blob: 3e63b6d9c097fe9f33e3454175066d40029e81f9 [file] [log] [blame]
/******************************************************************************
*
* Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
******************************************************************************/
#define _HAL_COM_C_
#include <drv_types.h>
#include <rtw_debug.h>
#include "hal_com_h2c.h"
#include "odm_precomp.h"
u8 rtw_hal_data_init(struct adapter *padapter)
{
if (is_primary_adapter(padapter)) { /* if (padapter->isprimary) */
padapter->hal_data_sz = sizeof(struct hal_com_data);
padapter->HalData = vzalloc(padapter->hal_data_sz);
if (padapter->HalData == NULL) {
DBG_8192C("cannot alloc memory for HAL DATA\n");
return _FAIL;
}
}
return _SUCCESS;
}
void rtw_hal_data_deinit(struct adapter *padapter)
{
if (is_primary_adapter(padapter)) { /* if (padapter->isprimary) */
if (padapter->HalData) {
phy_free_filebuf(padapter);
vfree(padapter->HalData);
padapter->HalData = NULL;
padapter->hal_data_sz = 0;
}
}
}
void dump_chip_info(HAL_VERSION ChipVersion)
{
int cnt = 0;
u8 buf[128];
cnt += sprintf((buf+cnt), "Chip Version Info: CHIP_8723B_");
cnt += sprintf((buf+cnt), "%s_", IS_NORMAL_CHIP(ChipVersion) ? "Normal_Chip" : "Test_Chip");
if (IS_CHIP_VENDOR_TSMC(ChipVersion))
cnt += sprintf((buf+cnt), "%s_", "TSMC");
else if (IS_CHIP_VENDOR_UMC(ChipVersion))
cnt += sprintf((buf+cnt), "%s_", "UMC");
else if (IS_CHIP_VENDOR_SMIC(ChipVersion))
cnt += sprintf((buf+cnt), "%s_", "SMIC");
if (IS_A_CUT(ChipVersion))
cnt += sprintf((buf+cnt), "A_CUT_");
else if (IS_B_CUT(ChipVersion))
cnt += sprintf((buf+cnt), "B_CUT_");
else if (IS_C_CUT(ChipVersion))
cnt += sprintf((buf+cnt), "C_CUT_");
else if (IS_D_CUT(ChipVersion))
cnt += sprintf((buf+cnt), "D_CUT_");
else if (IS_E_CUT(ChipVersion))
cnt += sprintf((buf+cnt), "E_CUT_");
else if (IS_I_CUT(ChipVersion))
cnt += sprintf((buf+cnt), "I_CUT_");
else if (IS_J_CUT(ChipVersion))
cnt += sprintf((buf+cnt), "J_CUT_");
else if (IS_K_CUT(ChipVersion))
cnt += sprintf((buf+cnt), "K_CUT_");
else
cnt += sprintf((buf+cnt), "UNKNOWN_CUT(%d)_", ChipVersion.CUTVersion);
if (IS_1T1R(ChipVersion))
cnt += sprintf((buf+cnt), "1T1R_");
else if (IS_1T2R(ChipVersion))
cnt += sprintf((buf+cnt), "1T2R_");
else if (IS_2T2R(ChipVersion))
cnt += sprintf((buf+cnt), "2T2R_");
else
cnt += sprintf((buf+cnt), "UNKNOWN_RFTYPE(%d)_", ChipVersion.RFType);
cnt += sprintf((buf+cnt), "RomVer(%d)\n", ChipVersion.ROMVer);
DBG_871X("%s", buf);
}
#define EEPROM_CHANNEL_PLAN_BY_HW_MASK 0x80
/*
* Description:
*Use hardware(efuse), driver parameter(registry) and default channel plan
*to decide which one should be used.
*
* Parameters:
*padapter pointer of adapter
*hw_channel_plan channel plan from HW (efuse/eeprom)
* BIT[7] software configure mode; 0:Enable, 1:disable
* BIT[6:0] Channel Plan
*sw_channel_plan channel plan from SW (registry/module param)
*def_channel_plan channel plan used when HW/SW both invalid
*AutoLoadFail efuse autoload fail or not
*
* Return:
*Final channel plan decision
*
*/
u8 hal_com_config_channel_plan(
struct adapter *padapter,
u8 hw_channel_plan,
u8 sw_channel_plan,
u8 def_channel_plan,
bool AutoLoadFail
)
{
struct hal_com_data *pHalData;
u8 chnlPlan;
pHalData = GET_HAL_DATA(padapter);
pHalData->bDisableSWChannelPlan = false;
chnlPlan = def_channel_plan;
if (0xFF == hw_channel_plan)
AutoLoadFail = true;
if (false == AutoLoadFail) {
u8 hw_chnlPlan;
hw_chnlPlan = hw_channel_plan & (~EEPROM_CHANNEL_PLAN_BY_HW_MASK);
if (rtw_is_channel_plan_valid(hw_chnlPlan)) {
#ifndef CONFIG_SW_CHANNEL_PLAN
if (hw_channel_plan & EEPROM_CHANNEL_PLAN_BY_HW_MASK)
pHalData->bDisableSWChannelPlan = true;
#endif /* !CONFIG_SW_CHANNEL_PLAN */
chnlPlan = hw_chnlPlan;
}
}
if (
(false == pHalData->bDisableSWChannelPlan) &&
rtw_is_channel_plan_valid(sw_channel_plan)
)
chnlPlan = sw_channel_plan;
return chnlPlan;
}
bool HAL_IsLegalChannel(struct adapter *Adapter, u32 Channel)
{
bool bLegalChannel = true;
if (Channel > 14) {
bLegalChannel = false;
DBG_871X("Channel > 14 but wireless_mode do not support 5G\n");
} else if ((Channel <= 14) && (Channel >= 1)) {
if (IsSupported24G(Adapter->registrypriv.wireless_mode) == false) {
bLegalChannel = false;
DBG_871X("(Channel <= 14) && (Channel >= 1) but wireless_mode do not support 2.4G\n");
}
} else {
bLegalChannel = false;
DBG_871X("Channel is Invalid !!!\n");
}
return bLegalChannel;
}
u8 MRateToHwRate(u8 rate)
{
u8 ret = DESC_RATE1M;
switch (rate) {
case MGN_1M:
ret = DESC_RATE1M;
break;
case MGN_2M:
ret = DESC_RATE2M;
break;
case MGN_5_5M:
ret = DESC_RATE5_5M;
break;
case MGN_11M:
ret = DESC_RATE11M;
break;
case MGN_6M:
ret = DESC_RATE6M;
break;
case MGN_9M:
ret = DESC_RATE9M;
break;
case MGN_12M:
ret = DESC_RATE12M;
break;
case MGN_18M:
ret = DESC_RATE18M;
break;
case MGN_24M:
ret = DESC_RATE24M;
break;
case MGN_36M:
ret = DESC_RATE36M;
break;
case MGN_48M:
ret = DESC_RATE48M;
break;
case MGN_54M:
ret = DESC_RATE54M;
break;
case MGN_MCS0:
ret = DESC_RATEMCS0;
break;
case MGN_MCS1:
ret = DESC_RATEMCS1;
break;
