| /* |
| * May be copied or modified under the terms of the GNU General Public |
| * License. See linux/COPYING for more information. |
| * |
| * Contains extracts from code by Glenn Engel, Jim Kingdon, |
| * David Grothe <dave@gcom.com>, Tigran Aivazian <tigran@sco.com>, |
| * Amit S. Kale <akale@veritas.com>, William Gatliff <bgat@open-widgets.com>, |
| * Ben Lee, Steve Chamberlain and Benoit Miller <fulg@iname.com>. |
| * |
| * This version by Henry Bell <henry.bell@st.com> |
| * Minor modifications by Jeremy Siegel <jsiegel@mvista.com> |
| * |
| * Contains low-level support for remote debug using GDB. |
| * |
| * To enable debugger support, two things need to happen. A call to |
| * set_debug_traps() is necessary in order to allow any breakpoints |
| * or error conditions to be properly intercepted and reported to gdb. |
| * A breakpoint also needs to be generated to begin communication. This |
| * is most easily accomplished by a call to breakpoint() which does |
| * a trapa if the initialisation phase has been successfully completed. |
| * |
| * In this case, set_debug_traps() is not used to "take over" exceptions; |
| * other kernel code is modified instead to enter the kgdb functions here |
| * when appropriate (see entry.S for breakpoint traps and NMI interrupts, |
| * see traps.c for kernel error exceptions). |
| * |
| * The following gdb commands are supported: |
| * |
| * Command Function Return value |
| * |
| * g return the value of the CPU registers hex data or ENN |
| * G set the value of the CPU registers OK or ENN |
| * |
| * mAA..AA,LLLL Read LLLL bytes at address AA..AA hex data or ENN |
| * MAA..AA,LLLL: Write LLLL bytes at address AA.AA OK or ENN |
| * XAA..AA,LLLL: Same, but data is binary (not hex) OK or ENN |
| * |
| * c Resume at current address SNN ( signal NN) |
| * cAA..AA Continue at address AA..AA SNN |
| * CNN; Resume at current address with signal SNN |
| * CNN;AA..AA Resume at address AA..AA with signal SNN |
| * |
| * s Step one instruction SNN |
| * sAA..AA Step one instruction from AA..AA SNN |
| * SNN; Step one instruction with signal SNN |
| * SNNAA..AA Step one instruction from AA..AA w/NN SNN |
| * |
| * k kill (Detach GDB) |
| * |
| * d Toggle debug flag |
| * D Detach GDB |
| * |
| * Hct Set thread t for operations, OK or ENN |
| * c = 'c' (step, cont), c = 'g' (other |
| * operations) |
| * |
| * qC Query current thread ID QCpid |
| * qfThreadInfo Get list of current threads (first) m<id> |
| * qsThreadInfo " " " " " (subsequent) |
| * qOffsets Get section offsets Text=x;Data=y;Bss=z |
| * |
| * TXX Find if thread XX is alive OK or ENN |
| * ? What was the last sigval ? SNN (signal NN) |
| * O Output to GDB console |
| * |
| * Remote communication protocol. |
| * |
| * A debug packet whose contents are <data> is encapsulated for |
| * transmission in the form: |
| * |
| * $ <data> # CSUM1 CSUM2 |
| * |
| * <data> must be ASCII alphanumeric and cannot include characters |
| * '$' or '#'. If <data> starts with two characters followed by |
| * ':', then the existing stubs interpret this as a sequence number. |
| * |
| * CSUM1 and CSUM2 are ascii hex representation of an 8-bit |
| * checksum of <data>, the most significant nibble is sent first. |
| * the hex digits 0-9,a-f are used. |
| * |
| * Receiver responds with: |
| * |
| * + - if CSUM is correct and ready for next packet |
| * - - if CSUM is incorrect |
| * |
| * Responses can be run-length encoded to save space. A '*' means that |
| * the next character is an ASCII encoding giving a repeat count which |
| * stands for that many repetitions of the character preceding the '*'. |
