| /* |
| * VMI specific paravirt-ops implementation |
| * |
| * Copyright (C) 2005, VMware, Inc. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or |
| * NON INFRINGEMENT. See the GNU General Public License for more |
| * details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| * |
| * Send feedback to zach@vmware.com |
| * |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/cpu.h> |
| #include <linux/bootmem.h> |
| #include <linux/mm.h> |
| #include <linux/highmem.h> |
| #include <linux/sched.h> |
| #include <asm/vmi.h> |
| #include <asm/io.h> |
| #include <asm/fixmap.h> |
| #include <asm/apicdef.h> |
| #include <asm/apic.h> |
| #include <asm/processor.h> |
| #include <asm/timer.h> |
| #include <asm/vmi_time.h> |
| #include <asm/kmap_types.h> |
| |
| /* Convenient for calling VMI functions indirectly in the ROM */ |
| typedef u32 __attribute__((regparm(1))) (VROMFUNC)(void); |
| typedef u64 __attribute__((regparm(2))) (VROMLONGFUNC)(int); |
| |
| #define call_vrom_func(rom,func) \ |
| (((VROMFUNC *)(rom->func))()) |
| |
| #define call_vrom_long_func(rom,func,arg) \ |
| (((VROMLONGFUNC *)(rom->func)) (arg)) |
| |
| static struct vrom_header *vmi_rom; |
| static int disable_pge; |
| static int disable_pse; |
| static int disable_sep; |
| static int disable_tsc; |
| static int disable_mtrr; |
| static int disable_noidle; |
| static int disable_vmi_timer; |
| |
| /* Cached VMI operations */ |
| static struct { |
| void (*cpuid)(void /* non-c */); |
| void (*_set_ldt)(u32 selector); |
| void (*set_tr)(u32 selector); |
| void (*set_kernel_stack)(u32 selector, u32 esp0); |
| void (*allocate_page)(u32, u32, u32, u32, u32); |
| void (*release_page)(u32, u32); |
| void (*set_pte)(pte_t, pte_t *, unsigned); |
| void (*update_pte)(pte_t *, unsigned); |
| void (*set_linear_mapping)(int, void *, u32, u32); |
| void (*_flush_tlb)(int); |
| void (*set_initial_ap_state)(int, int); |
| void (*halt)(void); |
| void (*set_lazy_mode)(int mode); |
| } vmi_ops; |
| |
| /* Cached VMI operations */ |
| struct vmi_timer_ops vmi_timer_ops; |
| |
| /* |
| * VMI patching routines. |
| */ |
| #define MNEM_CALL 0xe8 |
| #define MNEM_JMP 0xe9 |
| #define MNEM_RET 0xc3 |
| |
| #define IRQ_PATCH_INT_MASK 0 |
| #define IRQ_PATCH_DISABLE 5 |
| |
| static inline void patch_offset(void *insnbuf, |
| unsigned long eip, unsigned long dest) |
| { |
| *(unsigned long *)(insnbuf+1) = dest-eip-5; |
| } |
| |
| static unsigned patch_internal(int call, unsigned len, void *insnbuf, |
| unsigned long eip) |
| { |
| u64 reloc; |
| struct vmi_relocation_info *const rel = (struct vmi_relocation_info *)&reloc; |
| reloc = call_vrom_long_func(vmi_rom, get_reloc, call); |
| switch(rel->type) { |
| case VMI_RELOCATION_CALL_REL: |
| BUG_ON(len < 5); |
| *(char *)insnbuf = MNEM_CALL; |
| patch_offset(insnbuf, eip, (unsigned long)rel->eip); |
| return 5; |
| |
| case VMI_RELOCATION_JUMP_REL: |
| BUG_ON(len < 5); |
| *(char *)insnbuf = MNEM_JMP; |
| patch_offset(insnbuf, eip, (unsigned long)rel->eip); |
| return 5; |
| |
| case VMI_RELOCATION_NOP: |
| /* obliterate the whole thing */ |
| return 0; |
| |
| case VMI_RELOCATION_NONE: |
| /* leave native code in place */ |
| break; |
| |
| default: |
| BUG(); |
| } |
| return len; |
| } |
| |
| /* |
| * Apply patch if appropriate, return length of new instruction |
| * sequence. The callee does nop padding for us. |
| */ |
| static unsigned vmi_patch(u8 type, u16 clobbers, void *insns, |
| unsigned long eip, unsigned len) |
| { |
| switch (type) { |
| case PARAVIRT_PATCH(pv_irq_ops.irq_disable): |
| return patch_internal(VMI_CALL_DisableInterrupts, len, |
| insns, eip); |
| case PARAVIRT_PATCH(pv_irq_ops.irq_enable): |
| return patch_internal(VMI_CALL_EnableInterrupts, len, |
| insns, eip); |
| case PARAVIRT_PATCH(pv_irq_ops.restore_fl): |
| return patch_internal(VMI_CALL_SetInterruptMask, len, |
| insns, eip); |
