|  | /* | 
|  | * Copyright (c) 2001-2004 by David Brownell | 
|  | * Copyright (c) 2003 Michal Sojka, for high-speed iso transfers | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify it | 
|  | * under the terms of the GNU General Public License as published by the | 
|  | * Free Software Foundation; either version 2 of the License, or (at your | 
|  | * option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, but | 
|  | * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY | 
|  | * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License | 
|  | * for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software Foundation, | 
|  | * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 
|  | */ | 
|  |  | 
|  | /* this file is part of ehci-hcd.c */ | 
|  |  | 
|  | /*-------------------------------------------------------------------------*/ | 
|  |  | 
|  | /* | 
|  | * EHCI scheduled transaction support:  interrupt, iso, split iso | 
|  | * These are called "periodic" transactions in the EHCI spec. | 
|  | * | 
|  | * Note that for interrupt transfers, the QH/QTD manipulation is shared | 
|  | * with the "asynchronous" transaction support (control/bulk transfers). | 
|  | * The only real difference is in how interrupt transfers are scheduled. | 
|  | * | 
|  | * For ISO, we make an "iso_stream" head to serve the same role as a QH. | 
|  | * It keeps track of every ITD (or SITD) that's linked, and holds enough | 
|  | * pre-calculated schedule data to make appending to the queue be quick. | 
|  | */ | 
|  |  | 
|  | static int ehci_get_frame (struct usb_hcd *hcd); | 
|  |  | 
|  | /* | 
|  | * periodic_next_shadow - return "next" pointer on shadow list | 
|  | * @periodic: host pointer to qh/itd/sitd | 
|  | * @tag: hardware tag for type of this record | 
|  | */ | 
|  | static union ehci_shadow * | 
|  | periodic_next_shadow(struct ehci_hcd *ehci, union ehci_shadow *periodic, | 
|  | __hc32 tag) | 
|  | { | 
|  | switch (hc32_to_cpu(ehci, tag)) { | 
|  | case Q_TYPE_QH: | 
|  | return &periodic->qh->qh_next; | 
|  | case Q_TYPE_FSTN: | 
|  | return &periodic->fstn->fstn_next; | 
|  | case Q_TYPE_ITD: | 
|  | return &periodic->itd->itd_next; | 
|  | // case Q_TYPE_SITD: | 
|  | default: | 
|  | return &periodic->sitd->sitd_next; | 
|  | } | 
|  | } | 
|  |  | 
|  | static __hc32 * | 
|  | shadow_next_periodic(struct ehci_hcd *ehci, union ehci_shadow *periodic, | 
|  | __hc32 tag) | 
|  | { | 
|  | switch (hc32_to_cpu(ehci, tag)) { | 
|  | /* our ehci_shadow.qh is actually software part */ | 
|  | case Q_TYPE_QH: | 
|  | return &periodic->qh->hw->hw_next; | 
|  | /* others are hw parts */ | 
|  | default: | 
|  | return periodic->hw_next; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* caller must hold ehci->lock */ | 
|  | static void periodic_unlink (struct ehci_hcd *ehci, unsigned frame, void *ptr) | 
|  | { | 
|  | union ehci_shadow	*prev_p = &ehci->pshadow[frame]; | 
|  | __hc32			*hw_p = &ehci->periodic[frame]; | 
|  | union ehci_shadow	here = *prev_p; | 
|  |  | 
|  | /* find predecessor of "ptr"; hw and shadow lists are in sync */ | 
|  | while (here.ptr && here.ptr != ptr) { | 
|  | prev_p = periodic_next_shadow(ehci, prev_p, | 
|  | Q_NEXT_TYPE(ehci, *hw_p)); | 
|  | hw_p = shadow_next_periodic(ehci, &here, | 
|  | Q_NEXT_TYPE(ehci, *hw_p)); | 
|  | here = *prev_p; | 
|  | } | 
|  | /* an interrupt entry (at list end) could have been shared */ | 
|  | if (!here.ptr) | 
|  | return; | 
|  |  | 
|  | /* update shadow and hardware lists ... the old "next" pointers | 
|  | * from ptr may still be in use, the caller updates them. | 
|  | */ | 
|  | *prev_p = *periodic_next_shadow(ehci, &here, | 
|  | Q_NEXT_TYPE(ehci, *hw_p)); | 
|  |  | 
|  | if (!ehci->use_dummy_qh || | 
|  | *shadow_next_periodic(ehci, &here, Q_NEXT_TYPE(ehci, *hw_p)) | 
|  | != EHCI_LIST_END(ehci)) | 
|  | *hw_p = *shadow_next_periodic(ehci, &here, | 
|  | Q_NEXT_TYPE(ehci, *hw_p)); | 
|  | else | 
|  | *hw_p = cpu_to_hc32(ehci, ehci->dummy->qh_dma); | 
|  | } | 
|  |  | 
|  | /*-------------------------------------------------------------------------*/ | 
|  |  | 
|  | /* Bandwidth and TT management */ | 
|  |  | 
|  | /* Find the TT data structure for this device; create it if necessary */ | 
|  | static struct ehci_tt *find_tt(struct usb_device *udev) | 
|  | { | 
|  | struct usb_tt		*utt = udev->tt; | 
|  | struct ehci_tt		*tt, **tt_index, **ptt; | 
|  | unsigned		port; | 
|  | bool			allocated_index = false; | 
|  |  | 
|  | if (!utt) | 
|  | return NULL;		/* Not below a TT */ | 
|  |  | 
|  | /* | 
|  | * Find/create our data structure. | 
|  | * For hubs with a single TT, we get it directly. | 
|  | * For hubs with multiple TTs, there's an extra level of pointers. | 
|  | */ | 
|  | tt_index = NULL; | 
|  | if (utt->multi) { | 
|  | tt_index = utt->hcpriv; | 
|  | if (!tt_index) {		/* Create the index array */ | 
|  | tt_index = kzalloc(utt->hub->maxchild * | 
|  | sizeof(*tt_index), GFP_ATOMIC); | 
|  | if (!tt_index) | 
|  | return ERR_PTR(-ENOMEM); | 
|  | utt->hcpriv = tt_index; | 
|  | allocated_index = true; | 
|  | } | 
|  | port = udev->ttport - 1; | 
|  | ptt = &tt_index[port]; | 
|  | } else { | 
|  | port = 0; | 
|  | ptt = (struct ehci_tt **) &utt->hcpriv; | 
|  | } | 
|  |  | 
|  | tt = *ptt; | 
|  | if (!tt) {				/* Create the ehci_tt */ | 
|  | struct ehci_hcd		*ehci = | 
|  | hcd_to_ehci(bus_to_hcd(udev->bus)); | 
|  |  | 
|  | tt = kzalloc(sizeof(*tt), GFP_ATOMIC); | 
|  | if (!tt) { | 
|  | if (allocated_index) { | 
|  | utt->hcpriv = NULL; | 
|  | kfree(tt_index); | 
|  | } | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  | list_add_tail(&tt->tt_list, &ehci->tt_list); | 
|  | INIT_LIST_HEAD(&tt->ps_list); | 
|  | tt->usb_tt = utt; | 
|  | tt->tt_port = port; | 
|  | *ptt = tt; | 
|  | } | 
|  |  | 
|  | return tt; | 
|  | } | 
|  |  | 
|  | /* Release the TT above udev, if it's not in use */ | 
|  | static void drop_tt(struct usb_device *udev) | 
|  | { | 
|  | struct usb_tt		*utt = udev->tt; | 
|  | struct ehci_tt		*tt, **tt_index, **ptt; | 
|  | int			cnt, i; | 
|  |  | 
|  | if (!utt || !utt->hcpriv) | 
|  | return;		/* Not below a TT, or never allocated */ | 
|  |  | 
|  | cnt = 0; | 
|  | if (utt->multi) { | 
|  | tt_index = utt->hcpriv; | 
|  | ptt = &tt_index[udev->ttport - 1]; | 
|  |  | 
|  | /* How many entries are left in tt_index? */ | 
|  | for (i = 0; i < utt->hub->maxchild; ++i) | 
|  | cnt += !!tt_index[i]; | 
|  | } else { | 
|  | tt_index = NULL; | 
|  | ptt = (struct ehci_tt **) &utt->hcpriv; | 
|  | } | 
|  |  | 
|  | tt = *ptt; | 
|  | if (!tt || !list_empty(&tt->ps_list)) | 
|  | return;		/* never allocated, or still in use */ | 
|  |  | 
|  | list_del(&tt->tt_list); | 
|  | *ptt = NULL; | 
|  | kfree(tt); | 
|  | if (cnt == 1) { | 
|  | utt->hcpriv = NULL; | 
|  | kfree(tt_index); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void bandwidth_dbg(struct ehci_hcd *ehci, int sign, char *type, | 
|  | struct ehci_per_sched *ps) | 
|  | { | 
|  | dev_dbg(&ps->udev->dev, | 
|  | "ep %02x: %s %s @ %u+%u (%u.%u+%u) [%u/%u us] mask %04x\n", | 
|  | ps->ep->desc.bEndpointAddress, | 
|  | (sign >= 0 ? "reserve" : "release"), type, | 
|  | (ps->bw_phase << 3) + ps->phase_uf, ps->bw_uperiod, | 
|  | ps->phase, ps->phase_uf, ps->period, | 
|  | ps->usecs, ps->c_usecs, ps->cs_mask); | 
|  | } | 
|  |  | 
|  | static void reserve_release_intr_bandwidth(struct ehci_hcd *ehci, | 
|  | struct ehci_qh *qh, int sign) | 
|  | { | 
|  | unsigned		start_uf; | 
|  | unsigned		i, j, m; | 
|  | int			usecs = qh->ps.usecs; | 
|  | int			c_usecs = qh->ps.c_usecs; | 
|  | int			tt_usecs = qh->ps.tt_usecs; | 
|  | struct ehci_tt		*tt; | 
|  |  | 
|  | if (qh->ps.phase == NO_FRAME)	/* Bandwidth wasn't reserved */ | 
|  | return; | 
|  | start_uf = qh->ps.bw_phase << 3; | 
|  |  | 
|  | bandwidth_dbg(ehci, sign, "intr", &qh->ps); | 
|  |  | 
|  | if (sign < 0) {		/* Release bandwidth */ | 
|  | usecs = -usecs; | 
|  | c_usecs = -c_usecs; | 
|  | tt_usecs = -tt_usecs; | 
|  | } | 
|  |  | 
|  | /* Entire transaction (high speed) or start-split (full/low speed) */ | 
|  | for (i = start_uf + qh->ps.phase_uf; i < EHCI_BANDWIDTH_SIZE; | 
|  | i += qh->ps.bw_uperiod) | 
|  | ehci->bandwidth[i] += usecs; | 
|  |  | 
|  | /* Complete-split (full/low speed) */ | 
|  | if (qh->ps.c_usecs) { | 
|  | /* NOTE: adjustments needed for FSTN */ | 
|  | for (i = start_uf; i < EHCI_BANDWIDTH_SIZE; | 
|  | i += qh->ps.bw_uperiod) { | 
|  | for ((j = 2, m = 1 << (j+8)); j < 8; (++j, m <<= 1)) { | 
|  | if (qh->ps.cs_mask & m) | 
|  | ehci->bandwidth[i+j] += c_usecs; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* FS/LS bus bandwidth */ | 
|  | if (tt_usecs) { | 
|  | tt = find_tt(qh->ps.udev); | 
|  | if (sign > 0) | 
|  | list_add_tail(&qh->ps.ps_list, &tt->ps_list); | 
|  | else | 
|  | list_del(&qh->ps.ps_list); | 
|  |  | 
|  | for (i = start_uf >> 3; i < EHCI_BANDWIDTH_FRAMES; | 
|  | i += qh->ps.bw_period) | 
|  | tt->bandwidth[i] += tt_usecs; | 
|  | } | 
|  | } | 
|  |  | 
|  | /*-------------------------------------------------------------------------*/ | 
|  |  | 
|  | static void compute_tt_budget(u8 budget_table[EHCI_BANDWIDTH_SIZE], | 
|  | struct ehci_tt *tt) | 
|  | { | 
|  | struct ehci_per_sched	*ps; | 
|  | unsigned		uframe, uf, x; | 
|  | u8			*budget_line; | 
|  |  | 
|  | if (!tt) | 
|  | return; | 
|  | memset(budget_table, 0, EHCI_BANDWIDTH_SIZE); | 
|  |  | 
|  | /* Add up the contributions from all the endpoints using this TT */ | 
|  | list_for_each_entry(ps, &tt->ps_list, ps_list) { | 
|  | for (uframe = ps->bw_phase << 3; uframe < EHCI_BANDWIDTH_SIZE; | 
|  | uframe += ps->bw_uperiod) { | 
|  | budget_line = &budget_table[uframe]; | 
|  | x = ps->tt_usecs; | 
|  |  | 
|  | /* propagate the time forward */ | 
|  | for (uf = ps->phase_uf; uf < 8; ++uf) { | 
|  | x += budget_line[uf]; | 
|  |  | 
|  | /* Each microframe lasts 125 us */ | 
|  | if (x <= 125) { | 
|  | budget_line[uf] = x; | 
|  | break; | 
|  | } else { | 
|  | budget_line[uf] = 125; | 
|  | x -= 125; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int __maybe_unused same_tt(struct usb_device *dev1, | 
|  | struct usb_device *dev2) | 
|  | { | 
|  | if (!dev1->tt || !dev2->tt) | 
|  | return 0; | 
|  | if (dev1->tt != dev2->tt) | 
|  | return 0; | 