| * The encoding is n+29, yielding a printable character where n >=3 |
| * (which is where RLE starts to win). Don't use an n > 126. |
| * |
| * So "0* " means the same as "0000". |
| */ |
| |
| #include <linux/string.h> |
| #include <linux/kernel.h> |
| #include <linux/sched.h> |
| #include <linux/smp.h> |
| #include <linux/spinlock.h> |
| #include <linux/delay.h> |
| #include <linux/linkage.h> |
| #include <linux/init.h> |
| #include <linux/console.h> |
| #include <linux/sysrq.h> |
| #include <linux/module.h> |
| #include <asm/system.h> |
| #include <asm/cacheflush.h> |
| #include <asm/current.h> |
| #include <asm/signal.h> |
| #include <asm/pgtable.h> |
| #include <asm/ptrace.h> |
| #include <asm/kgdb.h> |
| #include <asm/io.h> |
| |
| /* Function pointers for linkage */ |
| kgdb_debug_hook_t *kgdb_debug_hook; |
| kgdb_bus_error_hook_t *kgdb_bus_err_hook; |
| |
| int (*kgdb_getchar)(void); |
| EXPORT_SYMBOL_GPL(kgdb_getchar); |
| void (*kgdb_putchar)(int); |
| EXPORT_SYMBOL_GPL(kgdb_putchar); |
| |
| static void put_debug_char(int c) |
| { |
| if (!kgdb_putchar) |
| return; |
| (*kgdb_putchar)(c); |
| } |
| static int get_debug_char(void) |
| { |
| if (!kgdb_getchar) |
| return -1; |
| return (*kgdb_getchar)(); |
| } |
| |
| /* Num chars in in/out bound buffers, register packets need NUMREGBYTES * 2 */ |
| #define BUFMAX 1024 |
| #define NUMREGBYTES (MAXREG*4) |
| #define OUTBUFMAX (NUMREGBYTES*2+512) |
| |
| enum { |
| R0 = 0, R1, R2, R3, R4, R5, R6, R7, |
| R8, R9, R10, R11, R12, R13, R14, R15, |
| PC, PR, GBR, VBR, MACH, MACL, SR, |
| /* */ |
| MAXREG |
| }; |
| |
| static unsigned int registers[MAXREG]; |
| struct kgdb_regs trap_registers; |
| |
| char kgdb_in_gdb_mode; |
| char in_nmi; /* Set during NMI to prevent reentry */ |
| int kgdb_nofault; /* Boolean to ignore bus errs (i.e. in GDB) */ |
| |
| /* Default values for SCI (can override via kernel args in setup.c) */ |
| #ifndef CONFIG_KGDB_DEFPORT |
| #define CONFIG_KGDB_DEFPORT 1 |
| #endif |
| |
| #ifndef CONFIG_KGDB_DEFBAUD |
| #define CONFIG_KGDB_DEFBAUD 115200 |
| #endif |
| |
| #if defined(CONFIG_KGDB_DEFPARITY_E) |
| #define CONFIG_KGDB_DEFPARITY 'E' |
| #elif defined(CONFIG_KGDB_DEFPARITY_O) |
| #define CONFIG_KGDB_DEFPARITY 'O' |
| #else /* CONFIG_KGDB_DEFPARITY_N */ |
| #define CONFIG_KGDB_DEFPARITY 'N' |
| #endif |
| |
| #ifdef CONFIG_KGDB_DEFBITS_7 |
| #define CONFIG_KGDB_DEFBITS '7' |
| #else /* CONFIG_KGDB_DEFBITS_8 */ |
| #define CONFIG_KGDB_DEFBITS '8' |
| #endif |
| |
| /* SCI/UART settings, used in kgdb_console_setup() */ |
| int kgdb_portnum = CONFIG_KGDB_DEFPORT; |
| EXPORT_SYMBOL_GPL(kgdb_portnum); |
| int kgdb_baud = CONFIG_KGDB_DEFBAUD; |
| EXPORT_SYMBOL_GPL(kgdb_baud); |
| char kgdb_parity = CONFIG_KGDB_DEFPARITY; |
| EXPORT_SYMBOL_GPL(kgdb_parity); |
| char kgdb_bits = CONFIG_KGDB_DEFBITS; |
| EXPORT_SYMBOL_GPL(kgdb_bits); |
| |
| /* Jump buffer for setjmp/longjmp */ |
| static jmp_buf rem_com_env; |
| |
| /* TRA differs sh3/4 */ |
| #if defined(CONFIG_CPU_SH3) |
| #define TRA 0xffffffd0 |
| #elif defined(CONFIG_CPU_SH4) |
| #define TRA 0xff000020 |
| #endif |
| |
| /* Macros for single step instruction identification */ |
| #define OPCODE_BT(op) (((op) & 0xff00) == 0x8900) |
| #define OPCODE_BF(op) (((op) & 0xff00) == 0x8b00) |
| #define OPCODE_BTF_DISP(op) (((op) & 0x80) ? (((op) | 0xffffff80) << 1) : \ |
| (((op) & 0x7f ) << 1)) |
| #define OPCODE_BFS(op) (((op) & 0xff00) == 0x8f00) |
| #define OPCODE_BTS(op) (((op) & 0xff00) == 0x8d00) |
| #define OPCODE_BRA(op) (((op) & 0xf000) == 0xa000) |
| #define OPCODE_BRA_DISP(op) (((op) & 0x800) ? (((op) | 0xfffff800) << 1) : \ |
| (((op) & 0x7ff) << 1)) |
| #define OPCODE_BRAF(op) (((op) & 0xf0ff) == 0x0023) |