| case PARAVIRT_PATCH(pv_irq_ops.save_fl): |
| return patch_internal(VMI_CALL_GetInterruptMask, len, |
| insns, eip); |
| case PARAVIRT_PATCH(pv_cpu_ops.iret): |
| return patch_internal(VMI_CALL_IRET, len, insns, eip); |
| case PARAVIRT_PATCH(pv_cpu_ops.irq_enable_sysexit): |
| return patch_internal(VMI_CALL_SYSEXIT, len, insns, eip); |
| default: |
| break; |
| } |
| return len; |
| } |
| |
| /* CPUID has non-C semantics, and paravirt-ops API doesn't match hardware ISA */ |
| static void vmi_cpuid(unsigned int *eax, unsigned int *ebx, |
| unsigned int *ecx, unsigned int *edx) |
| { |
| int override = 0; |
| if (*eax == 1) |
| override = 1; |
| asm volatile ("call *%6" |
| : "=a" (*eax), |
| "=b" (*ebx), |
| "=c" (*ecx), |
| "=d" (*edx) |
| : "0" (*eax), "2" (*ecx), "r" (vmi_ops.cpuid)); |
| if (override) { |
| if (disable_pse) |
| *edx &= ~X86_FEATURE_PSE; |
| if (disable_pge) |
| *edx &= ~X86_FEATURE_PGE; |
| if (disable_sep) |
| *edx &= ~X86_FEATURE_SEP; |
| if (disable_tsc) |
| *edx &= ~X86_FEATURE_TSC; |
| if (disable_mtrr) |
| *edx &= ~X86_FEATURE_MTRR; |
| } |
| } |
| |
| static inline void vmi_maybe_load_tls(struct desc_struct *gdt, int nr, struct desc_struct *new) |
| { |
| if (gdt[nr].a != new->a || gdt[nr].b != new->b) |
| write_gdt_entry(gdt, nr, new->a, new->b); |
| } |
| |
| static void vmi_load_tls(struct thread_struct *t, unsigned int cpu) |
| { |
| struct desc_struct *gdt = get_cpu_gdt_table(cpu); |
| vmi_maybe_load_tls(gdt, GDT_ENTRY_TLS_MIN + 0, &t->tls_array[0]); |
| vmi_maybe_load_tls(gdt, GDT_ENTRY_TLS_MIN + 1, &t->tls_array[1]); |
| vmi_maybe_load_tls(gdt, GDT_ENTRY_TLS_MIN + 2, &t->tls_array[2]); |
| } |
| |
| static void vmi_set_ldt(const void *addr, unsigned entries) |
| { |
| unsigned cpu = smp_processor_id(); |
| u32 low, high; |
| |
| pack_descriptor(&low, &high, (unsigned long)addr, |
| entries * sizeof(struct desc_struct) - 1, |
| DESCTYPE_LDT, 0); |
| write_gdt_entry(get_cpu_gdt_table(cpu), GDT_ENTRY_LDT, low, high); |
| vmi_ops._set_ldt(entries ? GDT_ENTRY_LDT*sizeof(struct desc_struct) : 0); |
| } |
| |
| static void vmi_set_tr(void) |
| { |
| vmi_ops.set_tr(GDT_ENTRY_TSS*sizeof(struct desc_struct)); |
| } |
| |
| static void vmi_load_esp0(struct tss_struct *tss, |
| struct thread_struct *thread) |
| { |
| tss->x86_tss.esp0 = thread->esp0; |
| |
| /* This can only happen when SEP is enabled, no need to test "SEP"arately */ |
| if (unlikely(tss->x86_tss.ss1 != thread->sysenter_cs)) { |
| tss->x86_tss.ss1 = thread->sysenter_cs; |
| wrmsr(MSR_IA32_SYSENTER_CS, thread->sysenter_cs, 0); |
| } |
| vmi_ops.set_kernel_stack(__KERNEL_DS, tss->x86_tss.esp0); |
| } |
| |
| static void vmi_flush_tlb_user(void) |
| { |
| vmi_ops._flush_tlb(VMI_FLUSH_TLB); |
| } |
| |
| static void vmi_flush_tlb_kernel(void) |
| { |
| vmi_ops._flush_tlb(VMI_FLUSH_TLB | VMI_FLUSH_GLOBAL); |
| } |
| |
| /* Stub to do nothing at all; used for delays and unimplemented calls */ |
| static void vmi_nop(void) |
| { |
| } |
| |
| #ifdef CONFIG_DEBUG_PAGE_TYPE |
| |
| #ifdef CONFIG_X86_PAE |
| #define MAX_BOOT_PTS (2048+4+1) |
| #else |
| #define MAX_BOOT_PTS (1024+1) |
| #endif |
| |
| /* |
| * During boot, mem_map is not yet available in paging_init, so stash |
| * all the boot page allocations here. |
| */ |
| static struct { |
| u32 pfn; |
| int type; |
| } boot_page_allocations[MAX_BOOT_PTS]; |
| static int num_boot_page_allocations; |
| static int boot_allocations_applied; |
| |
| void vmi_apply_boot_page_allocations(void) |
| { |
| int i; |
| BUG_ON(!mem_map); |
| for (i = 0; i < num_boot_page_allocations; i++) { |
| struct page *page = pfn_to_page(boot_page_allocations[i].pfn); |
| page->type = boot_page_allocations[i].type; |
| page->type = boot_page_allocations[i].type & |
| ~(VMI_PAGE_ZEROED | VMI_PAGE_CLONE); |
| } |
| boot_allocations_applied = 1; |
| } |
| |
| static void record_page_type(u32 pfn, int type) |
| { |
| BUG_ON(num_boot_page_allocations >= MAX_BOOT_PTS); |