|  | if (dev1->tt->multi) | 
|  | return dev1->ttport == dev2->ttport; | 
|  | else | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_USB_EHCI_TT_NEWSCHED | 
|  |  | 
|  | /* Which uframe does the low/fullspeed transfer start in? | 
|  | * | 
|  | * The parameter is the mask of ssplits in "H-frame" terms | 
|  | * and this returns the transfer start uframe in "B-frame" terms, | 
|  | * which allows both to match, e.g. a ssplit in "H-frame" uframe 0 | 
|  | * will cause a transfer in "B-frame" uframe 0.  "B-frames" lag | 
|  | * "H-frames" by 1 uframe.  See the EHCI spec sec 4.5 and figure 4.7. | 
|  | */ | 
|  | static inline unsigned char tt_start_uframe(struct ehci_hcd *ehci, __hc32 mask) | 
|  | { | 
|  | unsigned char smask = QH_SMASK & hc32_to_cpu(ehci, mask); | 
|  | if (!smask) { | 
|  | ehci_err(ehci, "invalid empty smask!\n"); | 
|  | /* uframe 7 can't have bw so this will indicate failure */ | 
|  | return 7; | 
|  | } | 
|  | return ffs(smask) - 1; | 
|  | } | 
|  |  | 
|  | static const unsigned char | 
|  | max_tt_usecs[] = { 125, 125, 125, 125, 125, 125, 30, 0 }; | 
|  |  | 
|  | /* carryover low/fullspeed bandwidth that crosses uframe boundries */ | 
|  | static inline void carryover_tt_bandwidth(unsigned short tt_usecs[8]) | 
|  | { | 
|  | int i; | 
|  | for (i=0; i<7; i++) { | 
|  | if (max_tt_usecs[i] < tt_usecs[i]) { | 
|  | tt_usecs[i+1] += tt_usecs[i] - max_tt_usecs[i]; | 
|  | tt_usecs[i] = max_tt_usecs[i]; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return true if the device's tt's downstream bus is available for a | 
|  | * periodic transfer of the specified length (usecs), starting at the | 
|  | * specified frame/uframe.  Note that (as summarized in section 11.19 | 
|  | * of the usb 2.0 spec) TTs can buffer multiple transactions for each | 
|  | * uframe. | 
|  | * | 
|  | * The uframe parameter is when the fullspeed/lowspeed transfer | 
|  | * should be executed in "B-frame" terms, which is the same as the | 
|  | * highspeed ssplit's uframe (which is in "H-frame" terms).  For example | 
|  | * a ssplit in "H-frame" 0 causes a transfer in "B-frame" 0. | 
|  | * See the EHCI spec sec 4.5 and fig 4.7. | 
|  | * | 
|  | * This checks if the full/lowspeed bus, at the specified starting uframe, | 
|  | * has the specified bandwidth available, according to rules listed | 
|  | * in USB 2.0 spec section 11.18.1 fig 11-60. | 
|  | * | 
|  | * This does not check if the transfer would exceed the max ssplit | 
|  | * limit of 16, specified in USB 2.0 spec section 11.18.4 requirement #4, | 
|  | * since proper scheduling limits ssplits to less than 16 per uframe. | 
|  | */ | 
|  | static int tt_available ( | 
|  | struct ehci_hcd		*ehci, | 
|  | struct ehci_per_sched	*ps, | 
|  | struct ehci_tt		*tt, | 
|  | unsigned		frame, | 
|  | unsigned		uframe | 
|  | ) | 
|  | { | 
|  | unsigned		period = ps->bw_period; | 
|  | unsigned		usecs = ps->tt_usecs; | 
|  |  | 
|  | if ((period == 0) || (uframe >= 7))	/* error */ | 
|  | return 0; | 
|  |  | 
|  | for (frame &= period - 1; frame < EHCI_BANDWIDTH_FRAMES; | 
|  | frame += period) { | 
|  | unsigned	i, uf; | 
|  | unsigned short	tt_usecs[8]; | 
|  |  | 
|  | if (tt->bandwidth[frame] + usecs > 900) | 
|  | return 0; | 
|  |  | 
|  | uf = frame << 3; | 
|  | for (i = 0; i < 8; (++i, ++uf)) | 
|  | tt_usecs[i] = ehci->tt_budget[uf]; | 
|  |  | 
|  | if (max_tt_usecs[uframe] <= tt_usecs[uframe]) | 
|  | return 0; | 
|  |  | 
|  | /* special case for isoc transfers larger than 125us: | 
|  | * the first and each subsequent fully used uframe | 
|  | * must be empty, so as to not illegally delay | 
|  | * already scheduled transactions | 
|  | */ | 
|  | if (125 < usecs) { | 
|  | int ufs = (usecs / 125); | 
|  |  | 
|  | for (i = uframe; i < (uframe + ufs) && i < 8; i++) | 
|  | if (0 < tt_usecs[i]) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | tt_usecs[uframe] += usecs; | 
|  |  | 
|  | carryover_tt_bandwidth(tt_usecs); | 
|  |  | 
|  | /* fail if the carryover pushed bw past the last uframe's limit */ | 
|  | if (max_tt_usecs[7] < tt_usecs[7]) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | /* return true iff the device's transaction translator is available | 
|  | * for a periodic transfer starting at the specified frame, using | 
|  | * all the uframes in the mask. | 
|  | */ | 
|  | static int tt_no_collision ( | 
|  | struct ehci_hcd		*ehci, | 
|  | unsigned		period, | 
|  | struct usb_device	*dev, | 
|  | unsigned		frame, | 
|  | u32			uf_mask | 
|  | ) | 
|  | { | 
|  | if (period == 0)	/* error */ | 
|  | return 0; | 
|  |  | 
|  | /* note bandwidth wastage:  split never follows csplit | 
|  | * (different dev or endpoint) until the next uframe. | 
|  | * calling convention doesn't make that distinction. | 
|  | */ | 
|  | for (; frame < ehci->periodic_size; frame += period) { | 
|  | union ehci_shadow	here; | 
|  | __hc32			type; | 
|  | struct ehci_qh_hw	*hw; | 
|  |  | 
|  | here = ehci->pshadow [frame]; | 
|  | type = Q_NEXT_TYPE(ehci, ehci->periodic [frame]); | 
|  | while (here.ptr) { | 
|  | switch (hc32_to_cpu(ehci, type)) { | 
|  | case Q_TYPE_ITD: | 
|  | type = Q_NEXT_TYPE(ehci, here.itd->hw_next); | 
|  | here = here.itd->itd_next; | 
|  | continue; | 
|  | case Q_TYPE_QH: | 
|  | hw = here.qh->hw; | 
|  | if (same_tt(dev, here.qh->ps.udev)) { | 
|  | u32		mask; | 
|  |  | 
|  | mask = hc32_to_cpu(ehci, | 
|  | hw->hw_info2); | 
|  | /* "knows" no gap is needed */ | 
|  | mask |= mask >> 8; | 
|  | if (mask & uf_mask) | 
|  | break; | 
|  | } | 
|  | type = Q_NEXT_TYPE(ehci, hw->hw_next); | 
|  | here = here.qh->qh_next; | 
|  | continue; | 
|  | case Q_TYPE_SITD: | 
|  | if (same_tt (dev, here.sitd->urb->dev)) { | 
|  | u16		mask; | 
|  |  | 
|  | mask = hc32_to_cpu(ehci, here.sitd | 
|  | ->hw_uframe); | 
|  | /* FIXME assumes no gap for IN! */ | 
|  | mask |= mask >> 8; | 
|  | if (mask & uf_mask) | 
|  | break; | 
|  | } | 
|  | type = Q_NEXT_TYPE(ehci, here.sitd->hw_next); | 
|  | here = here.sitd->sitd_next; | 
|  | continue; | 
|  | // case Q_TYPE_FSTN: | 
|  | default: | 
|  | ehci_dbg (ehci, | 
|  | "periodic frame %d bogus type %d\n", | 
|  | frame, type); | 
|  | } | 
|  |  | 
|  | /* collision or error */ | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* no collision */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_USB_EHCI_TT_NEWSCHED */ | 
|  |  | 
|  | /*-------------------------------------------------------------------------*/ | 
|  |  | 
|  | static void enable_periodic(struct ehci_hcd *ehci) | 
|  | { | 
|  | if (ehci->periodic_count++) | 
|  | return; | 
|  |  | 
|  | /* Stop waiting to turn off the periodic schedule */ | 
|  | ehci->enabled_hrtimer_events &= ~BIT(EHCI_HRTIMER_DISABLE_PERIODIC); | 
|  |  | 
|  | /* Don't start the schedule until PSS is 0 */ | 
|  | ehci_poll_PSS(ehci); | 
|  | turn_on_io_watchdog(ehci); | 
|  | } | 
|  |  | 
|  | static void disable_periodic(struct ehci_hcd *ehci) | 
|  | { | 
|  | if (--ehci->periodic_count) | 
|  | return; | 
|  |  | 
|  | /* Don't turn off the schedule until PSS is 1 */ | 
|  | ehci_poll_PSS(ehci); | 
|  | } | 
|  |  | 
|  | /*-------------------------------------------------------------------------*/ | 
|  |  | 
|  | /* periodic schedule slots have iso tds (normal or split) first, then a | 
|  | * sparse tree for active interrupt transfers. | 
|  | * | 
|  | * this just links in a qh; caller guarantees uframe masks are set right. | 
|  | * no FSTN support (yet; ehci 0.96+) | 
|  | */ | 
|  | static void qh_link_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh) | 
|  | { | 
|  | unsigned	i; | 
|  | unsigned	period = qh->ps.period; | 
|  |  | 
|  | dev_dbg(&qh->ps.udev->dev, | 
|  | "link qh%d-%04x/%p start %d [%d/%d us]\n", | 
|  | period, hc32_to_cpup(ehci, &qh->hw->hw_info2) | 
|  | & (QH_CMASK | QH_SMASK), | 
|  | qh, qh->ps.phase, qh->ps.usecs, qh->ps.c_usecs); | 
|  |  | 
|  | /* high bandwidth, or otherwise every microframe */ | 
|  | if (period == 0) | 
|  | period = 1; | 
|  |  | 
|  | for (i = qh->ps.phase; i < ehci->periodic_size; i += period) { | 
|  | union ehci_shadow	*prev = &ehci->pshadow[i]; | 
|  | __hc32			*hw_p = &ehci->periodic[i]; | 
|  | union ehci_shadow	here = *prev; | 
|  | __hc32			type = 0; | 
|  |  | 
|  | /* skip the iso nodes at list head */ | 
|  | while (here.ptr) { | 
|  | type = Q_NEXT_TYPE(ehci, *hw_p); | 
|  | if (type == cpu_to_hc32(ehci, Q_TYPE_QH)) | 
|  | break; | 
|  | prev = periodic_next_shadow(ehci, prev, type); | 
|  | hw_p = shadow_next_periodic(ehci, &here, type); | 
|  | here = *prev; | 
|  | } | 
|  |  | 
|  | /* sorting each branch by period (slow-->fast) | 
|  | * enables sharing interior tree nodes | 
|  | */ | 
|  | while (here.ptr && qh != here.qh) { | 
|  | if (qh->ps.period > here.qh->ps.period) | 
|  | break; | 
|  | prev = &here.qh->qh_next; | 
|  | hw_p = &here.qh->hw->hw_next; | 
|  | here = *prev; | 
|  | } | 
|  | /* link in this qh, unless some earlier pass did that */ | 
|  | if (qh != here.qh) { | 
|  | qh->qh_next = here; | 
|  | if (here.qh) | 
|  | qh->hw->hw_next = *hw_p; | 
|  | wmb (); | 
|  | prev->qh = qh; | 
|  | *hw_p = QH_NEXT (ehci, qh->qh_dma); | 
|  | } | 
|  | } | 
|  | qh->qh_state = QH_STATE_LINKED; | 
|  | qh->xacterrs = 0; | 
|  | qh->exception = 0; | 
|  |  | 
|  | /* update per-qh bandwidth for debugfs */ | 
|  | ehci_to_hcd(ehci)->self.bandwidth_allocated += qh->ps.bw_period | 
|  | ? ((qh->ps.usecs + qh->ps.c_usecs) / qh->ps.bw_period) | 
|  | : (qh->ps.usecs * 8); | 
|  |  | 
|  | list_add(&qh->intr_node, &ehci->intr_qh_list); | 
|  |  | 
|  | /* maybe enable periodic schedule processing */ | 
|  | ++ehci->intr_count; | 
|  | enable_periodic(ehci); | 
|  | } | 
|  |  | 
|  | static void qh_unlink_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh) | 
|  | { | 
|  | unsigned	i; | 
|  | unsigned	period; | 
|  |  | 
|  | /* | 
|  | * If qh is for a low/full-speed device, simply unlinking it | 
|  | * could interfere with an ongoing split transaction.  To unlink | 
|  | * it safely would require setting the QH_INACTIVATE bit and | 
|  | * waiting at least one frame, as described in EHCI 4.12.2.5. | 
|  | * | 
|  | * We won't bother with any of this.  Instead, we assume that the | 
|  | * only reason for unlinking an interrupt QH while the current URB | 