case MGN_MCS2:
ret = DESC_RATEMCS2;
break;
case MGN_MCS3:
ret = DESC_RATEMCS3;
break;
case MGN_MCS4:
ret = DESC_RATEMCS4;
break;
case MGN_MCS5:
ret = DESC_RATEMCS5;
break;
case MGN_MCS6:
ret = DESC_RATEMCS6;
break;
case MGN_MCS7:
ret = DESC_RATEMCS7;
break;
case MGN_MCS8:
ret = DESC_RATEMCS8;
break;
case MGN_MCS9:
ret = DESC_RATEMCS9;
break;
case MGN_MCS10:
ret = DESC_RATEMCS10;
break;
case MGN_MCS11:
ret = DESC_RATEMCS11;
break;
case MGN_MCS12:
ret = DESC_RATEMCS12;
break;
case MGN_MCS13:
ret = DESC_RATEMCS13;
break;
case MGN_MCS14:
ret = DESC_RATEMCS14;
break;
case MGN_MCS15:
ret = DESC_RATEMCS15;
break;
case MGN_MCS16:
ret = DESC_RATEMCS16;
break;
case MGN_MCS17:
ret = DESC_RATEMCS17;
break;
case MGN_MCS18:
ret = DESC_RATEMCS18;
break;
case MGN_MCS19:
ret = DESC_RATEMCS19;
break;
case MGN_MCS20:
ret = DESC_RATEMCS20;
break;
case MGN_MCS21:
ret = DESC_RATEMCS21;
break;
case MGN_MCS22:
ret = DESC_RATEMCS22;
break;
case MGN_MCS23:
ret = DESC_RATEMCS23;
break;
case MGN_MCS24:
ret = DESC_RATEMCS24;
break;
case MGN_MCS25:
ret = DESC_RATEMCS25;
break;
case MGN_MCS26:
ret = DESC_RATEMCS26;
break;
case MGN_MCS27:
ret = DESC_RATEMCS27;
break;
case MGN_MCS28:
ret = DESC_RATEMCS28;
break;
case MGN_MCS29:
ret = DESC_RATEMCS29;
break;
case MGN_MCS30:
ret = DESC_RATEMCS30;
break;
case MGN_MCS31:
ret = DESC_RATEMCS31;
break;
case MGN_VHT1SS_MCS0:
ret = DESC_RATEVHTSS1MCS0;
break;
case MGN_VHT1SS_MCS1:
ret = DESC_RATEVHTSS1MCS1;
break;
case MGN_VHT1SS_MCS2:
ret = DESC_RATEVHTSS1MCS2;
break;
case MGN_VHT1SS_MCS3:
ret = DESC_RATEVHTSS1MCS3;
break;
case MGN_VHT1SS_MCS4:
ret = DESC_RATEVHTSS1MCS4;
break;
case MGN_VHT1SS_MCS5:
ret = DESC_RATEVHTSS1MCS5;
break;
case MGN_VHT1SS_MCS6:
ret = DESC_RATEVHTSS1MCS6;
break;
case MGN_VHT1SS_MCS7:
ret = DESC_RATEVHTSS1MCS7;
break;
case MGN_VHT1SS_MCS8:
ret = DESC_RATEVHTSS1MCS8;
break;
case MGN_VHT1SS_MCS9:
ret = DESC_RATEVHTSS1MCS9;
break;
case MGN_VHT2SS_MCS0:
ret = DESC_RATEVHTSS2MCS0;
break;
case MGN_VHT2SS_MCS1:
ret = DESC_RATEVHTSS2MCS1;
break;
case MGN_VHT2SS_MCS2:
ret = DESC_RATEVHTSS2MCS2;
break;
case MGN_VHT2SS_MCS3:
ret = DESC_RATEVHTSS2MCS3;
break;
case MGN_VHT2SS_MCS4:
ret = DESC_RATEVHTSS2MCS4;
break;
case MGN_VHT2SS_MCS5:
ret = DESC_RATEVHTSS2MCS5;
break;
case MGN_VHT2SS_MCS6:
ret = DESC_RATEVHTSS2MCS6;
break;
case MGN_VHT2SS_MCS7:
ret = DESC_RATEVHTSS2MCS7;
break;
case MGN_VHT2SS_MCS8:
ret = DESC_RATEVHTSS2MCS8;
break;
case MGN_VHT2SS_MCS9:
ret = DESC_RATEVHTSS2MCS9;
break;
case MGN_VHT3SS_MCS0:
ret = DESC_RATEVHTSS3MCS0;
break;
case MGN_VHT3SS_MCS1:
ret = DESC_RATEVHTSS3MCS1;
break;
case MGN_VHT3SS_MCS2:
ret = DESC_RATEVHTSS3MCS2;
break;
case MGN_VHT3SS_MCS3:
ret = DESC_RATEVHTSS3MCS3;
break;
case MGN_VHT3SS_MCS4:
ret = DESC_RATEVHTSS3MCS4;
break;
case MGN_VHT3SS_MCS5:
ret = DESC_RATEVHTSS3MCS5;
break;
case MGN_VHT3SS_MCS6:
ret = DESC_RATEVHTSS3MCS6;
break;
case MGN_VHT3SS_MCS7:
ret = DESC_RATEVHTSS3MCS7;
break;
case MGN_VHT3SS_MCS8:
ret = DESC_RATEVHTSS3MCS8;
break;
case MGN_VHT3SS_MCS9:
ret = DESC_RATEVHTSS3MCS9;
break;
case MGN_VHT4SS_MCS0:
ret = DESC_RATEVHTSS4MCS0;
break;
case MGN_VHT4SS_MCS1:
ret = DESC_RATEVHTSS4MCS1;
break;
case MGN_VHT4SS_MCS2:
ret = DESC_RATEVHTSS4MCS2;
break;
case MGN_VHT4SS_MCS3:
ret = DESC_RATEVHTSS4MCS3;
break;
case MGN_VHT4SS_MCS4:
ret = DESC_RATEVHTSS4MCS4;
break;
case MGN_VHT4SS_MCS5:
ret = DESC_RATEVHTSS4MCS5;
break;
case MGN_VHT4SS_MCS6:
ret = DESC_RATEVHTSS4MCS6;
break;
case MGN_VHT4SS_MCS7:
ret = DESC_RATEVHTSS4MCS7;
break;
case MGN_VHT4SS_MCS8:
ret = DESC_RATEVHTSS4MCS8;
break;
case MGN_VHT4SS_MCS9:
ret = DESC_RATEVHTSS4MCS9;
break;
default:
break;
}
return ret;
}
u8 HwRateToMRate(u8 rate)
{
u8 ret_rate = MGN_1M;
switch (rate) {
case DESC_RATE1M:
ret_rate = MGN_1M;
break;
case DESC_RATE2M:
ret_rate = MGN_2M;
break;
case DESC_RATE5_5M:
ret_rate = MGN_5_5M;
break;
case DESC_RATE11M:
ret_rate = MGN_11M;
break;
case DESC_RATE6M:
ret_rate = MGN_6M;
break;
case DESC_RATE9M:
ret_rate = MGN_9M;
break;
case DESC_RATE12M:
ret_rate = MGN_12M;
break;
case DESC_RATE18M:
ret_rate = MGN_18M;
break;
case DESC_RATE24M:
ret_rate = MGN_24M;
break;
case DESC_RATE36M:
ret_rate = MGN_36M;
break;
case DESC_RATE48M:
ret_rate = MGN_48M;
break;
case DESC_RATE54M:
ret_rate = MGN_54M;
break;
case DESC_RATEMCS0:
ret_rate = MGN_MCS0;
break;
case DESC_RATEMCS1:
ret_rate = MGN_MCS1;
break;
case DESC_RATEMCS2:
ret_rate = MGN_MCS2;
break;
case DESC_RATEMCS3:
ret_rate = MGN_MCS3;
break;
case DESC_RATEMCS4:
ret_rate = MGN_MCS4;
break;
case DESC_RATEMCS5:
ret_rate = MGN_MCS5;
break;
case DESC_RATEMCS6:
ret_rate = MGN_MCS6;
break;
case DESC_RATEMCS7:
ret_rate = MGN_MCS7;
break;
case DESC_RATEMCS8:
ret_rate = MGN_MCS8;
break;
case DESC_RATEMCS9:
ret_rate = MGN_MCS9;
break;
case DESC_RATEMCS10:
ret_rate = MGN_MCS10;
break;
case DESC_RATEMCS11:
ret_rate = MGN_MCS11;
break;
case DESC_RATEMCS12:
ret_rate = MGN_MCS12;
break;
case DESC_RATEMCS13:
ret_rate = MGN_MCS13;
break;
case DESC_RATEMCS14:
ret_rate = MGN_MCS14;
break;
case DESC_RATEMCS15:
ret_rate = MGN_MCS15;
break;
