | 
|  | } | 
|  |  | 
|  | static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte) | 
|  | { | 
|  | unsigned long tsb_addr = (unsigned long) ent; | 
|  |  | 
|  | if (tlb_type == cheetah_plus || tlb_type == hypervisor) | 
|  | tsb_addr = __pa(tsb_addr); | 
|  |  | 
|  | __tsb_insert(tsb_addr, tag, pte); | 
|  | } | 
|  |  | 
|  | unsigned long _PAGE_ALL_SZ_BITS __read_mostly; | 
|  |  | 
|  | static void flush_dcache(unsigned long pfn) | 
|  | { | 
|  | struct page *page; | 
|  |  | 
|  | page = pfn_to_page(pfn); | 
|  | if (page) { | 
|  | unsigned long pg_flags; | 
|  |  | 
|  | pg_flags = page->flags; | 
|  | if (pg_flags & (1UL << PG_dcache_dirty)) { | 
|  | int cpu = ((pg_flags >> PG_dcache_cpu_shift) & | 
|  | PG_dcache_cpu_mask); | 
|  | int this_cpu = get_cpu(); | 
|  |  | 
|  | /* This is just to optimize away some function calls | 
|  | * in the SMP case. | 
|  | */ | 
|  | if (cpu == this_cpu) | 
|  | flush_dcache_page_impl(page); | 
|  | else | 
|  | smp_flush_dcache_page_impl(page, cpu); | 
|  |  | 
|  | clear_dcache_dirty_cpu(page, cpu); | 
|  |  | 
|  | put_cpu(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* mm->context.lock must be held */ | 
|  | static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index, | 
|  | unsigned long tsb_hash_shift, unsigned long address, | 
|  | unsigned long tte) | 
|  | { | 
|  | struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb; | 
|  | unsigned long tag; | 
|  |  | 
|  | if (unlikely(!tsb)) | 
|  | return; | 
|  |  | 
|  | tsb += ((address >> tsb_hash_shift) & | 
|  | (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL)); | 
|  | tag = (address >> 22UL); | 
|  | tsb_insert(tsb, tag, tte); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HUGETLB_PAGE | 
|  | static void __init add_huge_page_size(unsigned long size) | 
|  | { | 
|  | unsigned int order; | 
|  |  | 
|  | if (size_to_hstate(size)) | 
|  | return; | 
|  |  | 
|  | order = ilog2(size) - PAGE_SHIFT; | 
|  | hugetlb_add_hstate(order); | 
|  | } | 
|  |  | 
|  | static int __init hugetlbpage_init(void) | 
|  | { | 
|  | add_huge_page_size(1UL << HPAGE_64K_SHIFT); | 
|  | add_huge_page_size(1UL << HPAGE_SHIFT); | 
|  | add_huge_page_size(1UL << HPAGE_256MB_SHIFT); | 
|  | add_huge_page_size(1UL << HPAGE_2GB_SHIFT); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | arch_initcall(hugetlbpage_init); | 
|  |  | 
|  | static int __init setup_hugepagesz(char *string) | 
|  | { | 
|  | unsigned long long hugepage_size; | 
|  | unsigned int hugepage_shift; | 
|  | unsigned short hv_pgsz_idx; | 
|  | unsigned int hv_pgsz_mask; | 
|  | int rc = 0; | 
|  |  | 
|  | hugepage_size = memparse(string, &string); | 
|  | hugepage_shift = ilog2(hugepage_size); | 
|  |  | 
|  | switch (hugepage_shift) { | 
|  | case HPAGE_2GB_SHIFT: | 
|  | hv_pgsz_mask = HV_PGSZ_MASK_2GB; | 
|  | hv_pgsz_idx = HV_PGSZ_IDX_2GB; | 
|  | break; | 
|  | case HPAGE_256MB_SHIFT: | 
|  | hv_pgsz_mask = HV_PGSZ_MASK_256MB; | 
|  | hv_pgsz_idx = HV_PGSZ_IDX_256MB; | 
|  | break; | 
|  | case HPAGE_SHIFT: | 
|  | hv_pgsz_mask = HV_PGSZ_MASK_4MB; | 
|  | hv_pgsz_idx = HV_PGSZ_IDX_4MB; | 
|  | break; | 
|  | case HPAGE_64K_SHIFT: | 
|  | hv_pgsz_mask = HV_PGSZ_MASK_64K; | 
|  | hv_pgsz_idx = HV_PGSZ_IDX_64K; | 
|  | break; | 
|  | default: | 
|  | hv_pgsz_mask = 0; | 
|  | } | 
|  |  | 
|  | if ((hv_pgsz_mask & cpu_pgsz_mask) == 0U) { | 
|  | hugetlb_bad_size(); | 
|  | pr_err("hugepagesz=%llu not supported by MMU.\n", | 
|  | hugepage_size); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | add_huge_page_size(hugepage_size); | 
|  | rc = 1; | 
|  |  | 
|  | out: | 
|  | return rc; | 
|  | } | 
|  | __setup("hugepagesz=", setup_hugepagesz); | 
|  | #endif	/* CONFIG_HUGETLB_PAGE */ | 
|  |  | 
|  | void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep) | 
|  | { | 
|  | struct mm_struct *mm; | 
|  | unsigned long flags; | 
|  | pte_t pte = *ptep; | 
|  |  | 
|  | if (tlb_type != hypervisor) { | 
|  | unsigned long pfn = pte_pfn(pte); | 
|  |  | 
|  | if (pfn_valid(pfn)) | 
|  | flush_dcache(pfn); | 
|  | } | 
|  |  | 
|  | mm = vma->vm_mm; | 
|  |  | 
|  | /* Don't insert a non-valid PTE into the TSB, we'll deadlock.  */ | 
|  | if (!pte_accessible(mm, pte)) | 
|  | return; | 
|  |  | 
|  | spin_lock_irqsave(&mm->context.lock, flags); | 
|  |  | 
|  | #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) | 
|  | if ((mm->context.hugetlb_pte_count || mm->context.thp_pte_count) && | 
|  | is_hugetlb_pmd(__pmd(pte_val(pte)))) { | 
|  | /* We are fabricating 8MB pages using 4MB real hw pages.  */ | 
|  | pte_val(pte) |= (address & (1UL << REAL_HPAGE_SHIFT)); | 
|  | __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT, | 
|  | address, pte_val(pte)); | 
|  | } else | 
|  | #endif | 
|  | __update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT, | 
|  | address, pte_val(pte)); | 
|  |  | 
|  | spin_unlock_irqrestore(&mm->context.lock, flags); | 
|  | } | 
|  |  | 
|  | void flush_dcache_page(struct page *page) | 
|  | { | 
|  | struct address_space *mapping; | 
|  | int this_cpu; | 
|  |  | 
|  | if (tlb_type == hypervisor) | 
|  | return; | 
|  |  | 
|  | /* Do not bother with the expensive D-cache flush if it | 
|  | * is merely the zero page.  The 'bigcore' testcase in GDB | 
|  | * causes this case to run millions of times. | 
|  | */ | 
|  | if (page == ZERO_PAGE(0)) | 
|  | return; | 
|  |  | 
|  | this_cpu = get_cpu(); | 
|  |  | 
|  | mapping = page_mapping(page); | 
|  | if (mapping && !mapping_mapped(mapping)) { | 
|  | int dirty = test_bit(PG_dcache_dirty, &page->flags); | 
|  | if (dirty) { | 
|  | int dirty_cpu = dcache_dirty_cpu(page); | 
|  |  | 
|  | if (dirty_cpu == this_cpu) | 
|  | goto out; | 
|  | smp_flush_dcache_page_impl(page, dirty_cpu); | 
|  | } | 
|  | set_dcache_dirty(page, this_cpu); | 
|  | } else { | 
|  | /* We could delay the flush for the !page_mapping | 
|  | * case too.  But that case is for exec env/arg | 
|  | * pages and those are %99 certainly going to get | 
|  | * faulted into the tlb (and thus flushed) anyways. | 
|  | */ | 
|  | flush_dcache_page_impl(page); | 
|  | } | 
|  |  | 
|  | out: | 
|  | put_cpu(); | 
|  | } | 
|  | EXPORT_SYMBOL(flush_dcache_page); | 
|  |  | 
|  | void __kprobes flush_icache_range(unsigned long start, unsigned long end) | 
|  | { | 
|  | /* Cheetah and Hypervisor platform cpus have coherent I-cache. */ | 
|  | if (tlb_type == spitfire) { | 
|  | unsigned long kaddr; | 
|  |  | 
|  | /* This code only runs on Spitfire cpus so this is | 
|  | * why we can assume _PAGE_PADDR_4U. | 
|  | */ | 
|  | for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) { | 
|  | unsigned long paddr, mask = _PAGE_PADDR_4U; | 
|  |  | 
|  | if (kaddr >= PAGE_OFFSET) | 
|  | paddr = kaddr & mask; | 
|  | else { | 
|  | pgd_t *pgdp = pgd_offset_k(kaddr); | 
|  | pud_t *pudp = pud_offset(pgdp, kaddr); | 
|  | pmd_t *pmdp = pmd_offset(pudp, kaddr); | 
|  | pte_t *ptep = pte_offset_kernel(pmdp, kaddr); | 
|  |  | 
|  | paddr = pte_val(*ptep) & mask; | 
|  | } | 
|  | __flush_icache_page(paddr); | 
|  | } | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(flush_icache_range); | 
|  |  | 
|  | void mmu_info(struct seq_file *m) | 
|  | { | 
|  | static const char *pgsz_strings[] = { | 
|  | "8K", "64K", "512K", "4MB", "32MB", | 
|  | "256MB", "2GB", "16GB", | 
|  | }; | 
|  | int i, printed; | 
|  |  | 
|  | if (tlb_type == cheetah) | 
|  | seq_printf(m, "MMU Type\t: Cheetah\n"); | 
|  | else if (tlb_type == cheetah_plus) | 
|  | seq_printf(m, "MMU Type\t: Cheetah+\n"); | 
|  | else if (tlb_type == spitfire) | 
|  | seq_printf(m, "MMU Type\t: Spitfire\n"); | 
|  | else if (tlb_type == hypervisor) | 
|  | seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n"); | 
|  | else | 
|  | seq_printf(m, "MMU Type\t: ???\n"); | 
|  |  | 
|  | seq_printf(m, "MMU PGSZs\t: "); | 
|  | printed = 0; | 
|  | for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) { | 
|  | if (cpu_pgsz_mask & (1UL << i)) { | 
|  | seq_printf(m, "%s%s", | 
|  | printed ? "," : "", pgsz_strings[i]); | 
|  | printed++; | 
|  | } | 
|  | } | 
|  | seq_putc(m, '\n'); | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_DCFLUSH | 
|  | seq_printf(m, "DCPageFlushes\t: %d\n", | 
|  | atomic_read(&dcpage_flushes)); | 
|  | #ifdef CONFIG_SMP | 
|  | seq_printf(m, "DCPageFlushesXC\t: %d\n", | 
|  | atomic_read(&dcpage_flushes_xcall)); | 
|  | #endif /* CONFIG_SMP */ | 
|  | #endif /* CONFIG_DEBUG_DCFLUSH */ | 
|  | } | 
|  |  | 
|  | struct linux_prom_translation prom_trans[512] __read_mostly; | 
|  | unsigned int prom_trans_ents __read_mostly; | 
|  |  | 
|  | unsigned long kern_locked_tte_data; | 
|  |  | 
|  | /* The obp translations are saved based on 8k pagesize, since obp can | 
|  | * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS -> | 
|  | * HI_OBP_ADDRESS range are handled in ktlb.S. | 
|  | */ | 
|  | static inline int in_obp_range(unsigned long vaddr) | 
|  | { | 
|  | return (vaddr >= LOW_OBP_ADDRESS && | 
|  | vaddr < HI_OBP_ADDRESS); | 
|  | } | 
|  |  | 
|  | static int cmp_ptrans(const void *a, const void *b) | 
|  | { | 
|  | const struct linux_prom_translation *x = a, *y = b; | 
|  |  | 
|  | if (x->virt > y->virt) | 
|  | return 1; | 
|  | if (x->virt < y->virt) | 
|  | return -1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Read OBP translations property into 'prom_trans[]'.  */ | 
|  | static void __init read_obp_translations(void) | 
|  | { | 
|  | int n, node, ents, first, last, i; | 
|  |  | 
|  | node = prom_finddevice("/virtual-memory"); | 
|  | n = prom_getproplen(node, "translations"); | 
|  | if (unlikely(n == 0 || n == -1)) { | 
|  | prom_printf("prom_mappings: Couldn't get size.\n"); | 
|  | prom_halt(); | 
|  | } | 
|  | if (unlikely(n > sizeof(prom_trans))) { | 
|  | prom_printf("prom_mappings: Size %d is too big.\n", n); | 
|  | prom_halt(); | 
|  | } | 
|  |  | 
|  | if ((n = prom_getproperty(node, "translations", | 
|  | (char *)&prom_trans[0], | 
|  | sizeof(prom_trans))) == -1) { | 
|  | prom_printf("prom_mappings: Couldn't get property.\n"); | 
|  | prom_halt(); | 
|  | } | 
|  |  | 
|  | n = n / sizeof(struct linux_prom_translation); | 
|  |  | 
|  | ents = n; | 
|  |  | 
|  | sort(prom_trans, ents, sizeof(struct linux_prom_translation), | 
|  | cmp_ptrans, NULL); | 
|  |  | 
|  | /* Now kick out all the non-OBP entries.  */ | 
|  | for (i = 0; i < ents; i++) { | 
|  | if (in_obp_range(prom_trans[i].virt)) | 
|  | break; | 
|  | } | 
|  | first = i; | 
|  | for (; i < ents; i++) { | 
|  | if (!in_obp_range(prom_trans[i].virt)) | 
|  | break; | 
|  | } | 
|  | last = i; | 
|  |  | 
|  | for (i = 0; i < (last - first); i++) { | 
|  | struct linux_prom_translation *src = &prom_trans[i + first]; | 
|  | struct linux_prom_translation *dest = &prom_trans[i]; | 
|  |  | 
|  | *dest = *src; | 
|  | } | 
|  | for (; i < ents; i++) { | 
|  | struct linux_prom_translation *dest = &prom_trans[i]; | 
|  | dest->virt = dest->size = dest->data = 0x0UL; | 
|  | } | 
|  |  | 
|  | prom_trans_ents = last - first; | 
|  |  | 