|  | * is still active is to dequeue all the URBs (flush the whole | 
|  | * endpoint queue). | 
|  | * | 
|  | * If rebalancing the periodic schedule is ever implemented, this | 
|  | * approach will no longer be valid. | 
|  | */ | 
|  |  | 
|  | /* high bandwidth, or otherwise part of every microframe */ | 
|  | period = qh->ps.period ? : 1; | 
|  |  | 
|  | for (i = qh->ps.phase; i < ehci->periodic_size; i += period) | 
|  | periodic_unlink (ehci, i, qh); | 
|  |  | 
|  | /* update per-qh bandwidth for debugfs */ | 
|  | ehci_to_hcd(ehci)->self.bandwidth_allocated -= qh->ps.bw_period | 
|  | ? ((qh->ps.usecs + qh->ps.c_usecs) / qh->ps.bw_period) | 
|  | : (qh->ps.usecs * 8); | 
|  |  | 
|  | dev_dbg(&qh->ps.udev->dev, | 
|  | "unlink qh%d-%04x/%p start %d [%d/%d us]\n", | 
|  | qh->ps.period, | 
|  | hc32_to_cpup(ehci, &qh->hw->hw_info2) & (QH_CMASK | QH_SMASK), | 
|  | qh, qh->ps.phase, qh->ps.usecs, qh->ps.c_usecs); | 
|  |  | 
|  | /* qh->qh_next still "live" to HC */ | 
|  | qh->qh_state = QH_STATE_UNLINK; | 
|  | qh->qh_next.ptr = NULL; | 
|  |  | 
|  | if (ehci->qh_scan_next == qh) | 
|  | ehci->qh_scan_next = list_entry(qh->intr_node.next, | 
|  | struct ehci_qh, intr_node); | 
|  | list_del(&qh->intr_node); | 
|  | } | 
|  |  | 
|  | static void cancel_unlink_wait_intr(struct ehci_hcd *ehci, struct ehci_qh *qh) | 
|  | { | 
|  | if (qh->qh_state != QH_STATE_LINKED || | 
|  | list_empty(&qh->unlink_node)) | 
|  | return; | 
|  |  | 
|  | list_del_init(&qh->unlink_node); | 
|  |  | 
|  | /* | 
|  | * TODO: disable the event of EHCI_HRTIMER_START_UNLINK_INTR for | 
|  | * avoiding unnecessary CPU wakeup | 
|  | */ | 
|  | } | 
|  |  | 
|  | static void start_unlink_intr(struct ehci_hcd *ehci, struct ehci_qh *qh) | 
|  | { | 
|  | /* If the QH isn't linked then there's nothing we can do. */ | 
|  | if (qh->qh_state != QH_STATE_LINKED) | 
|  | return; | 
|  |  | 
|  | /* if the qh is waiting for unlink, cancel it now */ | 
|  | cancel_unlink_wait_intr(ehci, qh); | 
|  |  | 
|  | qh_unlink_periodic (ehci, qh); | 
|  |  | 
|  | /* Make sure the unlinks are visible before starting the timer */ | 
|  | wmb(); | 
|  |  | 
|  | /* | 
|  | * The EHCI spec doesn't say how long it takes the controller to | 
|  | * stop accessing an unlinked interrupt QH.  The timer delay is | 
|  | * 9 uframes; presumably that will be long enough. | 
|  | */ | 
|  | qh->unlink_cycle = ehci->intr_unlink_cycle; | 
|  |  | 
|  | /* New entries go at the end of the intr_unlink list */ | 
|  | list_add_tail(&qh->unlink_node, &ehci->intr_unlink); | 
|  |  | 
|  | if (ehci->intr_unlinking) | 
|  | ;	/* Avoid recursive calls */ | 
|  | else if (ehci->rh_state < EHCI_RH_RUNNING) | 
|  | ehci_handle_intr_unlinks(ehci); | 
|  | else if (ehci->intr_unlink.next == &qh->unlink_node) { | 
|  | ehci_enable_event(ehci, EHCI_HRTIMER_UNLINK_INTR, true); | 
|  | ++ehci->intr_unlink_cycle; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * It is common only one intr URB is scheduled on one qh, and | 
|  | * given complete() is run in tasklet context, introduce a bit | 
|  | * delay to avoid unlink qh too early. | 
|  | */ | 
|  | static void start_unlink_intr_wait(struct ehci_hcd *ehci, | 
|  | struct ehci_qh *qh) | 
|  | { | 
|  | qh->unlink_cycle = ehci->intr_unlink_wait_cycle; | 
|  |  | 
|  | /* New entries go at the end of the intr_unlink_wait list */ | 
|  | list_add_tail(&qh->unlink_node, &ehci->intr_unlink_wait); | 
|  |  | 
|  | if (ehci->rh_state < EHCI_RH_RUNNING) | 
|  | ehci_handle_start_intr_unlinks(ehci); | 
|  | else if (ehci->intr_unlink_wait.next == &qh->unlink_node) { | 
|  | ehci_enable_event(ehci, EHCI_HRTIMER_START_UNLINK_INTR, true); | 
|  | ++ehci->intr_unlink_wait_cycle; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void end_unlink_intr(struct ehci_hcd *ehci, struct ehci_qh *qh) | 
|  | { | 
|  | struct ehci_qh_hw	*hw = qh->hw; | 
|  | int			rc; | 
|  |  | 
|  | qh->qh_state = QH_STATE_IDLE; | 
|  | hw->hw_next = EHCI_LIST_END(ehci); | 
|  |  | 
|  | if (!list_empty(&qh->qtd_list)) | 
|  | qh_completions(ehci, qh); | 
|  |  | 
|  | /* reschedule QH iff another request is queued */ | 
|  | if (!list_empty(&qh->qtd_list) && ehci->rh_state == EHCI_RH_RUNNING) { | 
|  | rc = qh_schedule(ehci, qh); | 
|  | if (rc == 0) { | 
|  | qh_refresh(ehci, qh); | 
|  | qh_link_periodic(ehci, qh); | 
|  | } | 
|  |  | 
|  | /* An error here likely indicates handshake failure | 
|  | * or no space left in the schedule.  Neither fault | 
|  | * should happen often ... | 
|  | * | 
|  | * FIXME kill the now-dysfunctional queued urbs | 
|  | */ | 
|  | else { | 
|  | ehci_err(ehci, "can't reschedule qh %p, err %d\n", | 
|  | qh, rc); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* maybe turn off periodic schedule */ | 
|  | --ehci->intr_count; | 
|  | disable_periodic(ehci); | 
|  | } | 
|  |  | 
|  | /*-------------------------------------------------------------------------*/ | 
|  |  | 
|  | static int check_period ( | 
|  | struct ehci_hcd *ehci, | 
|  | unsigned	frame, | 
|  | unsigned	uframe, | 
|  | unsigned	uperiod, | 
|  | unsigned	usecs | 
|  | ) { | 
|  | /* complete split running into next frame? | 
|  | * given FSTN support, we could sometimes check... | 
|  | */ | 
|  | if (uframe >= 8) | 
|  | return 0; | 
|  |  | 
|  | /* convert "usecs we need" to "max already claimed" */ | 
|  | usecs = ehci->uframe_periodic_max - usecs; | 
|  |  | 
|  | for (uframe += frame << 3; uframe < EHCI_BANDWIDTH_SIZE; | 
|  | uframe += uperiod) { | 
|  | if (ehci->bandwidth[uframe] > usecs) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // success! | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int check_intr_schedule ( | 
|  | struct ehci_hcd		*ehci, | 
|  | unsigned		frame, | 
|  | unsigned		uframe, | 
|  | struct ehci_qh		*qh, | 
|  | unsigned		*c_maskp, | 
|  | struct ehci_tt		*tt | 
|  | ) | 
|  | { | 
|  | int		retval = -ENOSPC; | 
|  | u8		mask = 0; | 
|  |  | 
|  | if (qh->ps.c_usecs && uframe >= 6)	/* FSTN territory? */ | 
|  | goto done; | 
|  |  | 
|  | if (!check_period(ehci, frame, uframe, qh->ps.bw_uperiod, qh->ps.usecs)) | 
|  | goto done; | 
|  | if (!qh->ps.c_usecs) { | 
|  | retval = 0; | 
|  | *c_maskp = 0; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_USB_EHCI_TT_NEWSCHED | 
|  | if (tt_available(ehci, &qh->ps, tt, frame, uframe)) { | 
|  | unsigned i; | 
|  |  | 
|  | /* TODO : this may need FSTN for SSPLIT in uframe 5. */ | 
|  | for (i = uframe+2; i < 8 && i <= uframe+4; i++) | 
|  | if (!check_period(ehci, frame, i, | 
|  | qh->ps.bw_uperiod, qh->ps.c_usecs)) | 
|  | goto done; | 
|  | else | 
|  | mask |= 1 << i; | 
|  |  | 
|  | retval = 0; | 
|  |  | 
|  | *c_maskp = mask; | 
|  | } | 
|  | #else | 
|  | /* Make sure this tt's buffer is also available for CSPLITs. | 
|  | * We pessimize a bit; probably the typical full speed case | 
|  | * doesn't need the second CSPLIT. | 
|  | * | 
|  | * NOTE:  both SPLIT and CSPLIT could be checked in just | 
|  | * one smart pass... | 
|  | */ | 
|  | mask = 0x03 << (uframe + qh->gap_uf); | 
|  | *c_maskp = mask; | 
|  |  | 
|  | mask |= 1 << uframe; | 
|  | if (tt_no_collision(ehci, qh->ps.bw_period, qh->ps.udev, frame, mask)) { | 
|  | if (!check_period(ehci, frame, uframe + qh->gap_uf + 1, | 
|  | qh->ps.bw_uperiod, qh->ps.c_usecs)) | 
|  | goto done; | 
|  | if (!check_period(ehci, frame, uframe + qh->gap_uf, | 
|  | qh->ps.bw_uperiod, qh->ps.c_usecs)) | 
|  | goto done; | 
|  | retval = 0; | 
|  | } | 
|  | #endif | 
|  | done: | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* "first fit" scheduling policy used the first time through, | 
|  | * or when the previous schedule slot can't be re-used. | 
|  | */ | 
|  | static int qh_schedule(struct ehci_hcd *ehci, struct ehci_qh *qh) | 
|  | { | 
|  | int		status = 0; | 
|  | unsigned	uframe; | 
|  | unsigned	c_mask; | 
|  | struct ehci_qh_hw	*hw = qh->hw; | 
|  | struct ehci_tt		*tt; | 
|  |  | 
|  | hw->hw_next = EHCI_LIST_END(ehci); | 
|  |  | 
|  | /* reuse the previous schedule slots, if we can */ | 
|  | if (qh->ps.phase != NO_FRAME) { | 
|  | ehci_dbg(ehci, "reused qh %p schedule\n", qh); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | uframe = 0; | 
|  | c_mask = 0; | 
|  | tt = find_tt(qh->ps.udev); | 
|  | if (IS_ERR(tt)) { | 
|  | status = PTR_ERR(tt); | 
|  | goto done; | 
|  | } | 
|  | compute_tt_budget(ehci->tt_budget, tt); | 
|  |  | 
|  | /* else scan the schedule to find a group of slots such that all | 
|  | * uframes have enough periodic bandwidth available. | 
|  | */ | 
|  | /* "normal" case, uframing flexible except with splits */ | 
|  | if (qh->ps.bw_period) { | 
|  | int		i; | 
|  | unsigned	frame; | 
|  |  | 
|  | for (i = qh->ps.bw_period; i > 0; --i) { | 
|  | frame = ++ehci->random_frame & (qh->ps.bw_period - 1); | 
|  | for (uframe = 0; uframe < 8; uframe++) { | 
|  | status = check_intr_schedule(ehci, | 
|  | frame, uframe, qh, &c_mask, tt); | 
|  | if (status == 0) | 
|  | goto got_it; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* qh->ps.bw_period == 0 means every uframe */ | 
|  | } else { | 
|  | status = check_intr_schedule(ehci, 0, 0, qh, &c_mask, tt); | 
|  | } | 
|  | if (status) | 
|  | goto done; | 
|  |  | 
|  | got_it: | 
|  | qh->ps.phase = (qh->ps.period ? ehci->random_frame & | 
|  | (qh->ps.period - 1) : 0); | 
|  | qh->ps.bw_phase = qh->ps.phase & (qh->ps.bw_period - 1); | 
|  | qh->ps.phase_uf = uframe; | 
|  | qh->ps.cs_mask = qh->ps.period ? | 
|  | (c_mask << 8) | (1 << uframe) : | 
|  | QH_SMASK; | 
|  |  | 
|  | /* reset S-frame and (maybe) C-frame masks */ | 
|  | hw->hw_info2 &= cpu_to_hc32(ehci, ~(QH_CMASK | QH_SMASK)); | 
|  | hw->hw_info2 |= cpu_to_hc32(ehci, qh->ps.cs_mask); | 
|  | reserve_release_intr_bandwidth(ehci, qh, 1); | 
|  |  | 
|  | done: | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static int intr_submit ( | 
|  | struct ehci_hcd		*ehci, | 
|  | struct urb		*urb, | 
|  | struct list_head	*qtd_list, | 
|  | gfp_t			mem_flags | 
|  | ) { | 
|  | unsigned		epnum; | 
|  | unsigned long		flags; | 
|  | struct ehci_qh		*qh; | 
|  | int			status; | 
|  | struct list_head	empty; | 
|  |  | 
|  | /* get endpoint and transfer/schedule data */ | 
|  | epnum = urb->ep->desc.bEndpointAddress; | 
|  |  | 
|  | spin_lock_irqsave (&ehci->lock, flags); | 
|  |  | 