| boot_page_allocations[num_boot_page_allocations].pfn = pfn; |
| boot_page_allocations[num_boot_page_allocations].type = type; |
| num_boot_page_allocations++; |
| } |
| |
| static void check_zeroed_page(u32 pfn, int type, struct page *page) |
| { |
| u32 *ptr; |
| int i; |
| int limit = PAGE_SIZE / sizeof(int); |
| |
| if (page_address(page)) |
| ptr = (u32 *)page_address(page); |
| else |
| ptr = (u32 *)__va(pfn << PAGE_SHIFT); |
| /* |
| * When cloning the root in non-PAE mode, only the userspace |
| * pdes need to be zeroed. |
| */ |
| if (type & VMI_PAGE_CLONE) |
| limit = USER_PTRS_PER_PGD; |
| for (i = 0; i < limit; i++) |
| BUG_ON(ptr[i]); |
| } |
| |
| /* |
| * We stash the page type into struct page so we can verify the page |
| * types are used properly. |
| */ |
| static void vmi_set_page_type(u32 pfn, int type) |
| { |
| /* PAE can have multiple roots per page - don't track */ |
| if (PTRS_PER_PMD > 1 && (type & VMI_PAGE_PDP)) |
| return; |
| |
| if (boot_allocations_applied) { |
| struct page *page = pfn_to_page(pfn); |
| if (type != VMI_PAGE_NORMAL) |
| BUG_ON(page->type); |
| else |
| BUG_ON(page->type == VMI_PAGE_NORMAL); |
| page->type = type & ~(VMI_PAGE_ZEROED | VMI_PAGE_CLONE); |
| if (type & VMI_PAGE_ZEROED) |
| check_zeroed_page(pfn, type, page); |
| } else { |
| record_page_type(pfn, type); |
| } |
| } |
| |
| static void vmi_check_page_type(u32 pfn, int type) |
| { |
| /* PAE can have multiple roots per page - skip checks */ |
| if (PTRS_PER_PMD > 1 && (type & VMI_PAGE_PDP)) |
| return; |
| |
| type &= ~(VMI_PAGE_ZEROED | VMI_PAGE_CLONE); |
| if (boot_allocations_applied) { |
| struct page *page = pfn_to_page(pfn); |
| BUG_ON((page->type ^ type) & VMI_PAGE_PAE); |
| BUG_ON(type == VMI_PAGE_NORMAL && page->type); |
| BUG_ON((type & page->type) == 0); |
| } |
| } |
| #else |
| #define vmi_set_page_type(p,t) do { } while (0) |
| #define vmi_check_page_type(p,t) do { } while (0) |
| #endif |
| |
| #ifdef CONFIG_HIGHPTE |
| static void *vmi_kmap_atomic_pte(struct page *page, enum km_type type) |
| { |
| void *va = kmap_atomic(page, type); |
| |
| /* |
| * Internally, the VMI ROM must map virtual addresses to physical |
| * addresses for processing MMU updates. By the time MMU updates |
| * are issued, this information is typically already lost. |
| * Fortunately, the VMI provides a cache of mapping slots for active |
| * page tables. |
| * |
| * We use slot zero for the linear mapping of physical memory, and |
| * in HIGHPTE kernels, slot 1 and 2 for KM_PTE0 and KM_PTE1. |
| * |
| * args: SLOT VA COUNT PFN |
| */ |
| BUG_ON(type != KM_PTE0 && type != KM_PTE1); |
| vmi_ops.set_linear_mapping((type - KM_PTE0)+1, va, 1, page_to_pfn(page)); |
| |
| return va; |
| } |
| #endif |
| |
| static void vmi_allocate_pt(struct mm_struct *mm, u32 pfn) |
| { |
| vmi_set_page_type(pfn, VMI_PAGE_L1); |
| vmi_ops.allocate_page(pfn, VMI_PAGE_L1, 0, 0, 0); |
| } |
| |
| static void vmi_allocate_pd(u32 pfn) |
| { |
| /* |
| * This call comes in very early, before mem_map is setup. |
| * It is called only for swapper_pg_dir, which already has |
| * data on it. |
| */ |
| vmi_set_page_type(pfn, VMI_PAGE_L2); |
| vmi_ops.allocate_page(pfn, VMI_PAGE_L2, 0, 0, 0); |
| } |
| |
| static void vmi_allocate_pd_clone(u32 pfn, u32 clonepfn, u32 start, u32 count) |
| { |
| vmi_set_page_type(pfn, VMI_PAGE_L2 | VMI_PAGE_CLONE); |
| vmi_check_page_type(clonepfn, VMI_PAGE_L2); |
| vmi_ops.allocate_page(pfn, VMI_PAGE_L2 | VMI_PAGE_CLONE, clonepfn, start, count); |
| } |
| |
| static void vmi_release_pt(u32 pfn) |
| { |
| vmi_ops.release_page(pfn, VMI_PAGE_L1); |
| vmi_set_page_type(pfn, VMI_PAGE_NORMAL); |
| } |
| |
| static void vmi_release_pd(u32 pfn) |
| { |
| vmi_ops.release_page(pfn, VMI_PAGE_L2); |
| vmi_set_page_type(pfn, VMI_PAGE_NORMAL); |
| } |
| |
| /* |
| * Helper macros for MMU update flags. We can defer updates until a flush |