|  | if (tlb_type == spitfire) { | 
|  | /* Clear diag TTE bits. */ | 
|  | for (i = 0; i < prom_trans_ents; i++) | 
|  | prom_trans[i].data &= ~0x0003fe0000000000UL; | 
|  | } | 
|  |  | 
|  | /* Force execute bit on.  */ | 
|  | for (i = 0; i < prom_trans_ents; i++) | 
|  | prom_trans[i].data |= (tlb_type == hypervisor ? | 
|  | _PAGE_EXEC_4V : _PAGE_EXEC_4U); | 
|  | } | 
|  |  | 
|  | static void __init hypervisor_tlb_lock(unsigned long vaddr, | 
|  | unsigned long pte, | 
|  | unsigned long mmu) | 
|  | { | 
|  | unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu); | 
|  |  | 
|  | if (ret != 0) { | 
|  | prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: " | 
|  | "errors with %lx\n", vaddr, 0, pte, mmu, ret); | 
|  | prom_halt(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static unsigned long kern_large_tte(unsigned long paddr); | 
|  |  | 
|  | static void __init remap_kernel(void) | 
|  | { | 
|  | unsigned long phys_page, tte_vaddr, tte_data; | 
|  | int i, tlb_ent = sparc64_highest_locked_tlbent(); | 
|  |  | 
|  | tte_vaddr = (unsigned long) KERNBASE; | 
|  | phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB; | 
|  | tte_data = kern_large_tte(phys_page); | 
|  |  | 
|  | kern_locked_tte_data = tte_data; | 
|  |  | 
|  | /* Now lock us into the TLBs via Hypervisor or OBP. */ | 
|  | if (tlb_type == hypervisor) { | 
|  | for (i = 0; i < num_kernel_image_mappings; i++) { | 
|  | hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU); | 
|  | hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU); | 
|  | tte_vaddr += 0x400000; | 
|  | tte_data += 0x400000; | 
|  | } | 
|  | } else { | 
|  | for (i = 0; i < num_kernel_image_mappings; i++) { | 
|  | prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr); | 
|  | prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr); | 
|  | tte_vaddr += 0x400000; | 
|  | tte_data += 0x400000; | 
|  | } | 
|  | sparc64_highest_unlocked_tlb_ent = tlb_ent - i; | 
|  | } | 
|  | if (tlb_type == cheetah_plus) { | 
|  | sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 | | 
|  | CTX_CHEETAH_PLUS_NUC); | 
|  | sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC; | 
|  | sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | static void __init inherit_prom_mappings(void) | 
|  | { | 
|  | /* Now fixup OBP's idea about where we really are mapped. */ | 
|  | printk("Remapping the kernel... "); | 
|  | remap_kernel(); | 
|  | printk("done.\n"); | 
|  | } | 
|  |  | 
|  | void prom_world(int enter) | 
|  | { | 
|  | if (!enter) | 
|  | set_fs(get_fs()); | 
|  |  | 
|  | __asm__ __volatile__("flushw"); | 
|  | } | 
|  |  | 
|  | void __flush_dcache_range(unsigned long start, unsigned long end) | 
|  | { | 
|  | unsigned long va; | 
|  |  | 
|  | if (tlb_type == spitfire) { | 
|  | int n = 0; | 
|  |  | 
|  | for (va = start; va < end; va += 32) { | 
|  | spitfire_put_dcache_tag(va & 0x3fe0, 0x0); | 
|  | if (++n >= 512) | 
|  | break; | 
|  | } | 
|  | } else if (tlb_type == cheetah || tlb_type == cheetah_plus) { | 
|  | start = __pa(start); | 
|  | end = __pa(end); | 
|  | for (va = start; va < end; va += 32) | 
|  | __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" | 
|  | "membar #Sync" | 
|  | : /* no outputs */ | 
|  | : "r" (va), | 
|  | "i" (ASI_DCACHE_INVALIDATE)); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(__flush_dcache_range); | 
|  |  | 
|  | /* get_new_mmu_context() uses "cache + 1".  */ | 
|  | DEFINE_SPINLOCK(ctx_alloc_lock); | 
|  | unsigned long tlb_context_cache = CTX_FIRST_VERSION; | 
|  | #define MAX_CTX_NR	(1UL << CTX_NR_BITS) | 
|  | #define CTX_BMAP_SLOTS	BITS_TO_LONGS(MAX_CTX_NR) | 
|  | DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR); | 
|  | DEFINE_PER_CPU(struct mm_struct *, per_cpu_secondary_mm) = {0}; | 
|  |  | 
|  | static void mmu_context_wrap(void) | 
|  | { | 
|  | unsigned long old_ver = tlb_context_cache & CTX_VERSION_MASK; | 
|  | unsigned long new_ver, new_ctx, old_ctx; | 
|  | struct mm_struct *mm; | 
|  | int cpu; | 
|  |  | 
|  | bitmap_zero(mmu_context_bmap, 1 << CTX_NR_BITS); | 
|  |  | 
|  | /* Reserve kernel context */ | 
|  | set_bit(0, mmu_context_bmap); | 
|  |  | 
|  | new_ver = (tlb_context_cache & CTX_VERSION_MASK) + CTX_FIRST_VERSION; | 
|  | if (unlikely(new_ver == 0)) | 
|  | new_ver = CTX_FIRST_VERSION; | 
|  | tlb_context_cache = new_ver; | 
|  |  | 
|  | /* | 
|  | * Make sure that any new mm that are added into per_cpu_secondary_mm, | 
|  | * are going to go through get_new_mmu_context() path. | 
|  | */ | 
|  | mb(); | 
|  |  | 
|  | /* | 
|  | * Updated versions to current on those CPUs that had valid secondary | 
|  | * contexts | 
|  | */ | 
|  | for_each_online_cpu(cpu) { | 
|  | /* | 
|  | * If a new mm is stored after we took this mm from the array, | 
|  | * it will go into get_new_mmu_context() path, because we | 
|  | * already bumped the version in tlb_context_cache. | 
|  | */ | 
|  | mm = per_cpu(per_cpu_secondary_mm, cpu); | 
|  |  | 
|  | if (unlikely(!mm || mm == &init_mm)) | 
|  | continue; | 
|  |  | 
|  | old_ctx = mm->context.sparc64_ctx_val; | 
|  | if (likely((old_ctx & CTX_VERSION_MASK) == old_ver)) { | 
|  | new_ctx = (old_ctx & ~CTX_VERSION_MASK) | new_ver; | 
|  | set_bit(new_ctx & CTX_NR_MASK, mmu_context_bmap); | 
|  | mm->context.sparc64_ctx_val = new_ctx; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Caller does TLB context flushing on local CPU if necessary. | 
|  | * The caller also ensures that CTX_VALID(mm->context) is false. | 
|  | * | 
|  | * We must be careful about boundary cases so that we never | 
|  | * let the user have CTX 0 (nucleus) or we ever use a CTX | 
|  | * version of zero (and thus NO_CONTEXT would not be caught | 
|  | * by version mis-match tests in mmu_context.h). | 
|  | * | 
|  | * Always invoked with interrupts disabled. | 
|  | */ | 
|  | void get_new_mmu_context(struct mm_struct *mm) | 
|  | { | 
|  | unsigned long ctx, new_ctx; | 
|  | unsigned long orig_pgsz_bits; | 
|  |  | 
|  | spin_lock(&ctx_alloc_lock); | 
|  | retry: | 
|  | /* wrap might have happened, test again if our context became valid */ | 
|  | if (unlikely(CTX_VALID(mm->context))) | 
|  | goto out; | 
|  | orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK); | 
|  | ctx = (tlb_context_cache + 1) & CTX_NR_MASK; | 
|  | new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx); | 
|  | if (new_ctx >= (1 << CTX_NR_BITS)) { | 
|  | new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1); | 
|  | if (new_ctx >= ctx) { | 
|  | mmu_context_wrap(); | 
|  | goto retry; | 
|  | } | 
|  | } | 
|  | if (mm->context.sparc64_ctx_val) | 
|  | cpumask_clear(mm_cpumask(mm)); | 
|  | mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63)); | 
|  | new_ctx |= (tlb_context_cache & CTX_VERSION_MASK); | 
|  | tlb_context_cache = new_ctx; | 
|  | mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits; | 
|  | out: | 
|  | spin_unlock(&ctx_alloc_lock); | 
|  | } | 
|  |  | 
|  | static int numa_enabled = 1; | 
|  | static int numa_debug; | 
|  |  | 
|  | static int __init early_numa(char *p) | 
|  | { | 
|  | if (!p) | 
|  | return 0; | 
|  |  | 
|  | if (strstr(p, "off")) | 
|  | numa_enabled = 0; | 
|  |  | 
|  | if (strstr(p, "debug")) | 
|  | numa_debug = 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | early_param("numa", early_numa); | 
|  |  | 
|  | #define numadbg(f, a...) \ | 
|  | do {	if (numa_debug) \ | 
|  | printk(KERN_INFO f, ## a); \ | 
|  | } while (0) | 
|  |  | 
|  | static void __init find_ramdisk(unsigned long phys_base) | 
|  | { | 
|  | #ifdef CONFIG_BLK_DEV_INITRD | 
|  | if (sparc_ramdisk_image || sparc_ramdisk_image64) { | 
|  | unsigned long ramdisk_image; | 
|  |  | 
|  | /* Older versions of the bootloader only supported a | 
|  | * 32-bit physical address for the ramdisk image | 
|  | * location, stored at sparc_ramdisk_image.  Newer | 
|  | * SILO versions set sparc_ramdisk_image to zero and | 
|  | * provide a full 64-bit physical address at | 
|  | * sparc_ramdisk_image64. | 
|  | */ | 
|  | ramdisk_image = sparc_ramdisk_image; | 
|  | if (!ramdisk_image) | 
|  | ramdisk_image = sparc_ramdisk_image64; | 
|  |  | 
|  | /* Another bootloader quirk.  The bootloader normalizes | 
|  | * the physical address to KERNBASE, so we have to | 
|  | * factor that back out and add in the lowest valid | 
|  | * physical page address to get the true physical address. | 
|  | */ | 
|  | ramdisk_image -= KERNBASE; | 
|  | ramdisk_image += phys_base; | 
|  |  | 
|  | numadbg("Found ramdisk at physical address 0x%lx, size %u\n", | 
|  | ramdisk_image, sparc_ramdisk_size); | 
|  |  | 
|  | initrd_start = ramdisk_image; | 
|  | initrd_end = ramdisk_image + sparc_ramdisk_size; | 
|  |  | 
|  | memblock_reserve(initrd_start, sparc_ramdisk_size); | 
|  |  | 
|  | initrd_start += PAGE_OFFSET; | 
|  | initrd_end += PAGE_OFFSET; | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | struct node_mem_mask { | 
|  | unsigned long mask; | 
|  | unsigned long match; | 
|  | }; | 
|  | static struct node_mem_mask node_masks[MAX_NUMNODES]; | 
|  | static int num_node_masks; | 
|  |  | 
|  | #ifdef CONFIG_NEED_MULTIPLE_NODES | 
|  |  | 
|  | struct mdesc_mlgroup { | 
|  | u64	node; | 
|  | u64	latency; | 
|  | u64	match; | 
|  | u64	mask; | 
|  | }; | 
|  |  | 
|  | static struct mdesc_mlgroup *mlgroups; | 
|  | static int num_mlgroups; | 
|  |  | 
|  | int numa_cpu_lookup_table[NR_CPUS]; | 
|  | cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES]; | 
|  |  | 
|  | struct mdesc_mblock { | 
|  | u64	base; | 
|  | u64	size; | 
|  | u64	offset; /* RA-to-PA */ | 
|  | }; | 
|  | static struct mdesc_mblock *mblocks; | 
|  | static int num_mblocks; | 
|  |  | 
|  | static struct mdesc_mblock * __init addr_to_mblock(unsigned long addr) | 
|  | { | 
|  | struct mdesc_mblock *m = NULL; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < num_mblocks; i++) { | 
|  | m = &mblocks[i]; | 
|  |  | 
|  | if (addr >= m->base && | 
|  | addr < (m->base + m->size)) { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return m; | 
|  | } | 
|  |  | 
|  | static u64 __init memblock_nid_range_sun4u(u64 start, u64 end, int *nid) | 
|  | { | 
|  | int prev_nid, new_nid; | 
|  |  | 
|  | prev_nid = -1; | 
|  | for ( ; start < end; start += PAGE_SIZE) { | 
|  | for (new_nid = 0; new_nid < num_node_masks; new_nid++) { | 
|  | struct node_mem_mask *p = &node_masks[new_nid]; | 
|  |  | 
|  | if ((start & p->mask) == p->match) { | 
|  | if (prev_nid == -1) | 
|  | prev_nid = new_nid; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (new_nid == num_node_masks) { | 
|  | prev_nid = 0; | 
|  | WARN_ONCE(1, "addr[%Lx] doesn't match a NUMA node rule. Some memory will be owned by node 0.", | 
|  | start); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (prev_nid != new_nid) | 
|  | break; | 
|  | } | 
|  | *nid = prev_nid; | 
|  |  | 
|  | return start > end ? end : start; | 
|  | } | 
|  |  | 
|  | static u64 __init memblock_nid_range(u64 start, u64 end, int *nid) | 
|  | { | 
|  | u64 ret_end, pa_start, m_mask, m_match, m_end; | 
|  | struct mdesc_mblock *mblock; | 