|  | if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) { | 
|  | status = -ESHUTDOWN; | 
|  | goto done_not_linked; | 
|  | } | 
|  | status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb); | 
|  | if (unlikely(status)) | 
|  | goto done_not_linked; | 
|  |  | 
|  | /* get qh and force any scheduling errors */ | 
|  | INIT_LIST_HEAD (&empty); | 
|  | qh = qh_append_tds(ehci, urb, &empty, epnum, &urb->ep->hcpriv); | 
|  | if (qh == NULL) { | 
|  | status = -ENOMEM; | 
|  | goto done; | 
|  | } | 
|  | if (qh->qh_state == QH_STATE_IDLE) { | 
|  | if ((status = qh_schedule (ehci, qh)) != 0) | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | /* then queue the urb's tds to the qh */ | 
|  | qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv); | 
|  | BUG_ON (qh == NULL); | 
|  |  | 
|  | /* stuff into the periodic schedule */ | 
|  | if (qh->qh_state == QH_STATE_IDLE) { | 
|  | qh_refresh(ehci, qh); | 
|  | qh_link_periodic(ehci, qh); | 
|  | } else { | 
|  | /* cancel unlink wait for the qh */ | 
|  | cancel_unlink_wait_intr(ehci, qh); | 
|  | } | 
|  |  | 
|  | /* ... update usbfs periodic stats */ | 
|  | ehci_to_hcd(ehci)->self.bandwidth_int_reqs++; | 
|  |  | 
|  | done: | 
|  | if (unlikely(status)) | 
|  | usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb); | 
|  | done_not_linked: | 
|  | spin_unlock_irqrestore (&ehci->lock, flags); | 
|  | if (status) | 
|  | qtd_list_free (ehci, urb, qtd_list); | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static void scan_intr(struct ehci_hcd *ehci) | 
|  | { | 
|  | struct ehci_qh		*qh; | 
|  |  | 
|  | list_for_each_entry_safe(qh, ehci->qh_scan_next, &ehci->intr_qh_list, | 
|  | intr_node) { | 
|  |  | 
|  | /* clean any finished work for this qh */ | 
|  | if (!list_empty(&qh->qtd_list)) { | 
|  | int temp; | 
|  |  | 
|  | /* | 
|  | * Unlinks could happen here; completion reporting | 
|  | * drops the lock.  That's why ehci->qh_scan_next | 
|  | * always holds the next qh to scan; if the next qh | 
|  | * gets unlinked then ehci->qh_scan_next is adjusted | 
|  | * in qh_unlink_periodic(). | 
|  | */ | 
|  | temp = qh_completions(ehci, qh); | 
|  | if (unlikely(temp)) | 
|  | start_unlink_intr(ehci, qh); | 
|  | else if (unlikely(list_empty(&qh->qtd_list) && | 
|  | qh->qh_state == QH_STATE_LINKED)) | 
|  | start_unlink_intr_wait(ehci, qh); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /*-------------------------------------------------------------------------*/ | 
|  |  | 
|  | /* ehci_iso_stream ops work with both ITD and SITD */ | 
|  |  | 
|  | static struct ehci_iso_stream * | 
|  | iso_stream_alloc (gfp_t mem_flags) | 
|  | { | 
|  | struct ehci_iso_stream *stream; | 
|  |  | 
|  | stream = kzalloc(sizeof *stream, mem_flags); | 
|  | if (likely (stream != NULL)) { | 
|  | INIT_LIST_HEAD(&stream->td_list); | 
|  | INIT_LIST_HEAD(&stream->free_list); | 
|  | stream->next_uframe = NO_FRAME; | 
|  | stream->ps.phase = NO_FRAME; | 
|  | } | 
|  | return stream; | 
|  | } | 
|  |  | 
|  | static void | 
|  | iso_stream_init ( | 
|  | struct ehci_hcd		*ehci, | 
|  | struct ehci_iso_stream	*stream, | 
|  | struct urb		*urb | 
|  | ) | 
|  | { | 
|  | static const u8 smask_out [] = { 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f }; | 
|  |  | 
|  | struct usb_device	*dev = urb->dev; | 
|  | u32			buf1; | 
|  | unsigned		epnum, maxp; | 
|  | int			is_input; | 
|  | unsigned		tmp; | 
|  |  | 
|  | /* | 
|  | * this might be a "high bandwidth" highspeed endpoint, | 
|  | * as encoded in the ep descriptor's wMaxPacket field | 
|  | */ | 
|  | epnum = usb_pipeendpoint(urb->pipe); | 
|  | is_input = usb_pipein(urb->pipe) ? USB_DIR_IN : 0; | 
|  | maxp = usb_endpoint_maxp(&urb->ep->desc); | 
|  | if (is_input) { | 
|  | buf1 = (1 << 11); | 
|  | } else { | 
|  | buf1 = 0; | 
|  | } | 
|  |  | 
|  | /* knows about ITD vs SITD */ | 
|  | if (dev->speed == USB_SPEED_HIGH) { | 
|  | unsigned multi = hb_mult(maxp); | 
|  |  | 
|  | stream->highspeed = 1; | 
|  |  | 
|  | maxp = max_packet(maxp); | 
|  | buf1 |= maxp; | 
|  | maxp *= multi; | 
|  |  | 
|  | stream->buf0 = cpu_to_hc32(ehci, (epnum << 8) | dev->devnum); | 
|  | stream->buf1 = cpu_to_hc32(ehci, buf1); | 
|  | stream->buf2 = cpu_to_hc32(ehci, multi); | 
|  |  | 
|  | /* usbfs wants to report the average usecs per frame tied up | 
|  | * when transfers on this endpoint are scheduled ... | 
|  | */ | 
|  | stream->ps.usecs = HS_USECS_ISO(maxp); | 
|  |  | 
|  | /* period for bandwidth allocation */ | 
|  | tmp = min_t(unsigned, EHCI_BANDWIDTH_SIZE, | 
|  | 1 << (urb->ep->desc.bInterval - 1)); | 
|  |  | 
|  | /* Allow urb->interval to override */ | 
|  | stream->ps.bw_uperiod = min_t(unsigned, tmp, urb->interval); | 
|  |  | 
|  | stream->uperiod = urb->interval; | 
|  | stream->ps.period = urb->interval >> 3; | 
|  | stream->bandwidth = stream->ps.usecs * 8 / | 
|  | stream->ps.bw_uperiod; | 
|  |  | 
|  | } else { | 
|  | u32		addr; | 
|  | int		think_time; | 
|  | int		hs_transfers; | 
|  |  | 
|  | addr = dev->ttport << 24; | 
|  | if (!ehci_is_TDI(ehci) | 
|  | || (dev->tt->hub != | 
|  | ehci_to_hcd(ehci)->self.root_hub)) | 
|  | addr |= dev->tt->hub->devnum << 16; | 
|  | addr |= epnum << 8; | 
|  | addr |= dev->devnum; | 
|  | stream->ps.usecs = HS_USECS_ISO(maxp); | 
|  | think_time = dev->tt ? dev->tt->think_time : 0; | 
|  | stream->ps.tt_usecs = NS_TO_US(think_time + usb_calc_bus_time( | 
|  | dev->speed, is_input, 1, maxp)); | 
|  | hs_transfers = max (1u, (maxp + 187) / 188); | 
|  | if (is_input) { | 
|  | u32	tmp; | 
|  |  | 
|  | addr |= 1 << 31; | 
|  | stream->ps.c_usecs = stream->ps.usecs; | 
|  | stream->ps.usecs = HS_USECS_ISO(1); | 
|  | stream->ps.cs_mask = 1; | 
|  |  | 
|  | /* c-mask as specified in USB 2.0 11.18.4 3.c */ | 
|  | tmp = (1 << (hs_transfers + 2)) - 1; | 
|  | stream->ps.cs_mask |= tmp << (8 + 2); | 
|  | } else | 
|  | stream->ps.cs_mask = smask_out[hs_transfers - 1]; | 
|  |  | 
|  | /* period for bandwidth allocation */ | 
|  | tmp = min_t(unsigned, EHCI_BANDWIDTH_FRAMES, | 
|  | 1 << (urb->ep->desc.bInterval - 1)); | 
|  |  | 
|  | /* Allow urb->interval to override */ | 
|  | stream->ps.bw_period = min_t(unsigned, tmp, urb->interval); | 
|  | stream->ps.bw_uperiod = stream->ps.bw_period << 3; | 
|  |  | 
|  | stream->ps.period = urb->interval; | 
|  | stream->uperiod = urb->interval << 3; | 
|  | stream->bandwidth = (stream->ps.usecs + stream->ps.c_usecs) / | 
|  | stream->ps.bw_period; | 
|  |  | 
|  | /* stream->splits gets created from cs_mask later */ | 
|  | stream->address = cpu_to_hc32(ehci, addr); | 
|  | } | 
|  |  | 
|  | stream->ps.udev = dev; | 
|  | stream->ps.ep = urb->ep; | 
|  |  | 
|  | stream->bEndpointAddress = is_input | epnum; | 
|  | stream->maxp = maxp; | 
|  | } | 
|  |  | 
|  | static struct ehci_iso_stream * | 
|  | iso_stream_find (struct ehci_hcd *ehci, struct urb *urb) | 
|  | { | 
|  | unsigned		epnum; | 
|  | struct ehci_iso_stream	*stream; | 
|  | struct usb_host_endpoint *ep; | 
|  | unsigned long		flags; | 
|  |  | 
|  | epnum = usb_pipeendpoint (urb->pipe); | 
|  | if (usb_pipein(urb->pipe)) | 
|  | ep = urb->dev->ep_in[epnum]; | 
|  | else | 
|  | ep = urb->dev->ep_out[epnum]; | 
|  |  | 
|  | spin_lock_irqsave (&ehci->lock, flags); | 
|  | stream = ep->hcpriv; | 
|  |  | 
|  | if (unlikely (stream == NULL)) { | 
|  | stream = iso_stream_alloc(GFP_ATOMIC); | 
|  | if (likely (stream != NULL)) { | 
|  | ep->hcpriv = stream; | 
|  | iso_stream_init(ehci, stream, urb); | 
|  | } | 
|  |  | 
|  | /* if dev->ep [epnum] is a QH, hw is set */ | 
|  | } else if (unlikely (stream->hw != NULL)) { | 
|  | ehci_dbg (ehci, "dev %s ep%d%s, not iso??\n", | 
|  | urb->dev->devpath, epnum, | 
|  | usb_pipein(urb->pipe) ? "in" : "out"); | 
|  | stream = NULL; | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore (&ehci->lock, flags); | 
|  | return stream; | 
|  | } | 
|  |  | 
|  | /*-------------------------------------------------------------------------*/ | 
|  |  | 
|  | /* ehci_iso_sched ops can be ITD-only or SITD-only */ | 
|  |  | 
|  | static struct ehci_iso_sched * | 
|  | iso_sched_alloc (unsigned packets, gfp_t mem_flags) | 
|  | { | 
|  | struct ehci_iso_sched	*iso_sched; | 
|  | int			size = sizeof *iso_sched; | 
|  |  | 
|  | size += packets * sizeof (struct ehci_iso_packet); | 
|  | iso_sched = kzalloc(size, mem_flags); | 
|  | if (likely (iso_sched != NULL)) { | 
|  | INIT_LIST_HEAD (&iso_sched->td_list); | 
|  | } | 
|  | return iso_sched; | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | itd_sched_init( | 
|  | struct ehci_hcd		*ehci, | 
|  | struct ehci_iso_sched	*iso_sched, | 
|  | struct ehci_iso_stream	*stream, | 
|  | struct urb		*urb | 
|  | ) | 
|  | { | 
|  | unsigned	i; | 
|  | dma_addr_t	dma = urb->transfer_dma; | 
|  |  | 
|  | /* how many uframes are needed for these transfers */ | 
|  | iso_sched->span = urb->number_of_packets * stream->uperiod; | 
|  |  | 
|  | /* figure out per-uframe itd fields that we'll need later | 
|  | * when we fit new itds into the schedule. | 
|  | */ | 
|  | for (i = 0; i < urb->number_of_packets; i++) { | 
|  | struct ehci_iso_packet	*uframe = &iso_sched->packet [i]; | 
|  | unsigned		length; | 
|  | dma_addr_t		buf; | 
|  | u32			trans; | 
|  |  | 
|  | length = urb->iso_frame_desc [i].length; | 
|  | buf = dma + urb->iso_frame_desc [i].offset; | 
|  |  | 
|  | trans = EHCI_ISOC_ACTIVE; | 
|  | trans |= buf & 0x0fff; | 
|  | if (unlikely (((i + 1) == urb->number_of_packets)) | 
|  | && !(urb->transfer_flags & URB_NO_INTERRUPT)) | 
|  | trans |= EHCI_ITD_IOC; | 
|  | trans |= length << 16; | 
|  | uframe->transaction = cpu_to_hc32(ehci, trans); | 
|  |  | 
|  | /* might need to cross a buffer page within a uframe */ | 
|  | uframe->bufp = (buf & ~(u64)0x0fff); | 
|  | buf += length; | 
|  | if (unlikely ((uframe->bufp != (buf & ~(u64)0x0fff)))) | 
|  | uframe->cross = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | iso_sched_free ( | 
|  | struct ehci_iso_stream	*stream, | 
|  | struct ehci_iso_sched	*iso_sched | 
|  | ) | 
|  | { | 
|  | if (!iso_sched) | 
|  | return; | 
|  | // caller must hold ehci->lock! | 
|  | list_splice (&iso_sched->td_list, &stream->free_list); | 
|  | kfree (iso_sched); | 
|  | } | 
|  |  | 
|  | static int | 
|  | itd_urb_transaction ( | 
|  | struct ehci_iso_stream	*stream, | 