case DESC_RATEMCS16:
ret_rate = MGN_MCS16;
break;
case DESC_RATEMCS17:
ret_rate = MGN_MCS17;
break;
case DESC_RATEMCS18:
ret_rate = MGN_MCS18;
break;
case DESC_RATEMCS19:
ret_rate = MGN_MCS19;
break;
case DESC_RATEMCS20:
ret_rate = MGN_MCS20;
break;
case DESC_RATEMCS21:
ret_rate = MGN_MCS21;
break;
case DESC_RATEMCS22:
ret_rate = MGN_MCS22;
break;
case DESC_RATEMCS23:
ret_rate = MGN_MCS23;
break;
case DESC_RATEMCS24:
ret_rate = MGN_MCS24;
break;
case DESC_RATEMCS25:
ret_rate = MGN_MCS25;
break;
case DESC_RATEMCS26:
ret_rate = MGN_MCS26;
break;
case DESC_RATEMCS27:
ret_rate = MGN_MCS27;
break;
case DESC_RATEMCS28:
ret_rate = MGN_MCS28;
break;
case DESC_RATEMCS29:
ret_rate = MGN_MCS29;
break;
case DESC_RATEMCS30:
ret_rate = MGN_MCS30;
break;
case DESC_RATEMCS31:
ret_rate = MGN_MCS31;
break;
case DESC_RATEVHTSS1MCS0:
ret_rate = MGN_VHT1SS_MCS0;
break;
case DESC_RATEVHTSS1MCS1:
ret_rate = MGN_VHT1SS_MCS1;
break;
case DESC_RATEVHTSS1MCS2:
ret_rate = MGN_VHT1SS_MCS2;
break;
case DESC_RATEVHTSS1MCS3:
ret_rate = MGN_VHT1SS_MCS3;
break;
case DESC_RATEVHTSS1MCS4:
ret_rate = MGN_VHT1SS_MCS4;
break;
case DESC_RATEVHTSS1MCS5:
ret_rate = MGN_VHT1SS_MCS5;
break;
case DESC_RATEVHTSS1MCS6:
ret_rate = MGN_VHT1SS_MCS6;
break;
case DESC_RATEVHTSS1MCS7:
ret_rate = MGN_VHT1SS_MCS7;
break;
case DESC_RATEVHTSS1MCS8:
ret_rate = MGN_VHT1SS_MCS8;
break;
case DESC_RATEVHTSS1MCS9:
ret_rate = MGN_VHT1SS_MCS9;
break;
case DESC_RATEVHTSS2MCS0:
ret_rate = MGN_VHT2SS_MCS0;
break;
case DESC_RATEVHTSS2MCS1:
ret_rate = MGN_VHT2SS_MCS1;
break;
case DESC_RATEVHTSS2MCS2:
ret_rate = MGN_VHT2SS_MCS2;
break;
case DESC_RATEVHTSS2MCS3:
ret_rate = MGN_VHT2SS_MCS3;
break;
case DESC_RATEVHTSS2MCS4:
ret_rate = MGN_VHT2SS_MCS4;
break;
case DESC_RATEVHTSS2MCS5:
ret_rate = MGN_VHT2SS_MCS5;
break;
case DESC_RATEVHTSS2MCS6:
ret_rate = MGN_VHT2SS_MCS6;
break;
case DESC_RATEVHTSS2MCS7:
ret_rate = MGN_VHT2SS_MCS7;
break;
case DESC_RATEVHTSS2MCS8:
ret_rate = MGN_VHT2SS_MCS8;
break;
case DESC_RATEVHTSS2MCS9:
ret_rate = MGN_VHT2SS_MCS9;
break;
case DESC_RATEVHTSS3MCS0:
ret_rate = MGN_VHT3SS_MCS0;
break;
case DESC_RATEVHTSS3MCS1:
ret_rate = MGN_VHT3SS_MCS1;
break;
case DESC_RATEVHTSS3MCS2:
ret_rate = MGN_VHT3SS_MCS2;
break;
case DESC_RATEVHTSS3MCS3:
ret_rate = MGN_VHT3SS_MCS3;
break;
case DESC_RATEVHTSS3MCS4:
ret_rate = MGN_VHT3SS_MCS4;
break;
case DESC_RATEVHTSS3MCS5:
ret_rate = MGN_VHT3SS_MCS5;
break;
case DESC_RATEVHTSS3MCS6:
ret_rate = MGN_VHT3SS_MCS6;
break;
case DESC_RATEVHTSS3MCS7:
ret_rate = MGN_VHT3SS_MCS7;
break;
case DESC_RATEVHTSS3MCS8:
ret_rate = MGN_VHT3SS_MCS8;
break;
case DESC_RATEVHTSS3MCS9:
ret_rate = MGN_VHT3SS_MCS9;
break;
case DESC_RATEVHTSS4MCS0:
ret_rate = MGN_VHT4SS_MCS0;
break;
case DESC_RATEVHTSS4MCS1:
ret_rate = MGN_VHT4SS_MCS1;
break;
case DESC_RATEVHTSS4MCS2:
ret_rate = MGN_VHT4SS_MCS2;
break;
case DESC_RATEVHTSS4MCS3:
ret_rate = MGN_VHT4SS_MCS3;
break;
case DESC_RATEVHTSS4MCS4:
ret_rate = MGN_VHT4SS_MCS4;
break;
case DESC_RATEVHTSS4MCS5:
ret_rate = MGN_VHT4SS_MCS5;
break;
case DESC_RATEVHTSS4MCS6:
ret_rate = MGN_VHT4SS_MCS6;
break;
case DESC_RATEVHTSS4MCS7:
ret_rate = MGN_VHT4SS_MCS7;
break;
case DESC_RATEVHTSS4MCS8:
ret_rate = MGN_VHT4SS_MCS8;
break;
case DESC_RATEVHTSS4MCS9:
ret_rate = MGN_VHT4SS_MCS9;
break;
default:
DBG_871X("HwRateToMRate(): Non supported Rate [%x]!!!\n", rate);
break;
}
return ret_rate;
}
void HalSetBrateCfg(struct adapter *Adapter, u8 *mBratesOS, u16 *pBrateCfg)
{
u8 i, is_brate, brate;
for (i = 0; i < NDIS_802_11_LENGTH_RATES_EX; i++) {
is_brate = mBratesOS[i] & IEEE80211_BASIC_RATE_MASK;
brate = mBratesOS[i] & 0x7f;
if (is_brate) {
switch (brate) {
case IEEE80211_CCK_RATE_1MB:
*pBrateCfg |= RATE_1M;
break;
case IEEE80211_CCK_RATE_2MB:
*pBrateCfg |= RATE_2M;
break;
case IEEE80211_CCK_RATE_5MB:
*pBrateCfg |= RATE_5_5M;
break;
case IEEE80211_CCK_RATE_11MB:
*pBrateCfg |= RATE_11M;
break;
case IEEE80211_OFDM_RATE_6MB:
*pBrateCfg |= RATE_6M;
break;
case IEEE80211_OFDM_RATE_9MB:
*pBrateCfg |= RATE_9M;
break;
case IEEE80211_OFDM_RATE_12MB:
*pBrateCfg |= RATE_12M;
break;
case IEEE80211_OFDM_RATE_18MB:
*pBrateCfg |= RATE_18M;
break;
case IEEE80211_OFDM_RATE_24MB:
*pBrateCfg |= RATE_24M;
break;
case IEEE80211_OFDM_RATE_36MB:
*pBrateCfg |= RATE_36M;
break;
case IEEE80211_OFDM_RATE_48MB:
*pBrateCfg |= RATE_48M;
break;
case IEEE80211_OFDM_RATE_54MB:
*pBrateCfg |= RATE_54M;
break;
}
}
}
}
static void _OneOutPipeMapping(struct adapter *padapter)
{
struct dvobj_priv *pdvobjpriv = adapter_to_dvobj(padapter);
pdvobjpriv->Queue2Pipe[0] = pdvobjpriv->RtOutPipe[0];/* VO */
pdvobjpriv->Queue2Pipe[1] = pdvobjpriv->RtOutPipe[0];/* VI */
pdvobjpriv->Queue2Pipe[2] = pdvobjpriv->RtOutPipe[0];/* BE */
pdvobjpriv->Queue2Pipe[3] = pdvobjpriv->RtOutPipe[0];/* BK */
pdvobjpriv->Queue2Pipe[4] = pdvobjpriv->RtOutPipe[0];/* BCN */
pdvobjpriv->Queue2Pipe[5] = pdvobjpriv->RtOutPipe[0];/* MGT */
pdvobjpriv->Queue2Pipe[6] = pdvobjpriv->RtOutPipe[0];/* HIGH */
pdvobjpriv->Queue2Pipe[7] = pdvobjpriv->RtOutPipe[0];/* TXCMD */
}
static void _TwoOutPipeMapping(struct adapter *padapter, bool bWIFICfg)