| * or page invalidation only if the update is to the current address space |
| * (otherwise, there is no flush). We must check against init_mm, since |
| * this could be a kernel update, which usually passes init_mm, although |
| * sometimes this check can be skipped if we know the particular function |
| * is only called on user mode PTEs. We could change the kernel to pass |
| * current->active_mm here, but in particular, I was unsure if changing |
| * mm/highmem.c to do this would still be correct on other architectures. |
| */ |
| #define is_current_as(mm, mustbeuser) ((mm) == current->active_mm || \ |
| (!mustbeuser && (mm) == &init_mm)) |
| #define vmi_flags_addr(mm, addr, level, user) \ |
| ((level) | (is_current_as(mm, user) ? \ |
| (VMI_PAGE_CURRENT_AS | ((addr) & VMI_PAGE_VA_MASK)) : 0)) |
| #define vmi_flags_addr_defer(mm, addr, level, user) \ |
| ((level) | (is_current_as(mm, user) ? \ |
| (VMI_PAGE_DEFER | VMI_PAGE_CURRENT_AS | ((addr) & VMI_PAGE_VA_MASK)) : 0)) |
| |
| static void vmi_update_pte(struct mm_struct *mm, unsigned long addr, pte_t *ptep) |
| { |
| vmi_check_page_type(__pa(ptep) >> PAGE_SHIFT, VMI_PAGE_PTE); |
| vmi_ops.update_pte(ptep, vmi_flags_addr(mm, addr, VMI_PAGE_PT, 0)); |
| } |
| |
| static void vmi_update_pte_defer(struct mm_struct *mm, unsigned long addr, pte_t *ptep) |
| { |
| vmi_check_page_type(__pa(ptep) >> PAGE_SHIFT, VMI_PAGE_PTE); |
| vmi_ops.update_pte(ptep, vmi_flags_addr_defer(mm, addr, VMI_PAGE_PT, 0)); |
| } |
| |
| static void vmi_set_pte(pte_t *ptep, pte_t pte) |
| { |
| /* XXX because of set_pmd_pte, this can be called on PT or PD layers */ |
| vmi_check_page_type(__pa(ptep) >> PAGE_SHIFT, VMI_PAGE_PTE | VMI_PAGE_PD); |
| vmi_ops.set_pte(pte, ptep, VMI_PAGE_PT); |
| } |
| |
| static void vmi_set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pte) |
| { |
| vmi_check_page_type(__pa(ptep) >> PAGE_SHIFT, VMI_PAGE_PTE); |
| vmi_ops.set_pte(pte, ptep, vmi_flags_addr(mm, addr, VMI_PAGE_PT, 0)); |
| } |
| |
| static void vmi_set_pmd(pmd_t *pmdp, pmd_t pmdval) |
| { |
| #ifdef CONFIG_X86_PAE |
| const pte_t pte = { pmdval.pmd, pmdval.pmd >> 32 }; |
| vmi_check_page_type(__pa(pmdp) >> PAGE_SHIFT, VMI_PAGE_PMD); |
| #else |
| const pte_t pte = { pmdval.pud.pgd.pgd }; |
| vmi_check_page_type(__pa(pmdp) >> PAGE_SHIFT, VMI_PAGE_PGD); |
| #endif |
| vmi_ops.set_pte(pte, (pte_t *)pmdp, VMI_PAGE_PD); |
| } |
| |
| #ifdef CONFIG_X86_PAE |
| |
| static void vmi_set_pte_atomic(pte_t *ptep, pte_t pteval) |
| { |
| /* |
| * XXX This is called from set_pmd_pte, but at both PT |
| * and PD layers so the VMI_PAGE_PT flag is wrong. But |
| * it is only called for large page mapping changes, |
| * the Xen backend, doesn't support large pages, and the |
| * ESX backend doesn't depend on the flag. |
| */ |
| set_64bit((unsigned long long *)ptep,pte_val(pteval)); |
| vmi_ops.update_pte(ptep, VMI_PAGE_PT); |
| } |
| |
| static void vmi_set_pte_present(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pte) |
| { |
| vmi_check_page_type(__pa(ptep) >> PAGE_SHIFT, VMI_PAGE_PTE); |
| vmi_ops.set_pte(pte, ptep, vmi_flags_addr_defer(mm, addr, VMI_PAGE_PT, 1)); |
| } |
| |
| static void vmi_set_pud(pud_t *pudp, pud_t pudval) |
| { |
| /* Um, eww */ |
| const pte_t pte = { pudval.pgd.pgd, pudval.pgd.pgd >> 32 }; |
| vmi_check_page_type(__pa(pudp) >> PAGE_SHIFT, VMI_PAGE_PGD); |
| vmi_ops.set_pte(pte, (pte_t *)pudp, VMI_PAGE_PDP); |
| } |
| |
| static void vmi_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) |
| { |
| const pte_t pte = { 0 }; |
| vmi_check_page_type(__pa(ptep) >> PAGE_SHIFT, VMI_PAGE_PTE); |
| vmi_ops.set_pte(pte, ptep, vmi_flags_addr(mm, addr, VMI_PAGE_PT, 0)); |
| } |
| |
| static void vmi_pmd_clear(pmd_t *pmd) |
| { |
| const pte_t pte = { 0 }; |
| vmi_check_page_type(__pa(pmd) >> PAGE_SHIFT, VMI_PAGE_PMD); |
| vmi_ops.set_pte(pte, (pte_t *)pmd, VMI_PAGE_PD); |
| } |
| #endif |