| #define OPCODE_BRAF_REG(op) (((op) & 0x0f00) >> 8) |
| #define OPCODE_BSR(op) (((op) & 0xf000) == 0xb000) |
| #define OPCODE_BSR_DISP(op) (((op) & 0x800) ? (((op) | 0xfffff800) << 1) : \ |
| (((op) & 0x7ff) << 1)) |
| #define OPCODE_BSRF(op) (((op) & 0xf0ff) == 0x0003) |
| #define OPCODE_BSRF_REG(op) (((op) >> 8) & 0xf) |
| #define OPCODE_JMP(op) (((op) & 0xf0ff) == 0x402b) |
| #define OPCODE_JMP_REG(op) (((op) >> 8) & 0xf) |
| #define OPCODE_JSR(op) (((op) & 0xf0ff) == 0x400b) |
| #define OPCODE_JSR_REG(op) (((op) >> 8) & 0xf) |
| #define OPCODE_RTS(op) ((op) == 0xb) |
| #define OPCODE_RTE(op) ((op) == 0x2b) |
| |
| #define SR_T_BIT_MASK 0x1 |
| #define STEP_OPCODE 0xc320 |
| #define BIOS_CALL_TRAP 0x3f |
| |
| /* Exception codes as per SH-4 core manual */ |
| #define ADDRESS_ERROR_LOAD_VEC 7 |
| #define ADDRESS_ERROR_STORE_VEC 8 |
| #define TRAP_VEC 11 |
| #define INVALID_INSN_VEC 12 |
| #define INVALID_SLOT_VEC 13 |
| #define NMI_VEC 14 |
| #define USER_BREAK_VEC 15 |
| #define SERIAL_BREAK_VEC 58 |
| |
| /* Misc static */ |
| static int stepped_address; |
| static short stepped_opcode; |
| static char in_buffer[BUFMAX]; |
| static char out_buffer[OUTBUFMAX]; |
| |
| static void kgdb_to_gdb(const char *s); |
| |
| /* Convert ch to hex */ |
| static int hex(const char ch) |
| { |
| if ((ch >= 'a') && (ch <= 'f')) |
| return (ch - 'a' + 10); |
| if ((ch >= '0') && (ch <= '9')) |
| return (ch - '0'); |
| if ((ch >= 'A') && (ch <= 'F')) |
| return (ch - 'A' + 10); |
| return (-1); |
| } |
| |
| /* Convert the memory pointed to by mem into hex, placing result in buf. |
| Returns a pointer to the last char put in buf (null) */ |
| static char *mem_to_hex(const char *mem, char *buf, const int count) |
| { |
| int i; |
| int ch; |
| unsigned short s_val; |
| unsigned long l_val; |
| |
| /* Check for 16 or 32 */ |
| if (count == 2 && ((long) mem & 1) == 0) { |
| s_val = *(unsigned short *) mem; |
| mem = (char *) &s_val; |
| } else if (count == 4 && ((long) mem & 3) == 0) { |
| l_val = *(unsigned long *) mem; |
| mem = (char *) &l_val; |
| } |
| for (i = 0; i < count; i++) { |
| ch = *mem++; |
| buf = pack_hex_byte(buf, ch); |
| } |
| *buf = 0; |
| return (buf); |
| } |
| |
| /* Convert the hex array pointed to by buf into binary, to be placed in mem. |
| Return a pointer to the character after the last byte written */ |
| static char *hex_to_mem(const char *buf, char *mem, const int count) |
| { |
| int i; |
| unsigned char ch; |
| |
| for (i = 0; i < count; i++) { |
| ch = hex(*buf++) << 4; |
| ch = ch + hex(*buf++); |
| *mem++ = ch; |
| } |
| return (mem); |
| } |
| |
| /* While finding valid hex chars, convert to an integer, then return it */ |
| static int hex_to_int(char **ptr, int *int_value) |
| { |
| int num_chars = 0; |
| int hex_value; |
| |
| *int_value = 0; |
| |
| while (**ptr) { |
| hex_value = hex(**ptr); |
| if (hex_value >= 0) { |
| *int_value = (*int_value << 4) | hex_value; |
| num_chars++; |
| } else |
| break; |
| (*ptr)++; |
| } |
| return num_chars; |
| } |
| |
| /* Copy the binary array pointed to by buf into mem. Fix $, #, |
| and 0x7d escaped with 0x7d. Return a pointer to the character |
| after the last byte written. */ |
| static char *ebin_to_mem(const char *buf, char *mem, int count) |
| { |
| for (; count > 0; count--, buf++) { |
| if (*buf == 0x7d) |
| *mem++ = *(++buf) ^ 0x20; |
| else |
| *mem++ = *buf; |
| } |
| return mem; |
| } |
| |
| /* Scan for the start char '$', read the packet and check the checksum */ |
| static void get_packet(char *buffer, int buflen) |
| { |
| unsigned char checksum; |
| unsigned char xmitcsum; |
| int i; |
| int count; |
