blob: 566b6f0997dac5372ee52be42236de4184ca25d1 [file] [log] [blame]
/******************************************************************************
*
* Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
******************************************************************************/
#define _HAL_COM_PHYCFG_C_
#include <drv_types.h>
#include <rtw_debug.h>
#include <hal_data.h>
u8 PHY_GetTxPowerByRateBase(struct adapter *Adapter, u8 Band, u8 RfPath,
u8 TxNum, enum RATE_SECTION RateSection)
{
struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
u8 value = 0;
if (RfPath > ODM_RF_PATH_D) {
DBG_871X("Invalid Rf Path %d in PHY_GetTxPowerByRateBase()\n", RfPath);
return 0;
}
if (Band == BAND_ON_2_4G) {
switch (RateSection) {
case CCK:
value = pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][0];
break;
case OFDM:
value = pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][1];
break;
case HT_MCS0_MCS7:
value = pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][2];
break;
case HT_MCS8_MCS15:
value = pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][3];
break;
case HT_MCS16_MCS23:
value = pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][4];
break;
case HT_MCS24_MCS31:
value = pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][5];
break;
case VHT_1SSMCS0_1SSMCS9:
value = pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][6];
break;
case VHT_2SSMCS0_2SSMCS9:
value = pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][7];
break;
case VHT_3SSMCS0_3SSMCS9:
value = pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][8];
break;
case VHT_4SSMCS0_4SSMCS9:
value = pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][9];
break;
default:
DBG_871X("Invalid RateSection %d in Band 2.4G, Rf Path %d, %dTx in PHY_GetTxPowerByRateBase()\n",
RateSection, RfPath, TxNum);
break;
};
} else if (Band == BAND_ON_5G) {
switch (RateSection) {
case OFDM:
value = pHalData->TxPwrByRateBase5G[RfPath][TxNum][0];
break;
case HT_MCS0_MCS7:
value = pHalData->TxPwrByRateBase5G[RfPath][TxNum][1];
break;
case HT_MCS8_MCS15:
value = pHalData->TxPwrByRateBase5G[RfPath][TxNum][2];
break;
case HT_MCS16_MCS23:
value = pHalData->TxPwrByRateBase5G[RfPath][TxNum][3];
break;
case HT_MCS24_MCS31:
value = pHalData->TxPwrByRateBase5G[RfPath][TxNum][4];
break;
case VHT_1SSMCS0_1SSMCS9:
value = pHalData->TxPwrByRateBase5G[RfPath][TxNum][5];
break;
case VHT_2SSMCS0_2SSMCS9:
value = pHalData->TxPwrByRateBase5G[RfPath][TxNum][6];
break;
case VHT_3SSMCS0_3SSMCS9:
value = pHalData->TxPwrByRateBase5G[RfPath][TxNum][7];
break;
case VHT_4SSMCS0_4SSMCS9:
value = pHalData->TxPwrByRateBase5G[RfPath][TxNum][8];
break;
default:
DBG_871X("Invalid RateSection %d in Band 5G, Rf Path %d, %dTx in PHY_GetTxPowerByRateBase()\n",
RateSection, RfPath, TxNum);
break;
};
} else
DBG_871X("Invalid Band %d in PHY_GetTxPowerByRateBase()\n", Band);
return value;
}
static void
phy_SetTxPowerByRateBase(
struct adapter *Adapter,
u8 Band,
u8 RfPath,
enum RATE_SECTION RateSection,
u8 TxNum,
u8 Value
)
{
struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
if (RfPath > ODM_RF_PATH_D) {
DBG_871X("Invalid Rf Path %d in phy_SetTxPowerByRatBase()\n", RfPath);
return;
}
if (Band == BAND_ON_2_4G) {
switch (RateSection) {
case CCK:
pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][0] = Value;
break;
case OFDM:
pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][1] = Value;
break;
case HT_MCS0_MCS7:
pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][2] = Value;
break;
case HT_MCS8_MCS15:
pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][3] = Value;
break;
case HT_MCS16_MCS23:
pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][4] = Value;
break;
case HT_MCS24_MCS31:
pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][5] = Value;
break;
case VHT_1SSMCS0_1SSMCS9:
pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][6] = Value;
break;
case VHT_2SSMCS0_2SSMCS9:
pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][7] = Value;
break;
case VHT_3SSMCS0_3SSMCS9:
pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][8] = Value;
break;
case VHT_4SSMCS0_4SSMCS9:
pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][9] = Value;
break;
default:
DBG_871X("Invalid RateSection %d in Band 2.4G, Rf Path %d, %dTx in phy_SetTxPowerByRateBase()\n",
RateSection, RfPath, TxNum);
break;
};
} else if (Band == BAND_ON_5G) {
switch (RateSection) {
case OFDM:
pHalData->TxPwrByRateBase5G[RfPath][TxNum][0] = Value;
break;
case HT_MCS0_MCS7:
pHalData->TxPwrByRateBase5G[RfPath][TxNum][1] = Value;
break;
case HT_MCS8_MCS15:
pHalData->TxPwrByRateBase5G[RfPath][TxNum][2] = Value;
break;
case HT_MCS16_MCS23:
pHalData->TxPwrByRateBase5G[RfPath][TxNum][3] = Value;
break;
case HT_MCS24_MCS31:
pHalData->TxPwrByRateBase5G[RfPath][TxNum][4] = Value;
break;
case VHT_1SSMCS0_1SSMCS9:
pHalData->TxPwrByRateBase5G[RfPath][TxNum][5] = Value;
break;
case VHT_2SSMCS0_2SSMCS9:
pHalData->TxPwrByRateBase5G[RfPath][TxNum][6] = Value;
break;
case VHT_3SSMCS0_3SSMCS9:
pHalData->TxPwrByRateBase5G[RfPath][TxNum][7] = Value;
break;
case VHT_4SSMCS0_4SSMCS9:
pHalData->TxPwrByRateBase5G[RfPath][TxNum][8] = Value;
break;
default:
DBG_871X("Invalid RateSection %d in Band 5G, Rf Path %d, %dTx in phy_SetTxPowerByRateBase()\n",
RateSection, RfPath, TxNum);
break;
};
} else
DBG_871X("Invalid Band %d in phy_SetTxPowerByRateBase()\n", Band);
}
static void
phy_StoreTxPowerByRateBase(
struct adapter *padapter
)
{
u8 path, base;
/* DBG_871X("===>%s\n", __func__); */
for (path = ODM_RF_PATH_A; path <= ODM_RF_PATH_B; ++path) {
base = PHY_GetTxPowerByRate(padapter, BAND_ON_2_4G, path, RF_1TX, MGN_11M);
phy_SetTxPowerByRateBase(padapter, BAND_ON_2_4G, path, CCK, RF_1TX, base);
/* DBG_871X("Power index base of 2.4G path %d 1Tx CCK = > 0x%x\n", path, base); */
base = PHY_GetTxPowerByRate(padapter, BAND_ON_2_4G, path, RF_1TX, MGN_54M);
phy_SetTxPowerByRateBase(padapter, BAND_ON_2_4G, path, OFDM, RF_1TX, base);
/* DBG_871X("Power index base of 2.4G path %d 1Tx OFDM = > 0x%x\n", path, base); */
base = PHY_GetTxPowerByRate(padapter, BAND_ON_2_4G, path, RF_1TX, MGN_MCS7);
phy_SetTxPowerByRateBase(padapter, BAND_ON_2_4G, path, HT_MCS0_MCS7, RF_1TX, base);
