| /* |
| * linux/net/sunrpc/sched.c |
| * |
| * Scheduling for synchronous and asynchronous RPC requests. |
| * |
| * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de> |
| * |
| * TCP NFS related read + write fixes |
| * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie> |
| */ |
| |
| #include <linux/module.h> |
| |
| #include <linux/sched.h> |
| #include <linux/interrupt.h> |
| #include <linux/slab.h> |
| #include <linux/mempool.h> |
| #include <linux/smp.h> |
| #include <linux/smp_lock.h> |
| #include <linux/spinlock.h> |
| |
| #include <linux/sunrpc/clnt.h> |
| #include <linux/sunrpc/xprt.h> |
| |
| #ifdef RPC_DEBUG |
| #define RPCDBG_FACILITY RPCDBG_SCHED |
| #define RPC_TASK_MAGIC_ID 0xf00baa |
| static int rpc_task_id; |
| #endif |
| |
| /* |
| * RPC slabs and memory pools |
| */ |
| #define RPC_BUFFER_MAXSIZE (2048) |
| #define RPC_BUFFER_POOLSIZE (8) |
| #define RPC_TASK_POOLSIZE (8) |
| static kmem_cache_t *rpc_task_slabp __read_mostly; |
| static kmem_cache_t *rpc_buffer_slabp __read_mostly; |
| static mempool_t *rpc_task_mempool __read_mostly; |
| static mempool_t *rpc_buffer_mempool __read_mostly; |
| |
| static void __rpc_default_timer(struct rpc_task *task); |
| static void rpciod_killall(void); |
| static void rpc_free(struct rpc_task *task); |
| |
| static void rpc_async_schedule(void *); |
| |
| /* |
| * RPC tasks that create another task (e.g. for contacting the portmapper) |
| * will wait on this queue for their child's completion |
| */ |
| static RPC_WAITQ(childq, "childq"); |
| |
| /* |
| * RPC tasks sit here while waiting for conditions to improve. |
| */ |
| static RPC_WAITQ(delay_queue, "delayq"); |
| |
| /* |
| * All RPC tasks are linked into this list |
| */ |
| static LIST_HEAD(all_tasks); |
| |
| /* |
| * rpciod-related stuff |
| */ |
| static DECLARE_MUTEX(rpciod_sema); |
| static unsigned int rpciod_users; |
| static struct workqueue_struct *rpciod_workqueue; |
| |
| /* |
| * Spinlock for other critical sections of code. |
| */ |
| static DEFINE_SPINLOCK(rpc_sched_lock); |
| |
| /* |
| * Disable the timer for a given RPC task. Should be called with |
| * queue->lock and bh_disabled in order to avoid races within |
| * rpc_run_timer(). |
| */ |
| static inline void |
| __rpc_disable_timer(struct rpc_task *task) |
| { |
| dprintk("RPC: %4d disabling timer\n", task->tk_pid); |
| task->tk_timeout_fn = NULL; |
| task->tk_timeout = 0; |
| } |
| |
| /* |
| * Run a timeout function. |
| * We use the callback in order to allow __rpc_wake_up_task() |
| * and friends to disable the timer synchronously on SMP systems |
| * without calling del_timer_sync(). The latter could cause a |
| * deadlock if called while we're holding spinlocks... |
| */ |
| static void rpc_run_timer(struct rpc_task *task) |
| { |
| void (*callback)(struct rpc_task *); |
| |
| callback = task->tk_timeout_fn; |
| task->tk_timeout_fn = NULL; |
| if (callback && RPC_IS_QUEUED(task)) { |
| dprintk("RPC: %4d running timer\n", task->tk_pid); |
| callback(task); |
| } |
| smp_mb__before_clear_bit(); |
| clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate); |
| smp_mb__after_clear_bit(); |
| } |
| |
| /* |
| * Set up a timer for the current task. |
| */ |
| static inline void |
| __rpc_add_timer(struct rpc_task *task, rpc_action timer) |
| { |
| if (!task->tk_timeout) |
| return; |
| |
| dprintk("RPC: %4d setting alarm for %lu ms\n", |
| task->tk_pid, task->tk_timeout * 1000 / HZ); |
| |
| if (timer) |
| task->tk_timeout_fn = timer; |
| else |
| task->tk_timeout_fn = __rpc_default_timer; |
| set_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate); |
| mod_timer(&task->tk_timer, jiffies + task->tk_timeout); |
| } |
| |
| /* |
| * Delete any timer for the current task. Because we use del_timer_sync(), |