| char ch; |
| |
| do { |
| /* Ignore everything until the start character */ |
| while ((ch = get_debug_char()) != '$'); |
| |
| checksum = 0; |
| xmitcsum = -1; |
| count = 0; |
| |
| /* Now, read until a # or end of buffer is found */ |
| while (count < (buflen - 1)) { |
| ch = get_debug_char(); |
| |
| if (ch == '#') |
| break; |
| |
| checksum = checksum + ch; |
| buffer[count] = ch; |
| count = count + 1; |
| } |
| |
| buffer[count] = 0; |
| |
| /* Continue to read checksum following # */ |
| if (ch == '#') { |
| xmitcsum = hex(get_debug_char()) << 4; |
| xmitcsum += hex(get_debug_char()); |
| |
| /* Checksum */ |
| if (checksum != xmitcsum) |
| put_debug_char('-'); /* Failed checksum */ |
| else { |
| /* Ack successful transfer */ |
| put_debug_char('+'); |
| |
| /* If a sequence char is present, reply |
| the sequence ID */ |
| if (buffer[2] == ':') { |
| put_debug_char(buffer[0]); |
| put_debug_char(buffer[1]); |
| |
| /* Remove sequence chars from buffer */ |
| count = strlen(buffer); |
| for (i = 3; i <= count; i++) |
| buffer[i - 3] = buffer[i]; |
| } |
| } |
| } |
| } |
| while (checksum != xmitcsum); /* Keep trying while we fail */ |
| } |
| |
| /* Send the packet in the buffer with run-length encoding */ |
| static void put_packet(char *buffer) |
| { |
| int checksum; |
| char *src; |
| int runlen; |
| int encode; |
| |
| do { |
| src = buffer; |
| put_debug_char('$'); |
| checksum = 0; |
| |
| /* Continue while we still have chars left */ |
| while (*src) { |
| /* Check for runs up to 99 chars long */ |
| for (runlen = 1; runlen < 99; runlen++) { |
| if (src[0] != src[runlen]) |
| break; |
| } |
| |
| if (runlen > 3) { |
| /* Got a useful amount, send encoding */ |
| encode = runlen + ' ' - 4; |
| put_debug_char(*src); checksum += *src; |
| put_debug_char('*'); checksum += '*'; |
| put_debug_char(encode); checksum += encode; |
| src += runlen; |
| } else { |
| /* Otherwise just send the current char */ |
| put_debug_char(*src); checksum += *src; |
| src += 1; |
| } |
| } |
| |
| /* '#' Separator, put high and low components of checksum */ |
| put_debug_char('#'); |
| put_debug_char(hex_asc_hi(checksum)); |
| put_debug_char(hex_asc_lo(checksum)); |
| } |
| while ((get_debug_char()) != '+'); /* While no ack */ |
| } |
| |
| /* A bus error has occurred - perform a longjmp to return execution and |
| allow handling of the error */ |
| static void kgdb_handle_bus_error(void) |
| { |
| longjmp(rem_com_env, 1); |
| } |
| |
| /* Translate SH-3/4 exception numbers to unix-like signal values */ |
| static int compute_signal(const int excep_code) |
| { |
| int sigval; |
| |
| switch (excep_code) { |
| |
| case INVALID_INSN_VEC: |
| case INVALID_SLOT_VEC: |
| sigval = SIGILL; |
| break; |
| case ADDRESS_ERROR_LOAD_VEC: |
| case ADDRESS_ERROR_STORE_VEC: |
| sigval = SIGSEGV; |
| break; |
| |
| case SERIAL_BREAK_VEC: |
| case NMI_VEC: |
| sigval = SIGINT; |
| break; |
| |
| case USER_BREAK_VEC: |
| case TRAP_VEC: |
| sigval = SIGTRAP; |
| break; |
| |
| default: |
| sigval = SIGBUS; /* "software generated" */ |
| break; |
| } |
| |
| return (sigval); |
| } |
| |
| /* Make a local copy of the registers passed into the handler (bletch) */ |
| static void kgdb_regs_to_gdb_regs(const struct kgdb_regs *regs, |
| int *gdb_regs) |
| { |
| gdb_regs[R0] = regs->regs[R0]; |
| gdb_regs[R1] = regs->regs[R1]; |
| gdb_regs[R2] = regs->regs[R2]; |
| gdb_regs[R3] = regs->regs[R3]; |
| gdb_regs[R4] = regs->regs[R4]; |
| gdb_regs[R5] = regs->regs[R5]; |
| gdb_regs[R6] = regs->regs[R6]; |
| gdb_regs[R7] = regs->regs[R7]; |
| gdb_regs[R8] = regs->regs[R8]; |
| gdb_regs[R9] = regs->regs[R9]; |
| gdb_regs[R10] = regs->regs[R10]; |