/* DBG_871X("Power index base of 2.4G path %d 1Tx MCS0-7 = > 0x%x\n", path, base); */
base = PHY_GetTxPowerByRate(padapter, BAND_ON_2_4G, path, RF_2TX, MGN_MCS15);
phy_SetTxPowerByRateBase(padapter, BAND_ON_2_4G, path, HT_MCS8_MCS15, RF_2TX, base);
/* DBG_871X("Power index base of 2.4G path %d 2Tx MCS8-15 = > 0x%x\n", path, base); */
base = PHY_GetTxPowerByRate(padapter, BAND_ON_2_4G, path, RF_3TX, MGN_MCS23);
phy_SetTxPowerByRateBase(padapter, BAND_ON_2_4G, path, HT_MCS16_MCS23, RF_3TX, base);
/* DBG_871X("Power index base of 2.4G path %d 3Tx MCS16-23 = > 0x%x\n", path, base); */
base = PHY_GetTxPowerByRate(padapter, BAND_ON_2_4G, path, RF_1TX, MGN_VHT1SS_MCS7);
phy_SetTxPowerByRateBase(padapter, BAND_ON_2_4G, path, VHT_1SSMCS0_1SSMCS9, RF_1TX, base);
/* DBG_871X("Power index base of 2.4G path %d 1Tx VHT1SS = > 0x%x\n", path, base); */
base = PHY_GetTxPowerByRate(padapter, BAND_ON_2_4G, path, RF_2TX, MGN_VHT2SS_MCS7);
phy_SetTxPowerByRateBase(padapter, BAND_ON_2_4G, path, VHT_2SSMCS0_2SSMCS9, RF_2TX, base);
/* DBG_871X("Power index base of 2.4G path %d 2Tx VHT2SS = > 0x%x\n", path, base); */
base = PHY_GetTxPowerByRate(padapter, BAND_ON_2_4G, path, RF_3TX, MGN_VHT3SS_MCS7);
phy_SetTxPowerByRateBase(padapter, BAND_ON_2_4G, path, VHT_3SSMCS0_3SSMCS9, RF_3TX, base);
/* DBG_871X("Power index base of 2.4G path %d 3Tx VHT3SS = > 0x%x\n", path, base); */
base = PHY_GetTxPowerByRate(padapter, BAND_ON_5G, path, RF_1TX, MGN_54M);
phy_SetTxPowerByRateBase(padapter, BAND_ON_5G, path, OFDM, RF_1TX, base);
/* DBG_871X("Power index base of 5G path %d 1Tx OFDM = > 0x%x\n", path, base); */
base = PHY_GetTxPowerByRate(padapter, BAND_ON_5G, path, RF_1TX, MGN_MCS7);
phy_SetTxPowerByRateBase(padapter, BAND_ON_5G, path, HT_MCS0_MCS7, RF_1TX, base);
/* DBG_871X("Power index base of 5G path %d 1Tx MCS0~7 = > 0x%x\n", path, base); */
base = PHY_GetTxPowerByRate(padapter, BAND_ON_5G, path, RF_2TX, MGN_MCS15);
phy_SetTxPowerByRateBase(padapter, BAND_ON_5G, path, HT_MCS8_MCS15, RF_2TX, base);
/* DBG_871X("Power index base of 5G path %d 2Tx MCS8~15 = > 0x%x\n", path, base); */
base = PHY_GetTxPowerByRate(padapter, BAND_ON_5G, path, RF_3TX, MGN_MCS23);
phy_SetTxPowerByRateBase(padapter, BAND_ON_5G, path, HT_MCS16_MCS23, RF_3TX, base);
/* DBG_871X("Power index base of 5G path %d 3Tx MCS16~23 = > 0x%x\n", path, base); */
base = PHY_GetTxPowerByRate(padapter, BAND_ON_5G, path, RF_1TX, MGN_VHT1SS_MCS7);
phy_SetTxPowerByRateBase(padapter, BAND_ON_5G, path, VHT_1SSMCS0_1SSMCS9, RF_1TX, base);
/* DBG_871X("Power index base of 5G path %d 1Tx VHT1SS = > 0x%x\n", path, base); */
base = PHY_GetTxPowerByRate(padapter, BAND_ON_5G, path, RF_2TX, MGN_VHT2SS_MCS7);
phy_SetTxPowerByRateBase(padapter, BAND_ON_5G, path, VHT_2SSMCS0_2SSMCS9, RF_2TX, base);
/* DBG_871X("Power index base of 5G path %d 2Tx VHT2SS = > 0x%x\n", path, base); */
base = PHY_GetTxPowerByRate(padapter, BAND_ON_5G, path, RF_3TX, MGN_VHT2SS_MCS7);
phy_SetTxPowerByRateBase(padapter, BAND_ON_5G, path, VHT_3SSMCS0_3SSMCS9, RF_3TX, base);
/* DBG_871X("Power index base of 5G path %d 3Tx VHT3SS = > 0x%x\n", path, base); */
}
/* DBG_871X("<===%s\n", __func__); */
}
u8 PHY_GetRateSectionIndexOfTxPowerByRate(
struct adapter *padapter, u32 RegAddr, u32 BitMask
)
{
struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
PDM_ODM_T pDM_Odm = &pHalData->odmpriv;
u8 index = 0;
if (pDM_Odm->PhyRegPgVersion == 0) {
switch (RegAddr) {
case rTxAGC_A_Rate18_06:
index = 0;
break;
case rTxAGC_A_Rate54_24:
index = 1;
break;
case rTxAGC_A_CCK1_Mcs32:
index = 6;
break;
case rTxAGC_B_CCK11_A_CCK2_11:
if (BitMask == bMaskH3Bytes)
index = 7;
else if (BitMask == 0x000000ff)
index = 15;
break;
case rTxAGC_A_Mcs03_Mcs00:
index = 2;
break;
case rTxAGC_A_Mcs07_Mcs04:
index = 3;
break;
case rTxAGC_A_Mcs11_Mcs08:
index = 4;
break;
case rTxAGC_A_Mcs15_Mcs12:
index = 5;
break;
case rTxAGC_B_Rate18_06:
index = 8;
break;
case rTxAGC_B_Rate54_24:
index = 9;
break;
case rTxAGC_B_CCK1_55_Mcs32:
index = 14;
break;
case rTxAGC_B_Mcs03_Mcs00:
index = 10;
break;
case rTxAGC_B_Mcs07_Mcs04:
index = 11;
break;
case rTxAGC_B_Mcs11_Mcs08:
index = 12;
break;
case rTxAGC_B_Mcs15_Mcs12:
index = 13;
break;
default:
DBG_871X("Invalid RegAddr 0x3%x in PHY_GetRateSectionIndexOfTxPowerByRate()", RegAddr);
break;
};
}
return index;
}
void
PHY_GetRateValuesOfTxPowerByRate(
struct adapter *padapter,
u32 RegAddr,
u32 BitMask,
u32 Value,
u8 *RateIndex,
s8 *PwrByRateVal,
u8 *RateNum
)
{
u8 i = 0;
switch (RegAddr) {
case rTxAGC_A_Rate18_06:
case rTxAGC_B_Rate18_06:
RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_6M);
RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate(MGN_9M);
RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate(MGN_12M);
RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate(MGN_18M);
for (i = 0; i < 4; ++i) {
PwrByRateVal[i] = (s8) ((((Value >> (i * 8 + 4)) & 0xF)) * 10 +
((Value >> (i * 8)) & 0xF));
}
*RateNum = 4;
break;
case rTxAGC_A_Rate54_24:
case rTxAGC_B_Rate54_24:
RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_24M);
RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate(MGN_36M);
RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate(MGN_48M);
RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate(MGN_54M);
for (i = 0; i < 4; ++i) {
PwrByRateVal[i] = (s8) ((((Value >> (i * 8 + 4)) & 0xF)) * 10 +
((Value >> (i * 8)) & 0xF));
}
*RateNum = 4;
break;
case rTxAGC_A_CCK1_Mcs32:
RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_1M);
PwrByRateVal[0] = (s8) ((((Value >> (8 + 4)) & 0xF)) * 10 +
((Value >> 8) & 0xF));
*RateNum = 1;
break;
case rTxAGC_B_CCK11_A_CCK2_11:
if (BitMask == 0xffffff00) {
RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_2M);
RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate(MGN_5_5M);
RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate(MGN_11M);
for (i = 1; i < 4; ++i) {
PwrByRateVal[i - 1] = (s8) ((((Value >> (i * 8 + 4)) & 0xF)) * 10 +
((Value >> (i * 8)) & 0xF));
}
*RateNum = 3;
} else if (BitMask == 0x000000ff) {
RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_11M);
PwrByRateVal[0] = (s8) ((((Value >> 4) & 0xF)) * 10 + (Value & 0xF));
*RateNum = 1;
}
break;