| * this function should never be called while holding queue->lock. |
| */ |
| static void |
| rpc_delete_timer(struct rpc_task *task) |
| { |
| if (RPC_IS_QUEUED(task)) |
| return; |
| if (test_and_clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate)) { |
| del_singleshot_timer_sync(&task->tk_timer); |
| dprintk("RPC: %4d deleting timer\n", task->tk_pid); |
| } |
| } |
| |
| /* |
| * Add new request to a priority queue. |
| */ |
| static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task) |
| { |
| struct list_head *q; |
| struct rpc_task *t; |
| |
| INIT_LIST_HEAD(&task->u.tk_wait.links); |
| q = &queue->tasks[task->tk_priority]; |
| if (unlikely(task->tk_priority > queue->maxpriority)) |
| q = &queue->tasks[queue->maxpriority]; |
| list_for_each_entry(t, q, u.tk_wait.list) { |
| if (t->tk_cookie == task->tk_cookie) { |
| list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links); |
| return; |
| } |
| } |
| list_add_tail(&task->u.tk_wait.list, q); |
| } |
| |
| /* |
| * Add new request to wait queue. |
| * |
| * Swapper tasks always get inserted at the head of the queue. |
| * This should avoid many nasty memory deadlocks and hopefully |
| * improve overall performance. |
| * Everyone else gets appended to the queue to ensure proper FIFO behavior. |
| */ |
| static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task) |
| { |
| BUG_ON (RPC_IS_QUEUED(task)); |
| |
| if (RPC_IS_PRIORITY(queue)) |
| __rpc_add_wait_queue_priority(queue, task); |
| else if (RPC_IS_SWAPPER(task)) |
| list_add(&task->u.tk_wait.list, &queue->tasks[0]); |
| else |
| list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]); |
| task->u.tk_wait.rpc_waitq = queue; |
| rpc_set_queued(task); |
| |
| dprintk("RPC: %4d added to queue %p \"%s\"\n", |
| task->tk_pid, queue, rpc_qname(queue)); |
| } |
| |
| /* |
| * Remove request from a priority queue. |
| */ |
| static void __rpc_remove_wait_queue_priority(struct rpc_task *task) |
| { |
| struct rpc_task *t; |
| |
| if (!list_empty(&task->u.tk_wait.links)) { |
| t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list); |
| list_move(&t->u.tk_wait.list, &task->u.tk_wait.list); |
| list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links); |
| } |
| list_del(&task->u.tk_wait.list); |
| } |
| |
| /* |
| * Remove request from queue. |
| * Note: must be called with spin lock held. |
| */ |
| static void __rpc_remove_wait_queue(struct rpc_task *task) |
| { |
| struct rpc_wait_queue *queue; |
| queue = task->u.tk_wait.rpc_waitq; |
| |
| if (RPC_IS_PRIORITY(queue)) |
| __rpc_remove_wait_queue_priority(task); |
| else |
| list_del(&task->u.tk_wait.list); |
| dprintk("RPC: %4d removed from queue %p \"%s\"\n", |
| task->tk_pid, queue, rpc_qname(queue)); |
| } |
| |
| static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority) |
| { |
| queue->priority = priority; |
| queue->count = 1 << (priority * 2); |
| } |
| |
| static inline void rpc_set_waitqueue_cookie(struct rpc_wait_queue *queue, unsigned long cookie) |
| { |
| queue->cookie = cookie; |
| queue->nr = RPC_BATCH_COUNT; |
| } |
| |
| static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue) |
| { |
| rpc_set_waitqueue_priority(queue, queue->maxpriority); |
| rpc_set_waitqueue_cookie(queue, 0); |
| } |
| |
| static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, int maxprio) |
| { |
| int i; |
| |
| spin_lock_init(&queue->lock); |
| for (i = 0; i < ARRAY_SIZE(queue->tasks); i++) |
| INIT_LIST_HEAD(&queue->tasks[i]); |
| queue->maxpriority = maxprio; |
| rpc_reset_waitqueue_priority(queue); |
| #ifdef RPC_DEBUG |
| queue->name = qname; |
| #endif |
| } |
| |
| void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname) |
| { |
| __rpc_init_priority_wait_queue(queue, qname, RPC_PRIORITY_HIGH); |