| |
| #ifdef CONFIG_SMP |
| static void __devinit |
| vmi_startup_ipi_hook(int phys_apicid, unsigned long start_eip, |
| unsigned long start_esp) |
| { |
| struct vmi_ap_state ap; |
| |
| /* Default everything to zero. This is fine for most GPRs. */ |
| memset(&ap, 0, sizeof(struct vmi_ap_state)); |
| |
| ap.gdtr_limit = GDT_SIZE - 1; |
| ap.gdtr_base = (unsigned long) get_cpu_gdt_table(phys_apicid); |
| |
| ap.idtr_limit = IDT_ENTRIES * 8 - 1; |
| ap.idtr_base = (unsigned long) idt_table; |
| |
| ap.ldtr = 0; |
| |
| ap.cs = __KERNEL_CS; |
| ap.eip = (unsigned long) start_eip; |
| ap.ss = __KERNEL_DS; |
| ap.esp = (unsigned long) start_esp; |
| |
| ap.ds = __USER_DS; |
| ap.es = __USER_DS; |
| ap.fs = __KERNEL_PERCPU; |
| ap.gs = 0; |
| |
| ap.eflags = 0; |
| |
| #ifdef CONFIG_X86_PAE |
| /* efer should match BSP efer. */ |
| if (cpu_has_nx) { |
| unsigned l, h; |
| rdmsr(MSR_EFER, l, h); |
| ap.efer = (unsigned long long) h << 32 | l; |
| } |
| #endif |
| |
| ap.cr3 = __pa(swapper_pg_dir); |
| /* Protected mode, paging, AM, WP, NE, MP. */ |
| ap.cr0 = 0x80050023; |
| ap.cr4 = mmu_cr4_features; |
| vmi_ops.set_initial_ap_state((u32)&ap, phys_apicid); |
| } |
| #endif |
| |
| static void vmi_set_lazy_mode(enum paravirt_lazy_mode mode) |
| { |
| static DEFINE_PER_CPU(enum paravirt_lazy_mode, lazy_mode); |
| |
| if (!vmi_ops.set_lazy_mode) |
| return; |
| |
| /* Modes should never nest or overlap */ |
| BUG_ON(__get_cpu_var(lazy_mode) && !(mode == PARAVIRT_LAZY_NONE || |
| mode == PARAVIRT_LAZY_FLUSH)); |
| |
| if (mode == PARAVIRT_LAZY_FLUSH) { |
| vmi_ops.set_lazy_mode(0); |
| vmi_ops.set_lazy_mode(__get_cpu_var(lazy_mode)); |
| } else { |
| vmi_ops.set_lazy_mode(mode); |
| __get_cpu_var(lazy_mode) = mode; |
| } |
| } |
| |
| static inline int __init check_vmi_rom(struct vrom_header *rom) |
| { |
| struct pci_header *pci; |
| struct pnp_header *pnp; |
| const char *manufacturer = "UNKNOWN"; |
| const char *product = "UNKNOWN"; |
| const char *license = "unspecified"; |
| |
| if (rom->rom_signature != 0xaa55) |
| return 0; |
| if (rom->vrom_signature != VMI_SIGNATURE) |
| return 0; |
| if (rom->api_version_maj != VMI_API_REV_MAJOR || |
| rom->api_version_min+1 < VMI_API_REV_MINOR+1) { |
| printk(KERN_WARNING "VMI: Found mismatched rom version %d.%d\n", |
| rom->api_version_maj, |
| rom->api_version_min); |
| return 0; |
| } |
| |
| /* |
| * Relying on the VMI_SIGNATURE field is not 100% safe, so check |
| * the PCI header and device type to make sure this is really a |
| * VMI device. |
| */ |
| if (!rom->pci_header_offs) { |
| printk(KERN_WARNING "VMI: ROM does not contain PCI header.\n"); |
| return 0; |
| } |
| |
| pci = (struct pci_header *)((char *)rom+rom->pci_header_offs); |
| if (pci->vendorID != PCI_VENDOR_ID_VMWARE || |
| pci->deviceID != PCI_DEVICE_ID_VMWARE_VMI) { |
| /* Allow it to run... anyways, but warn */ |
| printk(KERN_WARNING "VMI: ROM from unknown manufacturer\n"); |
| } |
| |
| if (rom->pnp_header_offs) { |
| pnp = (struct pnp_header *)((char *)rom+rom->pnp_header_offs); |
| if (pnp->manufacturer_offset) |
| manufacturer = (const char *)rom+pnp->manufacturer_offset; |
| if (pnp->product_offset) |
| product = (const char *)rom+pnp->product_offset; |
| } |
| |
| if (rom->license_offs) |
| license = (char *)rom+rom->license_offs; |
| |
| printk(KERN_INFO "VMI: Found %s %s, API version %d.%d, ROM version %d.%d\n", |
| manufacturer, product, |
| rom->api_version_maj, rom->api_version_min, |
| pci->rom_version_maj, pci->rom_version_min); |
| |
| /* Don't allow BSD/MIT here for now because we don't want to end up |
| with any binary only shim layers */ |
| if (strcmp(license, "GPL") && strcmp(license, "GPL v2")) { |
| printk(KERN_WARNING "VMI: Non GPL license `%s' found for ROM. Not used.\n", |
| license); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| /* |
| * Probe for the VMI option ROM |
| */ |