case rTxAGC_A_Mcs03_Mcs00:
case rTxAGC_B_Mcs03_Mcs00:
RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS0);
RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS1);
RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS2);
RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS3);
for (i = 0; i < 4; ++i) {
PwrByRateVal[i] = (s8) ((((Value >> (i * 8 + 4)) & 0xF)) * 10 +
((Value >> (i * 8)) & 0xF));
}
*RateNum = 4;
break;
case rTxAGC_A_Mcs07_Mcs04:
case rTxAGC_B_Mcs07_Mcs04:
RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS4);
RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS5);
RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS6);
RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS7);
for (i = 0; i < 4; ++i) {
PwrByRateVal[i] = (s8) ((((Value >> (i * 8 + 4)) & 0xF)) * 10 +
((Value >> (i * 8)) & 0xF));
}
*RateNum = 4;
break;
case rTxAGC_A_Mcs11_Mcs08:
case rTxAGC_B_Mcs11_Mcs08:
RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS8);
RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS9);
RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS10);
RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS11);
for (i = 0; i < 4; ++i) {
PwrByRateVal[i] = (s8) ((((Value >> (i * 8 + 4)) & 0xF)) * 10 +
((Value >> (i * 8)) & 0xF));
}
*RateNum = 4;
break;
case rTxAGC_A_Mcs15_Mcs12:
case rTxAGC_B_Mcs15_Mcs12:
RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS12);
RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS13);
RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS14);
RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS15);
for (i = 0; i < 4; ++i) {
PwrByRateVal[i] = (s8) ((((Value >> (i * 8 + 4)) & 0xF)) * 10 +
((Value >> (i * 8)) & 0xF));
}
*RateNum = 4;
break;
case rTxAGC_B_CCK1_55_Mcs32:
RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_1M);
RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate(MGN_2M);
RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate(MGN_5_5M);
for (i = 1; i < 4; ++i) {
PwrByRateVal[i - 1] = (s8) ((((Value >> (i * 8 + 4)) & 0xF)) * 10 +
((Value >> (i * 8)) & 0xF));
}
*RateNum = 3;
break;
case 0xC20:
case 0xE20:
case 0x1820:
case 0x1a20:
RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_1M);
RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate(MGN_2M);
RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate(MGN_5_5M);
RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate(MGN_11M);
for (i = 0; i < 4; ++i) {
PwrByRateVal[i] = (s8) ((((Value >> (i * 8 + 4)) & 0xF)) * 10 +
((Value >> (i * 8)) & 0xF));
}
*RateNum = 4;
break;
case 0xC24:
case 0xE24:
case 0x1824:
case 0x1a24:
RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_6M);
RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate(MGN_9M);
RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate(MGN_12M);
RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate(MGN_18M);
for (i = 0; i < 4; ++i) {
PwrByRateVal[i] = (s8) ((((Value >> (i * 8 + 4)) & 0xF)) * 10 +
((Value >> (i * 8)) & 0xF));
}
*RateNum = 4;
break;
case 0xC28:
case 0xE28:
case 0x1828:
case 0x1a28:
RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_24M);
RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate(MGN_36M);
RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate(MGN_48M);
RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate(MGN_54M);
for (i = 0; i < 4; ++i) {
PwrByRateVal[i] = (s8) ((((Value >> (i * 8 + 4)) & 0xF)) * 10 +
((Value >> (i * 8)) & 0xF));
}
*RateNum = 4;
break;
case 0xC2C:
case 0xE2C:
case 0x182C:
case 0x1a2C:
RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS0);
RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS1);
RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS2);
RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS3);
for (i = 0; i < 4; ++i) {
PwrByRateVal[i] = (s8) ((((Value >> (i * 8 + 4)) & 0xF)) * 10 +
((Value >> (i * 8)) & 0xF));
}
*RateNum = 4;
break;
case 0xC30:
case 0xE30:
case 0x1830:
case 0x1a30:
RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS4);
RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS5);
RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS6);
RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS7);
for (i = 0; i < 4; ++i) {
PwrByRateVal[i] = (s8) ((((Value >> (i * 8 + 4)) & 0xF)) * 10 +
((Value >> (i * 8)) & 0xF));
}
*RateNum = 4;
break;
case 0xC34:
case 0xE34:
case 0x1834:
case 0x1a34:
RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS8);
RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS9);
RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS10);
RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS11);
for (i = 0; i < 4; ++i) {
PwrByRateVal[i] = (s8) ((((Value >> (i * 8 + 4)) & 0xF)) * 10 +
((Value >> (i * 8)) & 0xF));
}
*RateNum = 4;
break;
case 0xC38:
case 0xE38:
case 0x1838:
case 0x1a38:
RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS12);
RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS13);
RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS14);
RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS15);
for (i = 0; i < 4; ++i) {
PwrByRateVal[i] = (s8) ((((Value >> (i * 8 + 4)) & 0xF)) * 10 +
((Value >> (i * 8)) & 0xF));
}
*RateNum = 4;
break;
case 0xC3C:
case 0xE3C:
case 0x183C:
case 0x1a3C:
RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_VHT1SS_MCS0);
RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate(MGN_VHT1SS_MCS1);
RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate(MGN_VHT1SS_MCS2);
RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate(MGN_VHT1SS_MCS3);
for (i = 0; i < 4; ++i) {
PwrByRateVal[i] = (s8) ((((Value >> (i * 8 + 4)) & 0xF)) * 10 +
((Value >> (i * 8)) & 0xF));
}
*RateNum = 4;
break;
case 0xC40:
case 0xE40:
case 0x1840:
case 0x1a40:
RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_VHT1SS_MCS4);
RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate(MGN_VHT1SS_MCS5);
RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate(MGN_VHT1SS_MCS6);
RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate(MGN_VHT1SS_MCS7);
for (i = 0; i < 4; ++i) {
PwrByRateVal[i] = (s8) ((((Value >> (i * 8 + 4)) & 0xF)) * 10 +
((Value >> (i * 8)) & 0xF));
}
*RateNum = 4;
break;
case 0xC44:
case 0xE44:
case 0x1844:
case 0x1a44:
RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_VHT1SS_MCS8);
RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate(MGN_VHT1SS_MCS9);
RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate(MGN_VHT2SS_MCS0);
RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate(MGN_VHT2SS_MCS1);
for (i = 0; i < 4; ++i) {
PwrByRateVal[i] = (s8) ((((Value >> (i * 8 + 4)) & 0xF)) * 10 +
((Value >> (i * 8)) & 0xF));
}
*RateNum = 4;
break;
case 0xC48:
case 0xE48:
case 0x1848:
case 0x1a48:
RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_VHT2SS_MCS2);
RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate(MGN_VHT2SS_MCS3);
RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate(MGN_VHT2SS_MCS4);
RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate(MGN_VHT2SS_MCS5);
for (i = 0; i < 4; ++i) {
PwrByRateVal[i] = (s8) ((((Value >> (i * 8 + 4)) & 0xF)) * 10 +
((Value >> (i * 8)) & 0xF));
}
*RateNum = 4;
break;
case 0xC4C:
case 0xE4C:
case 0x184C:
case 0x1a4C:
RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_VHT2SS_MCS6);
RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate(MGN_VHT2SS_MCS7);
RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate(MGN_VHT2SS_MCS8);
RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate(MGN_VHT2SS_MCS9);
for (i = 0; i < 4; ++i) {
PwrByRateVal[i] = (s8) ((((Value >> (i * 8 + 4)) & 0xF)) * 10 +
((Value >> (i * 8)) & 0xF));
}
*RateNum = 4;
break;
case 0xCD8:
case 0xED8:
case 0x18D8:
case 0x1aD8:
RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS16);
RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS17);
RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS18);
RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS19);
for (i = 0; i < 4; ++i) {
PwrByRateVal[i] = (s8) ((((Value >> (i * 8 + 4)) & 0xF)) * 10 +
((Value >> (i * 8)) & 0xF));
}
*RateNum = 4;
break;
case 0xCDC:
case 0xEDC:
case 0x18DC:
case 0x1aDC:
RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS20);
RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS21);
RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS22);
RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS23);
for (i = 0; i < 4; ++i) {
PwrByRateVal[i] = (s8) ((((Value >> (i * 8 + 4)) & 0xF)) * 10 +
((Value >> (i * 8)) & 0xF));
}
*RateNum = 4;
break;
case 0xCE0:
case 0xEE0:
case 0x18E0:
case 0x1aE0:
RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_VHT3SS_MCS0);
RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate(MGN_VHT3SS_MCS1);
RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate(MGN_VHT3SS_MCS2);
RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate(MGN_VHT3SS_MCS3);
for (i = 0; i < 4; ++i) {
PwrByRateVal[i] = (s8) ((((Value >> (i * 8 + 4)) & 0xF)) * 10 +
((Value >> (i * 8)) & 0xF));
}
*RateNum = 4;
break;
case 0xCE4:
case 0xEE4:
case 0x18E4:
case 0x1aE4:
RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_VHT3SS_MCS4);
RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate(MGN_VHT3SS_MCS5);
RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate(MGN_VHT3SS_MCS6);
RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate(MGN_VHT3SS_MCS7);
for (i = 0; i < 4; ++i) {
PwrByRateVal[i] = (s8) ((((Value >> (i * 8 + 4)) & 0xF)) * 10 +
((Value >> (i * 8)) & 0xF));
}
*RateNum = 4;
break;
case 0xCE8:
case 0xEE8:
case 0x18E8:
case 0x1aE8:
RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_VHT3SS_MCS8);
RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate(MGN_VHT3SS_MCS9);
for (i = 0; i < 2; ++i) {
PwrByRateVal[i] = (s8) ((((Value >> (i * 8 + 4)) & 0xF)) * 10 +
((Value >> (i * 8)) & 0xF));
}
*RateNum = 4;
break;
default:
DBG_871X("Invalid RegAddr 0x%x in %s()\n", RegAddr, __func__);
break;
};
}
static void PHY_StoreTxPowerByRateNew(
struct adapter *padapter,
u32 Band,
u32 RfPath,
u32 TxNum,
u32 RegAddr,
u32 BitMask,
u32 Data
)
{
struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
u8 i = 0, rateIndex[4] = {0}, rateNum = 0;
s8 PwrByRateVal[4] = {0};
PHY_GetRateValuesOfTxPowerByRate(padapter, RegAddr, BitMask, Data, rateIndex, PwrByRateVal, &rateNum);
if (Band != BAND_ON_2_4G && Band != BAND_ON_5G) {
DBG_871X("Invalid Band %d\n", Band);
return;
}
if (RfPath > ODM_RF_PATH_D) {
DBG_871X("Invalid RfPath %d\n", RfPath);
return;
}
if (TxNum > ODM_RF_PATH_D) {
DBG_871X("Invalid TxNum %d\n", TxNum);
return;
}
for (i = 0; i < rateNum; ++i) {
if (rateIndex[i] == PHY_GetRateIndexOfTxPowerByRate(MGN_VHT2SS_MCS0) ||
rateIndex[i] == PHY_GetRateIndexOfTxPowerByRate(MGN_VHT2SS_MCS1))
TxNum = RF_2TX;
pHalData->TxPwrByRateOffset[Band][RfPath][TxNum][rateIndex[i]] = PwrByRateVal[i];
}
}
static void PHY_StoreTxPowerByRateOld(
struct adapter *padapter, u32 RegAddr, u32 BitMask, u32 Data
)
{
struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
u8 index = PHY_GetRateSectionIndexOfTxPowerByRate(padapter, RegAddr, BitMask);
pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][index] = Data;
/* DBG_871X("MCSTxPowerLevelOriginalOffset[%d][0] = 0x%x\n", pHalData->pwrGroupCnt, */
/* pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][0]); */
}
void PHY_InitTxPowerByRate(struct adapter *padapter)
{
struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
u8 band, rfPath, TxNum, rate;
for (band = BAND_ON_2_4G; band <= BAND_ON_5G; ++band)
for (rfPath = 0; rfPath < TX_PWR_BY_RATE_NUM_RF; ++rfPath)
for (TxNum = 0; TxNum < TX_PWR_BY_RATE_NUM_RF; ++TxNum)
for (rate = 0; rate < TX_PWR_BY_RATE_NUM_RATE; ++rate)
pHalData->TxPwrByRateOffset[band][rfPath][TxNum][rate] = 0;
}
void PHY_StoreTxPowerByRate(
struct adapter *padapter,
u32 Band,
u32 RfPath,
u32 TxNum,
u32 RegAddr,
u32 BitMask,
u32 Data
)
{
struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
PDM_ODM_T pDM_Odm = &pHalData->odmpriv;
if (pDM_Odm->PhyRegPgVersion > 0)
PHY_StoreTxPowerByRateNew(padapter, Band, RfPath, TxNum, RegAddr, BitMask, Data);
else if (pDM_Odm->PhyRegPgVersion == 0) {
PHY_StoreTxPowerByRateOld(padapter, RegAddr, BitMask, Data);
if (RegAddr == rTxAGC_A_Mcs15_Mcs12 && pHalData->rf_type == RF_1T1R)
pHalData->pwrGroupCnt++;
else if (RegAddr == rTxAGC_B_Mcs15_Mcs12 && pHalData->rf_type != RF_1T1R)
pHalData->pwrGroupCnt++;
} else