| gdb_regs[R11] = regs->regs[R11]; |
| gdb_regs[R12] = regs->regs[R12]; |
| gdb_regs[R13] = regs->regs[R13]; |
| gdb_regs[R14] = regs->regs[R14]; |
| gdb_regs[R15] = regs->regs[R15]; |
| gdb_regs[PC] = regs->pc; |
| gdb_regs[PR] = regs->pr; |
| gdb_regs[GBR] = regs->gbr; |
| gdb_regs[MACH] = regs->mach; |
| gdb_regs[MACL] = regs->macl; |
| gdb_regs[SR] = regs->sr; |
| gdb_regs[VBR] = regs->vbr; |
| } |
| |
| /* Copy local gdb registers back to kgdb regs, for later copy to kernel */ |
| static void gdb_regs_to_kgdb_regs(const int *gdb_regs, |
| struct kgdb_regs *regs) |
| { |
| regs->regs[R0] = gdb_regs[R0]; |
| regs->regs[R1] = gdb_regs[R1]; |
| regs->regs[R2] = gdb_regs[R2]; |
| regs->regs[R3] = gdb_regs[R3]; |
| regs->regs[R4] = gdb_regs[R4]; |
| regs->regs[R5] = gdb_regs[R5]; |
| regs->regs[R6] = gdb_regs[R6]; |
| regs->regs[R7] = gdb_regs[R7]; |
| regs->regs[R8] = gdb_regs[R8]; |
| regs->regs[R9] = gdb_regs[R9]; |
| regs->regs[R10] = gdb_regs[R10]; |
| regs->regs[R11] = gdb_regs[R11]; |
| regs->regs[R12] = gdb_regs[R12]; |
| regs->regs[R13] = gdb_regs[R13]; |
| regs->regs[R14] = gdb_regs[R14]; |
| regs->regs[R15] = gdb_regs[R15]; |
| regs->pc = gdb_regs[PC]; |
| regs->pr = gdb_regs[PR]; |
| regs->gbr = gdb_regs[GBR]; |
| regs->mach = gdb_regs[MACH]; |
| regs->macl = gdb_regs[MACL]; |
| regs->sr = gdb_regs[SR]; |
| regs->vbr = gdb_regs[VBR]; |
| } |
| |
| /* Calculate the new address for after a step */ |
| static short *get_step_address(void) |
| { |
| short op = *(short *) trap_registers.pc; |
| long addr; |
| |
| /* BT */ |
| if (OPCODE_BT(op)) { |
| if (trap_registers.sr & SR_T_BIT_MASK) |
| addr = trap_registers.pc + 4 + OPCODE_BTF_DISP(op); |
| else |
| addr = trap_registers.pc + 2; |
| } |
| |
| /* BTS */ |
| else if (OPCODE_BTS(op)) { |
| if (trap_registers.sr & SR_T_BIT_MASK) |
| addr = trap_registers.pc + 4 + OPCODE_BTF_DISP(op); |
| else |
| addr = trap_registers.pc + 4; /* Not in delay slot */ |
| } |
| |
| /* BF */ |
| else if (OPCODE_BF(op)) { |
| if (!(trap_registers.sr & SR_T_BIT_MASK)) |
| addr = trap_registers.pc + 4 + OPCODE_BTF_DISP(op); |
| else |
| addr = trap_registers.pc + 2; |
| } |
| |
| /* BFS */ |
| else if (OPCODE_BFS(op)) { |
| if (!(trap_registers.sr & SR_T_BIT_MASK)) |
| addr = trap_registers.pc + 4 + OPCODE_BTF_DISP(op); |
| else |
| addr = trap_registers.pc + 4; /* Not in delay slot */ |
| } |
| |
| /* BRA */ |
| else if (OPCODE_BRA(op)) |
| addr = trap_registers.pc + 4 + OPCODE_BRA_DISP(op); |
| |
| /* BRAF */ |
| else if (OPCODE_BRAF(op)) |
| addr = trap_registers.pc + 4 |
| + trap_registers.regs[OPCODE_BRAF_REG(op)]; |
| |
| /* BSR */ |
| else if (OPCODE_BSR(op)) |
| addr = trap_registers.pc + 4 + OPCODE_BSR_DISP(op); |
| |
| /* BSRF */ |
| else if (OPCODE_BSRF(op)) |
| addr = trap_registers.pc + 4 |
| + trap_registers.regs[OPCODE_BSRF_REG(op)]; |
| |
| /* JMP */ |
| else if (OPCODE_JMP(op)) |
| addr = trap_registers.regs[OPCODE_JMP_REG(op)]; |
| |
| /* JSR */ |
| else if (OPCODE_JSR(op)) |
| addr = trap_registers.regs[OPCODE_JSR_REG(op)]; |
| |
| /* RTS */ |
| else if (OPCODE_RTS(op)) |
| addr = trap_registers.pr; |
| |
| /* RTE */ |
| else if (OPCODE_RTE(op)) |
| addr = trap_registers.regs[15]; |
| |
| /* Other */ |
| else |
| addr = trap_registers.pc + 2; |
| |
| flush_icache_range(addr, addr + 2); |
| return (short *) addr; |
| } |
| |
| /* Set up a single-step. Replace the instruction immediately after the |
| current instruction (i.e. next in the expected flow of control) with a |
| trap instruction, so that returning will cause only a single instruction |
| to be executed. Note that this model is slightly broken for instructions |