{
struct dvobj_priv *pdvobjpriv = adapter_to_dvobj(padapter);
if (bWIFICfg) { /* WMM */
/* BK, BE, VI, VO, BCN, CMD, MGT, HIGH, HCCA */
/* 0, 1, 0, 1, 0, 0, 0, 0, 0 }; */
/* 0:ep_0 num, 1:ep_1 num */
pdvobjpriv->Queue2Pipe[0] = pdvobjpriv->RtOutPipe[1];/* VO */
pdvobjpriv->Queue2Pipe[1] = pdvobjpriv->RtOutPipe[0];/* VI */
pdvobjpriv->Queue2Pipe[2] = pdvobjpriv->RtOutPipe[1];/* BE */
pdvobjpriv->Queue2Pipe[3] = pdvobjpriv->RtOutPipe[0];/* BK */
pdvobjpriv->Queue2Pipe[4] = pdvobjpriv->RtOutPipe[0];/* BCN */
pdvobjpriv->Queue2Pipe[5] = pdvobjpriv->RtOutPipe[0];/* MGT */
pdvobjpriv->Queue2Pipe[6] = pdvobjpriv->RtOutPipe[0];/* HIGH */
pdvobjpriv->Queue2Pipe[7] = pdvobjpriv->RtOutPipe[0];/* TXCMD */
} else { /* typical setting */
/* BK, BE, VI, VO, BCN, CMD, MGT, HIGH, HCCA */
/* 1, 1, 0, 0, 0, 0, 0, 0, 0 }; */
/* 0:ep_0 num, 1:ep_1 num */
pdvobjpriv->Queue2Pipe[0] = pdvobjpriv->RtOutPipe[0];/* VO */
pdvobjpriv->Queue2Pipe[1] = pdvobjpriv->RtOutPipe[0];/* VI */
pdvobjpriv->Queue2Pipe[2] = pdvobjpriv->RtOutPipe[1];/* BE */
pdvobjpriv->Queue2Pipe[3] = pdvobjpriv->RtOutPipe[1];/* BK */
pdvobjpriv->Queue2Pipe[4] = pdvobjpriv->RtOutPipe[0];/* BCN */
pdvobjpriv->Queue2Pipe[5] = pdvobjpriv->RtOutPipe[0];/* MGT */
pdvobjpriv->Queue2Pipe[6] = pdvobjpriv->RtOutPipe[0];/* HIGH */
pdvobjpriv->Queue2Pipe[7] = pdvobjpriv->RtOutPipe[0];/* TXCMD */
}
}
static void _ThreeOutPipeMapping(struct adapter *padapter, bool bWIFICfg)
{
struct dvobj_priv *pdvobjpriv = adapter_to_dvobj(padapter);
if (bWIFICfg) { /* for WMM */
/* BK, BE, VI, VO, BCN, CMD, MGT, HIGH, HCCA */
/* 1, 2, 1, 0, 0, 0, 0, 0, 0 }; */
/* 0:H, 1:N, 2:L */
pdvobjpriv->Queue2Pipe[0] = pdvobjpriv->RtOutPipe[0];/* VO */
pdvobjpriv->Queue2Pipe[1] = pdvobjpriv->RtOutPipe[1];/* VI */
pdvobjpriv->Queue2Pipe[2] = pdvobjpriv->RtOutPipe[2];/* BE */
pdvobjpriv->Queue2Pipe[3] = pdvobjpriv->RtOutPipe[1];/* BK */
pdvobjpriv->Queue2Pipe[4] = pdvobjpriv->RtOutPipe[0];/* BCN */
pdvobjpriv->Queue2Pipe[5] = pdvobjpriv->RtOutPipe[0];/* MGT */
pdvobjpriv->Queue2Pipe[6] = pdvobjpriv->RtOutPipe[0];/* HIGH */
pdvobjpriv->Queue2Pipe[7] = pdvobjpriv->RtOutPipe[0];/* TXCMD */
} else { /* typical setting */
/* BK, BE, VI, VO, BCN, CMD, MGT, HIGH, HCCA */
/* 2, 2, 1, 0, 0, 0, 0, 0, 0 }; */
/* 0:H, 1:N, 2:L */
pdvobjpriv->Queue2Pipe[0] = pdvobjpriv->RtOutPipe[0];/* VO */
pdvobjpriv->Queue2Pipe[1] = pdvobjpriv->RtOutPipe[1];/* VI */
pdvobjpriv->Queue2Pipe[2] = pdvobjpriv->RtOutPipe[2];/* BE */
pdvobjpriv->Queue2Pipe[3] = pdvobjpriv->RtOutPipe[2];/* BK */
pdvobjpriv->Queue2Pipe[4] = pdvobjpriv->RtOutPipe[0];/* BCN */
pdvobjpriv->Queue2Pipe[5] = pdvobjpriv->RtOutPipe[0];/* MGT */
pdvobjpriv->Queue2Pipe[6] = pdvobjpriv->RtOutPipe[0];/* HIGH */
pdvobjpriv->Queue2Pipe[7] = pdvobjpriv->RtOutPipe[0];/* TXCMD */
}
}
bool Hal_MappingOutPipe(struct adapter *padapter, u8 NumOutPipe)
{
struct registry_priv *pregistrypriv = &padapter->registrypriv;
bool bWIFICfg = (pregistrypriv->wifi_spec) ? true : false;
bool result = true;
switch (NumOutPipe) {
case 2:
_TwoOutPipeMapping(padapter, bWIFICfg);
break;
case 3:
case 4:
_ThreeOutPipeMapping(padapter, bWIFICfg);
break;
case 1:
_OneOutPipeMapping(padapter);
break;
default:
result = false;
break;
}
return result;
}
void hal_init_macaddr(struct adapter *adapter)
{
rtw_hal_set_hwreg(adapter, HW_VAR_MAC_ADDR, adapter->eeprompriv.mac_addr);
}
void rtw_init_hal_com_default_value(struct adapter *Adapter)
{
struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
pHalData->AntDetection = 1;
}
/*
* C2H event format:
* Field TRIGGER CONTENT CMD_SEQ CMD_LEN CMD_ID
* BITS [127:120] [119:16] [15:8] [7:4] [3:0]
*/
void c2h_evt_clear(struct adapter *adapter)
{
rtw_write8(adapter, REG_C2HEVT_CLEAR, C2H_EVT_HOST_CLOSE);
}
/*
* C2H event format:
* Field TRIGGER CMD_LEN CONTENT CMD_SEQ CMD_ID
* BITS [127:120] [119:112] [111:16] [15:8] [7:0]
*/
s32 c2h_evt_read_88xx(struct adapter *adapter, u8 *buf)
{
s32 ret = _FAIL;
struct c2h_evt_hdr_88xx *c2h_evt;
int i;
u8 trigger;
if (buf == NULL)
goto exit;
trigger = rtw_read8(adapter, REG_C2HEVT_CLEAR);
if (trigger == C2H_EVT_HOST_CLOSE)
goto exit; /* Not ready */
else if (trigger != C2H_EVT_FW_CLOSE)
goto clear_evt; /* Not a valid value */
c2h_evt = (struct c2h_evt_hdr_88xx *)buf;
memset(c2h_evt, 0, 16);
c2h_evt->id = rtw_read8(adapter, REG_C2HEVT_MSG_NORMAL);
c2h_evt->seq = rtw_read8(adapter, REG_C2HEVT_CMD_SEQ_88XX);
c2h_evt->plen = rtw_read8(adapter, REG_C2HEVT_CMD_LEN_88XX);
RT_PRINT_DATA(
_module_hal_init_c_,
_drv_info_,
"c2h_evt_read(): ",
&c2h_evt,
sizeof(c2h_evt)
);
DBG_871X(
"%s id:%u, len:%u, seq:%u, trigger:0x%02x\n",
__func__,
c2h_evt->id,
c2h_evt->plen,
c2h_evt->seq,
trigger
);
/* Read the content */
for (i = 0; i < c2h_evt->plen; i++)
c2h_evt->payload[i] = rtw_read8(adapter, REG_C2HEVT_MSG_NORMAL + 2 + i);
RT_PRINT_DATA(_module_hal_init_c_, _drv_info_, "c2h_evt_read(): Command Content:\n",
c2h_evt->payload, c2h_evt->plen);
ret = _SUCCESS;
clear_evt:
/*
* Clear event to notify FW we have read the command.
