| /* |
| * Primary bucket allocation code |
| * |
| * Copyright 2012 Google, Inc. |
| * |
| * Allocation in bcache is done in terms of buckets: |
| * |
| * Each bucket has associated an 8 bit gen; this gen corresponds to the gen in |
| * btree pointers - they must match for the pointer to be considered valid. |
| * |
| * Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a |
| * bucket simply by incrementing its gen. |
| * |
| * The gens (along with the priorities; it's really the gens are important but |
| * the code is named as if it's the priorities) are written in an arbitrary list |
| * of buckets on disk, with a pointer to them in the journal header. |
| * |
| * When we invalidate a bucket, we have to write its new gen to disk and wait |
| * for that write to complete before we use it - otherwise after a crash we |
| * could have pointers that appeared to be good but pointed to data that had |
| * been overwritten. |
| * |
| * Since the gens and priorities are all stored contiguously on disk, we can |
| * batch this up: We fill up the free_inc list with freshly invalidated buckets, |
| * call prio_write(), and when prio_write() finishes we pull buckets off the |
| * free_inc list and optionally discard them. |
| * |
| * free_inc isn't the only freelist - if it was, we'd often to sleep while |
| * priorities and gens were being written before we could allocate. c->free is a |
| * smaller freelist, and buckets on that list are always ready to be used. |
| * |
| * If we've got discards enabled, that happens when a bucket moves from the |
| * free_inc list to the free list. |
| * |
| * There is another freelist, because sometimes we have buckets that we know |
| * have nothing pointing into them - these we can reuse without waiting for |
| * priorities to be rewritten. These come from freed btree nodes and buckets |
| * that garbage collection discovered no longer had valid keys pointing into |
| * them (because they were overwritten). That's the unused list - buckets on the |
| * unused list move to the free list, optionally being discarded in the process. |
| * |
| * It's also important to ensure that gens don't wrap around - with respect to |
| * either the oldest gen in the btree or the gen on disk. This is quite |
| * difficult to do in practice, but we explicitly guard against it anyways - if |
| * a bucket is in danger of wrapping around we simply skip invalidating it that |
| * time around, and we garbage collect or rewrite the priorities sooner than we |
| * would have otherwise. |
| * |
| * bch_bucket_alloc() allocates a single bucket from a specific cache. |
| * |
| * bch_bucket_alloc_set() allocates one or more buckets from different caches |
| * out of a cache set. |
| * |
| * free_some_buckets() drives all the processes described above. It's called |
| * from bch_bucket_alloc() and a few other places that need to make sure free |
| * buckets are ready. |
| * |
| * invalidate_buckets_(lru|fifo)() find buckets that are available to be |
| * invalidated, and then invalidate them and stick them on the free_inc list - |
| * in either lru or fifo order. |
| */ |
| |
| #include "bcache.h" |
| #include "btree.h" |
| |
| #include <linux/freezer.h> |
| #include <linux/kthread.h> |