| with delay slots (e.g. B[TF]S, BSR, BRA etc), where both the branch |
| and the instruction in the delay slot will be executed. */ |
| static void do_single_step(void) |
| { |
| unsigned short *addr = 0; |
| |
| /* Determine where the target instruction will send us to */ |
| addr = get_step_address(); |
| stepped_address = (int)addr; |
| |
| /* Replace it */ |
| stepped_opcode = *(short *)addr; |
| *addr = STEP_OPCODE; |
| |
| /* Flush and return */ |
| flush_icache_range((long) addr, (long) addr + 2); |
| } |
| |
| /* Undo a single step */ |
| static void undo_single_step(void) |
| { |
| /* If we have stepped, put back the old instruction */ |
| /* Use stepped_address in case we stopped elsewhere */ |
| if (stepped_opcode != 0) { |
| *(short*)stepped_address = stepped_opcode; |
| flush_icache_range(stepped_address, stepped_address + 2); |
| } |
| stepped_opcode = 0; |
| } |
| |
| /* Send a signal message */ |
| static void send_signal_msg(const int signum) |
| { |
| out_buffer[0] = 'S'; |
| out_buffer[1] = hex_asc_hi(signum); |
| out_buffer[2] = hex_asc_lo(signum); |
| out_buffer[3] = 0; |
| put_packet(out_buffer); |
| } |
| |
| /* Reply that all was well */ |
| static void send_ok_msg(void) |
| { |
| strcpy(out_buffer, "OK"); |
| put_packet(out_buffer); |
| } |
| |
| /* Reply that an error occurred */ |
| static void send_err_msg(void) |
| { |
| strcpy(out_buffer, "E01"); |
| put_packet(out_buffer); |
| } |
| |
| /* Empty message indicates unrecognised command */ |
| static void send_empty_msg(void) |
| { |
| put_packet(""); |
| } |
| |
| /* Read memory due to 'm' message */ |
| static void read_mem_msg(void) |
| { |
| char *ptr; |
| int addr; |
| int length; |
| |
| /* Jmp, disable bus error handler */ |
| if (setjmp(rem_com_env) == 0) { |
| |
| kgdb_nofault = 1; |
| |
| /* Walk through, have m<addr>,<length> */ |
| ptr = &in_buffer[1]; |
| if (hex_to_int(&ptr, &addr) && (*ptr++ == ',')) |
| if (hex_to_int(&ptr, &length)) { |
| ptr = 0; |
| if (length * 2 > OUTBUFMAX) |
| length = OUTBUFMAX / 2; |
| mem_to_hex((char *) addr, out_buffer, length); |
| } |
| if (ptr) |
| send_err_msg(); |
| else |
| put_packet(out_buffer); |
| } else |
| send_err_msg(); |
| |
| /* Restore bus error handler */ |
| kgdb_nofault = 0; |
| } |
| |
| /* Write memory due to 'M' or 'X' message */ |
| static void write_mem_msg(int binary) |
| { |
| char *ptr; |
| int addr; |
| int length; |
| |
| if (setjmp(rem_com_env) == 0) { |
| |
| kgdb_nofault = 1; |
| |
| /* Walk through, have M<addr>,<length>:<data> */ |
| ptr = &in_buffer[1]; |
| if (hex_to_int(&ptr, &addr) && (*ptr++ == ',')) |
| if (hex_to_int(&ptr, &length) && (*ptr++ == ':')) { |
| if (binary) |
| ebin_to_mem(ptr, (char*)addr, length); |
| else |
| hex_to_mem(ptr, (char*)addr, length); |
| flush_icache_range(addr, addr + length); |
| ptr = 0; |
| send_ok_msg(); |
| } |
| if (ptr) |
| send_err_msg(); |
| } else |
| send_err_msg(); |
| |
| /* Restore bus error handler */ |
| kgdb_nofault = 0; |
| } |
| |
| /* Continue message */ |
| static void continue_msg(void) |
| { |
| /* Try to read optional parameter, PC unchanged if none */ |
| char *ptr = &in_buffer[1]; |
| int addr; |
| |
| if (hex_to_int(&ptr, &addr)) |
| trap_registers.pc = addr; |
| } |
| |
| /* Continue message with signal */ |
| static void continue_with_sig_msg(void) |
| { |
| int signal; |
| char *ptr = &in_buffer[1]; |
| int addr; |
| |
| /* Report limitation */ |
| kgdb_to_gdb("Cannot force signal in kgdb, continuing anyway.\n"); |
| |
| /* Signal */ |
| hex_to_int(&ptr, &signal); |
| if (*ptr == ';') |
| ptr++; |
| |
| /* Optional address */ |
| if (hex_to_int(&ptr, &addr)) |
| trap_registers.pc = addr; |