|  | int _nid, i; | 
|  |  | 
|  | if (tlb_type != hypervisor) | 
|  | return memblock_nid_range_sun4u(start, end, nid); | 
|  |  | 
|  | mblock = addr_to_mblock(start); | 
|  | if (!mblock) { | 
|  | WARN_ONCE(1, "memblock_nid_range: Can't find mblock addr[%Lx]", | 
|  | start); | 
|  |  | 
|  | _nid = 0; | 
|  | ret_end = end; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | pa_start = start + mblock->offset; | 
|  | m_match = 0; | 
|  | m_mask = 0; | 
|  |  | 
|  | for (_nid = 0; _nid < num_node_masks; _nid++) { | 
|  | struct node_mem_mask *const m = &node_masks[_nid]; | 
|  |  | 
|  | if ((pa_start & m->mask) == m->match) { | 
|  | m_match = m->match; | 
|  | m_mask = m->mask; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (num_node_masks == _nid) { | 
|  | /* We could not find NUMA group, so default to 0, but lets | 
|  | * search for latency group, so we could calculate the correct | 
|  | * end address that we return | 
|  | */ | 
|  | _nid = 0; | 
|  |  | 
|  | for (i = 0; i < num_mlgroups; i++) { | 
|  | struct mdesc_mlgroup *const m = &mlgroups[i]; | 
|  |  | 
|  | if ((pa_start & m->mask) == m->match) { | 
|  | m_match = m->match; | 
|  | m_mask = m->mask; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (i == num_mlgroups) { | 
|  | WARN_ONCE(1, "memblock_nid_range: Can't find latency group addr[%Lx]", | 
|  | start); | 
|  |  | 
|  | ret_end = end; | 
|  | goto done; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Each latency group has match and mask, and each memory block has an | 
|  | * offset.  An address belongs to a latency group if its address matches | 
|  | * the following formula: ((addr + offset) & mask) == match | 
|  | * It is, however, slow to check every single page if it matches a | 
|  | * particular latency group. As optimization we calculate end value by | 
|  | * using bit arithmetics. | 
|  | */ | 
|  | m_end = m_match + (1ul << __ffs(m_mask)) - mblock->offset; | 
|  | m_end += pa_start & ~((1ul << fls64(m_mask)) - 1); | 
|  | ret_end = m_end > end ? end : m_end; | 
|  |  | 
|  | done: | 
|  | *nid = _nid; | 
|  | return ret_end; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* This must be invoked after performing all of the necessary | 
|  | * memblock_set_node() calls for 'nid'.  We need to be able to get | 
|  | * correct data from get_pfn_range_for_nid(). | 
|  | */ | 
|  | static void __init allocate_node_data(int nid) | 
|  | { | 
|  | struct pglist_data *p; | 
|  | unsigned long start_pfn, end_pfn; | 
|  | #ifdef CONFIG_NEED_MULTIPLE_NODES | 
|  | unsigned long paddr; | 
|  |  | 
|  | paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid); | 
|  | if (!paddr) { | 
|  | prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid); | 
|  | prom_halt(); | 
|  | } | 
|  | NODE_DATA(nid) = __va(paddr); | 
|  | memset(NODE_DATA(nid), 0, sizeof(struct pglist_data)); | 
|  |  | 
|  | NODE_DATA(nid)->node_id = nid; | 
|  | #endif | 
|  |  | 
|  | p = NODE_DATA(nid); | 
|  |  | 
|  | get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); | 
|  | p->node_start_pfn = start_pfn; | 
|  | p->node_spanned_pages = end_pfn - start_pfn; | 
|  | } | 
|  |  | 
|  | static void init_node_masks_nonnuma(void) | 
|  | { | 
|  | #ifdef CONFIG_NEED_MULTIPLE_NODES | 
|  | int i; | 
|  | #endif | 
|  |  | 
|  | numadbg("Initializing tables for non-numa.\n"); | 
|  |  | 
|  | node_masks[0].mask = 0; | 
|  | node_masks[0].match = 0; | 
|  | num_node_masks = 1; | 
|  |  | 
|  | #ifdef CONFIG_NEED_MULTIPLE_NODES | 
|  | for (i = 0; i < NR_CPUS; i++) | 
|  | numa_cpu_lookup_table[i] = 0; | 
|  |  | 
|  | cpumask_setall(&numa_cpumask_lookup_table[0]); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NEED_MULTIPLE_NODES | 
|  | struct pglist_data *node_data[MAX_NUMNODES]; | 
|  |  | 
|  | EXPORT_SYMBOL(numa_cpu_lookup_table); | 
|  | EXPORT_SYMBOL(numa_cpumask_lookup_table); | 
|  | EXPORT_SYMBOL(node_data); | 
|  |  | 
|  | static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio, | 
|  | u32 cfg_handle) | 
|  | { | 
|  | u64 arc; | 
|  |  | 
|  | mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) { | 
|  | u64 target = mdesc_arc_target(md, arc); | 
|  | const u64 *val; | 
|  |  | 
|  | val = mdesc_get_property(md, target, | 
|  | "cfg-handle", NULL); | 
|  | if (val && *val == cfg_handle) | 
|  | return 0; | 
|  | } | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp, | 
|  | u32 cfg_handle) | 
|  | { | 
|  | u64 arc, candidate, best_latency = ~(u64)0; | 
|  |  | 
|  | candidate = MDESC_NODE_NULL; | 
|  | mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) { | 
|  | u64 target = mdesc_arc_target(md, arc); | 
|  | const char *name = mdesc_node_name(md, target); | 
|  | const u64 *val; | 
|  |  | 
|  | if (strcmp(name, "pio-latency-group")) | 
|  | continue; | 
|  |  | 
|  | val = mdesc_get_property(md, target, "latency", NULL); | 
|  | if (!val) | 
|  | continue; | 
|  |  | 
|  | if (*val < best_latency) { | 
|  | candidate = target; | 
|  | best_latency = *val; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (candidate == MDESC_NODE_NULL) | 
|  | return -ENODEV; | 
|  |  | 
|  | return scan_pio_for_cfg_handle(md, candidate, cfg_handle); | 
|  | } | 
|  |  | 
|  | int of_node_to_nid(struct device_node *dp) | 
|  | { | 
|  | const struct linux_prom64_registers *regs; | 
|  | struct mdesc_handle *md; | 
|  | u32 cfg_handle; | 
|  | int count, nid; | 
|  | u64 grp; | 
|  |  | 
|  | /* This is the right thing to do on currently supported | 
|  | * SUN4U NUMA platforms as well, as the PCI controller does | 
|  | * not sit behind any particular memory controller. | 
|  | */ | 
|  | if (!mlgroups) | 
|  | return -1; | 
|  |  | 
|  | regs = of_get_property(dp, "reg", NULL); | 
|  | if (!regs) | 
|  | return -1; | 
|  |  | 
|  | cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff; | 
|  |  | 
|  | md = mdesc_grab(); | 
|  |  | 
|  | count = 0; | 
|  | nid = -1; | 
|  | mdesc_for_each_node_by_name(md, grp, "group") { | 
|  | if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) { | 
|  | nid = count; | 
|  | break; | 
|  | } | 
|  | count++; | 
|  | } | 
|  |  | 
|  | mdesc_release(md); | 
|  |  | 
|  | return nid; | 
|  | } | 
|  |  | 
|  | static void __init add_node_ranges(void) | 
|  | { | 
|  | struct memblock_region *reg; | 
|  | unsigned long prev_max; | 
|  |  | 
|  | memblock_resized: | 
|  | prev_max = memblock.memory.max; | 
|  |  | 
|  | for_each_memblock(memory, reg) { | 
|  | unsigned long size = reg->size; | 
|  | unsigned long start, end; | 
|  |  | 
|  | start = reg->base; | 
|  | end = start + size; | 
|  | while (start < end) { | 
|  | unsigned long this_end; | 
|  | int nid; | 
|  |  | 
|  | this_end = memblock_nid_range(start, end, &nid); | 
|  |  | 
|  | numadbg("Setting memblock NUMA node nid[%d] " | 
|  | "start[%lx] end[%lx]\n", | 
|  | nid, start, this_end); | 
|  |  | 
|  | memblock_set_node(start, this_end - start, | 
|  | &memblock.memory, nid); | 
|  | if (memblock.memory.max != prev_max) | 
|  | goto memblock_resized; | 
|  | start = this_end; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int __init grab_mlgroups(struct mdesc_handle *md) | 
|  | { | 
|  | unsigned long paddr; | 
|  | int count = 0; | 
|  | u64 node; | 
|  |  | 
|  | mdesc_for_each_node_by_name(md, node, "memory-latency-group") | 
|  | count++; | 
|  | if (!count) | 
|  | return -ENOENT; | 
|  |  | 
|  | paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup), | 
|  | SMP_CACHE_BYTES); | 
|  | if (!paddr) | 
|  | return -ENOMEM; | 
|  |  | 
|  | mlgroups = __va(paddr); | 
|  | num_mlgroups = count; | 
|  |  | 
|  | count = 0; | 
|  | mdesc_for_each_node_by_name(md, node, "memory-latency-group") { | 
|  | struct mdesc_mlgroup *m = &mlgroups[count++]; | 
|  | const u64 *val; | 
|  |  | 
|  | m->node = node; | 
|  |  | 
|  | val = mdesc_get_property(md, node, "latency", NULL); | 
|  | m->latency = *val; | 
|  | val = mdesc_get_property(md, node, "address-match", NULL); | 
|  | m->match = *val; | 
|  | val = mdesc_get_property(md, node, "address-mask", NULL); | 
|  | m->mask = *val; | 
|  |  | 
|  | numadbg("MLGROUP[%d]: node[%llx] latency[%llx] " | 
|  | "match[%llx] mask[%llx]\n", | 
|  | count - 1, m->node, m->latency, m->match, m->mask); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __init grab_mblocks(struct mdesc_handle *md) | 
|  | { | 
|  | unsigned long paddr; | 
|  | int count = 0; | 
|  | u64 node; | 
|  |  | 
|  | mdesc_for_each_node_by_name(md, node, "mblock") | 
|  | count++; | 
|  | if (!count) | 
|  | return -ENOENT; | 
|  |  | 
|  | paddr = memblock_alloc(count * sizeof(struct mdesc_mblock), | 
|  | SMP_CACHE_BYTES); | 
|  | if (!paddr) | 
|  | return -ENOMEM; | 
|  |  | 
|  | mblocks = __va(paddr); | 
|  | num_mblocks = count; | 
|  |  | 
|  | count = 0; | 
|  | mdesc_for_each_node_by_name(md, node, "mblock") { | 
|  | struct mdesc_mblock *m = &mblocks[count++]; | 
|  | const u64 *val; | 
|  |  | 
|  | val = mdesc_get_property(md, node, "base", NULL); | 
|  | m->base = *val; | 
|  | val = mdesc_get_property(md, node, "size", NULL); | 
|  | m->size = *val; | 
|  | val = mdesc_get_property(md, node, | 
|  | "address-congruence-offset", NULL); | 
|  |  | 
|  | /* The address-congruence-offset property is optional. | 
|  | * Explicity zero it be identifty this. | 
|  | */ | 
|  | if (val) | 
|  | m->offset = *val; | 
|  | else | 
|  | m->offset = 0UL; | 
|  |  | 
|  | numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n", | 
|  | count - 1, m->base, m->size, m->offset); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md, | 
|  | u64 grp, cpumask_t *mask) | 
|  | { | 
|  | u64 arc; | 
|  |  | 
|  | cpumask_clear(mask); | 
|  |  | 
|  | mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) { | 
|  | u64 target = mdesc_arc_target(md, arc); | 
|  | const char *name = mdesc_node_name(md, target); | 
|  | const u64 *id; | 
|  |  | 
|  | if (strcmp(name, "cpu")) | 
|  | continue; | 
|  | id = mdesc_get_property(md, target, "id", NULL); | 
|  | if (*id < nr_cpu_ids) | 
|  | cpumask_set_cpu(*id, mask); | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct mdesc_mlgroup * __init find_mlgroup(u64 node) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < num_mlgroups; i++) { | 
|  | struct mdesc_mlgroup *m = &mlgroups[i]; | 
|  | if (m->node == node) | 
|  | return m; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | int __node_distance(int from, int to) | 
|  | { | 
|  | if ((from >= MAX_NUMNODES) || (to >= MAX_NUMNODES)) { | 
|  | pr_warn("Returning default NUMA distance value for %d->%d\n", | 
|  | from, to); | 
|  | return (from == to) ? LOCAL_DISTANCE : REMOTE_DISTANCE; | 
|  | } | 
|  | return numa_latency[from][to]; | 
|  | } | 
|  |  | 
|  | static int __init find_best_numa_node_for_mlgroup(struct mdesc_mlgroup *grp) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < MAX_NUMNODES; i++) { | 
|  | struct node_mem_mask *n = &node_masks[i]; | 
|  |  | 
|  | if ((grp->mask == n->mask) && (grp->match == n->match)) | 
|  | break; | 
|  | } | 
|  | return i; | 
|  | } | 
|  |  | 