DBG_871X("Invalid PHY_REG_PG.txt version %d\n", pDM_Odm->PhyRegPgVersion);
}
static void
phy_ConvertTxPowerByRateInDbmToRelativeValues(
struct adapter *padapter
)
{
u8 base = 0, i = 0, value = 0, band = 0, path = 0, txNum = 0;
u8 cckRates[4] = {
MGN_1M, MGN_2M, MGN_5_5M, MGN_11M
};
u8 ofdmRates[8] = {
MGN_6M, MGN_9M, MGN_12M, MGN_18M, MGN_24M, MGN_36M, MGN_48M, MGN_54M
};
u8 mcs0_7Rates[8] = {
MGN_MCS0, MGN_MCS1, MGN_MCS2, MGN_MCS3, MGN_MCS4, MGN_MCS5, MGN_MCS6, MGN_MCS7
};
u8 mcs8_15Rates[8] = {
MGN_MCS8, MGN_MCS9, MGN_MCS10, MGN_MCS11, MGN_MCS12, MGN_MCS13, MGN_MCS14, MGN_MCS15
};
u8 mcs16_23Rates[8] = {
MGN_MCS16, MGN_MCS17, MGN_MCS18, MGN_MCS19, MGN_MCS20, MGN_MCS21, MGN_MCS22, MGN_MCS23
};
u8 vht1ssRates[10] = {
MGN_VHT1SS_MCS0, MGN_VHT1SS_MCS1, MGN_VHT1SS_MCS2, MGN_VHT1SS_MCS3, MGN_VHT1SS_MCS4,
MGN_VHT1SS_MCS5, MGN_VHT1SS_MCS6, MGN_VHT1SS_MCS7, MGN_VHT1SS_MCS8, MGN_VHT1SS_MCS9
};
u8 vht2ssRates[10] = {
MGN_VHT2SS_MCS0, MGN_VHT2SS_MCS1, MGN_VHT2SS_MCS2, MGN_VHT2SS_MCS3, MGN_VHT2SS_MCS4,
MGN_VHT2SS_MCS5, MGN_VHT2SS_MCS6, MGN_VHT2SS_MCS7, MGN_VHT2SS_MCS8, MGN_VHT2SS_MCS9
};
u8 vht3ssRates[10] = {
MGN_VHT3SS_MCS0, MGN_VHT3SS_MCS1, MGN_VHT3SS_MCS2, MGN_VHT3SS_MCS3, MGN_VHT3SS_MCS4,
MGN_VHT3SS_MCS5, MGN_VHT3SS_MCS6, MGN_VHT3SS_MCS7, MGN_VHT3SS_MCS8, MGN_VHT3SS_MCS9
};
/* DBG_871X("===>PHY_ConvertTxPowerByRateInDbmToRelativeValues()\n"); */
for (band = BAND_ON_2_4G; band <= BAND_ON_5G; ++band) {
for (path = ODM_RF_PATH_A; path <= ODM_RF_PATH_D; ++path) {
for (txNum = RF_1TX; txNum < RF_MAX_TX_NUM; ++txNum) {
/* CCK */
base = PHY_GetTxPowerByRate(padapter, band, path, txNum, MGN_11M);
for (i = 0; i < sizeof(cckRates); ++i) {
value = PHY_GetTxPowerByRate(padapter, band, path, txNum, cckRates[i]);
PHY_SetTxPowerByRate(padapter, band, path, txNum, cckRates[i], value - base);
}
/* OFDM */
base = PHY_GetTxPowerByRate(padapter, band, path, txNum, MGN_54M);
for (i = 0; i < sizeof(ofdmRates); ++i) {
value = PHY_GetTxPowerByRate(padapter, band, path, txNum, ofdmRates[i]);
PHY_SetTxPowerByRate(padapter, band, path, txNum, ofdmRates[i], value - base);
}
/* HT MCS0~7 */
base = PHY_GetTxPowerByRate(padapter, band, path, txNum, MGN_MCS7);
for (i = 0; i < sizeof(mcs0_7Rates); ++i) {
value = PHY_GetTxPowerByRate(padapter, band, path, txNum, mcs0_7Rates[i]);
PHY_SetTxPowerByRate(padapter, band, path, txNum, mcs0_7Rates[i], value - base);
}
/* HT MCS8~15 */
base = PHY_GetTxPowerByRate(padapter, band, path, txNum, MGN_MCS15);
for (i = 0; i < sizeof(mcs8_15Rates); ++i) {
value = PHY_GetTxPowerByRate(padapter, band, path, txNum, mcs8_15Rates[i]);
PHY_SetTxPowerByRate(padapter, band, path, txNum, mcs8_15Rates[i], value - base);
}
/* HT MCS16~23 */
base = PHY_GetTxPowerByRate(padapter, band, path, txNum, MGN_MCS23);
for (i = 0; i < sizeof(mcs16_23Rates); ++i) {
value = PHY_GetTxPowerByRate(padapter, band, path, txNum, mcs16_23Rates[i]);
PHY_SetTxPowerByRate(padapter, band, path, txNum, mcs16_23Rates[i], value - base);
}
/* VHT 1SS */
base = PHY_GetTxPowerByRate(padapter, band, path, txNum, MGN_VHT1SS_MCS7);
for (i = 0; i < sizeof(vht1ssRates); ++i) {
value = PHY_GetTxPowerByRate(padapter, band, path, txNum, vht1ssRates[i]);
PHY_SetTxPowerByRate(padapter, band, path, txNum, vht1ssRates[i], value - base);
}
/* VHT 2SS */
base = PHY_GetTxPowerByRate(padapter, band, path, txNum, MGN_VHT2SS_MCS7);
for (i = 0; i < sizeof(vht2ssRates); ++i) {
value = PHY_GetTxPowerByRate(padapter, band, path, txNum, vht2ssRates[i]);
PHY_SetTxPowerByRate(padapter, band, path, txNum, vht2ssRates[i], value - base);
}
/* VHT 3SS */
base = PHY_GetTxPowerByRate(padapter, band, path, txNum, MGN_VHT3SS_MCS7);
for (i = 0; i < sizeof(vht3ssRates); ++i) {
value = PHY_GetTxPowerByRate(padapter, band, path, txNum, vht3ssRates[i]);
PHY_SetTxPowerByRate(padapter, band, path, txNum, vht3ssRates[i], value - base);
}
}
}
}
/* DBG_871X("<===PHY_ConvertTxPowerByRateInDbmToRelativeValues()\n"); */
}
/*
* This function must be called if the value in the PHY_REG_PG.txt(or header)
* is exact dBm values
*/
void PHY_TxPowerByRateConfiguration(struct adapter *padapter)
{
phy_StoreTxPowerByRateBase(padapter);
phy_ConvertTxPowerByRateInDbmToRelativeValues(padapter);
}
void PHY_SetTxPowerIndexByRateSection(
struct adapter *padapter, u8 RFPath, u8 Channel, u8 RateSection
)
{
struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
if (RateSection == CCK) {
u8 cckRates[] = {MGN_1M, MGN_2M, MGN_5_5M, MGN_11M};
if (pHalData->CurrentBandType == BAND_ON_2_4G)
PHY_SetTxPowerIndexByRateArray(padapter, RFPath, pHalData->CurrentChannelBW, Channel,
cckRates, sizeof(cckRates)/sizeof(u8));
} else if (RateSection == OFDM) {
u8 ofdmRates[] = {MGN_6M, MGN_9M, MGN_12M, MGN_18M, MGN_24M, MGN_36M, MGN_48M, MGN_54M};
PHY_SetTxPowerIndexByRateArray(padapter, RFPath, pHalData->CurrentChannelBW, Channel,
ofdmRates, sizeof(ofdmRates)/sizeof(u8));
} else if (RateSection == HT_MCS0_MCS7) {
u8 htRates1T[] = {MGN_MCS0, MGN_MCS1, MGN_MCS2, MGN_MCS3, MGN_MCS4, MGN_MCS5, MGN_MCS6, MGN_MCS7};
PHY_SetTxPowerIndexByRateArray(padapter, RFPath, pHalData->CurrentChannelBW, Channel,
htRates1T, sizeof(htRates1T)/sizeof(u8));
} else if (RateSection == HT_MCS8_MCS15) {
u8 htRates2T[] = {MGN_MCS8, MGN_MCS9, MGN_MCS10, MGN_MCS11, MGN_MCS12, MGN_MCS13, MGN_MCS14, MGN_MCS15};
PHY_SetTxPowerIndexByRateArray(padapter, RFPath, pHalData->CurrentChannelBW, Channel,
htRates2T, sizeof(htRates2T)/sizeof(u8));
} else if (RateSection == HT_MCS16_MCS23) {
u8 htRates3T[] = {MGN_MCS16, MGN_MCS17, MGN_MCS18, MGN_MCS19, MGN_MCS20, MGN_MCS21, MGN_MCS22, MGN_MCS23};
PHY_SetTxPowerIndexByRateArray(padapter, RFPath, pHalData->CurrentChannelBW, Channel,
htRates3T, sizeof(htRates3T)/sizeof(u8));
} else if (RateSection == HT_MCS24_MCS31) {
u8 htRates4T[] = {MGN_MCS24, MGN_MCS25, MGN_MCS26, MGN_MCS27, MGN_MCS28, MGN_MCS29, MGN_MCS30, MGN_MCS31};
PHY_SetTxPowerIndexByRateArray(padapter, RFPath, pHalData->CurrentChannelBW, Channel,
htRates4T, sizeof(htRates4T)/sizeof(u8));
} else if (RateSection == VHT_1SSMCS0_1SSMCS9) {
u8 vhtRates1T[] = {MGN_VHT1SS_MCS0, MGN_VHT1SS_MCS1, MGN_VHT1SS_MCS2, MGN_VHT1SS_MCS3, MGN_VHT1SS_MCS4,
MGN_VHT1SS_MCS5, MGN_VHT1SS_MCS6, MGN_VHT1SS_MCS7, MGN_VHT1SS_MCS8, MGN_VHT1SS_MCS9};