| } |
| |
| /* Step message */ |
| static void step_msg(void) |
| { |
| continue_msg(); |
| do_single_step(); |
| } |
| |
| /* Step message with signal */ |
| static void step_with_sig_msg(void) |
| { |
| continue_with_sig_msg(); |
| do_single_step(); |
| } |
| |
| /* Send register contents */ |
| static void send_regs_msg(void) |
| { |
| kgdb_regs_to_gdb_regs(&trap_registers, registers); |
| mem_to_hex((char *) registers, out_buffer, NUMREGBYTES); |
| put_packet(out_buffer); |
| } |
| |
| /* Set register contents - currently can't set other thread's registers */ |
| static void set_regs_msg(void) |
| { |
| kgdb_regs_to_gdb_regs(&trap_registers, registers); |
| hex_to_mem(&in_buffer[1], (char *) registers, NUMREGBYTES); |
| gdb_regs_to_kgdb_regs(registers, &trap_registers); |
| send_ok_msg(); |
| } |
| |
| #ifdef CONFIG_SH_KGDB_CONSOLE |
| /* |
| * Bring up the ports.. |
| */ |
| static int __init kgdb_serial_setup(void) |
| { |
| struct console dummy; |
| return kgdb_console_setup(&dummy, 0); |
| } |
| #else |
| #define kgdb_serial_setup() 0 |
| #endif |
| |
| /* The command loop, read and act on requests */ |
| static void kgdb_command_loop(const int excep_code, const int trapa_value) |
| { |
| int sigval; |
| |
| /* Enter GDB mode (e.g. after detach) */ |
| if (!kgdb_in_gdb_mode) { |
| /* Do serial setup, notify user, issue preemptive ack */ |
| printk(KERN_NOTICE "KGDB: Waiting for GDB\n"); |
| kgdb_in_gdb_mode = 1; |
| put_debug_char('+'); |
| } |
| |
| /* Reply to host that an exception has occurred */ |
| sigval = compute_signal(excep_code); |
| send_signal_msg(sigval); |
| |
| /* TRAP_VEC exception indicates a software trap inserted in place of |
| code by GDB so back up PC by one instruction, as this instruction |
| will later be replaced by its original one. Do NOT do this for |
| trap 0xff, since that indicates a compiled-in breakpoint which |
| will not be replaced (and we would retake the trap forever) */ |
| if ((excep_code == TRAP_VEC) && (trapa_value != (0x3c << 2))) |
| trap_registers.pc -= 2; |
| |
| /* Undo any stepping we may have done */ |
| undo_single_step(); |
| |
| while (1) { |
| out_buffer[0] = 0; |
| get_packet(in_buffer, BUFMAX); |
| |
| /* Examine first char of buffer to see what we need to do */ |
| switch (in_buffer[0]) { |
| case '?': /* Send which signal we've received */ |
| send_signal_msg(sigval); |
| break; |
| |
| case 'g': /* Return the values of the CPU registers */ |
| send_regs_msg(); |
| break; |
| |
| case 'G': /* Set the value of the CPU registers */ |
| set_regs_msg(); |
| break; |
| |
| case 'm': /* Read LLLL bytes address AA..AA */ |
| read_mem_msg(); |
| break; |
| |
| case 'M': /* Write LLLL bytes address AA..AA, ret OK */ |
| write_mem_msg(0); /* 0 = data in hex */ |
| break; |
| |
| case 'X': /* Write LLLL bytes esc bin address AA..AA */ |
| if (kgdb_bits == '8') |
| write_mem_msg(1); /* 1 = data in binary */ |
| else |
| send_empty_msg(); |
| break; |
| |
| case 'C': /* Continue, signum included, we ignore it */ |
| continue_with_sig_msg(); |
| return; |
| |
| case 'c': /* Continue at address AA..AA (optional) */ |
| continue_msg(); |
| return; |
| |
| case 'S': /* Step, signum included, we ignore it */ |
| step_with_sig_msg(); |
| return; |
| |
| case 's': /* Step one instruction from AA..AA */ |
| step_msg(); |
| return; |
| |
| case 'k': /* 'Kill the program' with a kernel ? */ |
| break; |
| |
| case 'D': /* Detach from program, send reply OK */ |
| kgdb_in_gdb_mode = 0; |
| send_ok_msg(); |
| get_debug_char(); |
| return; |
| |
| default: |
| send_empty_msg(); |
| break; |
| } |
| } |
| } |
| |
| /* There has been an exception, most likely a breakpoint. */ |