| #include <linux/random.h> |
| #include <trace/events/bcache.h> |
| |
| #define MAX_IN_FLIGHT_DISCARDS 8U |
| |
| /* Bucket heap / gen */ |
| |
| uint8_t bch_inc_gen(struct cache *ca, struct bucket *b) |
| { |
| uint8_t ret = ++b->gen; |
| |
| ca->set->need_gc = max(ca->set->need_gc, bucket_gc_gen(b)); |
| WARN_ON_ONCE(ca->set->need_gc > BUCKET_GC_GEN_MAX); |
| |
| if (CACHE_SYNC(&ca->set->sb)) { |
| ca->need_save_prio = max(ca->need_save_prio, |
| bucket_disk_gen(b)); |
| WARN_ON_ONCE(ca->need_save_prio > BUCKET_DISK_GEN_MAX); |
| } |
| |
| return ret; |
| } |
| |
| void bch_rescale_priorities(struct cache_set *c, int sectors) |
| { |
| struct cache *ca; |
| struct bucket *b; |
| unsigned next = c->nbuckets * c->sb.bucket_size / 1024; |
| unsigned i; |
| int r; |
| |
| atomic_sub(sectors, &c->rescale); |
| |
| do { |
| r = atomic_read(&c->rescale); |
| |
| if (r >= 0) |
| return; |
| } while (atomic_cmpxchg(&c->rescale, r, r + next) != r); |
| |
| mutex_lock(&c->bucket_lock); |
| |
| c->min_prio = USHRT_MAX; |
| |
| for_each_cache(ca, c, i) |
| for_each_bucket(b, ca) |
| if (b->prio && |
| b->prio != BTREE_PRIO && |
| !atomic_read(&b->pin)) { |
| b->prio--; |
| c->min_prio = min(c->min_prio, b->prio); |
| } |
| |
| mutex_unlock(&c->bucket_lock); |
| } |
| |
| /* Discard/TRIM */ |
| |
| struct discard { |
| struct list_head list; |
| struct work_struct work; |
| struct cache *ca; |
| long bucket; |
| |
| struct bio bio; |
| struct bio_vec bv; |
| }; |
| |
| static void discard_finish(struct work_struct *w) |
| { |
| struct discard *d = container_of(w, struct discard, work); |
| struct cache *ca = d->ca; |
| char buf[BDEVNAME_SIZE]; |
| |
| if (!test_bit(BIO_UPTODATE, &d->bio.bi_flags)) { |
| pr_notice("discard error on %s, disabling", |
| bdevname(ca->bdev, buf)); |
| d->ca->discard = 0; |
| } |
| |
| mutex_lock(&ca->set->bucket_lock); |
| |
| fifo_push(&ca->free, d->bucket); |
| list_add(&d->list, &ca->discards); |
| atomic_dec(&ca->discards_in_flight); |
| |
| mutex_unlock(&ca->set->bucket_lock); |
| |
| closure_wake_up(&ca->set->bucket_wait); |
| wake_up_process(ca->alloc_thread); |
| |
| closure_put(&ca->set->cl); |
| } |
| |
| static void discard_endio(struct bio *bio, int error) |
| { |
| struct discard *d = container_of(bio, struct discard, bio); |
| schedule_work(&d->work); |
| } |
| |
| static void do_discard(struct cache *ca, long bucket) |
| { |
| struct discard *d = list_first_entry(&ca->discards, |
| struct discard, list); |
| |
| list_del(&d->list); |
| d->bucket = bucket; |
| |
| atomic_inc(&ca->discards_in_flight); |
| closure_get(&ca->set->cl); |
| |
| bio_init(&d->bio); |
| |
| d->bio.bi_sector = bucket_to_sector(ca->set, d->bucket); |
| d->bio.bi_bdev = ca->bdev; |
| d->bio.bi_rw = REQ_WRITE|REQ_DISCARD; |
| d->bio.bi_max_vecs = 1; |
| d->bio.bi_io_vec = d->bio.bi_inline_vecs; |
| d->bio.bi_size = bucket_bytes(ca); |
| d->bio.bi_end_io = discard_endio; |
| bio_set_prio(&d->bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0)); |
| |
| submit_bio(0, &d->bio); |
| } |
| |
| /* Allocation */ |
| |
| static inline bool can_inc_bucket_gen(struct bucket *b) |
| { |
| return bucket_gc_gen(b) < BUCKET_GC_GEN_MAX && |
| bucket_disk_gen(b) < BUCKET_DISK_GEN_MAX; |