| static inline int __init probe_vmi_rom(void) |
| { |
| unsigned long base; |
| |
| /* VMI ROM is in option ROM area, check signature */ |
| for (base = 0xC0000; base < 0xE0000; base += 2048) { |
| struct vrom_header *romstart; |
| romstart = (struct vrom_header *)isa_bus_to_virt(base); |
| if (check_vmi_rom(romstart)) { |
| vmi_rom = romstart; |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| /* |
| * VMI setup common to all processors |
| */ |
| void vmi_bringup(void) |
| { |
| /* We must establish the lowmem mapping for MMU ops to work */ |
| if (vmi_ops.set_linear_mapping) |
| vmi_ops.set_linear_mapping(0, (void *)__PAGE_OFFSET, max_low_pfn, 0); |
| } |
| |
| /* |
| * Return a pointer to a VMI function or NULL if unimplemented |
| */ |
| static void *vmi_get_function(int vmicall) |
| { |
| u64 reloc; |
| const struct vmi_relocation_info *rel = (struct vmi_relocation_info *)&reloc; |
| reloc = call_vrom_long_func(vmi_rom, get_reloc, vmicall); |
| BUG_ON(rel->type == VMI_RELOCATION_JUMP_REL); |
| if (rel->type == VMI_RELOCATION_CALL_REL) |
| return (void *)rel->eip; |
| else |
| return NULL; |
| } |
| |
| /* |
| * Helper macro for making the VMI paravirt-ops fill code readable. |
| * For unimplemented operations, fall back to default, unless nop |
| * is returned by the ROM. |
| */ |
| #define para_fill(opname, vmicall) \ |
| do { \ |
| reloc = call_vrom_long_func(vmi_rom, get_reloc, \ |
| VMI_CALL_##vmicall); \ |
| if (rel->type == VMI_RELOCATION_CALL_REL) \ |
| opname = (void *)rel->eip; \ |
| else if (rel->type == VMI_RELOCATION_NOP) \ |
| opname = (void *)vmi_nop; \ |
| else if (rel->type != VMI_RELOCATION_NONE) \ |
| printk(KERN_WARNING "VMI: Unknown relocation " \ |
| "type %d for " #vmicall"\n",\ |
| rel->type); \ |
| } while (0) |
| |
| /* |
| * Helper macro for making the VMI paravirt-ops fill code readable. |
| * For cached operations which do not match the VMI ROM ABI and must |
| * go through a tranlation stub. Ignore NOPs, since it is not clear |
| * a NOP * VMI function corresponds to a NOP paravirt-op when the |
| * functions are not in 1-1 correspondence. |
| */ |
| #define para_wrap(opname, wrapper, cache, vmicall) \ |
| do { \ |
| reloc = call_vrom_long_func(vmi_rom, get_reloc, \ |
| VMI_CALL_##vmicall); \ |
| BUG_ON(rel->type == VMI_RELOCATION_JUMP_REL); \ |
| if (rel->type == VMI_RELOCATION_CALL_REL) { \ |
| opname = wrapper; \ |
| vmi_ops.cache = (void *)rel->eip; \ |
| } \ |
| } while (0) |
| |
| /* |
| * Activate the VMI interface and switch into paravirtualized mode |
| */ |
| static inline int __init activate_vmi(void) |
| { |
| short kernel_cs; |
| u64 reloc; |
| const struct vmi_relocation_info *rel = (struct vmi_relocation_info *)&reloc; |
| |
| if (call_vrom_func(vmi_rom, vmi_init) != 0) { |
| printk(KERN_ERR "VMI ROM failed to initialize!"); |
| return 0; |
| } |
| savesegment(cs, kernel_cs); |
| |
| pv_info.paravirt_enabled = 1; |
| pv_info.kernel_rpl = kernel_cs & SEGMENT_RPL_MASK; |
| pv_info.name = "vmi"; |
| |
| pv_init_ops.patch = vmi_patch; |
| |
| /* |
| * Many of these operations are ABI compatible with VMI. |
| * This means we can fill in the paravirt-ops with direct |
| * pointers into the VMI ROM. If the calling convention for |
| * these operations changes, this code needs to be updated. |
| * |
| * Exceptions |
| * CPUID paravirt-op uses pointers, not the native ISA |
| * halt has no VMI equivalent; all VMI halts are "safe" |
| * no MSR support yet - just trap and emulate. VMI uses the |
| * same ABI as the native ISA, but Linux wants exceptions |
| * from bogus MSR read / write handled |
| * rdpmc is not yet used in Linux |
| */ |
| |
| /* CPUID is special, so very special it gets wrapped like a present */ |
| para_wrap(pv_cpu_ops.cpuid, vmi_cpuid, cpuid, CPUID); |
| |
| para_fill(pv_cpu_ops.clts, CLTS); |
| para_fill(pv_cpu_ops.get_debugreg, GetDR); |
| para_fill(pv_cpu_ops.set_debugreg, SetDR); |