PHY_SetTxPowerIndexByRateArray(padapter, RFPath, pHalData->CurrentChannelBW, Channel,
vhtRates1T, sizeof(vhtRates1T)/sizeof(u8));
} else if (RateSection == VHT_2SSMCS0_2SSMCS9) {
u8 vhtRates2T[] = {MGN_VHT2SS_MCS0, MGN_VHT2SS_MCS1, MGN_VHT2SS_MCS2, MGN_VHT2SS_MCS3, MGN_VHT2SS_MCS4,
MGN_VHT2SS_MCS5, MGN_VHT2SS_MCS6, MGN_VHT2SS_MCS7, MGN_VHT2SS_MCS8, MGN_VHT2SS_MCS9};
PHY_SetTxPowerIndexByRateArray(padapter, RFPath, pHalData->CurrentChannelBW, Channel,
vhtRates2T, sizeof(vhtRates2T)/sizeof(u8));
} else if (RateSection == VHT_3SSMCS0_3SSMCS9) {
u8 vhtRates3T[] = {MGN_VHT3SS_MCS0, MGN_VHT3SS_MCS1, MGN_VHT3SS_MCS2, MGN_VHT3SS_MCS3, MGN_VHT3SS_MCS4,
MGN_VHT3SS_MCS5, MGN_VHT3SS_MCS6, MGN_VHT3SS_MCS7, MGN_VHT3SS_MCS8, MGN_VHT3SS_MCS9};
PHY_SetTxPowerIndexByRateArray(padapter, RFPath, pHalData->CurrentChannelBW, Channel,
vhtRates3T, sizeof(vhtRates3T)/sizeof(u8));
} else if (RateSection == VHT_4SSMCS0_4SSMCS9) {
u8 vhtRates4T[] = {MGN_VHT4SS_MCS0, MGN_VHT4SS_MCS1, MGN_VHT4SS_MCS2, MGN_VHT4SS_MCS3, MGN_VHT4SS_MCS4,
MGN_VHT4SS_MCS5, MGN_VHT4SS_MCS6, MGN_VHT4SS_MCS7, MGN_VHT4SS_MCS8, MGN_VHT4SS_MCS9};
PHY_SetTxPowerIndexByRateArray(padapter, RFPath, pHalData->CurrentChannelBW, Channel,
vhtRates4T, sizeof(vhtRates4T)/sizeof(u8));
} else
DBG_871X("Invalid RateSection %d in %s", RateSection, __func__);
}
static bool phy_GetChnlIndex(u8 Channel, u8 *ChannelIdx)
{
u8 channel5G[CHANNEL_MAX_NUMBER_5G] = {
36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 100, 102,
104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130,
132, 134, 136, 138, 140, 142, 144, 149, 151, 153, 155, 157, 159, 161,
163, 165, 167, 168, 169, 171, 173, 175, 177
};
u8 i = 0;
bool bIn24G = true;
if (Channel <= 14) {
bIn24G = true;
*ChannelIdx = Channel-1;
} else {
bIn24G = false;
for (i = 0; i < sizeof(channel5G)/sizeof(u8); ++i) {
if (channel5G[i] == Channel) {
*ChannelIdx = i;
return bIn24G;
}
}
}
return bIn24G;
}
u8 PHY_GetTxPowerIndexBase(
struct adapter *padapter,
u8 RFPath,
u8 Rate,
enum CHANNEL_WIDTH BandWidth,
u8 Channel,
bool *bIn24G
)
{
struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
u8 i = 0; /* default set to 1S */
u8 txPower = 0;
u8 chnlIdx = (Channel-1);
if (HAL_IsLegalChannel(padapter, Channel) == false) {
chnlIdx = 0;
DBG_871X("Illegal channel!!\n");
}
*bIn24G = phy_GetChnlIndex(Channel, &chnlIdx);
/* DBG_871X("[%s] Channel Index: %d\n", (*bIn24G?"2.4G":"5G"), chnlIdx); */
if (*bIn24G) { /* 3 ============================== 2.4 G ============================== */
if (IS_CCK_RATE(Rate))
txPower = pHalData->Index24G_CCK_Base[RFPath][chnlIdx];
else if (MGN_6M <= Rate)
txPower = pHalData->Index24G_BW40_Base[RFPath][chnlIdx];
else
DBG_871X("PHY_GetTxPowerIndexBase: INVALID Rate.\n");
/* DBG_871X("Base Tx power(RF-%c, Rate #%d, Channel Index %d) = 0x%X\n", */
/* ((RFPath == 0)?'A':'B'), Rate, chnlIdx, txPower); */
/* OFDM-1T */
if ((MGN_6M <= Rate && Rate <= MGN_54M) && !IS_CCK_RATE(Rate)) {
txPower += pHalData->OFDM_24G_Diff[RFPath][TX_1S];
/* DBG_871X("+PowerDiff 2.4G (RF-%c): (OFDM-1T) = (%d)\n", ((RFPath == 0)?'A':'B'), pHalData->OFDM_24G_Diff[RFPath][TX_1S]); */
}
if (BandWidth == CHANNEL_WIDTH_20) { /* BW20-1S, BW20-2S */
if ((MGN_MCS0 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT1SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW20_24G_Diff[RFPath][TX_1S];
if ((MGN_MCS8 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT2SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW20_24G_Diff[RFPath][TX_2S];
if ((MGN_MCS16 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT3SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW20_24G_Diff[RFPath][TX_3S];
if ((MGN_MCS24 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT4SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW20_24G_Diff[RFPath][TX_4S];
/* DBG_871X("+PowerDiff 2.4G (RF-%c): (BW20-1S, BW20-2S, BW20-3S, BW20-4S) = (%d, %d, %d, %d)\n", ((RFPath == 0)?'A':(RFPath == 1)?'B':(RFPath ==2)?'C':'D'), */
/* pHalData->BW20_24G_Diff[RFPath][TX_1S], pHalData->BW20_24G_Diff[RFPath][TX_2S], */
/* pHalData->BW20_24G_Diff[RFPath][TX_3S], pHalData->BW20_24G_Diff[RFPath][TX_4S]); */
} else if (BandWidth == CHANNEL_WIDTH_40) { /* BW40-1S, BW40-2S */
if ((MGN_MCS0 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT1SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW40_24G_Diff[RFPath][TX_1S];
if ((MGN_MCS8 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT2SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW40_24G_Diff[RFPath][TX_2S];
if ((MGN_MCS16 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT3SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW40_24G_Diff[RFPath][TX_3S];
if ((MGN_MCS24 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT4SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW40_24G_Diff[RFPath][TX_4S];
/* DBG_871X("+PowerDiff 2.4G (RF-%c): (BW40-1S, BW40-2S, BW40-3S, BW40-4S) = (%d, %d, %d, %d)\n", ((RFPath == 0)?'A':(RFPath == 1)?'B':(RFPath ==2)?'C':'D'), */
/* pHalData->BW40_24G_Diff[RFPath][TX_1S], pHalData->BW40_24G_Diff[RFPath][TX_2S], */
/* pHalData->BW40_24G_Diff[RFPath][TX_3S], pHalData->BW40_24G_Diff[RFPath][TX_4S]); */
}
/* Willis suggest adopt BW 40M power index while in BW 80 mode */
else if (BandWidth == CHANNEL_WIDTH_80) {
if ((MGN_MCS0 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT1SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW40_24G_Diff[RFPath][TX_1S];
if ((MGN_MCS8 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT2SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW40_24G_Diff[RFPath][TX_2S];
if ((MGN_MCS16 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT3SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW40_24G_Diff[RFPath][TX_3S];
if ((MGN_MCS24 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT4SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW40_24G_Diff[RFPath][TX_4S];
/* DBG_871X("+PowerDiff 2.4G (RF-%c): (BW40-1S, BW40-2S, BW40-3S, BW40-4T) = (%d, %d, %d, %d) P.S. Current is in BW 80MHz\n", ((RFPath == 0)?'A':(RFPath == 1)?'B':(RFPath ==2)?'C':'D'), */
/* pHalData->BW40_24G_Diff[RFPath][TX_1S], pHalData->BW40_24G_Diff[RFPath][TX_2S], */
/* pHalData->BW40_24G_Diff[RFPath][TX_3S], pHalData->BW40_24G_Diff[RFPath][TX_4S]); */