|  | static void __init find_numa_latencies_for_group(struct mdesc_handle *md, | 
|  | u64 grp, int index) | 
|  | { | 
|  | u64 arc; | 
|  |  | 
|  | mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) { | 
|  | int tnode; | 
|  | u64 target = mdesc_arc_target(md, arc); | 
|  | struct mdesc_mlgroup *m = find_mlgroup(target); | 
|  |  | 
|  | if (!m) | 
|  | continue; | 
|  | tnode = find_best_numa_node_for_mlgroup(m); | 
|  | if (tnode == MAX_NUMNODES) | 
|  | continue; | 
|  | numa_latency[index][tnode] = m->latency; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp, | 
|  | int index) | 
|  | { | 
|  | struct mdesc_mlgroup *candidate = NULL; | 
|  | u64 arc, best_latency = ~(u64)0; | 
|  | struct node_mem_mask *n; | 
|  |  | 
|  | mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) { | 
|  | u64 target = mdesc_arc_target(md, arc); | 
|  | struct mdesc_mlgroup *m = find_mlgroup(target); | 
|  | if (!m) | 
|  | continue; | 
|  | if (m->latency < best_latency) { | 
|  | candidate = m; | 
|  | best_latency = m->latency; | 
|  | } | 
|  | } | 
|  | if (!candidate) | 
|  | return -ENOENT; | 
|  |  | 
|  | if (num_node_masks != index) { | 
|  | printk(KERN_ERR "Inconsistent NUMA state, " | 
|  | "index[%d] != num_node_masks[%d]\n", | 
|  | index, num_node_masks); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | n = &node_masks[num_node_masks++]; | 
|  |  | 
|  | n->mask = candidate->mask; | 
|  | n->match = candidate->match; | 
|  |  | 
|  | numadbg("NUMA NODE[%d]: mask[%lx] match[%lx] (latency[%llx])\n", | 
|  | index, n->mask, n->match, candidate->latency); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp, | 
|  | int index) | 
|  | { | 
|  | cpumask_t mask; | 
|  | int cpu; | 
|  |  | 
|  | numa_parse_mdesc_group_cpus(md, grp, &mask); | 
|  |  | 
|  | for_each_cpu(cpu, &mask) | 
|  | numa_cpu_lookup_table[cpu] = index; | 
|  | cpumask_copy(&numa_cpumask_lookup_table[index], &mask); | 
|  |  | 
|  | if (numa_debug) { | 
|  | printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index); | 
|  | for_each_cpu(cpu, &mask) | 
|  | printk("%d ", cpu); | 
|  | printk("]\n"); | 
|  | } | 
|  |  | 
|  | return numa_attach_mlgroup(md, grp, index); | 
|  | } | 
|  |  | 
|  | static int __init numa_parse_mdesc(void) | 
|  | { | 
|  | struct mdesc_handle *md = mdesc_grab(); | 
|  | int i, j, err, count; | 
|  | u64 node; | 
|  |  | 
|  | node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups"); | 
|  | if (node == MDESC_NODE_NULL) { | 
|  | mdesc_release(md); | 
|  | return -ENOENT; | 
|  | } | 
|  |  | 
|  | err = grab_mblocks(md); | 
|  | if (err < 0) | 
|  | goto out; | 
|  |  | 
|  | err = grab_mlgroups(md); | 
|  | if (err < 0) | 
|  | goto out; | 
|  |  | 
|  | count = 0; | 
|  | mdesc_for_each_node_by_name(md, node, "group") { | 
|  | err = numa_parse_mdesc_group(md, node, count); | 
|  | if (err < 0) | 
|  | break; | 
|  | count++; | 
|  | } | 
|  |  | 
|  | count = 0; | 
|  | mdesc_for_each_node_by_name(md, node, "group") { | 
|  | find_numa_latencies_for_group(md, node, count); | 
|  | count++; | 
|  | } | 
|  |  | 
|  | /* Normalize numa latency matrix according to ACPI SLIT spec. */ | 
|  | for (i = 0; i < MAX_NUMNODES; i++) { | 
|  | u64 self_latency = numa_latency[i][i]; | 
|  |  | 
|  | for (j = 0; j < MAX_NUMNODES; j++) { | 
|  | numa_latency[i][j] = | 
|  | (numa_latency[i][j] * LOCAL_DISTANCE) / | 
|  | self_latency; | 
|  | } | 
|  | } | 
|  |  | 
|  | add_node_ranges(); | 
|  |  | 
|  | for (i = 0; i < num_node_masks; i++) { | 
|  | allocate_node_data(i); | 
|  | node_set_online(i); | 
|  | } | 
|  |  | 
|  | err = 0; | 
|  | out: | 
|  | mdesc_release(md); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int __init numa_parse_jbus(void) | 
|  | { | 
|  | unsigned long cpu, index; | 
|  |  | 
|  | /* NUMA node id is encoded in bits 36 and higher, and there is | 
|  | * a 1-to-1 mapping from CPU ID to NUMA node ID. | 
|  | */ | 
|  | index = 0; | 
|  | for_each_present_cpu(cpu) { | 
|  | numa_cpu_lookup_table[cpu] = index; | 
|  | cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu)); | 
|  | node_masks[index].mask = ~((1UL << 36UL) - 1UL); | 
|  | node_masks[index].match = cpu << 36UL; | 
|  |  | 
|  | index++; | 
|  | } | 
|  | num_node_masks = index; | 
|  |  | 
|  | add_node_ranges(); | 
|  |  | 
|  | for (index = 0; index < num_node_masks; index++) { | 
|  | allocate_node_data(index); | 
|  | node_set_online(index); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __init numa_parse_sun4u(void) | 
|  | { | 
|  | if (tlb_type == cheetah || tlb_type == cheetah_plus) { | 
|  | unsigned long ver; | 
|  |  | 
|  | __asm__ ("rdpr %%ver, %0" : "=r" (ver)); | 
|  | if ((ver >> 32UL) == __JALAPENO_ID || | 
|  | (ver >> 32UL) == __SERRANO_ID) | 
|  | return numa_parse_jbus(); | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static int __init bootmem_init_numa(void) | 
|  | { | 
|  | int i, j; | 
|  | int err = -1; | 
|  |  | 
|  | numadbg("bootmem_init_numa()\n"); | 
|  |  | 
|  | /* Some sane defaults for numa latency values */ | 
|  | for (i = 0; i < MAX_NUMNODES; i++) { | 
|  | for (j = 0; j < MAX_NUMNODES; j++) | 
|  | numa_latency[i][j] = (i == j) ? | 
|  | LOCAL_DISTANCE : REMOTE_DISTANCE; | 
|  | } | 
|  |  | 
|  | if (numa_enabled) { | 
|  | if (tlb_type == hypervisor) | 
|  | err = numa_parse_mdesc(); | 
|  | else | 
|  | err = numa_parse_sun4u(); | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | static int bootmem_init_numa(void) | 
|  | { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | static void __init bootmem_init_nonnuma(void) | 
|  | { | 
|  | unsigned long top_of_ram = memblock_end_of_DRAM(); | 
|  | unsigned long total_ram = memblock_phys_mem_size(); | 
|  |  | 
|  | numadbg("bootmem_init_nonnuma()\n"); | 
|  |  | 
|  | printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", | 
|  | top_of_ram, total_ram); | 
|  | printk(KERN_INFO "Memory hole size: %ldMB\n", | 
|  | (top_of_ram - total_ram) >> 20); | 
|  |  | 
|  | init_node_masks_nonnuma(); | 
|  | memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0); | 
|  | allocate_node_data(0); | 
|  | node_set_online(0); | 
|  | } | 
|  |  | 
|  | static unsigned long __init bootmem_init(unsigned long phys_base) | 
|  | { | 
|  | unsigned long end_pfn; | 
|  |  | 
|  | end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT; | 
|  | max_pfn = max_low_pfn = end_pfn; | 
|  | min_low_pfn = (phys_base >> PAGE_SHIFT); | 
|  |  | 
|  | if (bootmem_init_numa() < 0) | 
|  | bootmem_init_nonnuma(); | 
|  |  | 
|  | /* Dump memblock with node info. */ | 
|  | memblock_dump_all(); | 
|  |  | 
|  | /* XXX cpu notifier XXX */ | 
|  |  | 
|  | sparse_memory_present_with_active_regions(MAX_NUMNODES); | 
|  | sparse_init(); | 
|  |  | 
|  | return end_pfn; | 
|  | } | 
|  |  | 
|  | static struct linux_prom64_registers pall[MAX_BANKS] __initdata; | 
|  | static int pall_ents __initdata; | 
|  |  | 
|  | static unsigned long max_phys_bits = 40; | 
|  |  | 
|  | bool kern_addr_valid(unsigned long addr) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  | pte_t *pte; | 
|  |  | 
|  | if ((long)addr < 0L) { | 
|  | unsigned long pa = __pa(addr); | 
|  |  | 
|  | if ((pa >> max_phys_bits) != 0UL) | 
|  | return false; | 
|  |  | 
|  | return pfn_valid(pa >> PAGE_SHIFT); | 
|  | } | 
|  |  | 
|  | if (addr >= (unsigned long) KERNBASE && | 
|  | addr < (unsigned long)&_end) | 
|  | return true; | 
|  |  | 
|  | pgd = pgd_offset_k(addr); | 
|  | if (pgd_none(*pgd)) | 
|  | return 0; | 
|  |  | 
|  | pud = pud_offset(pgd, addr); | 
|  | if (pud_none(*pud)) | 
|  | return 0; | 
|  |  | 
|  | if (pud_large(*pud)) | 
|  | return pfn_valid(pud_pfn(*pud)); | 
|  |  | 
|  | pmd = pmd_offset(pud, addr); | 
|  | if (pmd_none(*pmd)) | 
|  | return 0; | 
|  |  | 
|  | if (pmd_large(*pmd)) | 
|  | return pfn_valid(pmd_pfn(*pmd)); | 
|  |  | 
|  | pte = pte_offset_kernel(pmd, addr); | 
|  | if (pte_none(*pte)) | 
|  | return 0; | 
|  |  | 
|  | return pfn_valid(pte_pfn(*pte)); | 
|  | } | 
|  | EXPORT_SYMBOL(kern_addr_valid); | 
|  |  | 
|  | static unsigned long __ref kernel_map_hugepud(unsigned long vstart, | 
|  | unsigned long vend, | 
|  | pud_t *pud) | 
|  | { | 
|  | const unsigned long mask16gb = (1UL << 34) - 1UL; | 
|  | u64 pte_val = vstart; | 
|  |  | 
|  | /* Each PUD is 8GB */ | 
|  | if ((vstart & mask16gb) || | 
|  | (vend - vstart <= mask16gb)) { | 
|  | pte_val ^= kern_linear_pte_xor[2]; | 
|  | pud_val(*pud) = pte_val | _PAGE_PUD_HUGE; | 
|  |  | 
|  | return vstart + PUD_SIZE; | 
|  | } | 
|  |  | 
|  | pte_val ^= kern_linear_pte_xor[3]; | 
|  | pte_val |= _PAGE_PUD_HUGE; | 
|  |  | 
|  | vend = vstart + mask16gb + 1UL; | 
|  | while (vstart < vend) { | 
|  | pud_val(*pud) = pte_val; | 
|  |  | 
|  | pte_val += PUD_SIZE; | 
|  | vstart += PUD_SIZE; | 
|  | pud++; | 
|  | } | 
|  | return vstart; | 
|  | } | 
|  |  | 
|  | static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend, | 
|  | bool guard) | 
|  | { | 
|  | if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static unsigned long __ref kernel_map_hugepmd(unsigned long vstart, | 
|  | unsigned long vend, | 
|  | pmd_t *pmd) | 
|  | { | 
|  | const unsigned long mask256mb = (1UL << 28) - 1UL; | 
|  | const unsigned long mask2gb = (1UL << 31) - 1UL; | 
|  | u64 pte_val = vstart; | 
|  |  | 
|  | /* Each PMD is 8MB */ | 
|  | if ((vstart & mask256mb) || | 
|  | (vend - vstart <= mask256mb)) { | 
|  | pte_val ^= kern_linear_pte_xor[0]; | 
|  | pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE; | 
|  |  | 
|  | return vstart + PMD_SIZE; | 
|  | } | 
|  |  | 
|  | if ((vstart & mask2gb) || | 
|  | (vend - vstart <= mask2gb)) { | 
|  | pte_val ^= kern_linear_pte_xor[1]; | 
|  | pte_val |= _PAGE_PMD_HUGE; | 
|  | vend = vstart + mask256mb + 1UL; | 
|  | } else { | 
|  | pte_val ^= kern_linear_pte_xor[2]; | 
|  | pte_val |= _PAGE_PMD_HUGE; | 
|  | vend = vstart + mask2gb + 1UL; | 
|  | } | 
|  |  | 
|  | while (vstart < vend) { | 
|  | pmd_val(*pmd) = pte_val; | 
|  |  | 
|  | pte_val += PMD_SIZE; | 
|  | vstart += PMD_SIZE; | 
|  | pmd++; | 
|  | } | 
|  |  | 
|  | return vstart; | 
|  | } | 
|  |  | 
|  | static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend, | 
|  | bool guard) | 
|  | { | 
|  | if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static unsigned long __ref kernel_map_range(unsigned long pstart, | 
|  | unsigned long pend, pgprot_t prot, | 
|  | bool use_huge) | 
|  | { | 
|  | unsigned long vstart = PAGE_OFFSET + pstart; | 
|  | unsigned long vend = PAGE_OFFSET + pend; | 
|  | unsigned long alloc_bytes = 0UL; | 
|  |  | 
|  | if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) { | 
|  | prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n", | 
|  | vstart, vend); | 
|  | prom_halt(); | 
|  | } | 
|  |  | 
|  | while (vstart < vend) { | 
|  | unsigned long this_end, paddr = __pa(vstart); | 
|  | pgd_t *pgd = pgd_offset_k(vstart); | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  | pte_t *pte; | 
|  |  | 
|  | if (pgd_none(*pgd)) { | 
|  | pud_t *new; | 
|  |  | 
|  | new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); | 