| } |
| |
| void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname) |
| { |
| __rpc_init_priority_wait_queue(queue, qname, 0); |
| } |
| EXPORT_SYMBOL(rpc_init_wait_queue); |
| |
| /* |
| * Make an RPC task runnable. |
| * |
| * Note: If the task is ASYNC, this must be called with |
| * the spinlock held to protect the wait queue operation. |
| */ |
| static void rpc_make_runnable(struct rpc_task *task) |
| { |
| int do_ret; |
| |
| BUG_ON(task->tk_timeout_fn); |
| do_ret = rpc_test_and_set_running(task); |
| rpc_clear_queued(task); |
| if (do_ret) |
| return; |
| if (RPC_IS_ASYNC(task)) { |
| int status; |
| |
| INIT_WORK(&task->u.tk_work, rpc_async_schedule, (void *)task); |
| status = queue_work(task->tk_workqueue, &task->u.tk_work); |
| if (status < 0) { |
| printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status); |
| task->tk_status = status; |
| return; |
| } |
| } else |
| wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED); |
| } |
| |
| /* |
| * Place a newly initialized task on the workqueue. |
| */ |
| static inline void |
| rpc_schedule_run(struct rpc_task *task) |
| { |
| /* Don't run a child twice! */ |
| if (RPC_IS_ACTIVATED(task)) |
| return; |
| task->tk_active = 1; |
| rpc_make_runnable(task); |
| } |
| |
| /* |
| * Prepare for sleeping on a wait queue. |
| * By always appending tasks to the list we ensure FIFO behavior. |
| * NB: An RPC task will only receive interrupt-driven events as long |
| * as it's on a wait queue. |
| */ |
| static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task, |
| rpc_action action, rpc_action timer) |
| { |
| dprintk("RPC: %4d sleep_on(queue \"%s\" time %ld)\n", task->tk_pid, |
| rpc_qname(q), jiffies); |
| |
| if (!RPC_IS_ASYNC(task) && !RPC_IS_ACTIVATED(task)) { |
| printk(KERN_ERR "RPC: Inactive synchronous task put to sleep!\n"); |
| return; |
| } |
| |
| /* Mark the task as being activated if so needed */ |
| if (!RPC_IS_ACTIVATED(task)) |
| task->tk_active = 1; |
| |
| __rpc_add_wait_queue(q, task); |
| |
| BUG_ON(task->tk_callback != NULL); |
| task->tk_callback = action; |
| __rpc_add_timer(task, timer); |
| } |
| |
| void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task, |
| rpc_action action, rpc_action timer) |
| { |
| /* |
| * Protect the queue operations. |
| */ |
| spin_lock_bh(&q->lock); |
| __rpc_sleep_on(q, task, action, timer); |
| spin_unlock_bh(&q->lock); |
| } |
| |
| /** |
| * __rpc_do_wake_up_task - wake up a single rpc_task |
| * @task: task to be woken up |
| * |
| * Caller must hold queue->lock, and have cleared the task queued flag. |
| */ |
| static void __rpc_do_wake_up_task(struct rpc_task *task) |
| { |
| dprintk("RPC: %4d __rpc_wake_up_task (now %ld)\n", task->tk_pid, jiffies); |
| |
| #ifdef RPC_DEBUG |
| BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID); |
| #endif |
| /* Has the task been executed yet? If not, we cannot wake it up! */ |
| if (!RPC_IS_ACTIVATED(task)) { |
| printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task); |
| return; |
| } |
| |
| __rpc_disable_timer(task); |
| __rpc_remove_wait_queue(task); |
| |
| rpc_make_runnable(task); |
| |
| dprintk("RPC: __rpc_wake_up_task done\n"); |
| } |
| |
| /* |
| * Wake up the specified task |
| */ |
| static void __rpc_wake_up_task(struct rpc_task *task) |
| { |
| if (rpc_start_wakeup(task)) { |
| if (RPC_IS_QUEUED(task)) |
| __rpc_do_wake_up_task(task); |
| rpc_finish_wakeup(task); |
| } |
| } |
| |
| /* |
| * Default timeout handler if none specified by user |
| */ |
| static void |
| __rpc_default_timer(struct rpc_task *task) |
| { |
| dprintk("RPC: %d timeout (default timer)\n", task->tk_pid); |
| task->tk_status = -ETIMEDOUT; |
| rpc_wake_up_task(task); |
| } |
| |
| /* |