| para_fill(pv_cpu_ops.read_cr0, GetCR0); |
| para_fill(pv_mmu_ops.read_cr2, GetCR2); |
| para_fill(pv_mmu_ops.read_cr3, GetCR3); |
| para_fill(pv_cpu_ops.read_cr4, GetCR4); |
| para_fill(pv_cpu_ops.write_cr0, SetCR0); |
| para_fill(pv_mmu_ops.write_cr2, SetCR2); |
| para_fill(pv_mmu_ops.write_cr3, SetCR3); |
| para_fill(pv_cpu_ops.write_cr4, SetCR4); |
| para_fill(pv_irq_ops.save_fl, GetInterruptMask); |
| para_fill(pv_irq_ops.restore_fl, SetInterruptMask); |
| para_fill(pv_irq_ops.irq_disable, DisableInterrupts); |
| para_fill(pv_irq_ops.irq_enable, EnableInterrupts); |
| |
| para_fill(pv_cpu_ops.wbinvd, WBINVD); |
| para_fill(pv_cpu_ops.read_tsc, RDTSC); |
| |
| /* The following we emulate with trap and emulate for now */ |
| /* paravirt_ops.read_msr = vmi_rdmsr */ |
| /* paravirt_ops.write_msr = vmi_wrmsr */ |
| /* paravirt_ops.rdpmc = vmi_rdpmc */ |
| |
| /* TR interface doesn't pass TR value, wrap */ |
| para_wrap(pv_cpu_ops.load_tr_desc, vmi_set_tr, set_tr, SetTR); |
| |
| /* LDT is special, too */ |
| para_wrap(pv_cpu_ops.set_ldt, vmi_set_ldt, _set_ldt, SetLDT); |
| |
| para_fill(pv_cpu_ops.load_gdt, SetGDT); |
| para_fill(pv_cpu_ops.load_idt, SetIDT); |
| para_fill(pv_cpu_ops.store_gdt, GetGDT); |
| para_fill(pv_cpu_ops.store_idt, GetIDT); |
| para_fill(pv_cpu_ops.store_tr, GetTR); |
| pv_cpu_ops.load_tls = vmi_load_tls; |
| para_fill(pv_cpu_ops.write_ldt_entry, WriteLDTEntry); |
| para_fill(pv_cpu_ops.write_gdt_entry, WriteGDTEntry); |
| para_fill(pv_cpu_ops.write_idt_entry, WriteIDTEntry); |
| para_wrap(pv_cpu_ops.load_esp0, vmi_load_esp0, set_kernel_stack, UpdateKernelStack); |
| para_fill(pv_cpu_ops.set_iopl_mask, SetIOPLMask); |
| para_fill(pv_cpu_ops.io_delay, IODelay); |
| para_wrap(pv_misc_ops.set_lazy_mode, vmi_set_lazy_mode, set_lazy_mode, SetLazyMode); |
| |
| /* user and kernel flush are just handled with different flags to FlushTLB */ |
| para_wrap(pv_mmu_ops.flush_tlb_user, vmi_flush_tlb_user, _flush_tlb, FlushTLB); |
| para_wrap(pv_mmu_ops.flush_tlb_kernel, vmi_flush_tlb_kernel, _flush_tlb, FlushTLB); |
| para_fill(pv_mmu_ops.flush_tlb_single, InvalPage); |
| |
| /* |
| * Until a standard flag format can be agreed on, we need to |
| * implement these as wrappers in Linux. Get the VMI ROM |
| * function pointers for the two backend calls. |
| */ |
| #ifdef CONFIG_X86_PAE |
| vmi_ops.set_pte = vmi_get_function(VMI_CALL_SetPxELong); |
| vmi_ops.update_pte = vmi_get_function(VMI_CALL_UpdatePxELong); |
| #else |
| vmi_ops.set_pte = vmi_get_function(VMI_CALL_SetPxE); |
| vmi_ops.update_pte = vmi_get_function(VMI_CALL_UpdatePxE); |
| #endif |
| |
| if (vmi_ops.set_pte) { |
| pv_mmu_ops.set_pte = vmi_set_pte; |
| pv_mmu_ops.set_pte_at = vmi_set_pte_at; |
| pv_mmu_ops.set_pmd = vmi_set_pmd; |
| #ifdef CONFIG_X86_PAE |
| pv_mmu_ops.set_pte_atomic = vmi_set_pte_atomic; |
| pv_mmu_ops.set_pte_present = vmi_set_pte_present; |
| pv_mmu_ops.set_pud = vmi_set_pud; |
| pv_mmu_ops.pte_clear = vmi_pte_clear; |
| pv_mmu_ops.pmd_clear = vmi_pmd_clear; |
| #endif |
| } |
| |
| if (vmi_ops.update_pte) { |
| pv_mmu_ops.pte_update = vmi_update_pte; |
| pv_mmu_ops.pte_update_defer = vmi_update_pte_defer; |
| } |
| |
| vmi_ops.allocate_page = vmi_get_function(VMI_CALL_AllocatePage); |
| if (vmi_ops.allocate_page) { |
| pv_mmu_ops.alloc_pt = vmi_allocate_pt; |
| pv_mmu_ops.alloc_pd = vmi_allocate_pd; |
| pv_mmu_ops.alloc_pd_clone = vmi_allocate_pd_clone; |
| } |
| |
| vmi_ops.release_page = vmi_get_function(VMI_CALL_ReleasePage); |
| if (vmi_ops.release_page) { |
| pv_mmu_ops.release_pt = vmi_release_pt; |
| pv_mmu_ops.release_pd = vmi_release_pd; |
| } |
| |
| /* Set linear is needed in all cases */ |
| vmi_ops.set_linear_mapping = vmi_get_function(VMI_CALL_SetLinearMapping); |
| #ifdef CONFIG_HIGHPTE |
| if (vmi_ops.set_linear_mapping) |
| pv_mmu_ops.kmap_atomic_pte = vmi_kmap_atomic_pte; |
| #endif |
| |
| /* |