|  | alloc_bytes += PAGE_SIZE; | 
|  | pgd_populate(&init_mm, pgd, new); | 
|  | } | 
|  | pud = pud_offset(pgd, vstart); | 
|  | if (pud_none(*pud)) { | 
|  | pmd_t *new; | 
|  |  | 
|  | if (kernel_can_map_hugepud(vstart, vend, use_huge)) { | 
|  | vstart = kernel_map_hugepud(vstart, vend, pud); | 
|  | continue; | 
|  | } | 
|  | new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); | 
|  | alloc_bytes += PAGE_SIZE; | 
|  | pud_populate(&init_mm, pud, new); | 
|  | } | 
|  |  | 
|  | pmd = pmd_offset(pud, vstart); | 
|  | if (pmd_none(*pmd)) { | 
|  | pte_t *new; | 
|  |  | 
|  | if (kernel_can_map_hugepmd(vstart, vend, use_huge)) { | 
|  | vstart = kernel_map_hugepmd(vstart, vend, pmd); | 
|  | continue; | 
|  | } | 
|  | new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); | 
|  | alloc_bytes += PAGE_SIZE; | 
|  | pmd_populate_kernel(&init_mm, pmd, new); | 
|  | } | 
|  |  | 
|  | pte = pte_offset_kernel(pmd, vstart); | 
|  | this_end = (vstart + PMD_SIZE) & PMD_MASK; | 
|  | if (this_end > vend) | 
|  | this_end = vend; | 
|  |  | 
|  | while (vstart < this_end) { | 
|  | pte_val(*pte) = (paddr | pgprot_val(prot)); | 
|  |  | 
|  | vstart += PAGE_SIZE; | 
|  | paddr += PAGE_SIZE; | 
|  | pte++; | 
|  | } | 
|  | } | 
|  |  | 
|  | return alloc_bytes; | 
|  | } | 
|  |  | 
|  | static void __init flush_all_kernel_tsbs(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < KERNEL_TSB_NENTRIES; i++) { | 
|  | struct tsb *ent = &swapper_tsb[i]; | 
|  |  | 
|  | ent->tag = (1UL << TSB_TAG_INVALID_BIT); | 
|  | } | 
|  | #ifndef CONFIG_DEBUG_PAGEALLOC | 
|  | for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) { | 
|  | struct tsb *ent = &swapper_4m_tsb[i]; | 
|  |  | 
|  | ent->tag = (1UL << TSB_TAG_INVALID_BIT); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | extern unsigned int kvmap_linear_patch[1]; | 
|  |  | 
|  | static void __init kernel_physical_mapping_init(void) | 
|  | { | 
|  | unsigned long i, mem_alloced = 0UL; | 
|  | bool use_huge = true; | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_PAGEALLOC | 
|  | use_huge = false; | 
|  | #endif | 
|  | for (i = 0; i < pall_ents; i++) { | 
|  | unsigned long phys_start, phys_end; | 
|  |  | 
|  | phys_start = pall[i].phys_addr; | 
|  | phys_end = phys_start + pall[i].reg_size; | 
|  |  | 
|  | mem_alloced += kernel_map_range(phys_start, phys_end, | 
|  | PAGE_KERNEL, use_huge); | 
|  | } | 
|  |  | 
|  | printk("Allocated %ld bytes for kernel page tables.\n", | 
|  | mem_alloced); | 
|  |  | 
|  | kvmap_linear_patch[0] = 0x01000000; /* nop */ | 
|  | flushi(&kvmap_linear_patch[0]); | 
|  |  | 
|  | flush_all_kernel_tsbs(); | 
|  |  | 
|  | __flush_tlb_all(); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_PAGEALLOC | 
|  | void __kernel_map_pages(struct page *page, int numpages, int enable) | 
|  | { | 
|  | unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT; | 
|  | unsigned long phys_end = phys_start + (numpages * PAGE_SIZE); | 
|  |  | 
|  | kernel_map_range(phys_start, phys_end, | 
|  | (enable ? PAGE_KERNEL : __pgprot(0)), false); | 
|  |  | 
|  | flush_tsb_kernel_range(PAGE_OFFSET + phys_start, | 
|  | PAGE_OFFSET + phys_end); | 
|  |  | 
|  | /* we should perform an IPI and flush all tlbs, | 
|  | * but that can deadlock->flush only current cpu. | 
|  | */ | 
|  | __flush_tlb_kernel_range(PAGE_OFFSET + phys_start, | 
|  | PAGE_OFFSET + phys_end); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | unsigned long __init find_ecache_flush_span(unsigned long size) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < pavail_ents; i++) { | 
|  | if (pavail[i].reg_size >= size) | 
|  | return pavail[i].phys_addr; | 
|  | } | 
|  |  | 
|  | return ~0UL; | 
|  | } | 
|  |  | 
|  | unsigned long PAGE_OFFSET; | 
|  | EXPORT_SYMBOL(PAGE_OFFSET); | 
|  |  | 
|  | unsigned long VMALLOC_END   = 0x0000010000000000UL; | 
|  | EXPORT_SYMBOL(VMALLOC_END); | 
|  |  | 
|  | unsigned long sparc64_va_hole_top =    0xfffff80000000000UL; | 
|  | unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL; | 
|  |  | 
|  | static void __init setup_page_offset(void) | 
|  | { | 
|  | if (tlb_type == cheetah || tlb_type == cheetah_plus) { | 
|  | /* Cheetah/Panther support a full 64-bit virtual | 
|  | * address, so we can use all that our page tables | 
|  | * support. | 
|  | */ | 
|  | sparc64_va_hole_top =    0xfff0000000000000UL; | 
|  | sparc64_va_hole_bottom = 0x0010000000000000UL; | 
|  |  | 
|  | max_phys_bits = 42; | 
|  | } else if (tlb_type == hypervisor) { | 
|  | switch (sun4v_chip_type) { | 
|  | case SUN4V_CHIP_NIAGARA1: | 
|  | case SUN4V_CHIP_NIAGARA2: | 
|  | /* T1 and T2 support 48-bit virtual addresses.  */ | 
|  | sparc64_va_hole_top =    0xffff800000000000UL; | 
|  | sparc64_va_hole_bottom = 0x0000800000000000UL; | 
|  |  | 
|  | max_phys_bits = 39; | 
|  | break; | 
|  | case SUN4V_CHIP_NIAGARA3: | 
|  | /* T3 supports 48-bit virtual addresses.  */ | 
|  | sparc64_va_hole_top =    0xffff800000000000UL; | 
|  | sparc64_va_hole_bottom = 0x0000800000000000UL; | 
|  |  | 
|  | max_phys_bits = 43; | 
|  | break; | 
|  | case SUN4V_CHIP_NIAGARA4: | 
|  | case SUN4V_CHIP_NIAGARA5: | 
|  | case SUN4V_CHIP_SPARC64X: | 
|  | case SUN4V_CHIP_SPARC_M6: | 
|  | /* T4 and later support 52-bit virtual addresses.  */ | 
|  | sparc64_va_hole_top =    0xfff8000000000000UL; | 
|  | sparc64_va_hole_bottom = 0x0008000000000000UL; | 
|  | max_phys_bits = 47; | 
|  | break; | 
|  | case SUN4V_CHIP_SPARC_M7: | 
|  | case SUN4V_CHIP_SPARC_SN: | 
|  | /* M7 and later support 52-bit virtual addresses.  */ | 
|  | sparc64_va_hole_top =    0xfff8000000000000UL; | 
|  | sparc64_va_hole_bottom = 0x0008000000000000UL; | 
|  | max_phys_bits = 49; | 
|  | break; | 
|  | case SUN4V_CHIP_SPARC_M8: | 
|  | default: | 
|  | /* M8 and later support 54-bit virtual addresses. | 
|  | * However, restricting M8 and above VA bits to 53 | 
|  | * as 4-level page table cannot support more than | 
|  | * 53 VA bits. | 
|  | */ | 
|  | sparc64_va_hole_top =    0xfff0000000000000UL; | 
|  | sparc64_va_hole_bottom = 0x0010000000000000UL; | 
|  | max_phys_bits = 51; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) { | 
|  | prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n", | 
|  | max_phys_bits); | 
|  | prom_halt(); | 
|  | } | 
|  |  | 
|  | PAGE_OFFSET = sparc64_va_hole_top; | 
|  | VMALLOC_END = ((sparc64_va_hole_bottom >> 1) + | 
|  | (sparc64_va_hole_bottom >> 2)); | 
|  |  | 
|  | pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n", | 
|  | PAGE_OFFSET, max_phys_bits); | 
|  | pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n", | 
|  | VMALLOC_START, VMALLOC_END); | 
|  | pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n", | 
|  | VMEMMAP_BASE, VMEMMAP_BASE << 1); | 
|  | } | 
|  |  | 
|  | static void __init tsb_phys_patch(void) | 
|  | { | 
|  | struct tsb_ldquad_phys_patch_entry *pquad; | 
|  | struct tsb_phys_patch_entry *p; | 
|  |  | 
|  | pquad = &__tsb_ldquad_phys_patch; | 
|  | while (pquad < &__tsb_ldquad_phys_patch_end) { | 
|  | unsigned long addr = pquad->addr; | 
|  |  | 
|  | if (tlb_type == hypervisor) | 
|  | *(unsigned int *) addr = pquad->sun4v_insn; | 
|  | else | 
|  | *(unsigned int *) addr = pquad->sun4u_insn; | 
|  | wmb(); | 
|  | __asm__ __volatile__("flush	%0" | 
|  | : /* no outputs */ | 
|  | : "r" (addr)); | 
|  |  | 
|  | pquad++; | 
|  | } | 
|  |  | 
|  | p = &__tsb_phys_patch; | 
|  | while (p < &__tsb_phys_patch_end) { | 
|  | unsigned long addr = p->addr; | 
|  |  | 
|  | *(unsigned int *) addr = p->insn; | 
|  | wmb(); | 
|  | __asm__ __volatile__("flush	%0" | 
|  | : /* no outputs */ | 
|  | : "r" (addr)); | 
|  |  | 
|  | p++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Don't mark as init, we give this to the Hypervisor.  */ | 
|  | #ifndef CONFIG_DEBUG_PAGEALLOC | 
|  | #define NUM_KTSB_DESCR	2 | 
|  | #else | 
|  | #define NUM_KTSB_DESCR	1 | 
|  | #endif | 
|  | static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR]; | 
|  |  | 
|  | /* The swapper TSBs are loaded with a base sequence of: | 
|  | * | 
|  | *	sethi	%uhi(SYMBOL), REG1 | 
|  | *	sethi	%hi(SYMBOL), REG2 | 
|  | *	or	REG1, %ulo(SYMBOL), REG1 | 
|  | *	or	REG2, %lo(SYMBOL), REG2 | 
|  | *	sllx	REG1, 32, REG1 | 
|  | *	or	REG1, REG2, REG1 | 
|  | * | 
|  | * When we use physical addressing for the TSB accesses, we patch the | 
|  | * first four instructions in the above sequence. | 
|  | */ | 
|  |  | 
|  | static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa) | 
|  | { | 
|  | unsigned long high_bits, low_bits; | 
|  |  | 
|  | high_bits = (pa >> 32) & 0xffffffff; | 
|  | low_bits = (pa >> 0) & 0xffffffff; | 
|  |  | 
|  | while (start < end) { | 
|  | unsigned int *ia = (unsigned int *)(unsigned long)*start; | 
|  |  | 
|  | ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10); | 
|  | __asm__ __volatile__("flush	%0" : : "r" (ia)); | 
|  |  | 
|  | ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10); | 
|  | __asm__ __volatile__("flush	%0" : : "r" (ia + 1)); | 
|  |  | 
|  | ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff); | 
|  | __asm__ __volatile__("flush	%0" : : "r" (ia + 2)); | 
|  |  | 
|  | ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff); | 
|  | __asm__ __volatile__("flush	%0" : : "r" (ia + 3)); | 
|  |  | 
|  | start++; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void ktsb_phys_patch(void) | 
|  | { | 
|  | extern unsigned int __swapper_tsb_phys_patch; | 
|  | extern unsigned int __swapper_tsb_phys_patch_end; | 
|  | unsigned long ktsb_pa; | 
|  |  | 
|  | ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE); | 
|  | patch_one_ktsb_phys(&__swapper_tsb_phys_patch, | 
|  | &__swapper_tsb_phys_patch_end, ktsb_pa); | 
|  | #ifndef CONFIG_DEBUG_PAGEALLOC | 
|  | { | 
|  | extern unsigned int __swapper_4m_tsb_phys_patch; | 
|  | extern unsigned int __swapper_4m_tsb_phys_patch_end; | 
|  | ktsb_pa = (kern_base + | 
|  | ((unsigned long)&swapper_4m_tsb[0] - KERNBASE)); | 
|  | patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch, | 
|  | &__swapper_4m_tsb_phys_patch_end, ktsb_pa); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void __init sun4v_ktsb_init(void) | 
|  | { | 
|  | unsigned long ktsb_pa; | 
|  |  | 
|  | /* First KTSB for PAGE_SIZE mappings.  */ | 
|  | ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE); | 
|  |  | 
|  | switch (PAGE_SIZE) { | 
|  | case 8 * 1024: | 
|  | default: | 
|  | ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K; | 
|  | ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K; | 
|  | break; | 
|  |  | 
|  | case 64 * 1024: | 
|  | ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K; | 
|  | ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K; | 
|  | break; | 
|  |  | 
|  | case 512 * 1024: | 
|  | ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K; | 
|  | ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K; | 
|  | break; | 
|  |  | 
|  | case 4 * 1024 * 1024: | 
|  | ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB; | 