| static void handle_exception(struct pt_regs *regs) |
| { |
| int excep_code, vbr_val; |
| int count; |
| int trapa_value = ctrl_inl(TRA); |
| |
| /* Copy kernel regs (from stack) */ |
| for (count = 0; count < 16; count++) |
| trap_registers.regs[count] = regs->regs[count]; |
| trap_registers.pc = regs->pc; |
| trap_registers.pr = regs->pr; |
| trap_registers.sr = regs->sr; |
| trap_registers.gbr = regs->gbr; |
| trap_registers.mach = regs->mach; |
| trap_registers.macl = regs->macl; |
| |
| asm("stc vbr, %0":"=r"(vbr_val)); |
| trap_registers.vbr = vbr_val; |
| |
| /* Get excode for command loop call, user access */ |
| asm("stc r2_bank, %0":"=r"(excep_code)); |
| |
| /* Act on the exception */ |
| kgdb_command_loop(excep_code, trapa_value); |
| |
| /* Copy back the (maybe modified) registers */ |
| for (count = 0; count < 16; count++) |
| regs->regs[count] = trap_registers.regs[count]; |
| regs->pc = trap_registers.pc; |
| regs->pr = trap_registers.pr; |
| regs->sr = trap_registers.sr; |
| regs->gbr = trap_registers.gbr; |
| regs->mach = trap_registers.mach; |
| regs->macl = trap_registers.macl; |
| |
| vbr_val = trap_registers.vbr; |
| asm("ldc %0, vbr": :"r"(vbr_val)); |
| } |
| |
| asmlinkage void kgdb_handle_exception(unsigned long r4, unsigned long r5, |
| unsigned long r6, unsigned long r7, |
| struct pt_regs __regs) |
| { |
| struct pt_regs *regs = RELOC_HIDE(&__regs, 0); |
| handle_exception(regs); |
| } |
| |
| /* Initialise the KGDB data structures and serial configuration */ |
| int __init kgdb_init(void) |
| { |
| in_nmi = 0; |
| kgdb_nofault = 0; |
| stepped_opcode = 0; |
| kgdb_in_gdb_mode = 0; |
| |
| if (kgdb_serial_setup() != 0) { |
| printk(KERN_NOTICE "KGDB: serial setup error\n"); |
| return -1; |
| } |
| |
| /* Init ptr to exception handler */ |
| kgdb_debug_hook = handle_exception; |
| kgdb_bus_err_hook = kgdb_handle_bus_error; |
| |
| /* Enter kgdb now if requested, or just report init done */ |
| printk(KERN_NOTICE "KGDB: stub is initialized.\n"); |
| |
| return 0; |
| } |
| |
| /* Make function available for "user messages"; console will use it too. */ |
| |
| char gdbmsgbuf[BUFMAX]; |
| #define MAXOUT ((BUFMAX-2)/2) |
| |
| static void kgdb_msg_write(const char *s, unsigned count) |
| { |
| int i; |
| int wcount; |
| char *bufptr; |
| |
| /* 'O'utput */ |
| gdbmsgbuf[0] = 'O'; |
| |
| /* Fill and send buffers... */ |
| while (count > 0) { |
| bufptr = gdbmsgbuf + 1; |
| |
| /* Calculate how many this time */ |
| wcount = (count > MAXOUT) ? MAXOUT : count; |
| |
| /* Pack in hex chars */ |
| for (i = 0; i < wcount; i++) |
| bufptr = pack_hex_byte(bufptr, s[i]); |
| *bufptr = '\0'; |
| |
| /* Move up */ |
| s += wcount; |
| count -= wcount; |
| |
| /* Write packet */ |
| put_packet(gdbmsgbuf); |
| } |
| } |
| |
| static void kgdb_to_gdb(const char *s) |
| { |
| kgdb_msg_write(s, strlen(s)); |
| } |
| |
| #ifdef CONFIG_SH_KGDB_CONSOLE |
| void kgdb_console_write(struct console *co, const char *s, unsigned count) |
| { |
| /* Bail if we're not talking to GDB */ |
| if (!kgdb_in_gdb_mode) |
| return; |
| |
| kgdb_msg_write(s, count); |
| } |
| #endif |
| |
| #ifdef CONFIG_KGDB_SYSRQ |
| static void sysrq_handle_gdb(int key, struct tty_struct *tty) |
| { |
| printk("Entering GDB stub\n"); |
| breakpoint(); |
| } |
| |
| static struct sysrq_key_op sysrq_gdb_op = { |
| .handler = sysrq_handle_gdb, |
| .help_msg = "Gdb", |
| .action_msg = "GDB", |
| }; |
| |
| static int gdb_register_sysrq(void) |
| { |
| printk("Registering GDB sysrq handler\n"); |
| register_sysrq_key('g', &sysrq_gdb_op); |
| return 0; |
| } |
| module_init(gdb_register_sysrq); |
| #endif |