* If this field isn't clear, the FW won't update the next command message.
*/
c2h_evt_clear(adapter);
exit:
return ret;
}
u8 rtw_hal_networktype_to_raid(struct adapter *adapter, struct sta_info *psta)
{
return networktype_to_raid_ex(adapter, psta);
}
u8 rtw_get_mgntframe_raid(struct adapter *adapter, unsigned char network_type)
{
u8 raid;
raid = (network_type & WIRELESS_11B) ? RATEID_IDX_B : RATEID_IDX_G;
return raid;
}
void rtw_hal_update_sta_rate_mask(struct adapter *padapter, struct sta_info *psta)
{
u8 i, rf_type, limit;
u32 tx_ra_bitmap;
if (psta == NULL)
return;
tx_ra_bitmap = 0;
/* b/g mode ra_bitmap */
for (i = 0; i < sizeof(psta->bssrateset); i++) {
if (psta->bssrateset[i])
tx_ra_bitmap |= rtw_get_bit_value_from_ieee_value(psta->bssrateset[i]&0x7f);
}
/* n mode ra_bitmap */
if (psta->htpriv.ht_option) {
rtw_hal_get_hwreg(padapter, HW_VAR_RF_TYPE, (u8 *)(&rf_type));
if (rf_type == RF_2T2R)
limit = 16; /* 2R */
else
limit = 8; /* 1R */
for (i = 0; i < limit; i++) {
if (psta->htpriv.ht_cap.supp_mcs_set[i/8] & BIT(i%8))
tx_ra_bitmap |= BIT(i+12);
}
}
psta->ra_mask = tx_ra_bitmap;
psta->init_rate = get_highest_rate_idx(tx_ra_bitmap)&0x3f;
}
void hw_var_port_switch(struct adapter *adapter)
{
}
void SetHwReg(struct adapter *adapter, u8 variable, u8 *val)
{
struct hal_com_data *hal_data = GET_HAL_DATA(adapter);
DM_ODM_T *odm = &(hal_data->odmpriv);
switch (variable) {
case HW_VAR_PORT_SWITCH:
hw_var_port_switch(adapter);
break;
case HW_VAR_INIT_RTS_RATE:
rtw_warn_on(1);
break;
case HW_VAR_SEC_CFG:
{
u16 reg_scr;
reg_scr = rtw_read16(adapter, REG_SECCFG);
rtw_write16(adapter, REG_SECCFG, reg_scr|SCR_CHK_KEYID|SCR_RxDecEnable|SCR_TxEncEnable);
}
break;
case HW_VAR_SEC_DK_CFG:
{
struct security_priv *sec = &adapter->securitypriv;
u8 reg_scr = rtw_read8(adapter, REG_SECCFG);
if (val) { /* Enable default key related setting */
reg_scr |= SCR_TXBCUSEDK;
if (sec->dot11AuthAlgrthm != dot11AuthAlgrthm_8021X)
reg_scr |= (SCR_RxUseDK|SCR_TxUseDK);
} else /* Disable default key related setting */
reg_scr &= ~(SCR_RXBCUSEDK|SCR_TXBCUSEDK|SCR_RxUseDK|SCR_TxUseDK);
rtw_write8(adapter, REG_SECCFG, reg_scr);
}
break;
case HW_VAR_DM_FLAG:
odm->SupportAbility = *((u32 *)val);
break;
case HW_VAR_DM_FUNC_OP:
if (*((u8 *)val) == true) {
/* save dm flag */
odm->BK_SupportAbility = odm->SupportAbility;
} else {
/* restore dm flag */
odm->SupportAbility = odm->BK_SupportAbility;
}
break;
case HW_VAR_DM_FUNC_SET:
if (*((u32 *)val) == DYNAMIC_ALL_FUNC_ENABLE) {
struct dm_priv *dm = &hal_data->dmpriv;
dm->DMFlag = dm->InitDMFlag;
odm->SupportAbility = dm->InitODMFlag;
} else {
odm->SupportAbility |= *((u32 *)val);
}
break;
case HW_VAR_DM_FUNC_CLR:
/*
* input is already a mask to clear function
* don't invert it again! George, Lucas@20130513
*/
odm->SupportAbility &= *((u32 *)val);
break;
case HW_VAR_AMPDU_MIN_SPACE:
/* TODO - Is something needed here? */
break;
case HW_VAR_WIRELESS_MODE:
/* TODO - Is something needed here? */
break;
default:
DBG_871X_LEVEL(
_drv_always_,
FUNC_ADPT_FMT" variable(%d) not defined!\n",
FUNC_ADPT_ARG(adapter),
variable
);
break;
}
}
void GetHwReg(struct adapter *adapter, u8 variable, u8 *val)
{
struct hal_com_data *hal_data = GET_HAL_DATA(adapter);
DM_ODM_T *odm = &(hal_data->odmpriv);
switch (variable) {
case HW_VAR_BASIC_RATE:
*((u16 *)val) = hal_data->BasicRateSet;
break;
case HW_VAR_DM_FLAG:
*((u32 *)val) = odm->SupportAbility;
break;
case HW_VAR_RF_TYPE:
*((u8 *)val) = hal_data->rf_type;
break;
default:
DBG_871X_LEVEL(
_drv_always_,
FUNC_ADPT_FMT" variable(%d) not defined!\n",
FUNC_ADPT_ARG(adapter),
variable
);
break;
}
}
u8 SetHalDefVar(
struct adapter *adapter, enum HAL_DEF_VARIABLE variable, void *value
)
{
struct hal_com_data *hal_data = GET_HAL_DATA(adapter);
DM_ODM_T *odm = &(hal_data->odmpriv);
u8 bResult = _SUCCESS;
switch (variable) {
case HW_DEF_FA_CNT_DUMP:
/* ODM_COMP_COMMON */
if (*((u8 *)value))
odm->DebugComponents |= (ODM_COMP_DIG | ODM_COMP_FA_CNT);
else
odm->DebugComponents &= ~(ODM_COMP_DIG | ODM_COMP_FA_CNT);
break;
case HAL_DEF_DBG_RX_INFO_DUMP:
DBG_871X("============ Rx Info dump ===================\n");
DBG_871X("bLinked = %d, RSSI_Min = %d(%%)\n",
odm->bLinked, odm->RSSI_Min);
if (odm->bLinked) {
DBG_871X("RxRate = %s, RSSI_A = %d(%%), RSSI_B = %d(%%)\n",
HDATA_RATE(odm->RxRate), odm->RSSI_A, odm->RSSI_B);
#ifdef DBG_RX_SIGNAL_DISPLAY_RAW_DATA
rtw_dump_raw_rssi_info(adapter);
#endif
}
break;
case HW_DEF_ODM_DBG_FLAG:
ODM_CmnInfoUpdate(odm, ODM_CMNINFO_DBG_COMP, *((u64 *)value));
break;
case HW_DEF_ODM_DBG_LEVEL:
ODM_CmnInfoUpdate(odm, ODM_CMNINFO_DBG_LEVEL, *((u32 *)value));
break;
case HAL_DEF_DBG_DM_FUNC:
{
u8 dm_func = *((u8 *)value);
struct dm_priv *dm = &hal_data->dmpriv;
if (dm_func == 0) { /* disable all dynamic func */
odm->SupportAbility = DYNAMIC_FUNC_DISABLE;
DBG_8192C("==> Disable all dynamic function...\n");
} else if (dm_func == 1) {/* disable DIG */