|  | struct ehci_hcd		*ehci, | 
|  | struct urb		*urb, | 
|  | gfp_t			mem_flags | 
|  | ) | 
|  | { | 
|  | struct ehci_itd		*itd; | 
|  | dma_addr_t		itd_dma; | 
|  | int			i; | 
|  | unsigned		num_itds; | 
|  | struct ehci_iso_sched	*sched; | 
|  | unsigned long		flags; | 
|  |  | 
|  | sched = iso_sched_alloc (urb->number_of_packets, mem_flags); | 
|  | if (unlikely (sched == NULL)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | itd_sched_init(ehci, sched, stream, urb); | 
|  |  | 
|  | if (urb->interval < 8) | 
|  | num_itds = 1 + (sched->span + 7) / 8; | 
|  | else | 
|  | num_itds = urb->number_of_packets; | 
|  |  | 
|  | /* allocate/init ITDs */ | 
|  | spin_lock_irqsave (&ehci->lock, flags); | 
|  | for (i = 0; i < num_itds; i++) { | 
|  |  | 
|  | /* | 
|  | * Use iTDs from the free list, but not iTDs that may | 
|  | * still be in use by the hardware. | 
|  | */ | 
|  | if (likely(!list_empty(&stream->free_list))) { | 
|  | itd = list_first_entry(&stream->free_list, | 
|  | struct ehci_itd, itd_list); | 
|  | if (itd->frame == ehci->now_frame) | 
|  | goto alloc_itd; | 
|  | list_del (&itd->itd_list); | 
|  | itd_dma = itd->itd_dma; | 
|  | } else { | 
|  | alloc_itd: | 
|  | spin_unlock_irqrestore (&ehci->lock, flags); | 
|  | itd = dma_pool_alloc (ehci->itd_pool, mem_flags, | 
|  | &itd_dma); | 
|  | spin_lock_irqsave (&ehci->lock, flags); | 
|  | if (!itd) { | 
|  | iso_sched_free(stream, sched); | 
|  | spin_unlock_irqrestore(&ehci->lock, flags); | 
|  | return -ENOMEM; | 
|  | } | 
|  | } | 
|  |  | 
|  | memset (itd, 0, sizeof *itd); | 
|  | itd->itd_dma = itd_dma; | 
|  | itd->frame = NO_FRAME; | 
|  | list_add (&itd->itd_list, &sched->td_list); | 
|  | } | 
|  | spin_unlock_irqrestore (&ehci->lock, flags); | 
|  |  | 
|  | /* temporarily store schedule info in hcpriv */ | 
|  | urb->hcpriv = sched; | 
|  | urb->error_count = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /*-------------------------------------------------------------------------*/ | 
|  |  | 
|  | static void reserve_release_iso_bandwidth(struct ehci_hcd *ehci, | 
|  | struct ehci_iso_stream *stream, int sign) | 
|  | { | 
|  | unsigned		uframe; | 
|  | unsigned		i, j; | 
|  | unsigned		s_mask, c_mask, m; | 
|  | int			usecs = stream->ps.usecs; | 
|  | int			c_usecs = stream->ps.c_usecs; | 
|  | int			tt_usecs = stream->ps.tt_usecs; | 
|  | struct ehci_tt		*tt; | 
|  |  | 
|  | if (stream->ps.phase == NO_FRAME)	/* Bandwidth wasn't reserved */ | 
|  | return; | 
|  | uframe = stream->ps.bw_phase << 3; | 
|  |  | 
|  | bandwidth_dbg(ehci, sign, "iso", &stream->ps); | 
|  |  | 
|  | if (sign < 0) {		/* Release bandwidth */ | 
|  | usecs = -usecs; | 
|  | c_usecs = -c_usecs; | 
|  | tt_usecs = -tt_usecs; | 
|  | } | 
|  |  | 
|  | if (!stream->splits) {		/* High speed */ | 
|  | for (i = uframe + stream->ps.phase_uf; i < EHCI_BANDWIDTH_SIZE; | 
|  | i += stream->ps.bw_uperiod) | 
|  | ehci->bandwidth[i] += usecs; | 
|  |  | 
|  | } else {			/* Full speed */ | 
|  | s_mask = stream->ps.cs_mask; | 
|  | c_mask = s_mask >> 8; | 
|  |  | 
|  | /* NOTE: adjustment needed for frame overflow */ | 
|  | for (i = uframe; i < EHCI_BANDWIDTH_SIZE; | 
|  | i += stream->ps.bw_uperiod) { | 
|  | for ((j = stream->ps.phase_uf, m = 1 << j); j < 8; | 
|  | (++j, m <<= 1)) { | 
|  | if (s_mask & m) | 
|  | ehci->bandwidth[i+j] += usecs; | 
|  | else if (c_mask & m) | 
|  | ehci->bandwidth[i+j] += c_usecs; | 
|  | } | 
|  | } | 
|  |  | 
|  | tt = find_tt(stream->ps.udev); | 
|  | if (sign > 0) | 
|  | list_add_tail(&stream->ps.ps_list, &tt->ps_list); | 
|  | else | 
|  | list_del(&stream->ps.ps_list); | 
|  |  | 
|  | for (i = uframe >> 3; i < EHCI_BANDWIDTH_FRAMES; | 
|  | i += stream->ps.bw_period) | 
|  | tt->bandwidth[i] += tt_usecs; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | itd_slot_ok ( | 
|  | struct ehci_hcd		*ehci, | 
|  | struct ehci_iso_stream	*stream, | 
|  | unsigned		uframe | 
|  | ) | 
|  | { | 
|  | unsigned		usecs; | 
|  |  | 
|  | /* convert "usecs we need" to "max already claimed" */ | 
|  | usecs = ehci->uframe_periodic_max - stream->ps.usecs; | 
|  |  | 
|  | for (uframe &= stream->ps.bw_uperiod - 1; uframe < EHCI_BANDWIDTH_SIZE; | 
|  | uframe += stream->ps.bw_uperiod) { | 
|  | if (ehci->bandwidth[uframe] > usecs) | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | sitd_slot_ok ( | 
|  | struct ehci_hcd		*ehci, | 
|  | struct ehci_iso_stream	*stream, | 
|  | unsigned		uframe, | 
|  | struct ehci_iso_sched	*sched, | 
|  | struct ehci_tt		*tt | 
|  | ) | 
|  | { | 
|  | unsigned		mask, tmp; | 
|  | unsigned		frame, uf; | 
|  |  | 
|  | mask = stream->ps.cs_mask << (uframe & 7); | 
|  |  | 
|  | /* for OUT, don't wrap SSPLIT into H-microframe 7 */ | 
|  | if (((stream->ps.cs_mask & 0xff) << (uframe & 7)) >= (1 << 7)) | 
|  | return 0; | 
|  |  | 
|  | /* for IN, don't wrap CSPLIT into the next frame */ | 
|  | if (mask & ~0xffff) | 
|  | return 0; | 
|  |  | 
|  | /* check bandwidth */ | 
|  | uframe &= stream->ps.bw_uperiod - 1; | 
|  | frame = uframe >> 3; | 
|  |  | 
|  | #ifdef CONFIG_USB_EHCI_TT_NEWSCHED | 
|  | /* The tt's fullspeed bus bandwidth must be available. | 
|  | * tt_available scheduling guarantees 10+% for control/bulk. | 
|  | */ | 
|  | uf = uframe & 7; | 
|  | if (!tt_available(ehci, &stream->ps, tt, frame, uf)) | 
|  | return 0; | 
|  | #else | 
|  | /* tt must be idle for start(s), any gap, and csplit. | 
|  | * assume scheduling slop leaves 10+% for control/bulk. | 
|  | */ | 
|  | if (!tt_no_collision(ehci, stream->ps.bw_period, | 
|  | stream->ps.udev, frame, mask)) | 
|  | return 0; | 
|  | #endif | 
|  |  | 
|  | do { | 
|  | unsigned	max_used; | 
|  | unsigned	i; | 
|  |  | 
|  | /* check starts (OUT uses more than one) */ | 
|  | uf = uframe; | 
|  | max_used = ehci->uframe_periodic_max - stream->ps.usecs; | 
|  | for (tmp = stream->ps.cs_mask & 0xff; tmp; tmp >>= 1, uf++) { | 
|  | if (ehci->bandwidth[uf] > max_used) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* for IN, check CSPLIT */ | 
|  | if (stream->ps.c_usecs) { | 
|  | max_used = ehci->uframe_periodic_max - | 
|  | stream->ps.c_usecs; | 
|  | uf = uframe & ~7; | 
|  | tmp = 1 << (2+8); | 
|  | for (i = (uframe & 7) + 2; i < 8; (++i, tmp <<= 1)) { | 
|  | if ((stream->ps.cs_mask & tmp) == 0) | 
|  | continue; | 
|  | if (ehci->bandwidth[uf+i] > max_used) | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | uframe += stream->ps.bw_uperiod; | 
|  | } while (uframe < EHCI_BANDWIDTH_SIZE); | 
|  |  | 
|  | stream->ps.cs_mask <<= uframe & 7; | 
|  | stream->splits = cpu_to_hc32(ehci, stream->ps.cs_mask); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This scheduler plans almost as far into the future as it has actual | 
|  | * periodic schedule slots.  (Affected by TUNE_FLS, which defaults to | 
|  | * "as small as possible" to be cache-friendlier.)  That limits the size | 
|  | * transfers you can stream reliably; avoid more than 64 msec per urb. | 
|  | * Also avoid queue depths of less than ehci's worst irq latency (affected | 
|  | * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter, | 
|  | * and other factors); or more than about 230 msec total (for portability, | 
|  | * given EHCI_TUNE_FLS and the slop).  Or, write a smarter scheduler! | 
|  | */ | 
|  |  | 
|  | static int | 
|  | iso_stream_schedule ( | 
|  | struct ehci_hcd		*ehci, | 
|  | struct urb		*urb, | 
|  | struct ehci_iso_stream	*stream | 
|  | ) | 
|  | { | 
|  | u32			now, base, next, start, period, span, now2; | 
|  | u32			wrap = 0, skip = 0; | 
|  | int			status = 0; | 
|  | unsigned		mod = ehci->periodic_size << 3; | 
|  | struct ehci_iso_sched	*sched = urb->hcpriv; | 
|  | bool			empty = list_empty(&stream->td_list); | 
|  | bool			new_stream = false; | 
|  |  | 
|  | period = stream->uperiod; | 
|  | span = sched->span; | 
|  | if (!stream->highspeed) | 
|  | span <<= 3; | 
|  |  | 
|  | /* Start a new isochronous stream? */ | 
|  | if (unlikely(empty && !hcd_periodic_completion_in_progress( | 
|  | ehci_to_hcd(ehci), urb->ep))) { | 
|  |  | 
|  | /* Schedule the endpoint */ | 
|  | if (stream->ps.phase == NO_FRAME) { | 
|  | int		done = 0; | 
|  | struct ehci_tt	*tt = find_tt(stream->ps.udev); | 
|  |  | 
|  | if (IS_ERR(tt)) { | 
|  | status = PTR_ERR(tt); | 
|  | goto fail; | 
|  | } | 
|  | compute_tt_budget(ehci->tt_budget, tt); | 
|  |  | 
|  | start = ((-(++ehci->random_frame)) << 3) & (period - 1); | 
|  |  | 
|  | /* find a uframe slot with enough bandwidth. | 
|  | * Early uframes are more precious because full-speed | 
|  | * iso IN transfers can't use late uframes, | 
|  | * and therefore they should be allocated last. | 
|  | */ | 
|  | next = start; | 
|  | start += period; | 
|  | do { | 
|  | start--; | 
|  | /* check schedule: enough space? */ | 
|  | if (stream->highspeed) { | 
|  | if (itd_slot_ok(ehci, stream, start)) | 
|  | done = 1; | 
|  | } else { | 
|  | if ((start % 8) >= 6) | 
|  | continue; | 
|  | if (sitd_slot_ok(ehci, stream, start, | 
|  | sched, tt)) | 
|  | done = 1; | 
|  | } | 
|  | } while (start > next && !done); | 
|  |  | 
|  | /* no room in the schedule */ | 
|  | if (!done) { | 
|  | ehci_dbg(ehci, "iso sched full %p", urb); | 
|  | status = -ENOSPC; | 
|  | goto fail; | 
|  | } | 
|  | stream->ps.phase = (start >> 3) & | 
|  | (stream->ps.period - 1); | 
|  | stream->ps.bw_phase = stream->ps.phase & | 
|  | (stream->ps.bw_period - 1); | 
|  | stream->ps.phase_uf = start & 7; | 
|  | reserve_release_iso_bandwidth(ehci, stream, 1); | 
|  | } | 
|  |  | 
|  | /* New stream is already scheduled; use the upcoming slot */ | 
|  | else { | 
|  | start = (stream->ps.phase << 3) + stream->ps.phase_uf; | 
|  | } | 
|  |  | 
|  | stream->next_uframe = start; | 
|  | new_stream = true; | 
|  | } | 
|  |  | 
|  | now = ehci_read_frame_index(ehci) & (mod - 1); | 
|  |  | 
|  | /* Take the isochronous scheduling threshold into account */ | 
|  | if (ehci->i_thresh) | 
|  | next = now + ehci->i_thresh;	/* uframe cache */ | 
|  | else | 
|  | next = (now + 2 + 7) & ~0x07;	/* full frame cache */ | 
|  |  | 
|  | /* | 
|  | * Use ehci->last_iso_frame as the base.  There can't be any | 
|  | * TDs scheduled for earlier than that. | 
|  | */ | 
|  | base = ehci->last_iso_frame << 3; | 
|  | next = (next - base) & (mod - 1); | 