| * Wake up the specified task |
| */ |
| void rpc_wake_up_task(struct rpc_task *task) |
| { |
| if (rpc_start_wakeup(task)) { |
| if (RPC_IS_QUEUED(task)) { |
| struct rpc_wait_queue *queue = task->u.tk_wait.rpc_waitq; |
| |
| spin_lock_bh(&queue->lock); |
| __rpc_do_wake_up_task(task); |
| spin_unlock_bh(&queue->lock); |
| } |
| rpc_finish_wakeup(task); |
| } |
| } |
| |
| /* |
| * Wake up the next task on a priority queue. |
| */ |
| static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue) |
| { |
| struct list_head *q; |
| struct rpc_task *task; |
| |
| /* |
| * Service a batch of tasks from a single cookie. |
| */ |
| q = &queue->tasks[queue->priority]; |
| if (!list_empty(q)) { |
| task = list_entry(q->next, struct rpc_task, u.tk_wait.list); |
| if (queue->cookie == task->tk_cookie) { |
| if (--queue->nr) |
| goto out; |
| list_move_tail(&task->u.tk_wait.list, q); |
| } |
| /* |
| * Check if we need to switch queues. |
| */ |
| if (--queue->count) |
| goto new_cookie; |
| } |
| |
| /* |
| * Service the next queue. |
| */ |
| do { |
| if (q == &queue->tasks[0]) |
| q = &queue->tasks[queue->maxpriority]; |
| else |
| q = q - 1; |
| if (!list_empty(q)) { |
| task = list_entry(q->next, struct rpc_task, u.tk_wait.list); |
| goto new_queue; |
| } |
| } while (q != &queue->tasks[queue->priority]); |
| |
| rpc_reset_waitqueue_priority(queue); |
| return NULL; |
| |
| new_queue: |
| rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0])); |
| new_cookie: |
| rpc_set_waitqueue_cookie(queue, task->tk_cookie); |
| out: |
| __rpc_wake_up_task(task); |
| return task; |
| } |
| |
| /* |
| * Wake up the next task on the wait queue. |
| */ |
| struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue) |
| { |
| struct rpc_task *task = NULL; |
| |
| dprintk("RPC: wake_up_next(%p \"%s\")\n", queue, rpc_qname(queue)); |
| spin_lock_bh(&queue->lock); |
| if (RPC_IS_PRIORITY(queue)) |
| task = __rpc_wake_up_next_priority(queue); |
| else { |
| task_for_first(task, &queue->tasks[0]) |
| __rpc_wake_up_task(task); |
| } |
| spin_unlock_bh(&queue->lock); |
| |
| return task; |
| } |
| |
| /** |
| * rpc_wake_up - wake up all rpc_tasks |
| * @queue: rpc_wait_queue on which the tasks are sleeping |
| * |
| * Grabs queue->lock |
| */ |
| void rpc_wake_up(struct rpc_wait_queue *queue) |
| { |
| struct rpc_task *task; |
| |
| struct list_head *head; |
| spin_lock_bh(&queue->lock); |
| head = &queue->tasks[queue->maxpriority]; |
| for (;;) { |
| while (!list_empty(head)) { |
| task = list_entry(head->next, struct rpc_task, u.tk_wait.list); |
| __rpc_wake_up_task(task); |
| } |
| if (head == &queue->tasks[0]) |
| break; |
| head--; |
| } |
| spin_unlock_bh(&queue->lock); |
| } |
| |
| /** |
| * rpc_wake_up_status - wake up all rpc_tasks and set their status value. |
| * @queue: rpc_wait_queue on which the tasks are sleeping |
| * @status: status value to set |
| * |
| * Grabs queue->lock |
| */ |
| void rpc_wake_up_status(struct rpc_wait_queue *queue, int status) |
| { |
| struct list_head *head; |
| struct rpc_task *task; |
| |
| spin_lock_bh(&queue->lock); |
| head = &queue->tasks[queue->maxpriority]; |
| for (;;) { |
| while (!list_empty(head)) { |
| task = list_entry(head->next, struct rpc_task, u.tk_wait.list); |
| task->tk_status = status; |
| __rpc_wake_up_task(task); |
| } |
| if (head == &queue->tasks[0]) |
| break; |
| head--; |
| } |
| spin_unlock_bh(&queue->lock); |
| } |
| |
| /* |
| * Run a task at a later time |
| */ |
| static void __rpc_atrun(struct rpc_task *); |
| void |
| rpc_delay(struct rpc_task *task, unsigned long delay) |
| { |
| task->tk_timeout = delay; |
| rpc_sleep_on(&delay_queue, task, NULL, __rpc_atrun); |
| } |
| |
| static void |
| __rpc_atrun(struct rpc_task *task) |
| { |
| task->tk_status = 0; |