|  | ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB; | 
|  | break; | 
|  | } | 
|  |  | 
|  | ktsb_descr[0].assoc = 1; | 
|  | ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES; | 
|  | ktsb_descr[0].ctx_idx = 0; | 
|  | ktsb_descr[0].tsb_base = ktsb_pa; | 
|  | ktsb_descr[0].resv = 0; | 
|  |  | 
|  | #ifndef CONFIG_DEBUG_PAGEALLOC | 
|  | /* Second KTSB for 4MB/256MB/2GB/16GB mappings.  */ | 
|  | ktsb_pa = (kern_base + | 
|  | ((unsigned long)&swapper_4m_tsb[0] - KERNBASE)); | 
|  |  | 
|  | ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB; | 
|  | ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB | | 
|  | HV_PGSZ_MASK_256MB | | 
|  | HV_PGSZ_MASK_2GB | | 
|  | HV_PGSZ_MASK_16GB) & | 
|  | cpu_pgsz_mask); | 
|  | ktsb_descr[1].assoc = 1; | 
|  | ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES; | 
|  | ktsb_descr[1].ctx_idx = 0; | 
|  | ktsb_descr[1].tsb_base = ktsb_pa; | 
|  | ktsb_descr[1].resv = 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void sun4v_ktsb_register(void) | 
|  | { | 
|  | unsigned long pa, ret; | 
|  |  | 
|  | pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE); | 
|  |  | 
|  | ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa); | 
|  | if (ret != 0) { | 
|  | prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: " | 
|  | "errors with %lx\n", pa, ret); | 
|  | prom_halt(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __init sun4u_linear_pte_xor_finalize(void) | 
|  | { | 
|  | #ifndef CONFIG_DEBUG_PAGEALLOC | 
|  | /* This is where we would add Panther support for | 
|  | * 32MB and 256MB pages. | 
|  | */ | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void __init sun4v_linear_pte_xor_finalize(void) | 
|  | { | 
|  | unsigned long pagecv_flag; | 
|  |  | 
|  | /* Bit 9 of TTE is no longer CV bit on M7 processor and it instead | 
|  | * enables MCD error. Do not set bit 9 on M7 processor. | 
|  | */ | 
|  | switch (sun4v_chip_type) { | 
|  | case SUN4V_CHIP_SPARC_M7: | 
|  | case SUN4V_CHIP_SPARC_M8: | 
|  | case SUN4V_CHIP_SPARC_SN: | 
|  | pagecv_flag = 0x00; | 
|  | break; | 
|  | default: | 
|  | pagecv_flag = _PAGE_CV_4V; | 
|  | break; | 
|  | } | 
|  | #ifndef CONFIG_DEBUG_PAGEALLOC | 
|  | if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) { | 
|  | kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^ | 
|  | PAGE_OFFSET; | 
|  | kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag | | 
|  | _PAGE_P_4V | _PAGE_W_4V); | 
|  | } else { | 
|  | kern_linear_pte_xor[1] = kern_linear_pte_xor[0]; | 
|  | } | 
|  |  | 
|  | if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) { | 
|  | kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^ | 
|  | PAGE_OFFSET; | 
|  | kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag | | 
|  | _PAGE_P_4V | _PAGE_W_4V); | 
|  | } else { | 
|  | kern_linear_pte_xor[2] = kern_linear_pte_xor[1]; | 
|  | } | 
|  |  | 
|  | if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) { | 
|  | kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^ | 
|  | PAGE_OFFSET; | 
|  | kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag | | 
|  | _PAGE_P_4V | _PAGE_W_4V); | 
|  | } else { | 
|  | kern_linear_pte_xor[3] = kern_linear_pte_xor[2]; | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* paging_init() sets up the page tables */ | 
|  |  | 
|  | static unsigned long last_valid_pfn; | 
|  |  | 
|  | static void sun4u_pgprot_init(void); | 
|  | static void sun4v_pgprot_init(void); | 
|  |  | 
|  | static phys_addr_t __init available_memory(void) | 
|  | { | 
|  | phys_addr_t available = 0ULL; | 
|  | phys_addr_t pa_start, pa_end; | 
|  | u64 i; | 
|  |  | 
|  | for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start, | 
|  | &pa_end, NULL) | 
|  | available = available + (pa_end  - pa_start); | 
|  |  | 
|  | return available; | 
|  | } | 
|  |  | 
|  | #define _PAGE_CACHE_4U	(_PAGE_CP_4U | _PAGE_CV_4U) | 
|  | #define _PAGE_CACHE_4V	(_PAGE_CP_4V | _PAGE_CV_4V) | 
|  | #define __DIRTY_BITS_4U	 (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U) | 
|  | #define __DIRTY_BITS_4V	 (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V) | 
|  | #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R) | 
|  | #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R) | 
|  |  | 
|  | /* We need to exclude reserved regions. This exclusion will include | 
|  | * vmlinux and initrd. To be more precise the initrd size could be used to | 
|  | * compute a new lower limit because it is freed later during initialization. | 
|  | */ | 
|  | static void __init reduce_memory(phys_addr_t limit_ram) | 
|  | { | 
|  | phys_addr_t avail_ram = available_memory(); | 
|  | phys_addr_t pa_start, pa_end; | 
|  | u64 i; | 
|  |  | 
|  | if (limit_ram >= avail_ram) | 
|  | return; | 
|  |  | 
|  | for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start, | 
|  | &pa_end, NULL) { | 
|  | phys_addr_t region_size = pa_end - pa_start; | 
|  | phys_addr_t clip_start = pa_start; | 
|  |  | 
|  | avail_ram = avail_ram - region_size; | 
|  | /* Are we consuming too much? */ | 
|  | if (avail_ram < limit_ram) { | 
|  | phys_addr_t give_back = limit_ram - avail_ram; | 
|  |  | 
|  | region_size = region_size - give_back; | 
|  | clip_start = clip_start + give_back; | 
|  | } | 
|  |  | 
|  | memblock_remove(clip_start, region_size); | 
|  |  | 
|  | if (avail_ram <= limit_ram) | 
|  | break; | 
|  | i = 0UL; | 
|  | } | 
|  | } | 
|  |  | 
|  | void __init paging_init(void) | 
|  | { | 
|  | unsigned long end_pfn, shift, phys_base; | 
|  | unsigned long real_end, i; | 
|  |  | 
|  | setup_page_offset(); | 
|  |  | 
|  | /* These build time checkes make sure that the dcache_dirty_cpu() | 
|  | * page->flags usage will work. | 
|  | * | 
|  | * When a page gets marked as dcache-dirty, we store the | 
|  | * cpu number starting at bit 32 in the page->flags.  Also, | 
|  | * functions like clear_dcache_dirty_cpu use the cpu mask | 
|  | * in 13-bit signed-immediate instruction fields. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Page flags must not reach into upper 32 bits that are used | 
|  | * for the cpu number | 
|  | */ | 
|  | BUILD_BUG_ON(NR_PAGEFLAGS > 32); | 
|  |  | 
|  | /* | 
|  | * The bit fields placed in the high range must not reach below | 
|  | * the 32 bit boundary. Otherwise we cannot place the cpu field | 
|  | * at the 32 bit boundary. | 
|  | */ | 
|  | BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH + | 
|  | ilog2(roundup_pow_of_two(NR_CPUS)) > 32); | 
|  |  | 
|  | BUILD_BUG_ON(NR_CPUS > 4096); | 
|  |  | 
|  | kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB; | 
|  | kern_size = (unsigned long)&_end - (unsigned long)KERNBASE; | 
|  |  | 
|  | /* Invalidate both kernel TSBs.  */ | 
|  | memset(swapper_tsb, 0x40, sizeof(swapper_tsb)); | 
|  | #ifndef CONFIG_DEBUG_PAGEALLOC | 
|  | memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb)); | 
|  | #endif | 
|  |  | 
|  | /* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde | 
|  | * bit on M7 processor. This is a conflicting usage of the same | 
|  | * bit. Enabling TTE.cv on M7 would turn on Memory Corruption | 
|  | * Detection error on all pages and this will lead to problems | 
|  | * later. Kernel does not run with MCD enabled and hence rest | 
|  | * of the required steps to fully configure memory corruption | 
|  | * detection are not taken. We need to ensure TTE.mcde is not | 
|  | * set on M7 processor. Compute the value of cacheability | 
|  | * flag for use later taking this into consideration. | 
|  | */ | 
|  | switch (sun4v_chip_type) { | 
|  | case SUN4V_CHIP_SPARC_M7: | 
|  | case SUN4V_CHIP_SPARC_M8: | 
|  | case SUN4V_CHIP_SPARC_SN: | 
|  | page_cache4v_flag = _PAGE_CP_4V; | 
|  | break; | 
|  | default: | 
|  | page_cache4v_flag = _PAGE_CACHE_4V; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (tlb_type == hypervisor) | 
|  | sun4v_pgprot_init(); | 
|  | else | 
|  | sun4u_pgprot_init(); | 
|  |  | 
|  | if (tlb_type == cheetah_plus || | 
|  | tlb_type == hypervisor) { | 
|  | tsb_phys_patch(); | 
|  | ktsb_phys_patch(); | 
|  | } | 
|  |  | 
|  | if (tlb_type == hypervisor) | 
|  | sun4v_patch_tlb_handlers(); | 
|  |  | 
|  | /* Find available physical memory... | 
|  | * | 
|  | * Read it twice in order to work around a bug in openfirmware. | 
|  | * The call to grab this table itself can cause openfirmware to | 
|  | * allocate memory, which in turn can take away some space from | 
|  | * the list of available memory.  Reading it twice makes sure | 
|  | * we really do get the final value. | 
|  | */ | 
|  | read_obp_translations(); | 
|  | read_obp_memory("reg", &pall[0], &pall_ents); | 
|  | read_obp_memory("available", &pavail[0], &pavail_ents); | 
|  | read_obp_memory("available", &pavail[0], &pavail_ents); | 
|  |  | 
|  | phys_base = 0xffffffffffffffffUL; | 
|  | for (i = 0; i < pavail_ents; i++) { | 
|  | phys_base = min(phys_base, pavail[i].phys_addr); | 
|  | memblock_add(pavail[i].phys_addr, pavail[i].reg_size); | 
|  | } | 
|  |  | 
|  | memblock_reserve(kern_base, kern_size); | 
|  |  | 
|  | find_ramdisk(phys_base); | 
|  |  | 
|  | if (cmdline_memory_size) | 
|  | reduce_memory(cmdline_memory_size); | 
|  |  | 
|  | memblock_allow_resize(); | 
|  | memblock_dump_all(); | 
|  |  | 
|  | set_bit(0, mmu_context_bmap); | 
|  |  | 
|  | shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE); | 
|  |  | 
|  | real_end = (unsigned long)_end; | 
|  | num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB); | 
|  | printk("Kernel: Using %d locked TLB entries for main kernel image.\n", | 
|  | num_kernel_image_mappings); | 
|  |  | 
|  | /* Set kernel pgd to upper alias so physical page computations | 
|  | * work. | 
|  | */ | 
|  | init_mm.pgd += ((shift) / (sizeof(pgd_t))); | 
|  |  | 
|  | memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir)); | 
|  |  | 
|  | inherit_prom_mappings(); | 
|  |  | 
|  | /* Ok, we can use our TLB miss and window trap handlers safely.  */ | 
|  | setup_tba(); | 
|  |  | 
|  | __flush_tlb_all(); | 
|  |  | 
|  | prom_build_devicetree(); | 
|  | of_populate_present_mask(); | 
|  | #ifndef CONFIG_SMP | 
|  | of_fill_in_cpu_data(); | 
|  | #endif | 
|  |  | 
|  | if (tlb_type == hypervisor) { | 
|  | sun4v_mdesc_init(); | 
|  | mdesc_populate_present_mask(cpu_all_mask); | 
|  | #ifndef CONFIG_SMP | 
|  | mdesc_fill_in_cpu_data(cpu_all_mask); | 
|  | #endif | 
|  | mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask); | 
|  |  | 
|  | sun4v_linear_pte_xor_finalize(); | 
|  |  | 
|  | sun4v_ktsb_init(); | 
|  | sun4v_ktsb_register(); | 
|  | } else { | 
|  | unsigned long impl, ver; | 
|  |  | 
|  | cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K | | 
|  | HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB); | 
|  |  | 
|  | __asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver)); | 
|  | impl = ((ver >> 32) & 0xffff); | 
|  | if (impl == PANTHER_IMPL) | 
|  | cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB | | 
|  | HV_PGSZ_MASK_256MB); | 
|  |  | 
|  | sun4u_linear_pte_xor_finalize(); | 
|  | } | 
|  |  | 