| } |
| |
| bool bch_bucket_add_unused(struct cache *ca, struct bucket *b) |
| { |
| BUG_ON(GC_MARK(b) || GC_SECTORS_USED(b)); |
| |
| if (fifo_used(&ca->free) > ca->watermark[WATERMARK_MOVINGGC] && |
| CACHE_REPLACEMENT(&ca->sb) == CACHE_REPLACEMENT_FIFO) |
| return false; |
| |
| b->prio = 0; |
| |
| if (can_inc_bucket_gen(b) && |
| fifo_push(&ca->unused, b - ca->buckets)) { |
| atomic_inc(&b->pin); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static bool can_invalidate_bucket(struct cache *ca, struct bucket *b) |
| { |
| return GC_MARK(b) == GC_MARK_RECLAIMABLE && |
| !atomic_read(&b->pin) && |
| can_inc_bucket_gen(b); |
| } |
| |
| static void invalidate_one_bucket(struct cache *ca, struct bucket *b) |
| { |
| bch_inc_gen(ca, b); |
| b->prio = INITIAL_PRIO; |
| atomic_inc(&b->pin); |
| fifo_push(&ca->free_inc, b - ca->buckets); |
| } |
| |
| #define bucket_prio(b) \ |
| (((unsigned) (b->prio - ca->set->min_prio)) * GC_SECTORS_USED(b)) |
| |
| #define bucket_max_cmp(l, r) (bucket_prio(l) < bucket_prio(r)) |
| #define bucket_min_cmp(l, r) (bucket_prio(l) > bucket_prio(r)) |
| |
| static void invalidate_buckets_lru(struct cache *ca) |
| { |
| struct bucket *b; |
| ssize_t i; |
| |
| ca->heap.used = 0; |
| |
| for_each_bucket(b, ca) { |
| /* |
| * If we fill up the unused list, if we then return before |
| * adding anything to the free_inc list we'll skip writing |
| * prios/gens and just go back to allocating from the unused |
| * list: |
| */ |
| if (fifo_full(&ca->unused)) |
| return; |
| |
| if (!can_invalidate_bucket(ca, b)) |
| continue; |
| |
| if (!GC_SECTORS_USED(b) && |
| bch_bucket_add_unused(ca, b)) |
| continue; |
| |
| if (!heap_full(&ca->heap)) |
| heap_add(&ca->heap, b, bucket_max_cmp); |
| else if (bucket_max_cmp(b, heap_peek(&ca->heap))) { |
| ca->heap.data[0] = b; |
| heap_sift(&ca->heap, 0, bucket_max_cmp); |
| } |
| } |
| |
| for (i = ca->heap.used / 2 - 1; i >= 0; --i) |
| heap_sift(&ca->heap, i, bucket_min_cmp); |
| |
| while (!fifo_full(&ca->free_inc)) { |
| if (!heap_pop(&ca->heap, b, bucket_min_cmp)) { |
| /* |
| * We don't want to be calling invalidate_buckets() |
| * multiple times when it can't do anything |
| */ |
| ca->invalidate_needs_gc = 1; |
| bch_queue_gc(ca->set); |
| return; |
| } |
| |
| invalidate_one_bucket(ca, b); |
| } |
| } |
| |
| static void invalidate_buckets_fifo(struct cache *ca) |
| { |
| struct bucket *b; |
| size_t checked = 0; |
| |
| while (!fifo_full(&ca->free_inc)) { |
| if (ca->fifo_last_bucket < ca->sb.first_bucket || |
| ca->fifo_last_bucket >= ca->sb.nbuckets) |
| ca->fifo_last_bucket = ca->sb.first_bucket; |
| |
| b = ca->buckets + ca->fifo_last_bucket++; |
| |
| if (can_invalidate_bucket(ca, b)) |
| invalidate_one_bucket(ca, b); |
| |
| if (++checked >= ca->sb.nbuckets) { |
| ca->invalidate_needs_gc = 1; |
| bch_queue_gc(ca->set); |
| return; |
| } |
| } |
| } |
| |
| static void invalidate_buckets_random(struct cache *ca) |
| { |
| struct bucket *b; |
| size_t checked = 0; |
| |
| while (!fifo_full(&ca->free_inc)) { |
| size_t n; |
| get_random_bytes(&n, sizeof(n)); |
| |
| n %= (size_t) (ca->sb.nbuckets - ca->sb.first_bucket); |
| n += ca->sb.first_bucket; |
| |
| b = ca->buckets + n; |
| |
| if (can_invalidate_bucket(ca, b)) |