| rpc_wake_up_task(task); |
| } |
| |
| /* |
| * Helper that calls task->tk_ops->rpc_call_done if it exists |
| */ |
| void rpc_exit_task(struct rpc_task *task) |
| { |
| task->tk_action = NULL; |
| if (task->tk_ops->rpc_call_done != NULL) { |
| task->tk_ops->rpc_call_done(task, task->tk_calldata); |
| if (task->tk_action != NULL) { |
| WARN_ON(RPC_ASSASSINATED(task)); |
| /* Always release the RPC slot and buffer memory */ |
| xprt_release(task); |
| rpc_free(task); |
| } |
| } |
| } |
| EXPORT_SYMBOL(rpc_exit_task); |
| |
| static int rpc_wait_bit_interruptible(void *word) |
| { |
| if (signal_pending(current)) |
| return -ERESTARTSYS; |
| schedule(); |
| return 0; |
| } |
| |
| /* |
| * This is the RPC `scheduler' (or rather, the finite state machine). |
| */ |
| static int __rpc_execute(struct rpc_task *task) |
| { |
| int status = 0; |
| |
| dprintk("RPC: %4d rpc_execute flgs %x\n", |
| task->tk_pid, task->tk_flags); |
| |
| BUG_ON(RPC_IS_QUEUED(task)); |
| |
| for (;;) { |
| /* |
| * Garbage collection of pending timers... |
| */ |
| rpc_delete_timer(task); |
| |
| /* |
| * Execute any pending callback. |
| */ |
| if (RPC_DO_CALLBACK(task)) { |
| /* Define a callback save pointer */ |
| void (*save_callback)(struct rpc_task *); |
| |
| /* |
| * If a callback exists, save it, reset it, |
| * call it. |
| * The save is needed to stop from resetting |
| * another callback set within the callback handler |
| * - Dave |
| */ |
| save_callback=task->tk_callback; |
| task->tk_callback=NULL; |
| lock_kernel(); |
| save_callback(task); |
| unlock_kernel(); |
| } |
| |
| /* |
| * Perform the next FSM step. |
| * tk_action may be NULL when the task has been killed |
| * by someone else. |
| */ |
| if (!RPC_IS_QUEUED(task)) { |
| if (task->tk_action == NULL) |
| break; |
| lock_kernel(); |
| task->tk_action(task); |
| unlock_kernel(); |
| } |
| |
| /* |
| * Lockless check for whether task is sleeping or not. |
| */ |
| if (!RPC_IS_QUEUED(task)) |
| continue; |
| rpc_clear_running(task); |
| if (RPC_IS_ASYNC(task)) { |
| /* Careful! we may have raced... */ |
| if (RPC_IS_QUEUED(task)) |
| return 0; |
| if (rpc_test_and_set_running(task)) |
| return 0; |
| continue; |
| } |
| |
| /* sync task: sleep here */ |
| dprintk("RPC: %4d sync task going to sleep\n", task->tk_pid); |
| /* Note: Caller should be using rpc_clnt_sigmask() */ |
| status = out_of_line_wait_on_bit(&task->tk_runstate, |
| RPC_TASK_QUEUED, rpc_wait_bit_interruptible, |
| TASK_INTERRUPTIBLE); |
| if (status == -ERESTARTSYS) { |
| /* |
| * When a sync task receives a signal, it exits with |
| * -ERESTARTSYS. In order to catch any callbacks that |
| * clean up after sleeping on some queue, we don't |
| * break the loop here, but go around once more. |
| */ |
| dprintk("RPC: %4d got signal\n", task->tk_pid); |
| task->tk_flags |= RPC_TASK_KILLED; |
| rpc_exit(task, -ERESTARTSYS); |
| rpc_wake_up_task(task); |
| } |
| rpc_set_running(task); |
| dprintk("RPC: %4d sync task resuming\n", task->tk_pid); |
| } |
| |
| dprintk("RPC: %4d exit() = %d\n", task->tk_pid, task->tk_status); |
| status = task->tk_status; |
| |
| /* Release all resources associated with the task */ |
| rpc_release_task(task); |
| return status; |
| } |
| |
| /* |
| * User-visible entry point to the scheduler. |
| * |
| * This may be called recursively if e.g. an async NFS task updates |
| * the attributes and finds that dirty pages must be flushed. |
| * NOTE: Upon exit of this function the task is guaranteed to be |
| * released. In particular note that tk_release() will have |
| * been called, so your task memory may have been freed. |
| */ |
| int |
| rpc_execute(struct rpc_task *task) |
| { |
| BUG_ON(task->tk_active); |
| |
| task->tk_active = 1; |
| rpc_set_running(task); |