|  | /* Flush the TLBs and the 4M TSB so that the updated linear | 
|  | * pte XOR settings are realized for all mappings. | 
|  | */ | 
|  | __flush_tlb_all(); | 
|  | #ifndef CONFIG_DEBUG_PAGEALLOC | 
|  | memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb)); | 
|  | #endif | 
|  | __flush_tlb_all(); | 
|  |  | 
|  | /* Setup bootmem... */ | 
|  | last_valid_pfn = end_pfn = bootmem_init(phys_base); | 
|  |  | 
|  | kernel_physical_mapping_init(); | 
|  |  | 
|  | { | 
|  | unsigned long max_zone_pfns[MAX_NR_ZONES]; | 
|  |  | 
|  | memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); | 
|  |  | 
|  | max_zone_pfns[ZONE_NORMAL] = end_pfn; | 
|  |  | 
|  | free_area_init_nodes(max_zone_pfns); | 
|  | } | 
|  |  | 
|  | printk("Booting Linux...\n"); | 
|  | } | 
|  |  | 
|  | int page_in_phys_avail(unsigned long paddr) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | paddr &= PAGE_MASK; | 
|  |  | 
|  | for (i = 0; i < pavail_ents; i++) { | 
|  | unsigned long start, end; | 
|  |  | 
|  | start = pavail[i].phys_addr; | 
|  | end = start + pavail[i].reg_size; | 
|  |  | 
|  | if (paddr >= start && paddr < end) | 
|  | return 1; | 
|  | } | 
|  | if (paddr >= kern_base && paddr < (kern_base + kern_size)) | 
|  | return 1; | 
|  | #ifdef CONFIG_BLK_DEV_INITRD | 
|  | if (paddr >= __pa(initrd_start) && | 
|  | paddr < __pa(PAGE_ALIGN(initrd_end))) | 
|  | return 1; | 
|  | #endif | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __init register_page_bootmem_info(void) | 
|  | { | 
|  | #ifdef CONFIG_NEED_MULTIPLE_NODES | 
|  | int i; | 
|  |  | 
|  | for_each_online_node(i) | 
|  | if (NODE_DATA(i)->node_spanned_pages) | 
|  | register_page_bootmem_info_node(NODE_DATA(i)); | 
|  | #endif | 
|  | } | 
|  | void __init mem_init(void) | 
|  | { | 
|  | high_memory = __va(last_valid_pfn << PAGE_SHIFT); | 
|  |  | 
|  | register_page_bootmem_info(); | 
|  | free_all_bootmem(); | 
|  |  | 
|  | /* | 
|  | * Set up the zero page, mark it reserved, so that page count | 
|  | * is not manipulated when freeing the page from user ptes. | 
|  | */ | 
|  | mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0); | 
|  | if (mem_map_zero == NULL) { | 
|  | prom_printf("paging_init: Cannot alloc zero page.\n"); | 
|  | prom_halt(); | 
|  | } | 
|  | mark_page_reserved(mem_map_zero); | 
|  |  | 
|  | mem_init_print_info(NULL); | 
|  |  | 
|  | if (tlb_type == cheetah || tlb_type == cheetah_plus) | 
|  | cheetah_ecache_flush_init(); | 
|  | } | 
|  |  | 
|  | void free_initmem(void) | 
|  | { | 
|  | unsigned long addr, initend; | 
|  | int do_free = 1; | 
|  |  | 
|  | /* If the physical memory maps were trimmed by kernel command | 
|  | * line options, don't even try freeing this initmem stuff up. | 
|  | * The kernel image could have been in the trimmed out region | 
|  | * and if so the freeing below will free invalid page structs. | 
|  | */ | 
|  | if (cmdline_memory_size) | 
|  | do_free = 0; | 
|  |  | 
|  | /* | 
|  | * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes. | 
|  | */ | 
|  | addr = PAGE_ALIGN((unsigned long)(__init_begin)); | 
|  | initend = (unsigned long)(__init_end) & PAGE_MASK; | 
|  | for (; addr < initend; addr += PAGE_SIZE) { | 
|  | unsigned long page; | 
|  |  | 
|  | page = (addr + | 
|  | ((unsigned long) __va(kern_base)) - | 
|  | ((unsigned long) KERNBASE)); | 
|  | memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE); | 
|  |  | 
|  | if (do_free) | 
|  | free_reserved_page(virt_to_page(page)); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_BLK_DEV_INITRD | 
|  | void free_initrd_mem(unsigned long start, unsigned long end) | 
|  | { | 
|  | free_reserved_area((void *)start, (void *)end, POISON_FREE_INITMEM, | 
|  | "initrd"); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | pgprot_t PAGE_KERNEL __read_mostly; | 
|  | EXPORT_SYMBOL(PAGE_KERNEL); | 
|  |  | 
|  | pgprot_t PAGE_KERNEL_LOCKED __read_mostly; | 
|  | pgprot_t PAGE_COPY __read_mostly; | 
|  |  | 
|  | pgprot_t PAGE_SHARED __read_mostly; | 
|  | EXPORT_SYMBOL(PAGE_SHARED); | 
|  |  | 
|  | unsigned long pg_iobits __read_mostly; | 
|  |  | 
|  | unsigned long _PAGE_IE __read_mostly; | 
|  | EXPORT_SYMBOL(_PAGE_IE); | 
|  |  | 
|  | unsigned long _PAGE_E __read_mostly; | 
|  | EXPORT_SYMBOL(_PAGE_E); | 
|  |  | 
|  | unsigned long _PAGE_CACHE __read_mostly; | 
|  | EXPORT_SYMBOL(_PAGE_CACHE); | 
|  |  | 
|  | #ifdef CONFIG_SPARSEMEM_VMEMMAP | 
|  | int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend, | 
|  | int node) | 
|  | { | 
|  | unsigned long pte_base; | 
|  |  | 
|  | pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U | | 
|  | _PAGE_CP_4U | _PAGE_CV_4U | | 
|  | _PAGE_P_4U | _PAGE_W_4U); | 
|  | if (tlb_type == hypervisor) | 
|  | pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V | | 
|  | page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V); | 
|  |  | 
|  | pte_base |= _PAGE_PMD_HUGE; | 
|  |  | 
|  | vstart = vstart & PMD_MASK; | 
|  | vend = ALIGN(vend, PMD_SIZE); | 
|  | for (; vstart < vend; vstart += PMD_SIZE) { | 
|  | pgd_t *pgd = pgd_offset_k(vstart); | 
|  | unsigned long pte; | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  |  | 
|  | if (pgd_none(*pgd)) { | 
|  | pud_t *new = vmemmap_alloc_block(PAGE_SIZE, node); | 
|  |  | 
|  | if (!new) | 
|  | return -ENOMEM; | 
|  | pgd_populate(&init_mm, pgd, new); | 
|  | } | 
|  |  | 
|  | pud = pud_offset(pgd, vstart); | 
|  | if (pud_none(*pud)) { | 
|  | pmd_t *new = vmemmap_alloc_block(PAGE_SIZE, node); | 
|  |  | 
|  | if (!new) | 
|  | return -ENOMEM; | 
|  | pud_populate(&init_mm, pud, new); | 
|  | } | 
|  |  | 
|  | pmd = pmd_offset(pud, vstart); | 
|  |  | 
|  | pte = pmd_val(*pmd); | 
|  | if (!(pte & _PAGE_VALID)) { | 
|  | void *block = vmemmap_alloc_block(PMD_SIZE, node); | 
|  |  | 
|  | if (!block) | 
|  | return -ENOMEM; | 
|  |  | 
|  | pmd_val(*pmd) = pte_base | __pa(block); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void vmemmap_free(unsigned long start, unsigned long end) | 
|  | { | 
|  | } | 
|  | #endif /* CONFIG_SPARSEMEM_VMEMMAP */ | 
|  |  | 
|  | static void prot_init_common(unsigned long page_none, | 
|  | unsigned long page_shared, | 
|  | unsigned long page_copy, | 
|  | unsigned long page_readonly, | 
|  | unsigned long page_exec_bit) | 
|  | { | 
|  | PAGE_COPY = __pgprot(page_copy); | 
|  | PAGE_SHARED = __pgprot(page_shared); | 
|  |  | 
|  | protection_map[0x0] = __pgprot(page_none); | 
|  | protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit); | 
|  | protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit); | 
|  | protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit); | 
|  | protection_map[0x4] = __pgprot(page_readonly); | 
|  | protection_map[0x5] = __pgprot(page_readonly); | 
|  | protection_map[0x6] = __pgprot(page_copy); | 
|  | protection_map[0x7] = __pgprot(page_copy); | 
|  | protection_map[0x8] = __pgprot(page_none); | 
|  | protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit); | 
|  | protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit); | 
|  | protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit); | 
|  | protection_map[0xc] = __pgprot(page_readonly); | 
|  | protection_map[0xd] = __pgprot(page_readonly); | 
|  | protection_map[0xe] = __pgprot(page_shared); | 
|  | protection_map[0xf] = __pgprot(page_shared); | 
|  | } | 
|  |  | 
|  | static void __init sun4u_pgprot_init(void) | 
|  | { | 
|  | unsigned long page_none, page_shared, page_copy, page_readonly; | 
|  | unsigned long page_exec_bit; | 
|  | int i; | 
|  |  | 
|  | PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID | | 
|  | _PAGE_CACHE_4U | _PAGE_P_4U | | 
|  | __ACCESS_BITS_4U | __DIRTY_BITS_4U | | 
|  | _PAGE_EXEC_4U); | 
|  | PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID | | 
|  | _PAGE_CACHE_4U | _PAGE_P_4U | | 
|  | __ACCESS_BITS_4U | __DIRTY_BITS_4U | | 
|  | _PAGE_EXEC_4U | _PAGE_L_4U); | 
|  |  | 
|  | _PAGE_IE = _PAGE_IE_4U; | 
|  | _PAGE_E = _PAGE_E_4U; | 
|  | _PAGE_CACHE = _PAGE_CACHE_4U; | 
|  |  | 
|  | pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U | | 
|  | __ACCESS_BITS_4U | _PAGE_E_4U); | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_PAGEALLOC | 
|  | kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET; | 
|  | #else | 
|  | kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^ | 
|  | PAGE_OFFSET; | 
|  | #endif | 
|  | kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U | | 
|  | _PAGE_P_4U | _PAGE_W_4U); | 
|  |  | 
|  | for (i = 1; i < 4; i++) | 
|  | kern_linear_pte_xor[i] = kern_linear_pte_xor[0]; | 
|  |  | 
|  | _PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U | | 
|  | _PAGE_SZ64K_4U | _PAGE_SZ8K_4U | | 
|  | _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U); | 
|  |  | 
|  |  | 
|  | page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U; | 
|  | page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U | | 
|  | __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U); | 
|  | page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U | | 
|  | __ACCESS_BITS_4U | _PAGE_EXEC_4U); | 
|  | page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U | | 
|  | __ACCESS_BITS_4U | _PAGE_EXEC_4U); | 
|  |  | 
|  | page_exec_bit = _PAGE_EXEC_4U; | 
|  |  | 
|  | prot_init_common(page_none, page_shared, page_copy, page_readonly, | 
|  | page_exec_bit); | 
|  | } | 
|  |  | 
|  | static void __init sun4v_pgprot_init(void) | 
|  | { | 
|  | unsigned long page_none, page_shared, page_copy, page_readonly; | 
|  | unsigned long page_exec_bit; | 
|  | int i; | 
|  |  | 
|  | PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID | | 
|  | page_cache4v_flag | _PAGE_P_4V | | 
|  | __ACCESS_BITS_4V | __DIRTY_BITS_4V | | 
|  | _PAGE_EXEC_4V); | 
|  | PAGE_KERNEL_LOCKED = PAGE_KERNEL; | 
|  |  | 
|  | _PAGE_IE = _PAGE_IE_4V; | 
|  | _PAGE_E = _PAGE_E_4V; | 
|  | _PAGE_CACHE = page_cache4v_flag; | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_PAGEALLOC | 
|  | kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET; | 
|  | #else | 
|  | kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^ | 
|  | PAGE_OFFSET; | 
|  | #endif | 
|  | kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V | | 
|  | _PAGE_W_4V); | 
|  |  | 
|  | for (i = 1; i < 4; i++) | 
|  | kern_linear_pte_xor[i] = kern_linear_pte_xor[0]; | 
|  |  | 
|  | pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V | | 
|  | __ACCESS_BITS_4V | _PAGE_E_4V); | 
|  |  | 
|  | _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V | | 
|  | _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V | | 
|  | _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V | | 
|  | _PAGE_SZ64K_4V | _PAGE_SZ8K_4V); | 
|  |  | 
|  | page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag; | 
|  | page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag | | 
|  | __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V); | 
|  | page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag | | 
|  | __ACCESS_BITS_4V | _PAGE_EXEC_4V); | 
|  | page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag | | 