| * These MUST always be patched. Don't support indirect jumps |
| * through these operations, as the VMI interface may use either |
| * a jump or a call to get to these operations, depending on |
| * the backend. They are performance critical anyway, so requiring |
| * a patch is not a big problem. |
| */ |
| pv_cpu_ops.irq_enable_sysexit = (void *)0xfeedbab0; |
| pv_cpu_ops.iret = (void *)0xbadbab0; |
| |
| #ifdef CONFIG_SMP |
| para_wrap(pv_apic_ops.startup_ipi_hook, vmi_startup_ipi_hook, set_initial_ap_state, SetInitialAPState); |
| #endif |
| |
| #ifdef CONFIG_X86_LOCAL_APIC |
| para_fill(pv_apic_ops.apic_read, APICRead); |
| para_fill(pv_apic_ops.apic_write, APICWrite); |
| para_fill(pv_apic_ops.apic_write_atomic, APICWrite); |
| #endif |
| |
| /* |
| * Check for VMI timer functionality by probing for a cycle frequency method |
| */ |
| reloc = call_vrom_long_func(vmi_rom, get_reloc, VMI_CALL_GetCycleFrequency); |
| if (!disable_vmi_timer && rel->type != VMI_RELOCATION_NONE) { |
| vmi_timer_ops.get_cycle_frequency = (void *)rel->eip; |
| vmi_timer_ops.get_cycle_counter = |
| vmi_get_function(VMI_CALL_GetCycleCounter); |
| vmi_timer_ops.get_wallclock = |
| vmi_get_function(VMI_CALL_GetWallclockTime); |
| vmi_timer_ops.wallclock_updated = |
| vmi_get_function(VMI_CALL_WallclockUpdated); |
| vmi_timer_ops.set_alarm = vmi_get_function(VMI_CALL_SetAlarm); |
| vmi_timer_ops.cancel_alarm = |
| vmi_get_function(VMI_CALL_CancelAlarm); |
| pv_time_ops.time_init = vmi_time_init; |
| pv_time_ops.get_wallclock = vmi_get_wallclock; |
| pv_time_ops.set_wallclock = vmi_set_wallclock; |
| #ifdef CONFIG_X86_LOCAL_APIC |
| pv_apic_ops.setup_boot_clock = vmi_time_bsp_init; |
| pv_apic_ops.setup_secondary_clock = vmi_time_ap_init; |
| #endif |
| pv_time_ops.sched_clock = vmi_sched_clock; |
| pv_time_ops.get_cpu_khz = vmi_cpu_khz; |
| |
| /* We have true wallclock functions; disable CMOS clock sync */ |
| no_sync_cmos_clock = 1; |
| } else { |
| disable_noidle = 1; |
| disable_vmi_timer = 1; |
| } |
| |
| para_fill(pv_irq_ops.safe_halt, Halt); |
| |
| /* |
| * Alternative instruction rewriting doesn't happen soon enough |
| * to convert VMI_IRET to a call instead of a jump; so we have |
| * to do this before IRQs get reenabled. Fortunately, it is |
| * idempotent. |
| */ |
| apply_paravirt(__parainstructions, __parainstructions_end); |
| |
| vmi_bringup(); |
| |
| return 1; |
| } |
| |
| #undef para_fill |
| |
| void __init vmi_init(void) |
| { |
| unsigned long flags; |
| |
| if (!vmi_rom) |
| probe_vmi_rom(); |
| else |
| check_vmi_rom(vmi_rom); |
| |
| /* In case probing for or validating the ROM failed, basil */ |
| if (!vmi_rom) |
| return; |
| |
| reserve_top_address(-vmi_rom->virtual_top); |
| |
| local_irq_save(flags); |
| activate_vmi(); |
| |
| #ifdef CONFIG_X86_IO_APIC |
| /* This is virtual hardware; timer routing is wired correctly */ |
| no_timer_check = 1; |
| #endif |
| local_irq_restore(flags & X86_EFLAGS_IF); |
| } |
| |
| static int __init parse_vmi(char *arg) |
| { |
| if (!arg) |
| return -EINVAL; |
| |
| if (!strcmp(arg, "disable_pge")) { |
| clear_bit(X86_FEATURE_PGE, boot_cpu_data.x86_capability); |
| disable_pge = 1; |
| } else if (!strcmp(arg, "disable_pse")) { |
| clear_bit(X86_FEATURE_PSE, boot_cpu_data.x86_capability); |
| disable_pse = 1; |
| } else if (!strcmp(arg, "disable_sep")) { |
| clear_bit(X86_FEATURE_SEP, boot_cpu_data.x86_capability); |
| disable_sep = 1; |
| } else if (!strcmp(arg, "disable_tsc")) { |
| clear_bit(X86_FEATURE_TSC, boot_cpu_data.x86_capability); |
| disable_tsc = 1; |
| } else if (!strcmp(arg, "disable_mtrr")) { |
| clear_bit(X86_FEATURE_MTRR, boot_cpu_data.x86_capability); |
| disable_mtrr = 1; |
| } else if (!strcmp(arg, "disable_timer")) { |
| disable_vmi_timer = 1; |
| disable_noidle = 1; |
| } else if (!strcmp(arg, "disable_noidle")) |
| disable_noidle = 1; |
| return 0; |
| } |
| |
| early_param("vmi", parse_vmi); |