| invalidate_one_bucket(ca, b); |
| |
| if (++checked >= ca->sb.nbuckets / 2) { |
| ca->invalidate_needs_gc = 1; |
| bch_queue_gc(ca->set); |
| return; |
| } |
| } |
| } |
| |
| static void invalidate_buckets(struct cache *ca) |
| { |
| if (ca->invalidate_needs_gc) |
| return; |
| |
| switch (CACHE_REPLACEMENT(&ca->sb)) { |
| case CACHE_REPLACEMENT_LRU: |
| invalidate_buckets_lru(ca); |
| break; |
| case CACHE_REPLACEMENT_FIFO: |
| invalidate_buckets_fifo(ca); |
| break; |
| case CACHE_REPLACEMENT_RANDOM: |
| invalidate_buckets_random(ca); |
| break; |
| } |
| |
| trace_bcache_alloc_invalidate(ca); |
| } |
| |
| #define allocator_wait(ca, cond) \ |
| do { \ |
| while (1) { \ |
| set_current_state(TASK_INTERRUPTIBLE); \ |
| if (cond) \ |
| break; \ |
| \ |
| mutex_unlock(&(ca)->set->bucket_lock); \ |
| if (kthread_should_stop()) \ |
| return 0; \ |
| \ |
| try_to_freeze(); \ |
| schedule(); \ |
| mutex_lock(&(ca)->set->bucket_lock); \ |
| } \ |
| __set_current_state(TASK_RUNNING); \ |
| } while (0) |
| |
| static int bch_allocator_thread(void *arg) |
| { |
| struct cache *ca = arg; |
| |
| mutex_lock(&ca->set->bucket_lock); |
| |
| while (1) { |
| /* |
| * First, we pull buckets off of the unused and free_inc lists, |
| * possibly issue discards to them, then we add the bucket to |
| * the free list: |
| */ |
| while (1) { |
| long bucket; |
| |
| if ((!atomic_read(&ca->set->prio_blocked) || |
| !CACHE_SYNC(&ca->set->sb)) && |
| !fifo_empty(&ca->unused)) |
| fifo_pop(&ca->unused, bucket); |
| else if (!fifo_empty(&ca->free_inc)) |
| fifo_pop(&ca->free_inc, bucket); |
| else |
| break; |
| |
| allocator_wait(ca, (int) fifo_free(&ca->free) > |
| atomic_read(&ca->discards_in_flight)); |
| |
| if (ca->discard) { |
| allocator_wait(ca, !list_empty(&ca->discards)); |
| do_discard(ca, bucket); |
| } else { |
| fifo_push(&ca->free, bucket); |
| closure_wake_up(&ca->set->bucket_wait); |
| } |
| } |
| |
| /* |
| * We've run out of free buckets, we need to find some buckets |
| * we can invalidate. First, invalidate them in memory and add |
| * them to the free_inc list: |
| */ |
| |
| allocator_wait(ca, ca->set->gc_mark_valid && |
| (ca->need_save_prio > 64 || |
| !ca->invalidate_needs_gc)); |
| invalidate_buckets(ca); |
| |
| /* |
| * Now, we write their new gens to disk so we can start writing |
| * new stuff to them: |
| */ |
| allocator_wait(ca, !atomic_read(&ca->set->prio_blocked)); |
| if (CACHE_SYNC(&ca->set->sb) && |
| (!fifo_empty(&ca->free_inc) || |
| ca->need_save_prio > 64)) |
| bch_prio_write(ca); |
| } |
| } |
| |
| long bch_bucket_alloc(struct cache *ca, unsigned watermark, struct closure *cl) |
| { |
| long r = -1; |
| again: |
| wake_up_process(ca->alloc_thread); |
| |
| if (fifo_used(&ca->free) > ca->watermark[watermark] && |
| fifo_pop(&ca->free, r)) { |
| struct bucket *b = ca->buckets + r; |
| #ifdef CONFIG_BCACHE_EDEBUG |
| size_t iter; |
| long i; |
| |
| for (iter = 0; iter < prio_buckets(ca) * 2; iter++) |
| BUG_ON(ca->prio_buckets[iter] == (uint64_t) r); |
| |
| fifo_for_each(i, &ca->free, iter) |
| BUG_ON(i == r); |
| fifo_for_each(i, &ca->free_inc, iter) |
| BUG_ON(i == r); |
| fifo_for_each(i, &ca->unused, iter) |
| BUG_ON(i == r); |
| #endif |