|  | start = (stream->next_uframe - base) & (mod - 1); | 
|  |  | 
|  | if (unlikely(new_stream)) | 
|  | goto do_ASAP; | 
|  |  | 
|  | /* | 
|  | * Typical case: reuse current schedule, stream may still be active. | 
|  | * Hopefully there are no gaps from the host falling behind | 
|  | * (irq delays etc).  If there are, the behavior depends on | 
|  | * whether URB_ISO_ASAP is set. | 
|  | */ | 
|  | now2 = (now - base) & (mod - 1); | 
|  |  | 
|  | /* Is the schedule already full? */ | 
|  | if (unlikely(!empty && start < period)) { | 
|  | ehci_dbg(ehci, "iso sched full %p (%u-%u < %u mod %u)\n", | 
|  | urb, stream->next_uframe, base, period, mod); | 
|  | status = -ENOSPC; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | /* Is the next packet scheduled after the base time? */ | 
|  | if (likely(!empty || start <= now2 + period)) { | 
|  |  | 
|  | /* URB_ISO_ASAP: make sure that start >= next */ | 
|  | if (unlikely(start < next && | 
|  | (urb->transfer_flags & URB_ISO_ASAP))) | 
|  | goto do_ASAP; | 
|  |  | 
|  | /* Otherwise use start, if it's not in the past */ | 
|  | if (likely(start >= now2)) | 
|  | goto use_start; | 
|  |  | 
|  | /* Otherwise we got an underrun while the queue was empty */ | 
|  | } else { | 
|  | if (urb->transfer_flags & URB_ISO_ASAP) | 
|  | goto do_ASAP; | 
|  | wrap = mod; | 
|  | now2 += mod; | 
|  | } | 
|  |  | 
|  | /* How many uframes and packets do we need to skip? */ | 
|  | skip = (now2 - start + period - 1) & -period; | 
|  | if (skip >= span) {		/* Entirely in the past? */ | 
|  | ehci_dbg(ehci, "iso underrun %p (%u+%u < %u) [%u]\n", | 
|  | urb, start + base, span - period, now2 + base, | 
|  | base); | 
|  |  | 
|  | /* Try to keep the last TD intact for scanning later */ | 
|  | skip = span - period; | 
|  |  | 
|  | /* Will it come before the current scan position? */ | 
|  | if (empty) { | 
|  | skip = span;	/* Skip the entire URB */ | 
|  | status = 1;	/* and give it back immediately */ | 
|  | iso_sched_free(stream, sched); | 
|  | sched = NULL; | 
|  | } | 
|  | } | 
|  | urb->error_count = skip / period; | 
|  | if (sched) | 
|  | sched->first_packet = urb->error_count; | 
|  | goto use_start; | 
|  |  | 
|  | do_ASAP: | 
|  | /* Use the first slot after "next" */ | 
|  | start = next + ((start - next) & (period - 1)); | 
|  |  | 
|  | use_start: | 
|  | /* Tried to schedule too far into the future? */ | 
|  | if (unlikely(start + span - period >= mod + wrap)) { | 
|  | ehci_dbg(ehci, "request %p would overflow (%u+%u >= %u)\n", | 
|  | urb, start, span - period, mod + wrap); | 
|  | status = -EFBIG; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | start += base; | 
|  | stream->next_uframe = (start + skip) & (mod - 1); | 
|  |  | 
|  | /* report high speed start in uframes; full speed, in frames */ | 
|  | urb->start_frame = start & (mod - 1); | 
|  | if (!stream->highspeed) | 
|  | urb->start_frame >>= 3; | 
|  |  | 
|  | /* Make sure scan_isoc() sees these */ | 
|  | if (ehci->isoc_count == 0) | 
|  | ehci->last_iso_frame = now >> 3; | 
|  | return status; | 
|  |  | 
|  | fail: | 
|  | iso_sched_free(stream, sched); | 
|  | urb->hcpriv = NULL; | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /*-------------------------------------------------------------------------*/ | 
|  |  | 
|  | static inline void | 
|  | itd_init(struct ehci_hcd *ehci, struct ehci_iso_stream *stream, | 
|  | struct ehci_itd *itd) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* it's been recently zeroed */ | 
|  | itd->hw_next = EHCI_LIST_END(ehci); | 
|  | itd->hw_bufp [0] = stream->buf0; | 
|  | itd->hw_bufp [1] = stream->buf1; | 
|  | itd->hw_bufp [2] = stream->buf2; | 
|  |  | 
|  | for (i = 0; i < 8; i++) | 
|  | itd->index[i] = -1; | 
|  |  | 
|  | /* All other fields are filled when scheduling */ | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | itd_patch( | 
|  | struct ehci_hcd		*ehci, | 
|  | struct ehci_itd		*itd, | 
|  | struct ehci_iso_sched	*iso_sched, | 
|  | unsigned		index, | 
|  | u16			uframe | 
|  | ) | 
|  | { | 
|  | struct ehci_iso_packet	*uf = &iso_sched->packet [index]; | 
|  | unsigned		pg = itd->pg; | 
|  |  | 
|  | // BUG_ON (pg == 6 && uf->cross); | 
|  |  | 
|  | uframe &= 0x07; | 
|  | itd->index [uframe] = index; | 
|  |  | 
|  | itd->hw_transaction[uframe] = uf->transaction; | 
|  | itd->hw_transaction[uframe] |= cpu_to_hc32(ehci, pg << 12); | 
|  | itd->hw_bufp[pg] |= cpu_to_hc32(ehci, uf->bufp & ~(u32)0); | 
|  | itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(uf->bufp >> 32)); | 
|  |  | 
|  | /* iso_frame_desc[].offset must be strictly increasing */ | 
|  | if (unlikely (uf->cross)) { | 
|  | u64	bufp = uf->bufp + 4096; | 
|  |  | 
|  | itd->pg = ++pg; | 
|  | itd->hw_bufp[pg] |= cpu_to_hc32(ehci, bufp & ~(u32)0); | 
|  | itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(bufp >> 32)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | itd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_itd *itd) | 
|  | { | 
|  | union ehci_shadow	*prev = &ehci->pshadow[frame]; | 
|  | __hc32			*hw_p = &ehci->periodic[frame]; | 
|  | union ehci_shadow	here = *prev; | 
|  | __hc32			type = 0; | 
|  |  | 
|  | /* skip any iso nodes which might belong to previous microframes */ | 
|  | while (here.ptr) { | 
|  | type = Q_NEXT_TYPE(ehci, *hw_p); | 
|  | if (type == cpu_to_hc32(ehci, Q_TYPE_QH)) | 
|  | break; | 
|  | prev = periodic_next_shadow(ehci, prev, type); | 
|  | hw_p = shadow_next_periodic(ehci, &here, type); | 
|  | here = *prev; | 
|  | } | 
|  |  | 
|  | itd->itd_next = here; | 
|  | itd->hw_next = *hw_p; | 
|  | prev->itd = itd; | 
|  | itd->frame = frame; | 
|  | wmb (); | 
|  | *hw_p = cpu_to_hc32(ehci, itd->itd_dma | Q_TYPE_ITD); | 
|  | } | 
|  |  | 
|  | /* fit urb's itds into the selected schedule slot; activate as needed */ | 
|  | static void itd_link_urb( | 
|  | struct ehci_hcd		*ehci, | 
|  | struct urb		*urb, | 
|  | unsigned		mod, | 
|  | struct ehci_iso_stream	*stream | 
|  | ) | 
|  | { | 
|  | int			packet; | 
|  | unsigned		next_uframe, uframe, frame; | 
|  | struct ehci_iso_sched	*iso_sched = urb->hcpriv; | 
|  | struct ehci_itd		*itd; | 
|  |  | 
|  | next_uframe = stream->next_uframe & (mod - 1); | 
|  |  | 
|  | if (unlikely (list_empty(&stream->td_list))) | 
|  | ehci_to_hcd(ehci)->self.bandwidth_allocated | 
|  | += stream->bandwidth; | 
|  |  | 
|  | if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) { | 
|  | if (ehci->amd_pll_fix == 1) | 
|  | usb_amd_quirk_pll_disable(); | 
|  | } | 
|  |  | 
|  | ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++; | 
|  |  | 
|  | /* fill iTDs uframe by uframe */ | 
|  | for (packet = iso_sched->first_packet, itd = NULL; | 
|  | packet < urb->number_of_packets;) { | 
|  | if (itd == NULL) { | 
|  | /* ASSERT:  we have all necessary itds */ | 
|  | // BUG_ON (list_empty (&iso_sched->td_list)); | 
|  |  | 
|  | /* ASSERT:  no itds for this endpoint in this uframe */ | 
|  |  | 
|  | itd = list_entry (iso_sched->td_list.next, | 
|  | struct ehci_itd, itd_list); | 
|  | list_move_tail (&itd->itd_list, &stream->td_list); | 
|  | itd->stream = stream; | 
|  | itd->urb = urb; | 
|  | itd_init (ehci, stream, itd); | 
|  | } | 
|  |  | 
|  | uframe = next_uframe & 0x07; | 
|  | frame = next_uframe >> 3; | 
|  |  | 
|  | itd_patch(ehci, itd, iso_sched, packet, uframe); | 
|  |  | 
|  | next_uframe += stream->uperiod; | 
|  | next_uframe &= mod - 1; | 
|  | packet++; | 
|  |  | 
|  | /* link completed itds into the schedule */ | 
|  | if (((next_uframe >> 3) != frame) | 
|  | || packet == urb->number_of_packets) { | 
|  | itd_link(ehci, frame & (ehci->periodic_size - 1), itd); | 
|  | itd = NULL; | 
|  | } | 
|  | } | 
|  | stream->next_uframe = next_uframe; | 
|  |  | 
|  | /* don't need that schedule data any more */ | 
|  | iso_sched_free (stream, iso_sched); | 
|  | urb->hcpriv = stream; | 
|  |  | 
|  | ++ehci->isoc_count; | 
|  | enable_periodic(ehci); | 
|  | } | 
|  |  | 
|  | #define	ISO_ERRS (EHCI_ISOC_BUF_ERR | EHCI_ISOC_BABBLE | EHCI_ISOC_XACTERR) | 
|  |  | 
|  | /* Process and recycle a completed ITD.  Return true iff its urb completed, | 
|  | * and hence its completion callback probably added things to the hardware | 
|  | * schedule. | 
|  | * | 
|  | * Note that we carefully avoid recycling this descriptor until after any | 
|  | * completion callback runs, so that it won't be reused quickly.  That is, | 
|  | * assuming (a) no more than two urbs per frame on this endpoint, and also | 
|  | * (b) only this endpoint's completions submit URBs.  It seems some silicon | 
|  | * corrupts things if you reuse completed descriptors very quickly... | 
|  | */ | 
|  | static bool itd_complete(struct ehci_hcd *ehci, struct ehci_itd *itd) | 
|  | { | 
|  | struct urb				*urb = itd->urb; | 
|  | struct usb_iso_packet_descriptor	*desc; | 
|  | u32					t; | 
|  | unsigned				uframe; | 
|  | int					urb_index = -1; | 
|  | struct ehci_iso_stream			*stream = itd->stream; | 
|  | struct usb_device			*dev; | 
|  | bool					retval = false; | 
|  |  | 
|  | /* for each uframe with a packet */ | 
|  | for (uframe = 0; uframe < 8; uframe++) { | 
|  | if (likely (itd->index[uframe] == -1)) | 
|  | continue; | 
|  | urb_index = itd->index[uframe]; | 
|  | desc = &urb->iso_frame_desc [urb_index]; | 
|  |  | 
|  | t = hc32_to_cpup(ehci, &itd->hw_transaction [uframe]); | 
|  | itd->hw_transaction [uframe] = 0; | 
|  |  | 
|  | /* report transfer status */ | 
|  | if (unlikely (t & ISO_ERRS)) { | 
|  | urb->error_count++; | 
|  | if (t & EHCI_ISOC_BUF_ERR) | 
|  | desc->status = usb_pipein (urb->pipe) | 
|  | ? -ENOSR  /* hc couldn't read */ | 
|  | : -ECOMM; /* hc couldn't write */ | 
|  | else if (t & EHCI_ISOC_BABBLE) | 
|  | desc->status = -EOVERFLOW; | 
|  | else /* (t & EHCI_ISOC_XACTERR) */ | 
|  | desc->status = -EPROTO; | 
|  |  | 
|  | /* HC need not update length with this error */ | 
|  | if (!(t & EHCI_ISOC_BABBLE)) { | 
|  | desc->actual_length = EHCI_ITD_LENGTH(t); | 
|  | urb->actual_length += desc->actual_length; | 
|  | } | 
|  | } else if (likely ((t & EHCI_ISOC_ACTIVE) == 0)) { | 
|  | desc->status = 0; | 
|  | desc->actual_length = EHCI_ITD_LENGTH(t); | 
|  | urb->actual_length += desc->actual_length; | 
|  | } else { | 
|  | /* URB was too late */ | 