| return __rpc_execute(task); |
| } |
| |
| static void rpc_async_schedule(void *arg) |
| { |
| __rpc_execute((struct rpc_task *)arg); |
| } |
| |
| /* |
| * Allocate memory for RPC purposes. |
| * |
| * We try to ensure that some NFS reads and writes can always proceed |
| * by using a mempool when allocating 'small' buffers. |
| * In order to avoid memory starvation triggering more writebacks of |
| * NFS requests, we use GFP_NOFS rather than GFP_KERNEL. |
| */ |
| void * |
| rpc_malloc(struct rpc_task *task, size_t size) |
| { |
| gfp_t gfp; |
| |
| if (task->tk_flags & RPC_TASK_SWAPPER) |
| gfp = GFP_ATOMIC; |
| else |
| gfp = GFP_NOFS; |
| |
| if (size > RPC_BUFFER_MAXSIZE) { |
| task->tk_buffer = kmalloc(size, gfp); |
| if (task->tk_buffer) |
| task->tk_bufsize = size; |
| } else { |
| task->tk_buffer = mempool_alloc(rpc_buffer_mempool, gfp); |
| if (task->tk_buffer) |
| task->tk_bufsize = RPC_BUFFER_MAXSIZE; |
| } |
| return task->tk_buffer; |
| } |
| |
| static void |
| rpc_free(struct rpc_task *task) |
| { |
| if (task->tk_buffer) { |
| if (task->tk_bufsize == RPC_BUFFER_MAXSIZE) |
| mempool_free(task->tk_buffer, rpc_buffer_mempool); |
| else |
| kfree(task->tk_buffer); |
| task->tk_buffer = NULL; |
| task->tk_bufsize = 0; |
| } |
| } |
| |
| /* |
| * Creation and deletion of RPC task structures |
| */ |
| void rpc_init_task(struct rpc_task *task, struct rpc_clnt *clnt, int flags, const struct rpc_call_ops *tk_ops, void *calldata) |
| { |
| memset(task, 0, sizeof(*task)); |
| init_timer(&task->tk_timer); |
| task->tk_timer.data = (unsigned long) task; |
| task->tk_timer.function = (void (*)(unsigned long)) rpc_run_timer; |
| task->tk_client = clnt; |
| task->tk_flags = flags; |
| task->tk_ops = tk_ops; |
| task->tk_calldata = calldata; |
| |
| /* Initialize retry counters */ |
| task->tk_garb_retry = 2; |
| task->tk_cred_retry = 2; |
| |
| task->tk_priority = RPC_PRIORITY_NORMAL; |
| task->tk_cookie = (unsigned long)current; |
| |
| /* Initialize workqueue for async tasks */ |
| task->tk_workqueue = rpciod_workqueue; |
| |
| if (clnt) { |
| atomic_inc(&clnt->cl_users); |
| if (clnt->cl_softrtry) |
| task->tk_flags |= RPC_TASK_SOFT; |
| if (!clnt->cl_intr) |
| task->tk_flags |= RPC_TASK_NOINTR; |
| } |
| |
| #ifdef RPC_DEBUG |
| task->tk_magic = RPC_TASK_MAGIC_ID; |
| task->tk_pid = rpc_task_id++; |
| #endif |
| /* Add to global list of all tasks */ |
| spin_lock(&rpc_sched_lock); |
| list_add_tail(&task->tk_task, &all_tasks); |
| spin_unlock(&rpc_sched_lock); |
| |
| BUG_ON(task->tk_ops == NULL); |
| |
| dprintk("RPC: %4d new task procpid %d\n", task->tk_pid, |
| current->pid); |
| } |
| |
| static struct rpc_task * |
| rpc_alloc_task(void) |
| { |
| return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS); |
| } |
| |
| static void rpc_free_task(struct rpc_task *task) |
| { |
| dprintk("RPC: %4d freeing task\n", task->tk_pid); |
| mempool_free(task, rpc_task_mempool); |
| } |
| |
| /* |
| * Create a new task for the specified client. We have to |
| * clean up after an allocation failure, as the client may |
| * have specified "oneshot". |
| */ |
| struct rpc_task *rpc_new_task(struct rpc_clnt *clnt, int flags, const struct rpc_call_ops *tk_ops, void *calldata) |
| { |
| struct rpc_task *task; |
| |
| task = rpc_alloc_task(); |
| if (!task) |
| goto cleanup; |
| |
| rpc_init_task(task, clnt, flags, tk_ops, calldata); |
| |
| dprintk("RPC: %4d allocated task\n", task->tk_pid); |
| task->tk_flags |= RPC_TASK_DYNAMIC; |
| out: |
| return task; |
| |
| cleanup: |
| /* Check whether to release the client */ |
| if (clnt) { |
| printk("rpc_new_task: failed, users=%d, oneshot=%d\n", |
| atomic_read(&clnt->cl_users), clnt->cl_oneshot); |
| atomic_inc(&clnt->cl_users); /* pretend we were used ... */ |