}
} else {/* 3 ============================== 5 G ============================== */
if (MGN_6M <= Rate)
txPower = pHalData->Index5G_BW40_Base[RFPath][chnlIdx];
else
DBG_871X("===> mpt_ProQueryCalTxPower_Jaguar: INVALID Rate.\n");
/* DBG_871X("Base Tx power(RF-%c, Rate #%d, Channel Index %d) = 0x%X\n", */
/* ((RFPath == 0)?'A':'B'), Rate, chnlIdx, txPower); */
/* OFDM-1T */
if ((MGN_6M <= Rate && Rate <= MGN_54M) && !IS_CCK_RATE(Rate)) {
txPower += pHalData->OFDM_5G_Diff[RFPath][TX_1S];
/* DBG_871X("+PowerDiff 5G (RF-%c): (OFDM-1T) = (%d)\n", ((RFPath == 0)?'A':'B'), pHalData->OFDM_5G_Diff[RFPath][TX_1S]); */
}
/* BW20-1S, BW20-2S */
if (BandWidth == CHANNEL_WIDTH_20) {
if ((MGN_MCS0 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT1SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW20_5G_Diff[RFPath][TX_1S];
if ((MGN_MCS8 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT2SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW20_5G_Diff[RFPath][TX_2S];
if ((MGN_MCS16 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT3SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW20_5G_Diff[RFPath][TX_3S];
if ((MGN_MCS24 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT4SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW20_5G_Diff[RFPath][TX_4S];
/* DBG_871X("+PowerDiff 5G (RF-%c): (BW20-1S, BW20-2S, BW20-3S, BW20-4S) = (%d, %d, %d, %d)\n", ((RFPath == 0)?'A':(RFPath == 1)?'B':(RFPath ==2)?'C':'D'), */
/* pHalData->BW20_5G_Diff[RFPath][TX_1S], pHalData->BW20_5G_Diff[RFPath][TX_2S], */
/* pHalData->BW20_5G_Diff[RFPath][TX_3S], pHalData->BW20_5G_Diff[RFPath][TX_4S]); */
} else if (BandWidth == CHANNEL_WIDTH_40) { /* BW40-1S, BW40-2S */
if ((MGN_MCS0 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT1SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW40_5G_Diff[RFPath][TX_1S];
if ((MGN_MCS8 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT2SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW40_5G_Diff[RFPath][TX_2S];
if ((MGN_MCS16 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT3SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW40_5G_Diff[RFPath][TX_3S];
if ((MGN_MCS24 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT4SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW40_5G_Diff[RFPath][TX_4S];
/* DBG_871X("+PowerDiff 5G(RF-%c): (BW40-1S, BW40-2S) = (%d, %d, %d, %d)\n", ((RFPath == 0)?'A':(RFPath == 1)?'B':(RFPath ==2)?'C':'D'), */
/* pHalData->BW40_5G_Diff[RFPath][TX_1S], pHalData->BW40_5G_Diff[RFPath][TX_2S], */
/* pHalData->BW40_5G_Diff[RFPath][TX_3S], pHalData->BW40_5G_Diff[RFPath][TX_4S]); */
} else if (BandWidth == CHANNEL_WIDTH_80) { /* BW80-1S, BW80-2S */
/* <20121220, Kordan> Get the index of array "Index5G_BW80_Base". */
u8 channel5G_80M[CHANNEL_MAX_NUMBER_5G_80M] = {42, 58, 106, 122, 138, 155, 171};
for (i = 0; i < sizeof(channel5G_80M)/sizeof(u8); ++i)
if (channel5G_80M[i] == Channel)
chnlIdx = i;
txPower = pHalData->Index5G_BW80_Base[RFPath][chnlIdx];
if ((MGN_MCS0 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT1SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += + pHalData->BW80_5G_Diff[RFPath][TX_1S];
if ((MGN_MCS8 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT2SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW80_5G_Diff[RFPath][TX_2S];
if ((MGN_MCS16 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT3SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW80_5G_Diff[RFPath][TX_3S];
if ((MGN_MCS23 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT4SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW80_5G_Diff[RFPath][TX_4S];
/* DBG_871X("+PowerDiff 5G(RF-%c): (BW80-1S, BW80-2S, BW80-3S, BW80-4S) = (%d, %d, %d, %d)\n", ((RFPath == 0)?'A':(RFPath == 1)?'B':(RFPath ==2)?'C':'D'), */
/* pHalData->BW80_5G_Diff[RFPath][TX_1S], pHalData->BW80_5G_Diff[RFPath][TX_2S], */
/* pHalData->BW80_5G_Diff[RFPath][TX_3S], pHalData->BW80_5G_Diff[RFPath][TX_4S]); */
}
}
return txPower;
}
s8 PHY_GetTxPowerTrackingOffset(struct adapter *padapter, u8 RFPath, u8 Rate)
{
struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
PDM_ODM_T pDM_Odm = &pHalData->odmpriv;
s8 offset = 0;
if (pDM_Odm->RFCalibrateInfo.TxPowerTrackControl == false)
return offset;
if ((Rate == MGN_1M) || (Rate == MGN_2M) || (Rate == MGN_5_5M) || (Rate == MGN_11M)) {
offset = pDM_Odm->Remnant_CCKSwingIdx;
/* DBG_871X("+Remnant_CCKSwingIdx = 0x%x\n", RFPath, Rate, pDM_Odm->Remnant_CCKSwingIdx); */
} else {
offset = pDM_Odm->Remnant_OFDMSwingIdx[RFPath];
/* DBG_871X("+Remanant_OFDMSwingIdx[RFPath %u][Rate 0x%x] = 0x%x\n", RFPath, Rate, pDM_Odm->Remnant_OFDMSwingIdx[RFPath]); */
}
return offset;
}
u8 PHY_GetRateIndexOfTxPowerByRate(u8 Rate)
{
u8 index = 0;
switch (Rate) {
case MGN_1M:
index = 0;
break;
case MGN_2M:
index = 1;
break;
case MGN_5_5M:
index = 2;
break;
case MGN_11M:
index = 3;
break;
case MGN_6M:
index = 4;
break;
case MGN_9M:
index = 5;
break;
case MGN_12M:
index = 6;
break;
case MGN_18M:
index = 7;
break;
case MGN_24M:
index = 8;
break;
case MGN_36M:
index = 9;
break;
case MGN_48M:
index = 10;
break;
case MGN_54M:
index = 11;
break;
case MGN_MCS0:
index = 12;
break;
case MGN_MCS1:
index = 13;
break;
case MGN_MCS2:
index = 14;
break;
case MGN_MCS3:
index = 15;
break;
case MGN_MCS4:
index = 16;
break;
case MGN_MCS5:
index = 17;
break;
case MGN_MCS6:
index = 18;
break;
case MGN_MCS7:
index = 19;
break;
case MGN_MCS8:
index = 20;
break;
case MGN_MCS9:
index = 21;
break;
case MGN_MCS10:
index = 22;
break;
case MGN_MCS11:
index = 23;
break;
case MGN_MCS12:
index = 24;
break;
case MGN_MCS13:
index = 25;
break;
case MGN_MCS14:
index = 26;
break;
case MGN_MCS15:
index = 27;
break;
case MGN_MCS16:
index = 28;
break;
case MGN_MCS17:
index = 29;
break;
case MGN_MCS18:
index = 30;
break;
case MGN_MCS19:
index = 31;
break;
case MGN_MCS20:
index = 32;
break;
case MGN_MCS21:
index = 33;
break;
case MGN_MCS22:
index = 34;
break;
case MGN_MCS23:
index = 35;
break;
case MGN_MCS24:
index = 36;
break;
case MGN_MCS25:
index = 37;
break;
case MGN_MCS26:
index = 38;
break;
case MGN_MCS27:
index = 39;
break;
case MGN_MCS28:
index = 40;
break;
case MGN_MCS29:
index = 41;
break;
case MGN_MCS30:
index = 42;