odm->SupportAbility &= (~DYNAMIC_BB_DIG);
DBG_8192C("==> Disable DIG...\n");
} else if (dm_func == 2) {/* disable High power */
odm->SupportAbility &= (~DYNAMIC_BB_DYNAMIC_TXPWR);
} else if (dm_func == 3) {/* disable tx power tracking */
odm->SupportAbility &= (~DYNAMIC_RF_CALIBRATION);
DBG_8192C("==> Disable tx power tracking...\n");
} else if (dm_func == 4) {/* disable BT coexistence */
dm->DMFlag &= (~DYNAMIC_FUNC_BT);
} else if (dm_func == 5) {/* disable antenna diversity */
odm->SupportAbility &= (~DYNAMIC_BB_ANT_DIV);
} else if (dm_func == 6) {/* turn on all dynamic func */
if (!(odm->SupportAbility & DYNAMIC_BB_DIG)) {
DIG_T *pDigTable = &odm->DM_DigTable;
pDigTable->CurIGValue = rtw_read8(adapter, 0xc50);
}
dm->DMFlag |= DYNAMIC_FUNC_BT;
odm->SupportAbility = DYNAMIC_ALL_FUNC_ENABLE;
DBG_8192C("==> Turn on all dynamic function...\n");
}
}
break;
case HAL_DEF_DBG_DUMP_RXPKT:
hal_data->bDumpRxPkt = *((u8 *)value);
break;
case HAL_DEF_DBG_DUMP_TXPKT:
hal_data->bDumpTxPkt = *((u8 *)value);
break;
case HAL_DEF_ANT_DETECT:
hal_data->AntDetection = *((u8 *)value);
break;
default:
DBG_871X_LEVEL(_drv_always_, "%s: [WARNING] HAL_DEF_VARIABLE(%d) not defined!\n", __func__, variable);
bResult = _FAIL;
break;
}
return bResult;
}
u8 GetHalDefVar(
struct adapter *adapter, enum HAL_DEF_VARIABLE variable, void *value
)
{
struct hal_com_data *hal_data = GET_HAL_DATA(adapter);
DM_ODM_T *odm = &(hal_data->odmpriv);
u8 bResult = _SUCCESS;
switch (variable) {
case HAL_DEF_UNDERCORATEDSMOOTHEDPWDB:
{
struct mlme_priv *pmlmepriv;
struct sta_priv *pstapriv;
struct sta_info *psta;
pmlmepriv = &adapter->mlmepriv;
pstapriv = &adapter->stapriv;
psta = rtw_get_stainfo(pstapriv, pmlmepriv->cur_network.network.MacAddress);
if (psta)
*((int *)value) = psta->rssi_stat.UndecoratedSmoothedPWDB;
}
break;
case HW_DEF_ODM_DBG_FLAG:
*((u64 *)value) = odm->DebugComponents;
break;
case HW_DEF_ODM_DBG_LEVEL:
*((u32 *)value) = odm->DebugLevel;
break;
case HAL_DEF_DBG_DM_FUNC:
*((u32 *)value) = hal_data->odmpriv.SupportAbility;
break;
case HAL_DEF_DBG_DUMP_RXPKT:
*((u8 *)value) = hal_data->bDumpRxPkt;
break;
case HAL_DEF_DBG_DUMP_TXPKT:
*((u8 *)value) = hal_data->bDumpTxPkt;
break;
case HAL_DEF_ANT_DETECT:
*((u8 *)value) = hal_data->AntDetection;
break;
case HAL_DEF_MACID_SLEEP:
*(u8 *)value = false;
break;
case HAL_DEF_TX_PAGE_SIZE:
*((u32 *)value) = PAGE_SIZE_128;
break;
default:
DBG_871X_LEVEL(_drv_always_, "%s: [WARNING] HAL_DEF_VARIABLE(%d) not defined!\n", __func__, variable);
bResult = _FAIL;
break;
}
return bResult;
}
void GetHalODMVar(
struct adapter *Adapter,
enum HAL_ODM_VARIABLE eVariable,
void *pValue1,
void *pValue2
)
{
switch (eVariable) {
#if defined(CONFIG_SIGNAL_DISPLAY_DBM) && defined(CONFIG_BACKGROUND_NOISE_MONITOR)
case HAL_ODM_NOISE_MONITOR:
{
struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
u8 chan = *(u8 *)pValue1;
*(s16 *)pValue2 = pHalData->noise[chan];
#ifdef DBG_NOISE_MONITOR
DBG_8192C("### Noise monitor chan(%d)-noise:%d (dBm) ###\n",
chan, pHalData->noise[chan]);
#endif
}
break;
#endif/* ifdef CONFIG_BACKGROUND_NOISE_MONITOR */
default:
break;
}
}
void SetHalODMVar(
struct adapter *Adapter,
enum HAL_ODM_VARIABLE eVariable,
void *pValue1,
bool bSet
)
{
struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
PDM_ODM_T podmpriv = &pHalData->odmpriv;
/* _irqL irqL; */
switch (eVariable) {
case HAL_ODM_STA_INFO:
{
struct sta_info *psta = pValue1;
if (bSet) {
DBG_8192C("### Set STA_(%d) info ###\n", psta->mac_id);
ODM_CmnInfoPtrArrayHook(podmpriv, ODM_CMNINFO_STA_STATUS, psta->mac_id, psta);
} else {
DBG_8192C("### Clean STA_(%d) info ###\n", psta->mac_id);
/* spin_lock_bh(&pHalData->odm_stainfo_lock); */
ODM_CmnInfoPtrArrayHook(podmpriv, ODM_CMNINFO_STA_STATUS, psta->mac_id, NULL);
/* spin_unlock_bh(&pHalData->odm_stainfo_lock); */
}
}
break;
case HAL_ODM_P2P_STATE:
ODM_CmnInfoUpdate(podmpriv, ODM_CMNINFO_WIFI_DIRECT, bSet);
break;
case HAL_ODM_WIFI_DISPLAY_STATE:
ODM_CmnInfoUpdate(podmpriv, ODM_CMNINFO_WIFI_DISPLAY, bSet);
break;
#if defined(CONFIG_SIGNAL_DISPLAY_DBM) && defined(CONFIG_BACKGROUND_NOISE_MONITOR)
case HAL_ODM_NOISE_MONITOR:
{
struct noise_info *pinfo = pValue1;
#ifdef DBG_NOISE_MONITOR
DBG_8192C("### Noise monitor chan(%d)-bPauseDIG:%d, IGIValue:0x%02x, max_time:%d (ms) ###\n",
pinfo->chan, pinfo->bPauseDIG, pinfo->IGIValue, pinfo->max_time);
#endif
pHalData->noise[pinfo->chan] = ODM_InbandNoise_Monitor(podmpriv, pinfo->bPauseDIG, pinfo->IGIValue, pinfo->max_time);
DBG_871X("chan_%d, noise = %d (dBm)\n", pinfo->chan, pHalData->noise[pinfo->chan]);
#ifdef DBG_NOISE_MONITOR
DBG_871X("noise_a = %d, noise_b = %d noise_all:%d\n",
podmpriv->noise_level.noise[ODM_RF_PATH_A],
podmpriv->noise_level.noise[ODM_RF_PATH_B],
podmpriv->noise_level.noise_all);
#endif
}
break;
#endif/* ifdef CONFIG_BACKGROUND_NOISE_MONITOR */
default:
break;
}
}
bool eqNByte(u8 *str1, u8 *str2, u32 num)