|  | __ACCESS_BITS_4V | _PAGE_EXEC_4V); | 
|  |  | 
|  | page_exec_bit = _PAGE_EXEC_4V; | 
|  |  | 
|  | prot_init_common(page_none, page_shared, page_copy, page_readonly, | 
|  | page_exec_bit); | 
|  | } | 
|  |  | 
|  | unsigned long pte_sz_bits(unsigned long sz) | 
|  | { | 
|  | if (tlb_type == hypervisor) { | 
|  | switch (sz) { | 
|  | case 8 * 1024: | 
|  | default: | 
|  | return _PAGE_SZ8K_4V; | 
|  | case 64 * 1024: | 
|  | return _PAGE_SZ64K_4V; | 
|  | case 512 * 1024: | 
|  | return _PAGE_SZ512K_4V; | 
|  | case 4 * 1024 * 1024: | 
|  | return _PAGE_SZ4MB_4V; | 
|  | } | 
|  | } else { | 
|  | switch (sz) { | 
|  | case 8 * 1024: | 
|  | default: | 
|  | return _PAGE_SZ8K_4U; | 
|  | case 64 * 1024: | 
|  | return _PAGE_SZ64K_4U; | 
|  | case 512 * 1024: | 
|  | return _PAGE_SZ512K_4U; | 
|  | case 4 * 1024 * 1024: | 
|  | return _PAGE_SZ4MB_4U; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size) | 
|  | { | 
|  | pte_t pte; | 
|  |  | 
|  | pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot)); | 
|  | pte_val(pte) |= (((unsigned long)space) << 32); | 
|  | pte_val(pte) |= pte_sz_bits(page_size); | 
|  |  | 
|  | return pte; | 
|  | } | 
|  |  | 
|  | static unsigned long kern_large_tte(unsigned long paddr) | 
|  | { | 
|  | unsigned long val; | 
|  |  | 
|  | val = (_PAGE_VALID | _PAGE_SZ4MB_4U | | 
|  | _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U | | 
|  | _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U); | 
|  | if (tlb_type == hypervisor) | 
|  | val = (_PAGE_VALID | _PAGE_SZ4MB_4V | | 
|  | page_cache4v_flag | _PAGE_P_4V | | 
|  | _PAGE_EXEC_4V | _PAGE_W_4V); | 
|  |  | 
|  | return val | paddr; | 
|  | } | 
|  |  | 
|  | /* If not locked, zap it. */ | 
|  | void __flush_tlb_all(void) | 
|  | { | 
|  | unsigned long pstate; | 
|  | int i; | 
|  |  | 
|  | __asm__ __volatile__("flushw\n\t" | 
|  | "rdpr	%%pstate, %0\n\t" | 
|  | "wrpr	%0, %1, %%pstate" | 
|  | : "=r" (pstate) | 
|  | : "i" (PSTATE_IE)); | 
|  | if (tlb_type == hypervisor) { | 
|  | sun4v_mmu_demap_all(); | 
|  | } else if (tlb_type == spitfire) { | 
|  | for (i = 0; i < 64; i++) { | 
|  | /* Spitfire Errata #32 workaround */ | 
|  | /* NOTE: Always runs on spitfire, so no | 
|  | *       cheetah+ page size encodings. | 
|  | */ | 
|  | __asm__ __volatile__("stxa	%0, [%1] %2\n\t" | 
|  | "flush	%%g6" | 
|  | : /* No outputs */ | 
|  | : "r" (0), | 
|  | "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU)); | 
|  |  | 
|  | if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) { | 
|  | __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" | 
|  | "membar #Sync" | 
|  | : /* no outputs */ | 
|  | : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU)); | 
|  | spitfire_put_dtlb_data(i, 0x0UL); | 
|  | } | 
|  |  | 
|  | /* Spitfire Errata #32 workaround */ | 
|  | /* NOTE: Always runs on spitfire, so no | 
|  | *       cheetah+ page size encodings. | 
|  | */ | 
|  | __asm__ __volatile__("stxa	%0, [%1] %2\n\t" | 
|  | "flush	%%g6" | 
|  | : /* No outputs */ | 
|  | : "r" (0), | 
|  | "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU)); | 
|  |  | 
|  | if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) { | 
|  | __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" | 
|  | "membar #Sync" | 
|  | : /* no outputs */ | 
|  | : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU)); | 
|  | spitfire_put_itlb_data(i, 0x0UL); | 
|  | } | 
|  | } | 
|  | } else if (tlb_type == cheetah || tlb_type == cheetah_plus) { | 
|  | cheetah_flush_dtlb_all(); | 
|  | cheetah_flush_itlb_all(); | 
|  | } | 
|  | __asm__ __volatile__("wrpr	%0, 0, %%pstate" | 
|  | : : "r" (pstate)); | 
|  | } | 
|  |  | 
|  | pte_t *pte_alloc_one_kernel(struct mm_struct *mm, | 
|  | unsigned long address) | 
|  | { | 
|  | struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO); | 
|  | pte_t *pte = NULL; | 
|  |  | 
|  | if (page) | 
|  | pte = (pte_t *) page_address(page); | 
|  |  | 
|  | return pte; | 
|  | } | 
|  |  | 
|  | pgtable_t pte_alloc_one(struct mm_struct *mm, | 
|  | unsigned long address) | 
|  | { | 
|  | struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO); | 
|  | if (!page) | 
|  | return NULL; | 
|  | if (!pgtable_page_ctor(page)) { | 
|  | free_hot_cold_page(page, 0); | 
|  | return NULL; | 
|  | } | 
|  | return (pte_t *) page_address(page); | 
|  | } | 
|  |  | 
|  | void pte_free_kernel(struct mm_struct *mm, pte_t *pte) | 
|  | { | 
|  | free_page((unsigned long)pte); | 
|  | } | 
|  |  | 
|  | static void __pte_free(pgtable_t pte) | 
|  | { | 
|  | struct page *page = virt_to_page(pte); | 
|  |  | 
|  | pgtable_page_dtor(page); | 
|  | __free_page(page); | 
|  | } | 
|  |  | 
|  | void pte_free(struct mm_struct *mm, pgtable_t pte) | 
|  | { | 
|  | __pte_free(pte); | 
|  | } | 
|  |  | 
|  | void pgtable_free(void *table, bool is_page) | 
|  | { | 
|  | if (is_page) | 
|  | __pte_free(table); | 
|  | else | 
|  | kmem_cache_free(pgtable_cache, table); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  | void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr, | 
|  | pmd_t *pmd) | 
|  | { | 
|  | unsigned long pte, flags; | 
|  | struct mm_struct *mm; | 
|  | pmd_t entry = *pmd; | 
|  |  | 
|  | if (!pmd_large(entry) || !pmd_young(entry)) | 
|  | return; | 
|  |  | 
|  | pte = pmd_val(entry); | 
|  |  | 
|  | /* Don't insert a non-valid PMD into the TSB, we'll deadlock.  */ | 
|  | if (!(pte & _PAGE_VALID)) | 
|  | return; | 
|  |  | 
|  | /* We are fabricating 8MB pages using 4MB real hw pages.  */ | 
|  | pte |= (addr & (1UL << REAL_HPAGE_SHIFT)); | 
|  |  | 
|  | mm = vma->vm_mm; | 
|  |  | 
|  | spin_lock_irqsave(&mm->context.lock, flags); | 
|  |  | 
|  | if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) | 
|  | __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT, | 
|  | addr, pte); | 
|  |  | 
|  | spin_unlock_irqrestore(&mm->context.lock, flags); | 
|  | } | 
|  | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ | 
|  |  | 
|  | #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) | 
|  | static void context_reload(void *__data) | 
|  | { | 
|  | struct mm_struct *mm = __data; | 
|  |  | 
|  | if (mm == current->mm) | 
|  | load_secondary_context(mm); | 
|  | } | 
|  |  | 
|  | void hugetlb_setup(struct pt_regs *regs) | 
|  | { | 
|  | struct mm_struct *mm = current->mm; | 
|  | struct tsb_config *tp; | 
|  |  | 
|  | if (faulthandler_disabled() || !mm) { | 
|  | const struct exception_table_entry *entry; | 
|  |  | 
|  | entry = search_exception_tables(regs->tpc); | 
|  | if (entry) { | 
|  | regs->tpc = entry->fixup; | 
|  | regs->tnpc = regs->tpc + 4; | 
|  | return; | 
|  | } | 
|  | pr_alert("Unexpected HugeTLB setup in atomic context.\n"); | 
|  | die_if_kernel("HugeTSB in atomic", regs); | 
|  | } | 
|  |  | 
|  | tp = &mm->context.tsb_block[MM_TSB_HUGE]; | 
|  | if (likely(tp->tsb == NULL)) | 
|  | tsb_grow(mm, MM_TSB_HUGE, 0); | 
|  |  | 
|  | tsb_context_switch(mm); | 
|  | smp_tsb_sync(mm); | 
|  |  | 
|  | /* On UltraSPARC-III+ and later, configure the second half of | 
|  | * the Data-TLB for huge pages. | 
|  | */ | 
|  | if (tlb_type == cheetah_plus) { | 
|  | bool need_context_reload = false; | 
|  | unsigned long ctx; | 
|  |  | 
|  | spin_lock_irq(&ctx_alloc_lock); | 
|  | ctx = mm->context.sparc64_ctx_val; | 
|  | ctx &= ~CTX_PGSZ_MASK; | 
|  | ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT; | 
|  | ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT; | 
|  |  | 
|  | if (ctx != mm->context.sparc64_ctx_val) { | 
|  | /* When changing the page size fields, we | 
|  | * must perform a context flush so that no | 
|  | * stale entries match.  This flush must | 
|  | * occur with the original context register | 
|  | * settings. | 
|  | */ | 
|  | do_flush_tlb_mm(mm); | 
|  |  | 
|  | /* Reload the context register of all processors | 
|  | * also executing in this address space. | 
|  | */ | 
|  | mm->context.sparc64_ctx_val = ctx; | 
|  | need_context_reload = true; | 
|  | } | 
|  | spin_unlock_irq(&ctx_alloc_lock); | 
|  |  | 
|  | if (need_context_reload) | 
|  | on_each_cpu(context_reload, mm, 0); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static struct resource code_resource = { | 
|  | .name	= "Kernel code", | 
|  | .flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM | 
|  | }; | 
|  |  | 
|  | static struct resource data_resource = { | 
|  | .name	= "Kernel data", | 
|  | .flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM | 
|  | }; | 
|  |  | 
|  | static struct resource bss_resource = { | 
|  | .name	= "Kernel bss", | 
|  | .flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM | 
|  | }; | 
|  |  | 
|  | static inline resource_size_t compute_kern_paddr(void *addr) | 
|  | { | 
|  | return (resource_size_t) (addr - KERNBASE + kern_base); | 
|  | } | 
|  |  | 
|  | static void __init kernel_lds_init(void) | 
|  | { | 
|  | code_resource.start = compute_kern_paddr(_text); | 
|  | code_resource.end   = compute_kern_paddr(_etext - 1); | 
|  | data_resource.start = compute_kern_paddr(_etext); | 
|  | data_resource.end   = compute_kern_paddr(_edata - 1); | 
|  | bss_resource.start  = compute_kern_paddr(__bss_start); | 
|  | bss_resource.end    = compute_kern_paddr(_end - 1); | 
|  | } | 
|  |  | 
|  | static int __init report_memory(void) | 
|  | { | 
|  | int i; | 
|  | struct resource *res; | 
|  |  | 
|  | kernel_lds_init(); | 
|  |  | 
|  | for (i = 0; i < pavail_ents; i++) { | 
|  | res = kzalloc(sizeof(struct resource), GFP_KERNEL); | 
|  |  | 
|  | if (!res) { | 
|  | pr_warn("Failed to allocate source.\n"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | res->name = "System RAM"; | 
|  | res->start = pavail[i].phys_addr; | 
|  | res->end = pavail[i].phys_addr + pavail[i].reg_size - 1; | 
|  | res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM; | 
|  |  | 
|  | if (insert_resource(&iomem_resource, res) < 0) { | 
|  | pr_warn("Resource insertion failed.\n"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | insert_resource(res, &code_resource); | 
|  | insert_resource(res, &data_resource); | 
|  | insert_resource(res, &bss_resource); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | arch_initcall(report_memory); | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | #define do_flush_tlb_kernel_range	smp_flush_tlb_kernel_range | 
|  | #else | 
|  | #define do_flush_tlb_kernel_range	__flush_tlb_kernel_range | 
|  | #endif | 
|  |  | 
|  | void flush_tlb_kernel_range(unsigned long start, unsigned long end) | 
|  | { | 
|  | if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) { | 
|  | if (start < LOW_OBP_ADDRESS) { | 
|  | flush_tsb_kernel_range(start, LOW_OBP_ADDRESS); | 
|  | do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS); | 
|  | } | 
|  | if (end > HI_OBP_ADDRESS) { | 
|  | flush_tsb_kernel_range(HI_OBP_ADDRESS, end); | 
|  | do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end); | 
|  | } | 
|  | } else { | 
|  | flush_tsb_kernel_range(start, end); | 
|  | do_flush_tlb_kernel_range(start, end); | 
|  | } | 
|  | } |