|  | urb->error_count++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* handle completion now? */ | 
|  | if (likely ((urb_index + 1) != urb->number_of_packets)) | 
|  | goto done; | 
|  |  | 
|  | /* ASSERT: it's really the last itd for this urb | 
|  | list_for_each_entry (itd, &stream->td_list, itd_list) | 
|  | BUG_ON (itd->urb == urb); | 
|  | */ | 
|  |  | 
|  | /* give urb back to the driver; completion often (re)submits */ | 
|  | dev = urb->dev; | 
|  | ehci_urb_done(ehci, urb, 0); | 
|  | retval = true; | 
|  | urb = NULL; | 
|  |  | 
|  | --ehci->isoc_count; | 
|  | disable_periodic(ehci); | 
|  |  | 
|  | ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--; | 
|  | if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) { | 
|  | if (ehci->amd_pll_fix == 1) | 
|  | usb_amd_quirk_pll_enable(); | 
|  | } | 
|  |  | 
|  | if (unlikely(list_is_singular(&stream->td_list))) | 
|  | ehci_to_hcd(ehci)->self.bandwidth_allocated | 
|  | -= stream->bandwidth; | 
|  |  | 
|  | done: | 
|  | itd->urb = NULL; | 
|  |  | 
|  | /* Add to the end of the free list for later reuse */ | 
|  | list_move_tail(&itd->itd_list, &stream->free_list); | 
|  |  | 
|  | /* Recycle the iTDs when the pipeline is empty (ep no longer in use) */ | 
|  | if (list_empty(&stream->td_list)) { | 
|  | list_splice_tail_init(&stream->free_list, | 
|  | &ehci->cached_itd_list); | 
|  | start_free_itds(ehci); | 
|  | } | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /*-------------------------------------------------------------------------*/ | 
|  |  | 
|  | static int itd_submit (struct ehci_hcd *ehci, struct urb *urb, | 
|  | gfp_t mem_flags) | 
|  | { | 
|  | int			status = -EINVAL; | 
|  | unsigned long		flags; | 
|  | struct ehci_iso_stream	*stream; | 
|  |  | 
|  | /* Get iso_stream head */ | 
|  | stream = iso_stream_find (ehci, urb); | 
|  | if (unlikely (stream == NULL)) { | 
|  | ehci_dbg (ehci, "can't get iso stream\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | if (unlikely(urb->interval != stream->uperiod)) { | 
|  | ehci_dbg (ehci, "can't change iso interval %d --> %d\n", | 
|  | stream->uperiod, urb->interval); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | #ifdef EHCI_URB_TRACE | 
|  | ehci_dbg (ehci, | 
|  | "%s %s urb %p ep%d%s len %d, %d pkts %d uframes [%p]\n", | 
|  | __func__, urb->dev->devpath, urb, | 
|  | usb_pipeendpoint (urb->pipe), | 
|  | usb_pipein (urb->pipe) ? "in" : "out", | 
|  | urb->transfer_buffer_length, | 
|  | urb->number_of_packets, urb->interval, | 
|  | stream); | 
|  | #endif | 
|  |  | 
|  | /* allocate ITDs w/o locking anything */ | 
|  | status = itd_urb_transaction (stream, ehci, urb, mem_flags); | 
|  | if (unlikely (status < 0)) { | 
|  | ehci_dbg (ehci, "can't init itds\n"); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | /* schedule ... need to lock */ | 
|  | spin_lock_irqsave (&ehci->lock, flags); | 
|  | if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) { | 
|  | status = -ESHUTDOWN; | 
|  | goto done_not_linked; | 
|  | } | 
|  | status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb); | 
|  | if (unlikely(status)) | 
|  | goto done_not_linked; | 
|  | status = iso_stream_schedule(ehci, urb, stream); | 
|  | if (likely(status == 0)) { | 
|  | itd_link_urb (ehci, urb, ehci->periodic_size << 3, stream); | 
|  | } else if (status > 0) { | 
|  | status = 0; | 
|  | ehci_urb_done(ehci, urb, 0); | 
|  | } else { | 
|  | usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb); | 
|  | } | 
|  | done_not_linked: | 
|  | spin_unlock_irqrestore (&ehci->lock, flags); | 
|  | done: | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /*-------------------------------------------------------------------------*/ | 
|  |  | 
|  | /* | 
|  | * "Split ISO TDs" ... used for USB 1.1 devices going through the | 
|  | * TTs in USB 2.0 hubs.  These need microframe scheduling. | 
|  | */ | 
|  |  | 
|  | static inline void | 
|  | sitd_sched_init( | 
|  | struct ehci_hcd		*ehci, | 
|  | struct ehci_iso_sched	*iso_sched, | 
|  | struct ehci_iso_stream	*stream, | 
|  | struct urb		*urb | 
|  | ) | 
|  | { | 
|  | unsigned	i; | 
|  | dma_addr_t	dma = urb->transfer_dma; | 
|  |  | 
|  | /* how many frames are needed for these transfers */ | 
|  | iso_sched->span = urb->number_of_packets * stream->ps.period; | 
|  |  | 
|  | /* figure out per-frame sitd fields that we'll need later | 
|  | * when we fit new sitds into the schedule. | 
|  | */ | 
|  | for (i = 0; i < urb->number_of_packets; i++) { | 
|  | struct ehci_iso_packet	*packet = &iso_sched->packet [i]; | 
|  | unsigned		length; | 
|  | dma_addr_t		buf; | 
|  | u32			trans; | 
|  |  | 
|  | length = urb->iso_frame_desc [i].length & 0x03ff; | 
|  | buf = dma + urb->iso_frame_desc [i].offset; | 
|  |  | 
|  | trans = SITD_STS_ACTIVE; | 
|  | if (((i + 1) == urb->number_of_packets) | 
|  | && !(urb->transfer_flags & URB_NO_INTERRUPT)) | 
|  | trans |= SITD_IOC; | 
|  | trans |= length << 16; | 
|  | packet->transaction = cpu_to_hc32(ehci, trans); | 
|  |  | 
|  | /* might need to cross a buffer page within a td */ | 
|  | packet->bufp = buf; | 
|  | packet->buf1 = (buf + length) & ~0x0fff; | 
|  | if (packet->buf1 != (buf & ~(u64)0x0fff)) | 
|  | packet->cross = 1; | 
|  |  | 
|  | /* OUT uses multiple start-splits */ | 
|  | if (stream->bEndpointAddress & USB_DIR_IN) | 
|  | continue; | 
|  | length = (length + 187) / 188; | 
|  | if (length > 1) /* BEGIN vs ALL */ | 
|  | length |= 1 << 3; | 
|  | packet->buf1 |= length; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int | 
|  | sitd_urb_transaction ( | 
|  | struct ehci_iso_stream	*stream, | 
|  | struct ehci_hcd		*ehci, | 
|  | struct urb		*urb, | 
|  | gfp_t			mem_flags | 
|  | ) | 
|  | { | 
|  | struct ehci_sitd	*sitd; | 
|  | dma_addr_t		sitd_dma; | 
|  | int			i; | 
|  | struct ehci_iso_sched	*iso_sched; | 
|  | unsigned long		flags; | 
|  |  | 
|  | iso_sched = iso_sched_alloc (urb->number_of_packets, mem_flags); | 
|  | if (iso_sched == NULL) | 
|  | return -ENOMEM; | 
|  |  | 
|  | sitd_sched_init(ehci, iso_sched, stream, urb); | 
|  |  | 
|  | /* allocate/init sITDs */ | 
|  | spin_lock_irqsave (&ehci->lock, flags); | 
|  | for (i = 0; i < urb->number_of_packets; i++) { | 
|  |  | 
|  | /* NOTE:  for now, we don't try to handle wraparound cases | 
|  | * for IN (using sitd->hw_backpointer, like a FSTN), which | 
|  | * means we never need two sitds for full speed packets. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Use siTDs from the free list, but not siTDs that may | 
|  | * still be in use by the hardware. | 
|  | */ | 
|  | if (likely(!list_empty(&stream->free_list))) { | 
|  | sitd = list_first_entry(&stream->free_list, | 
|  | struct ehci_sitd, sitd_list); | 
|  | if (sitd->frame == ehci->now_frame) | 
|  | goto alloc_sitd; | 
|  | list_del (&sitd->sitd_list); | 
|  | sitd_dma = sitd->sitd_dma; | 
|  | } else { | 
|  | alloc_sitd: | 
|  | spin_unlock_irqrestore (&ehci->lock, flags); | 
|  | sitd = dma_pool_alloc (ehci->sitd_pool, mem_flags, | 
|  | &sitd_dma); | 
|  | spin_lock_irqsave (&ehci->lock, flags); | 
|  | if (!sitd) { | 
|  | iso_sched_free(stream, iso_sched); | 
|  | spin_unlock_irqrestore(&ehci->lock, flags); | 
|  | return -ENOMEM; | 
|  | } | 
|  | } | 
|  |  | 
|  | memset (sitd, 0, sizeof *sitd); | 
|  | sitd->sitd_dma = sitd_dma; | 
|  | sitd->frame = NO_FRAME; | 
|  | list_add (&sitd->sitd_list, &iso_sched->td_list); | 
|  | } | 
|  |  | 
|  | /* temporarily store schedule info in hcpriv */ | 
|  | urb->hcpriv = iso_sched; | 
|  | urb->error_count = 0; | 
|  |  | 
|  | spin_unlock_irqrestore (&ehci->lock, flags); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /*-------------------------------------------------------------------------*/ | 
|  |  | 
|  | static inline void | 
|  | sitd_patch( | 
|  | struct ehci_hcd		*ehci, | 
|  | struct ehci_iso_stream	*stream, | 
|  | struct ehci_sitd	*sitd, | 
|  | struct ehci_iso_sched	*iso_sched, | 
|  | unsigned		index | 
|  | ) | 
|  | { | 
|  | struct ehci_iso_packet	*uf = &iso_sched->packet [index]; | 
|  | u64			bufp = uf->bufp; | 
|  |  | 
|  | sitd->hw_next = EHCI_LIST_END(ehci); | 
|  | sitd->hw_fullspeed_ep = stream->address; | 
|  | sitd->hw_uframe = stream->splits; | 
|  | sitd->hw_results = uf->transaction; | 
|  | sitd->hw_backpointer = EHCI_LIST_END(ehci); | 
|  |  | 
|  | bufp = uf->bufp; | 
|  | sitd->hw_buf[0] = cpu_to_hc32(ehci, bufp); | 
|  | sitd->hw_buf_hi[0] = cpu_to_hc32(ehci, bufp >> 32); | 
|  |  | 
|  | sitd->hw_buf[1] = cpu_to_hc32(ehci, uf->buf1); | 
|  | if (uf->cross) | 
|  | bufp += 4096; | 
|  | sitd->hw_buf_hi[1] = cpu_to_hc32(ehci, bufp >> 32); | 
|  | sitd->index = index; | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | sitd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_sitd *sitd) | 
|  | { | 
|  | /* note: sitd ordering could matter (CSPLIT then SSPLIT) */ | 
|  | sitd->sitd_next = ehci->pshadow [frame]; | 
|  | sitd->hw_next = ehci->periodic [frame]; | 
|  | ehci->pshadow [frame].sitd = sitd; | 
|  | sitd->frame = frame; | 
|  | wmb (); | 
|  | ehci->periodic[frame] = cpu_to_hc32(ehci, sitd->sitd_dma | Q_TYPE_SITD); | 
|  | } | 
|  |  | 
|  | /* fit urb's sitds into the selected schedule slot; activate as needed */ | 
|  | static void sitd_link_urb( | 
|  | struct ehci_hcd		*ehci, | 
|  | struct urb		*urb, | 
|  | unsigned		mod, | 
|  | struct ehci_iso_stream	*stream | 
|  | ) | 
|  | { | 
|  | int			packet; | 
|  | unsigned		next_uframe; | 
|  | struct ehci_iso_sched	*sched = urb->hcpriv; | 
|  | struct ehci_sitd	*sitd; | 
|  |  | 
|  | next_uframe = stream->next_uframe; | 
|  |  | 
|  | if (list_empty(&stream->td_list)) | 
|  | /* usbfs ignores TT bandwidth */ | 
|  | ehci_to_hcd(ehci)->self.bandwidth_allocated | 
|  | += stream->bandwidth; | 
|  |  | 
|  | if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) { | 
|  | if (ehci->amd_pll_fix == 1) | 
|  | usb_amd_quirk_pll_disable(); | 
|  | } | 
|  |  | 
|  | ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++; | 
|  |  | 
|  | /* fill sITDs frame by frame */ | 
|  | for (packet = sched->first_packet, sitd = NULL; | 
|  | packet < urb->number_of_packets; | 
|  | packet++) { | 
|  |  | 
|  | /* ASSERT:  we have all necessary sitds */ | 
|  | BUG_ON (list_empty (&sched->td_list)); | 
|  |  | 
|  | /* ASSERT:  no itds for this endpoint in this frame */ | 