{
if (num == 0)
return false;
while (num > 0) {
num--;
if (str1[num] != str2[num])
return false;
}
return true;
}
/* */
/* Description: */
/* Return true if chTmp is represent for hex digit and */
/* false otherwise. */
/* */
/* */
bool IsHexDigit(char chTmp)
{
if (
(chTmp >= '0' && chTmp <= '9') ||
(chTmp >= 'a' && chTmp <= 'f') ||
(chTmp >= 'A' && chTmp <= 'F')
)
return true;
else
return false;
}
/* */
/* Description: */
/* Translate a character to hex digit. */
/* */
u32 MapCharToHexDigit(char chTmp)
{
if (chTmp >= '0' && chTmp <= '9')
return (chTmp - '0');
else if (chTmp >= 'a' && chTmp <= 'f')
return (10 + (chTmp - 'a'));
else if (chTmp >= 'A' && chTmp <= 'F')
return (10 + (chTmp - 'A'));
else
return 0;
}
/* Description: */
/* Parse hex number from the string pucStr. */
bool GetHexValueFromString(char *szStr, u32 *pu4bVal, u32 *pu4bMove)
{
char *szScan = szStr;
/* Check input parameter. */
if (szStr == NULL || pu4bVal == NULL || pu4bMove == NULL) {
DBG_871X("GetHexValueFromString(): Invalid input arguments! szStr: %p, pu4bVal: %p, pu4bMove: %p\n",
szStr, pu4bVal, pu4bMove);
return false;
}
/* Initialize output. */
*pu4bMove = 0;
*pu4bVal = 0;
/* Skip leading space. */
while (*szScan != '\0' && (*szScan == ' ' || *szScan == '\t')) {
szScan++;
(*pu4bMove)++;
}
/* Skip leading '0x' or '0X'. */
if (*szScan == '0' && (*(szScan+1) == 'x' || *(szScan+1) == 'X')) {
szScan += 2;
(*pu4bMove) += 2;
}
/* Check if szScan is now pointer to a character for hex digit, */
/* if not, it means this is not a valid hex number. */
if (!IsHexDigit(*szScan))
return false;
/* Parse each digit. */
do {
(*pu4bVal) <<= 4;
*pu4bVal += MapCharToHexDigit(*szScan);
szScan++;
(*pu4bMove)++;
} while (IsHexDigit(*szScan));
return true;
}
bool GetFractionValueFromString(
char *szStr, u8 *pInteger, u8 *pFraction, u32 *pu4bMove
)
{
char *szScan = szStr;
/* Initialize output. */
*pu4bMove = 0;
*pInteger = 0;
*pFraction = 0;
/* Skip leading space. */
while (*szScan != '\0' && (*szScan == ' ' || *szScan == '\t')) {
++szScan;
++(*pu4bMove);
}
/* Parse each digit. */
do {
(*pInteger) *= 10;
*pInteger += (*szScan - '0');
++szScan;
++(*pu4bMove);
if (*szScan == '.') {
++szScan;
++(*pu4bMove);
if (*szScan < '0' || *szScan > '9')
return false;
else {
*pFraction = *szScan - '0';
++szScan;
++(*pu4bMove);
return true;
}
}
} while (*szScan >= '0' && *szScan <= '9');
return true;
}
/* */
/* Description: */
/* Return true if szStr is comment out with leading "//". */
/* */
bool IsCommentString(char *szStr)
{
if (*szStr == '/' && *(szStr+1) == '/')
return true;
else
return false;
}
bool GetU1ByteIntegerFromStringInDecimal(char *Str, u8 *pInt)
{
u16 i = 0;
*pInt = 0;
while (Str[i] != '\0') {
if (Str[i] >= '0' && Str[i] <= '9') {
*pInt *= 10;
*pInt += (Str[i] - '0');
} else
return false;
++i;
}
return true;
}
/* <20121004, Kordan> For example,
* ParseQualifiedString(inString, 0, outString, '[', ']') gets "Kordan" from
* a string "Hello [Kordan]".
* If RightQualifier does not exist, it will hang in the while loop
*/
bool ParseQualifiedString(
char *In, u32 *Start, char *Out, char LeftQualifier, char RightQualifier
)
{
u32 i = 0, j = 0;
char c = In[(*Start)++];
if (c != LeftQualifier)
return false;
i = (*Start);
while ((c = In[(*Start)++]) != RightQualifier)
; /* find ']' */
j = (*Start) - 2;
strncpy((char *)Out, (const char *)(In+i), j-i+1);
return true;
}
bool isAllSpaceOrTab(u8 *data, u8 size)
{
u8 cnt = 0, NumOfSpaceAndTab = 0;
while (size > cnt) {
if (data[cnt] == ' ' || data[cnt] == '\t' || data[cnt] == '\0')
++NumOfSpaceAndTab;
++cnt;
}
return size == NumOfSpaceAndTab;
}
void rtw_hal_check_rxfifo_full(struct adapter *adapter)
{
struct dvobj_priv *psdpriv = adapter->dvobj;
struct debug_priv *pdbgpriv = &psdpriv->drv_dbg;
int save_cnt = false;
/* switch counter to RX fifo */
/* printk("8723b or 8192e , MAC_667 set 0xf0\n"); */
rtw_write8(adapter, REG_RXERR_RPT+3, rtw_read8(adapter, REG_RXERR_RPT+3)|0xf0);
save_cnt = true;
/* todo: other chips */
if (save_cnt) {
/* rtw_write8(adapter, REG_RXERR_RPT+3, rtw_read8(adapter, REG_RXERR_RPT+3)|0xa0); */
pdbgpriv->dbg_rx_fifo_last_overflow = pdbgpriv->dbg_rx_fifo_curr_overflow;
pdbgpriv->dbg_rx_fifo_curr_overflow = rtw_read16(adapter, REG_RXERR_RPT);
pdbgpriv->dbg_rx_fifo_diff_overflow = pdbgpriv->dbg_rx_fifo_curr_overflow-pdbgpriv->dbg_rx_fifo_last_overflow;
}
}
void linked_info_dump(struct adapter *padapter, u8 benable)
{
struct pwrctrl_priv *pwrctrlpriv = adapter_to_pwrctl(padapter);
if (padapter->bLinkInfoDump == benable)
return;
DBG_871X("%s %s\n", __func__, (benable) ? "enable" : "disable");
if (benable) {
pwrctrlpriv->org_power_mgnt = pwrctrlpriv->power_mgnt;/* keep org value */
rtw_pm_set_lps(padapter, PS_MODE_ACTIVE);
pwrctrlpriv->ips_org_mode = pwrctrlpriv->ips_mode;/* keep org value */
rtw_pm_set_ips(padapter, IPS_NONE);
} else {
rtw_pm_set_ips(padapter, pwrctrlpriv->ips_org_mode);