| rpc_release_client(clnt); |
| } |
| goto out; |
| } |
| |
| void rpc_release_task(struct rpc_task *task) |
| { |
| const struct rpc_call_ops *tk_ops = task->tk_ops; |
| void *calldata = task->tk_calldata; |
| dprintk("RPC: %4d release task\n", task->tk_pid); |
| |
| #ifdef RPC_DEBUG |
| BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID); |
| #endif |
| |
| /* Remove from global task list */ |
| spin_lock(&rpc_sched_lock); |
| list_del(&task->tk_task); |
| spin_unlock(&rpc_sched_lock); |
| |
| BUG_ON (RPC_IS_QUEUED(task)); |
| task->tk_active = 0; |
| |
| /* Synchronously delete any running timer */ |
| rpc_delete_timer(task); |
| |
| /* Release resources */ |
| if (task->tk_rqstp) |
| xprt_release(task); |
| if (task->tk_msg.rpc_cred) |
| rpcauth_unbindcred(task); |
| rpc_free(task); |
| if (task->tk_client) { |
| rpc_release_client(task->tk_client); |
| task->tk_client = NULL; |
| } |
| |
| #ifdef RPC_DEBUG |
| task->tk_magic = 0; |
| #endif |
| if (task->tk_flags & RPC_TASK_DYNAMIC) |
| rpc_free_task(task); |
| if (tk_ops->rpc_release) |
| tk_ops->rpc_release(calldata); |
| } |
| |
| /** |
| * rpc_find_parent - find the parent of a child task. |
| * @child: child task |
| * |
| * Checks that the parent task is still sleeping on the |
| * queue 'childq'. If so returns a pointer to the parent. |
| * Upon failure returns NULL. |
| * |
| * Caller must hold childq.lock |
| */ |
| static inline struct rpc_task *rpc_find_parent(struct rpc_task *child, struct rpc_task *parent) |
| { |
| struct rpc_task *task; |
| struct list_head *le; |
| |
| task_for_each(task, le, &childq.tasks[0]) |
| if (task == parent) |
| return parent; |
| |
| return NULL; |
| } |
| |
| static void rpc_child_exit(struct rpc_task *child, void *calldata) |
| { |
| struct rpc_task *parent; |
| |
| spin_lock_bh(&childq.lock); |
| if ((parent = rpc_find_parent(child, calldata)) != NULL) { |
| parent->tk_status = child->tk_status; |
| __rpc_wake_up_task(parent); |
| } |
| spin_unlock_bh(&childq.lock); |
| } |
| |
| static const struct rpc_call_ops rpc_child_ops = { |
| .rpc_call_done = rpc_child_exit, |
| }; |
| |
| /* |
| * Note: rpc_new_task releases the client after a failure. |
| */ |
| struct rpc_task * |
| rpc_new_child(struct rpc_clnt *clnt, struct rpc_task *parent) |
| { |
| struct rpc_task *task; |
| |
| task = rpc_new_task(clnt, RPC_TASK_ASYNC | RPC_TASK_CHILD, &rpc_child_ops, parent); |
| if (!task) |
| goto fail; |
| return task; |
| |
| fail: |
| parent->tk_status = -ENOMEM; |
| return NULL; |
| } |
| |
| void rpc_run_child(struct rpc_task *task, struct rpc_task *child, rpc_action func) |
| { |
| spin_lock_bh(&childq.lock); |
| /* N.B. Is it possible for the child to have already finished? */ |
| __rpc_sleep_on(&childq, task, func, NULL); |
| rpc_schedule_run(child); |
| spin_unlock_bh(&childq.lock); |
| } |
| |
| /* |
| * Kill all tasks for the given client. |
| * XXX: kill their descendants as well? |
| */ |
| void rpc_killall_tasks(struct rpc_clnt *clnt) |
| { |
| struct rpc_task *rovr; |
| struct list_head *le; |
| |
| dprintk("RPC: killing all tasks for client %p\n", clnt); |
| |
| /* |
| * Spin lock all_tasks to prevent changes... |
| */ |
| spin_lock(&rpc_sched_lock); |
| alltask_for_each(rovr, le, &all_tasks) { |
| if (! RPC_IS_ACTIVATED(rovr)) |
| continue; |
| if (!clnt || rovr->tk_client == clnt) { |
| rovr->tk_flags |= RPC_TASK_KILLED; |
| rpc_exit(rovr, -EIO); |
| rpc_wake_up_task(rovr); |
| } |
| } |
| spin_unlock(&rpc_sched_lock); |
| } |
| |
| static DECLARE_MUTEX_LOCKED(rpciod_running); |
| |
| static void rpciod_killall(void) |
| { |
| unsigned long flags; |
| |
| while (!list_empty(&all_tasks)) { |
| clear_thread_flag(TIF_SIGPENDING); |
| rpc_killall_tasks(NULL); |