|  |  | 
|  | sitd = list_entry (sched->td_list.next, | 
|  | struct ehci_sitd, sitd_list); | 
|  | list_move_tail (&sitd->sitd_list, &stream->td_list); | 
|  | sitd->stream = stream; | 
|  | sitd->urb = urb; | 
|  |  | 
|  | sitd_patch(ehci, stream, sitd, sched, packet); | 
|  | sitd_link(ehci, (next_uframe >> 3) & (ehci->periodic_size - 1), | 
|  | sitd); | 
|  |  | 
|  | next_uframe += stream->uperiod; | 
|  | } | 
|  | stream->next_uframe = next_uframe & (mod - 1); | 
|  |  | 
|  | /* don't need that schedule data any more */ | 
|  | iso_sched_free (stream, sched); | 
|  | urb->hcpriv = stream; | 
|  |  | 
|  | ++ehci->isoc_count; | 
|  | enable_periodic(ehci); | 
|  | } | 
|  |  | 
|  | /*-------------------------------------------------------------------------*/ | 
|  |  | 
|  | #define	SITD_ERRS (SITD_STS_ERR | SITD_STS_DBE | SITD_STS_BABBLE \ | 
|  | | SITD_STS_XACT | SITD_STS_MMF) | 
|  |  | 
|  | /* Process and recycle a completed SITD.  Return true iff its urb completed, | 
|  | * and hence its completion callback probably added things to the hardware | 
|  | * schedule. | 
|  | * | 
|  | * Note that we carefully avoid recycling this descriptor until after any | 
|  | * completion callback runs, so that it won't be reused quickly.  That is, | 
|  | * assuming (a) no more than two urbs per frame on this endpoint, and also | 
|  | * (b) only this endpoint's completions submit URBs.  It seems some silicon | 
|  | * corrupts things if you reuse completed descriptors very quickly... | 
|  | */ | 
|  | static bool sitd_complete(struct ehci_hcd *ehci, struct ehci_sitd *sitd) | 
|  | { | 
|  | struct urb				*urb = sitd->urb; | 
|  | struct usb_iso_packet_descriptor	*desc; | 
|  | u32					t; | 
|  | int					urb_index = -1; | 
|  | struct ehci_iso_stream			*stream = sitd->stream; | 
|  | struct usb_device			*dev; | 
|  | bool					retval = false; | 
|  |  | 
|  | urb_index = sitd->index; | 
|  | desc = &urb->iso_frame_desc [urb_index]; | 
|  | t = hc32_to_cpup(ehci, &sitd->hw_results); | 
|  |  | 
|  | /* report transfer status */ | 
|  | if (unlikely(t & SITD_ERRS)) { | 
|  | urb->error_count++; | 
|  | if (t & SITD_STS_DBE) | 
|  | desc->status = usb_pipein (urb->pipe) | 
|  | ? -ENOSR  /* hc couldn't read */ | 
|  | : -ECOMM; /* hc couldn't write */ | 
|  | else if (t & SITD_STS_BABBLE) | 
|  | desc->status = -EOVERFLOW; | 
|  | else /* XACT, MMF, etc */ | 
|  | desc->status = -EPROTO; | 
|  | } else if (unlikely(t & SITD_STS_ACTIVE)) { | 
|  | /* URB was too late */ | 
|  | urb->error_count++; | 
|  | } else { | 
|  | desc->status = 0; | 
|  | desc->actual_length = desc->length - SITD_LENGTH(t); | 
|  | urb->actual_length += desc->actual_length; | 
|  | } | 
|  |  | 
|  | /* handle completion now? */ | 
|  | if ((urb_index + 1) != urb->number_of_packets) | 
|  | goto done; | 
|  |  | 
|  | /* ASSERT: it's really the last sitd for this urb | 
|  | list_for_each_entry (sitd, &stream->td_list, sitd_list) | 
|  | BUG_ON (sitd->urb == urb); | 
|  | */ | 
|  |  | 
|  | /* give urb back to the driver; completion often (re)submits */ | 
|  | dev = urb->dev; | 
|  | ehci_urb_done(ehci, urb, 0); | 
|  | retval = true; | 
|  | urb = NULL; | 
|  |  | 
|  | --ehci->isoc_count; | 
|  | disable_periodic(ehci); | 
|  |  | 
|  | ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--; | 
|  | if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) { | 
|  | if (ehci->amd_pll_fix == 1) | 
|  | usb_amd_quirk_pll_enable(); | 
|  | } | 
|  |  | 
|  | if (list_is_singular(&stream->td_list)) | 
|  | ehci_to_hcd(ehci)->self.bandwidth_allocated | 
|  | -= stream->bandwidth; | 
|  |  | 
|  | done: | 
|  | sitd->urb = NULL; | 
|  |  | 
|  | /* Add to the end of the free list for later reuse */ | 
|  | list_move_tail(&sitd->sitd_list, &stream->free_list); | 
|  |  | 
|  | /* Recycle the siTDs when the pipeline is empty (ep no longer in use) */ | 
|  | if (list_empty(&stream->td_list)) { | 
|  | list_splice_tail_init(&stream->free_list, | 
|  | &ehci->cached_sitd_list); | 
|  | start_free_itds(ehci); | 
|  | } | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int sitd_submit (struct ehci_hcd *ehci, struct urb *urb, | 
|  | gfp_t mem_flags) | 
|  | { | 
|  | int			status = -EINVAL; | 
|  | unsigned long		flags; | 
|  | struct ehci_iso_stream	*stream; | 
|  |  | 
|  | /* Get iso_stream head */ | 
|  | stream = iso_stream_find (ehci, urb); | 
|  | if (stream == NULL) { | 
|  | ehci_dbg (ehci, "can't get iso stream\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | if (urb->interval != stream->ps.period) { | 
|  | ehci_dbg (ehci, "can't change iso interval %d --> %d\n", | 
|  | stream->ps.period, urb->interval); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | #ifdef EHCI_URB_TRACE | 
|  | ehci_dbg (ehci, | 
|  | "submit %p dev%s ep%d%s-iso len %d\n", | 
|  | urb, urb->dev->devpath, | 
|  | usb_pipeendpoint (urb->pipe), | 
|  | usb_pipein (urb->pipe) ? "in" : "out", | 
|  | urb->transfer_buffer_length); | 
|  | #endif | 
|  |  | 
|  | /* allocate SITDs */ | 
|  | status = sitd_urb_transaction (stream, ehci, urb, mem_flags); | 
|  | if (status < 0) { | 
|  | ehci_dbg (ehci, "can't init sitds\n"); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | /* schedule ... need to lock */ | 
|  | spin_lock_irqsave (&ehci->lock, flags); | 
|  | if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) { | 
|  | status = -ESHUTDOWN; | 
|  | goto done_not_linked; | 
|  | } | 
|  | status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb); | 
|  | if (unlikely(status)) | 
|  | goto done_not_linked; | 
|  | status = iso_stream_schedule(ehci, urb, stream); | 
|  | if (likely(status == 0)) { | 
|  | sitd_link_urb (ehci, urb, ehci->periodic_size << 3, stream); | 
|  | } else if (status > 0) { | 
|  | status = 0; | 
|  | ehci_urb_done(ehci, urb, 0); | 
|  | } else { | 
|  | usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb); | 
|  | } | 
|  | done_not_linked: | 
|  | spin_unlock_irqrestore (&ehci->lock, flags); | 
|  | done: | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /*-------------------------------------------------------------------------*/ | 
|  |  | 
|  | static void scan_isoc(struct ehci_hcd *ehci) | 
|  | { | 
|  | unsigned	uf, now_frame, frame; | 
|  | unsigned	fmask = ehci->periodic_size - 1; | 
|  | bool		modified, live; | 
|  |  | 
|  | /* | 
|  | * When running, scan from last scan point up to "now" | 
|  | * else clean up by scanning everything that's left. | 
|  | * Touches as few pages as possible:  cache-friendly. | 
|  | */ | 
|  | if (ehci->rh_state >= EHCI_RH_RUNNING) { | 
|  | uf = ehci_read_frame_index(ehci); | 
|  | now_frame = (uf >> 3) & fmask; | 
|  | live = true; | 
|  | } else  { | 
|  | now_frame = (ehci->last_iso_frame - 1) & fmask; | 
|  | live = false; | 
|  | } | 
|  | ehci->now_frame = now_frame; | 
|  |  | 
|  | frame = ehci->last_iso_frame; | 
|  | for (;;) { | 
|  | union ehci_shadow	q, *q_p; | 
|  | __hc32			type, *hw_p; | 
|  |  | 
|  | restart: | 
|  | /* scan each element in frame's queue for completions */ | 
|  | q_p = &ehci->pshadow [frame]; | 
|  | hw_p = &ehci->periodic [frame]; | 
|  | q.ptr = q_p->ptr; | 
|  | type = Q_NEXT_TYPE(ehci, *hw_p); | 
|  | modified = false; | 
|  |  | 
|  | while (q.ptr != NULL) { | 
|  | switch (hc32_to_cpu(ehci, type)) { | 
|  | case Q_TYPE_ITD: | 
|  | /* If this ITD is still active, leave it for | 
|  | * later processing ... check the next entry. | 
|  | * No need to check for activity unless the | 
|  | * frame is current. | 
|  | */ | 
|  | if (frame == now_frame && live) { | 
|  | rmb(); | 
|  | for (uf = 0; uf < 8; uf++) { | 
|  | if (q.itd->hw_transaction[uf] & | 
|  | ITD_ACTIVE(ehci)) | 
|  | break; | 
|  | } | 
|  | if (uf < 8) { | 
|  | q_p = &q.itd->itd_next; | 
|  | hw_p = &q.itd->hw_next; | 
|  | type = Q_NEXT_TYPE(ehci, | 
|  | q.itd->hw_next); | 
|  | q = *q_p; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Take finished ITDs out of the schedule | 
|  | * and process them:  recycle, maybe report | 
|  | * URB completion.  HC won't cache the | 
|  | * pointer for much longer, if at all. | 
|  | */ | 
|  | *q_p = q.itd->itd_next; | 
|  | if (!ehci->use_dummy_qh || | 
|  | q.itd->hw_next != EHCI_LIST_END(ehci)) | 
|  | *hw_p = q.itd->hw_next; | 
|  | else | 
|  | *hw_p = cpu_to_hc32(ehci, | 
|  | ehci->dummy->qh_dma); | 
|  | type = Q_NEXT_TYPE(ehci, q.itd->hw_next); | 
|  | wmb(); | 
|  | modified = itd_complete (ehci, q.itd); | 
|  | q = *q_p; | 
|  | break; | 
|  | case Q_TYPE_SITD: | 
|  | /* If this SITD is still active, leave it for | 
|  | * later processing ... check the next entry. | 
|  | * No need to check for activity unless the | 
|  | * frame is current. | 
|  | */ | 
|  | if (((frame == now_frame) || | 
|  | (((frame + 1) & fmask) == now_frame)) | 
|  | && live | 
|  | && (q.sitd->hw_results & | 
|  | SITD_ACTIVE(ehci))) { | 
|  |  | 
|  | q_p = &q.sitd->sitd_next; | 
|  | hw_p = &q.sitd->hw_next; | 
|  | type = Q_NEXT_TYPE(ehci, | 
|  | q.sitd->hw_next); | 
|  | q = *q_p; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Take finished SITDs out of the schedule | 
|  | * and process them:  recycle, maybe report | 
|  | * URB completion. | 
|  | */ | 
|  | *q_p = q.sitd->sitd_next; | 
|  | if (!ehci->use_dummy_qh || | 
|  | q.sitd->hw_next != EHCI_LIST_END(ehci)) | 
|  | *hw_p = q.sitd->hw_next; | 
|  | else | 
|  | *hw_p = cpu_to_hc32(ehci, | 
|  | ehci->dummy->qh_dma); | 
|  | type = Q_NEXT_TYPE(ehci, q.sitd->hw_next); | 
|  | wmb(); | 
|  | modified = sitd_complete (ehci, q.sitd); | 
|  | q = *q_p; | 
|  | break; | 
|  | default: | 
|  | ehci_dbg(ehci, "corrupt type %d frame %d shadow %p\n", | 
|  | type, frame, q.ptr); | 
|  | // BUG (); | 
|  | /* FALL THROUGH */ | 
|  | case Q_TYPE_QH: | 
|  | case Q_TYPE_FSTN: | 
|  | /* End of the iTDs and siTDs */ | 
|  | q.ptr = NULL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* assume completion callbacks modify the queue */ | 
|  | if (unlikely(modified && ehci->isoc_count > 0)) | 
|  | goto restart; | 
|  | } | 
|  |  | 
|  | /* Stop when we have reached the current frame */ | 
|  | if (frame == now_frame) | 
|  | break; | 
|  |  | 
|  | /* The last frame may still have active siTDs */ | 
|  | ehci->last_iso_frame = frame; | 
|  | frame = (frame + 1) & fmask; | 
|  | } | 
|  | } |