rtw_pm_set_lps(padapter, pwrctrlpriv->ips_org_mode);
}
padapter->bLinkInfoDump = benable;
}
#ifdef DBG_RX_SIGNAL_DISPLAY_RAW_DATA
void rtw_get_raw_rssi_info(void *sel, struct adapter *padapter)
{
u8 isCCKrate, rf_path;
struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
struct rx_raw_rssi *psample_pkt_rssi = &padapter->recvpriv.raw_rssi_info;
DBG_871X_SEL_NL(
sel,
"RxRate = %s, PWDBALL = %d(%%), rx_pwr_all = %d(dBm)\n",
HDATA_RATE(psample_pkt_rssi->data_rate),
psample_pkt_rssi->pwdball, psample_pkt_rssi->pwr_all
);
isCCKrate = (psample_pkt_rssi->data_rate <= DESC_RATE11M) ? true : false;
if (isCCKrate)
psample_pkt_rssi->mimo_singal_strength[0] = psample_pkt_rssi->pwdball;
for (rf_path = 0; rf_path < pHalData->NumTotalRFPath; rf_path++) {
DBG_871X_SEL_NL(
sel,
"RF_PATH_%d =>singal_strength:%d(%%), singal_quality:%d(%%)\n",
rf_path, psample_pkt_rssi->mimo_singal_strength[rf_path],
psample_pkt_rssi->mimo_singal_quality[rf_path]
);
if (!isCCKrate) {
DBG_871X_SEL_NL(
sel,
"\trx_ofdm_pwr:%d(dBm), rx_ofdm_snr:%d(dB)\n",
psample_pkt_rssi->ofdm_pwr[rf_path],
psample_pkt_rssi->ofdm_snr[rf_path]
);
}
}
}
void rtw_dump_raw_rssi_info(struct adapter *padapter)
{
u8 isCCKrate, rf_path;
struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
struct rx_raw_rssi *psample_pkt_rssi = &padapter->recvpriv.raw_rssi_info;
DBG_871X("============ RAW Rx Info dump ===================\n");
DBG_871X("RxRate = %s, PWDBALL = %d(%%), rx_pwr_all = %d(dBm)\n",
HDATA_RATE(psample_pkt_rssi->data_rate), psample_pkt_rssi->pwdball, psample_pkt_rssi->pwr_all);
isCCKrate = (psample_pkt_rssi->data_rate <= DESC_RATE11M) ? true : false;
if (isCCKrate)
psample_pkt_rssi->mimo_singal_strength[0] = psample_pkt_rssi->pwdball;
for (rf_path = 0; rf_path < pHalData->NumTotalRFPath; rf_path++) {
DBG_871X("RF_PATH_%d =>singal_strength:%d(%%), singal_quality:%d(%%)"
, rf_path, psample_pkt_rssi->mimo_singal_strength[rf_path], psample_pkt_rssi->mimo_singal_quality[rf_path]);
if (!isCCKrate) {
printk(", rx_ofdm_pwr:%d(dBm), rx_ofdm_snr:%d(dB)\n",
psample_pkt_rssi->ofdm_pwr[rf_path], psample_pkt_rssi->ofdm_snr[rf_path]);
} else {
printk("\n");
}
}
}
void rtw_store_phy_info(struct adapter *padapter, union recv_frame *prframe)
{
u8 isCCKrate, rf_path;
struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
struct rx_pkt_attrib *pattrib = &prframe->u.hdr.attrib;
PODM_PHY_INFO_T pPhyInfo = (PODM_PHY_INFO_T)(&pattrib->phy_info);
struct rx_raw_rssi *psample_pkt_rssi = &padapter->recvpriv.raw_rssi_info;
psample_pkt_rssi->data_rate = pattrib->data_rate;
isCCKrate = (pattrib->data_rate <= DESC_RATE11M) ? true : false;
psample_pkt_rssi->pwdball = pPhyInfo->RxPWDBAll;
psample_pkt_rssi->pwr_all = pPhyInfo->RecvSignalPower;
for (rf_path = 0; rf_path < pHalData->NumTotalRFPath; rf_path++) {
psample_pkt_rssi->mimo_singal_strength[rf_path] = pPhyInfo->RxMIMOSignalStrength[rf_path];
psample_pkt_rssi->mimo_singal_quality[rf_path] = pPhyInfo->RxMIMOSignalQuality[rf_path];
if (!isCCKrate) {
psample_pkt_rssi->ofdm_pwr[rf_path] = pPhyInfo->RxPwr[rf_path];
psample_pkt_rssi->ofdm_snr[rf_path] = pPhyInfo->RxSNR[rf_path];
}
}
}
#endif
static u32 Array_kfreemap[] = {
0xf8, 0xe,
0xf6, 0xc,
0xf4, 0xa,
0xf2, 0x8,
0xf0, 0x6,
0xf3, 0x4,
0xf5, 0x2,
0xf7, 0x0,
0xf9, 0x0,
0xfc, 0x0,
};
void rtw_bb_rf_gain_offset(struct adapter *padapter)
{
u8 value = padapter->eeprompriv.EEPROMRFGainOffset;
u32 res, i = 0;
u32 ArrayLen = sizeof(Array_kfreemap)/sizeof(u32);
u32 *Array = Array_kfreemap;
u32 v1 = 0, v2 = 0, target = 0;
/* DBG_871X("+%s value: 0x%02x+\n", __func__, value); */
if (value & BIT4) {
DBG_871X("Offset RF Gain.\n");
DBG_871X("Offset RF Gain. padapter->eeprompriv.EEPROMRFGainVal = 0x%x\n", padapter->eeprompriv.EEPROMRFGainVal);
if (padapter->eeprompriv.EEPROMRFGainVal != 0xff) {
res = rtw_hal_read_rfreg(padapter, RF_PATH_A, 0x7f, 0xffffffff);
res &= 0xfff87fff;
DBG_871X("Offset RF Gain. before reg 0x7f = 0x%08x\n", res);
/* res &= 0xfff87fff; */
for (i = 0; i < ArrayLen; i += 2) {
v1 = Array[i];
v2 = Array[i+1];
if (v1 == padapter->eeprompriv.EEPROMRFGainVal) {
DBG_871X("Offset RF Gain. got v1 = 0x%x , v2 = 0x%x\n", v1, v2);
target = v2;
break;
}
}
DBG_871X("padapter->eeprompriv.EEPROMRFGainVal = 0x%x , Gain offset Target Value = 0x%x\n", padapter->eeprompriv.EEPROMRFGainVal, target);
PHY_SetRFReg(padapter, RF_PATH_A, REG_RF_BB_GAIN_OFFSET, BIT18|BIT17|BIT16|BIT15, target);
/* res |= (padapter->eeprompriv.EEPROMRFGainVal & 0x0f)<< 15; */
/* rtw_hal_write_rfreg(padapter, RF_PATH_A, REG_RF_BB_GAIN_OFFSET, RF_GAIN_OFFSET_MASK, res); */
res = rtw_hal_read_rfreg(padapter, RF_PATH_A, 0x7f, 0xffffffff);
DBG_871X("Offset RF Gain. After reg 0x7f = 0x%08x\n", res);
} else
DBG_871X("Offset RF Gain. padapter->eeprompriv.EEPROMRFGainVal = 0x%x != 0xff, didn't run Kfree\n", padapter->eeprompriv.EEPROMRFGainVal);
} else
DBG_871X("Using the default RF gain.\n");
}