| flush_workqueue(rpciod_workqueue); |
| if (!list_empty(&all_tasks)) { |
| dprintk("rpciod_killall: waiting for tasks to exit\n"); |
| yield(); |
| } |
| } |
| |
| spin_lock_irqsave(¤t->sighand->siglock, flags); |
| recalc_sigpending(); |
| spin_unlock_irqrestore(¤t->sighand->siglock, flags); |
| } |
| |
| /* |
| * Start up the rpciod process if it's not already running. |
| */ |
| int |
| rpciod_up(void) |
| { |
| struct workqueue_struct *wq; |
| int error = 0; |
| |
| down(&rpciod_sema); |
| dprintk("rpciod_up: users %d\n", rpciod_users); |
| rpciod_users++; |
| if (rpciod_workqueue) |
| goto out; |
| /* |
| * If there's no pid, we should be the first user. |
| */ |
| if (rpciod_users > 1) |
| printk(KERN_WARNING "rpciod_up: no workqueue, %d users??\n", rpciod_users); |
| /* |
| * Create the rpciod thread and wait for it to start. |
| */ |
| error = -ENOMEM; |
| wq = create_workqueue("rpciod"); |
| if (wq == NULL) { |
| printk(KERN_WARNING "rpciod_up: create workqueue failed, error=%d\n", error); |
| rpciod_users--; |
| goto out; |
| } |
| rpciod_workqueue = wq; |
| error = 0; |
| out: |
| up(&rpciod_sema); |
| return error; |
| } |
| |
| void |
| rpciod_down(void) |
| { |
| down(&rpciod_sema); |
| dprintk("rpciod_down sema %d\n", rpciod_users); |
| if (rpciod_users) { |
| if (--rpciod_users) |
| goto out; |
| } else |
| printk(KERN_WARNING "rpciod_down: no users??\n"); |
| |
| if (!rpciod_workqueue) { |
| dprintk("rpciod_down: Nothing to do!\n"); |
| goto out; |
| } |
| rpciod_killall(); |
| |
| destroy_workqueue(rpciod_workqueue); |
| rpciod_workqueue = NULL; |
| out: |
| up(&rpciod_sema); |
| } |
| |
| #ifdef RPC_DEBUG |
| void rpc_show_tasks(void) |
| { |
| struct list_head *le; |
| struct rpc_task *t; |
| |
| spin_lock(&rpc_sched_lock); |
| if (list_empty(&all_tasks)) { |
| spin_unlock(&rpc_sched_lock); |
| return; |
| } |
| printk("-pid- proc flgs status -client- -prog- --rqstp- -timeout " |
| "-rpcwait -action- ---ops--\n"); |
| alltask_for_each(t, le, &all_tasks) { |
| const char *rpc_waitq = "none"; |
| |
| if (RPC_IS_QUEUED(t)) |
| rpc_waitq = rpc_qname(t->u.tk_wait.rpc_waitq); |
| |
| printk("%05d %04d %04x %06d %8p %6d %8p %08ld %8s %8p %8p\n", |
| t->tk_pid, |
| (t->tk_msg.rpc_proc ? t->tk_msg.rpc_proc->p_proc : -1), |
| t->tk_flags, t->tk_status, |
| t->tk_client, |
| (t->tk_client ? t->tk_client->cl_prog : 0), |
| t->tk_rqstp, t->tk_timeout, |
| rpc_waitq, |
| t->tk_action, t->tk_ops); |
| } |
| spin_unlock(&rpc_sched_lock); |
| } |
| #endif |
| |
| void |
| rpc_destroy_mempool(void) |
| { |
| if (rpc_buffer_mempool) |
| mempool_destroy(rpc_buffer_mempool); |
| if (rpc_task_mempool) |
| mempool_destroy(rpc_task_mempool); |
| if (rpc_task_slabp && kmem_cache_destroy(rpc_task_slabp)) |
| printk(KERN_INFO "rpc_task: not all structures were freed\n"); |
| if (rpc_buffer_slabp && kmem_cache_destroy(rpc_buffer_slabp)) |
| printk(KERN_INFO "rpc_buffers: not all structures were freed\n"); |
| } |
| |
| int |
| rpc_init_mempool(void) |
| { |
| rpc_task_slabp = kmem_cache_create("rpc_tasks", |
| sizeof(struct rpc_task), |
| 0, SLAB_HWCACHE_ALIGN, |
| NULL, NULL); |
| if (!rpc_task_slabp) |
| goto err_nomem; |
| rpc_buffer_slabp = kmem_cache_create("rpc_buffers", |
| RPC_BUFFER_MAXSIZE, |
| 0, SLAB_HWCACHE_ALIGN, |
| NULL, NULL); |
| if (!rpc_buffer_slabp) |
| goto err_nomem; |
| rpc_task_mempool = mempool_create(RPC_TASK_POOLSIZE, |
| mempool_alloc_slab, |
| mempool_free_slab, |
| rpc_task_slabp); |
| if (!rpc_task_mempool) |
| goto err_nomem; |
| rpc_buffer_mempool = mempool_create(RPC_BUFFER_POOLSIZE, |
| mempool_alloc_slab, |
| mempool_free_slab, |
| rpc_buffer_slabp); |
| if (!rpc_buffer_mempool) |
| goto err_nomem; |
| return 0; |
| err_nomem: |
| rpc_destroy_mempool(); |
| return -ENOMEM; |
| } |