| BUG_ON(atomic_read(&b->pin) != 1); |
| |
| SET_GC_SECTORS_USED(b, ca->sb.bucket_size); |
| |
| if (watermark <= WATERMARK_METADATA) { |
| SET_GC_MARK(b, GC_MARK_METADATA); |
| b->prio = BTREE_PRIO; |
| } else { |
| SET_GC_MARK(b, GC_MARK_RECLAIMABLE); |
| b->prio = INITIAL_PRIO; |
| } |
| |
| return r; |
| } |
| |
| trace_bcache_alloc_fail(ca); |
| |
| if (cl) { |
| closure_wait(&ca->set->bucket_wait, cl); |
| |
| if (closure_blocking(cl)) { |
| mutex_unlock(&ca->set->bucket_lock); |
| closure_sync(cl); |
| mutex_lock(&ca->set->bucket_lock); |
| goto again; |
| } |
| } |
| |
| return -1; |
| } |
| |
| void bch_bucket_free(struct cache_set *c, struct bkey *k) |
| { |
| unsigned i; |
| |
| for (i = 0; i < KEY_PTRS(k); i++) { |
| struct bucket *b = PTR_BUCKET(c, k, i); |
| |
| SET_GC_MARK(b, GC_MARK_RECLAIMABLE); |
| SET_GC_SECTORS_USED(b, 0); |
| bch_bucket_add_unused(PTR_CACHE(c, k, i), b); |
| } |
| } |
| |
| int __bch_bucket_alloc_set(struct cache_set *c, unsigned watermark, |
| struct bkey *k, int n, struct closure *cl) |
| { |
| int i; |
| |
| lockdep_assert_held(&c->bucket_lock); |
| BUG_ON(!n || n > c->caches_loaded || n > 8); |
| |
| bkey_init(k); |
| |
| /* sort by free space/prio of oldest data in caches */ |
| |
| for (i = 0; i < n; i++) { |
| struct cache *ca = c->cache_by_alloc[i]; |
| long b = bch_bucket_alloc(ca, watermark, cl); |
| |
| if (b == -1) |
| goto err; |
| |
| k->ptr[i] = PTR(ca->buckets[b].gen, |
| bucket_to_sector(c, b), |
| ca->sb.nr_this_dev); |
| |
| SET_KEY_PTRS(k, i + 1); |
| } |
| |
| return 0; |
| err: |
| bch_bucket_free(c, k); |
| __bkey_put(c, k); |
| return -1; |
| } |
| |
| int bch_bucket_alloc_set(struct cache_set *c, unsigned watermark, |
| struct bkey *k, int n, struct closure *cl) |
| { |
| int ret; |
| mutex_lock(&c->bucket_lock); |
| ret = __bch_bucket_alloc_set(c, watermark, k, n, cl); |
| mutex_unlock(&c->bucket_lock); |
| return ret; |
| } |
| |
| /* Init */ |
| |
| int bch_cache_allocator_start(struct cache *ca) |
| { |
| struct task_struct *k = kthread_run(bch_allocator_thread, |
| ca, "bcache_allocator"); |
| if (IS_ERR(k)) |
| return PTR_ERR(k); |
| |
| ca->alloc_thread = k; |
| return 0; |
| } |
| |
| void bch_cache_allocator_exit(struct cache *ca) |
| { |
| struct discard *d; |
| |
| while (!list_empty(&ca->discards)) { |
| d = list_first_entry(&ca->discards, struct discard, list); |
| cancel_work_sync(&d->work); |
| list_del(&d->list); |
| kfree(d); |
| } |
| } |
| |
| int bch_cache_allocator_init(struct cache *ca) |
| { |
| unsigned i; |
| |
| /* |
| * Reserve: |
| * Prio/gen writes first |
| * Then 8 for btree allocations |
| * Then half for the moving garbage collector |
| */ |
| |
| ca->watermark[WATERMARK_PRIO] = 0; |
| |
| ca->watermark[WATERMARK_METADATA] = prio_buckets(ca); |
| |
| ca->watermark[WATERMARK_MOVINGGC] = 8 + |
| ca->watermark[WATERMARK_METADATA]; |
| |
| ca->watermark[WATERMARK_NONE] = ca->free.size / 2 + |
| ca->watermark[WATERMARK_MOVINGGC]; |
| |
| for (i = 0; i < MAX_IN_FLIGHT_DISCARDS; i++) { |
| struct discard *d = kzalloc(sizeof(*d), GFP_KERNEL); |
| if (!d) |
| return -ENOMEM; |
| |
| d->ca = ca; |
| INIT_WORK(&d->work, discard_finish); |
| list_add(&d->list, &ca->discards); |
| } |
| |
| return 0; |
| } |