break;
case MGN_MCS31:
index = 43;
break;
case MGN_VHT1SS_MCS0:
index = 44;
break;
case MGN_VHT1SS_MCS1:
index = 45;
break;
case MGN_VHT1SS_MCS2:
index = 46;
break;
case MGN_VHT1SS_MCS3:
index = 47;
break;
case MGN_VHT1SS_MCS4:
index = 48;
break;
case MGN_VHT1SS_MCS5:
index = 49;
break;
case MGN_VHT1SS_MCS6:
index = 50;
break;
case MGN_VHT1SS_MCS7:
index = 51;
break;
case MGN_VHT1SS_MCS8:
index = 52;
break;
case MGN_VHT1SS_MCS9:
index = 53;
break;
case MGN_VHT2SS_MCS0:
index = 54;
break;
case MGN_VHT2SS_MCS1:
index = 55;
break;
case MGN_VHT2SS_MCS2:
index = 56;
break;
case MGN_VHT2SS_MCS3:
index = 57;
break;
case MGN_VHT2SS_MCS4:
index = 58;
break;
case MGN_VHT2SS_MCS5:
index = 59;
break;
case MGN_VHT2SS_MCS6:
index = 60;
break;
case MGN_VHT2SS_MCS7:
index = 61;
break;
case MGN_VHT2SS_MCS8:
index = 62;
break;
case MGN_VHT2SS_MCS9:
index = 63;
break;
case MGN_VHT3SS_MCS0:
index = 64;
break;
case MGN_VHT3SS_MCS1:
index = 65;
break;
case MGN_VHT3SS_MCS2:
index = 66;
break;
case MGN_VHT3SS_MCS3:
index = 67;
break;
case MGN_VHT3SS_MCS4:
index = 68;
break;
case MGN_VHT3SS_MCS5:
index = 69;
break;
case MGN_VHT3SS_MCS6:
index = 70;
break;
case MGN_VHT3SS_MCS7:
index = 71;
break;
case MGN_VHT3SS_MCS8:
index = 72;
break;
case MGN_VHT3SS_MCS9:
index = 73;
break;
case MGN_VHT4SS_MCS0:
index = 74;
break;
case MGN_VHT4SS_MCS1:
index = 75;
break;
case MGN_VHT4SS_MCS2:
index = 76;
break;
case MGN_VHT4SS_MCS3:
index = 77;
break;
case MGN_VHT4SS_MCS4:
index = 78;
break;
case MGN_VHT4SS_MCS5:
index = 79;
break;
case MGN_VHT4SS_MCS6:
index = 80;
break;
case MGN_VHT4SS_MCS7:
index = 81;
break;
case MGN_VHT4SS_MCS8:
index = 82;
break;
case MGN_VHT4SS_MCS9:
index = 83;
break;
default:
DBG_871X("Invalid rate 0x%x in %s\n", Rate, __func__);
break;
};
return index;
}
s8 PHY_GetTxPowerByRate(
struct adapter *padapter, u8 Band, u8 RFPath, u8 TxNum, u8 Rate
)
{
struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
s8 value = 0;
u8 rateIndex = PHY_GetRateIndexOfTxPowerByRate(Rate);
if ((padapter->registrypriv.RegEnableTxPowerByRate == 2 && pHalData->EEPROMRegulatory == 2) ||
padapter->registrypriv.RegEnableTxPowerByRate == 0)
return 0;
if (Band != BAND_ON_2_4G && Band != BAND_ON_5G) {
DBG_871X("Invalid band %d in %s\n", Band, __func__);
return value;
}
if (RFPath > ODM_RF_PATH_D) {
DBG_871X("Invalid RfPath %d in %s\n", RFPath, __func__);
return value;
}
if (TxNum >= RF_MAX_TX_NUM) {
DBG_871X("Invalid TxNum %d in %s\n", TxNum, __func__);
return value;
}
if (rateIndex >= TX_PWR_BY_RATE_NUM_RATE) {
DBG_871X("Invalid RateIndex %d in %s\n", rateIndex, __func__);
return value;
}
value = pHalData->TxPwrByRateOffset[Band][RFPath][TxNum][rateIndex];
return value;
}
void PHY_SetTxPowerByRate(
struct adapter *padapter,
u8 Band,
u8 RFPath,
u8 TxNum,
u8 Rate,
s8 Value
)
{
struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
u8 rateIndex = PHY_GetRateIndexOfTxPowerByRate(Rate);
if (Band != BAND_ON_2_4G && Band != BAND_ON_5G) {
DBG_871X("Invalid band %d in %s\n", Band, __func__);
return;
}
if (RFPath > ODM_RF_PATH_D) {
DBG_871X("Invalid RfPath %d in %s\n", RFPath, __func__);
return;
}
if (TxNum >= RF_MAX_TX_NUM) {
DBG_871X("Invalid TxNum %d in %s\n", TxNum, __func__);
return;
}
if (rateIndex >= TX_PWR_BY_RATE_NUM_RATE) {
DBG_871X("Invalid RateIndex %d in %s\n", rateIndex, __func__);
return;
}
pHalData->TxPwrByRateOffset[Band][RFPath][TxNum][rateIndex] = Value;
}
void PHY_SetTxPowerLevelByPath(struct adapter *Adapter, u8 channel, u8 path)
{
struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
bool bIsIn24G = (pHalData->CurrentBandType == BAND_ON_2_4G);
/* if (pMgntInfo->RegNByteAccess == 0) */
{
if (bIsIn24G)
PHY_SetTxPowerIndexByRateSection(Adapter, path, channel, CCK);
PHY_SetTxPowerIndexByRateSection(Adapter, path, channel, OFDM);
PHY_SetTxPowerIndexByRateSection(Adapter, path, channel, HT_MCS0_MCS7);
if (pHalData->NumTotalRFPath >= 2)
PHY_SetTxPowerIndexByRateSection(Adapter, path, channel, HT_MCS8_MCS15);
}
}
void PHY_SetTxPowerIndexByRateArray(
struct adapter *padapter,
u8 RFPath,
enum CHANNEL_WIDTH BandWidth,
u8 Channel,
u8 *Rates,
u8 RateArraySize
)
{
u32 powerIndex = 0;
int i = 0;
for (i = 0; i < RateArraySize; ++i) {
powerIndex = PHY_GetTxPowerIndex(padapter, RFPath, Rates[i], BandWidth, Channel);
PHY_SetTxPowerIndex(padapter, powerIndex, RFPath, Rates[i]);
}
}
static s8 phy_GetWorldWideLimit(s8 *LimitTable)
{
s8 min = LimitTable[0];
u8 i = 0;
for (i = 0; i < MAX_REGULATION_NUM; ++i) {
if (LimitTable[i] < min)
min = LimitTable[i];
}
return min;
}
static s8 phy_GetChannelIndexOfTxPowerLimit(u8 Band, u8 Channel)
{
s8 channelIndex = -1;
u8 channel5G[CHANNEL_MAX_NUMBER_5G] = {
36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 100, 102,
104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130,
132, 134, 136, 138, 140, 142, 144, 149, 151, 153, 155, 157, 159, 161,
163, 165, 167, 168, 169, 171, 173, 175, 177
};
u8 i = 0;
if (Band == BAND_ON_2_4G)
channelIndex = Channel - 1;
else if (Band == BAND_ON_5G) {
for (i = 0; i < sizeof(channel5G)/sizeof(u8); ++i) {
if (channel5G[i] == Channel)
channelIndex = i;
}
} else
DBG_871X("Invalid Band %d in %s", Band, __func__);
if (channelIndex == -1)
DBG_871X("Invalid Channel %d of Band %d in %s", Channel, Band, __func__);
return channelIndex;
}
s8 PHY_GetTxPowerLimit(
struct adapter *Adapter,
u32 RegPwrTblSel,
enum BAND_TYPE Band,
enum CHANNEL_WIDTH Bandwidth,
u8 RfPath,
u8 DataRate,
u8 Channel
)
{
struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
s16 band = -1, regulation = -1, bandwidth = -1, rateSection = -1, channel = -1;
s8 powerLimit = MAX_POWER_INDEX;
if ((Adapter->registrypriv.RegEnableTxPowerLimit == 2 && pHalData->EEPROMRegulatory != 1) ||
Adapter->registrypriv.RegEnableTxPowerLimit == 0)
return MAX_POWER_INDEX;
switch (Adapter->registrypriv.RegPwrTblSel) {
case 1:
regulation = TXPWR_LMT_ETSI;
break;
case 2:
regulation = TXPWR_LMT_MKK;
break;
case 3:
regulation = TXPWR_LMT_FCC;
break;
case 4:
regulation = TXPWR_LMT_WW;
break;
default:
regulation = (Band == BAND_ON_2_4G) ? pHalData->Regulation2_4G : pHalData->Regulation5G;
break;
}
/* DBG_871X("pMgntInfo->RegPwrTblSel %d, final regulation %d\n", Adapter->registrypriv.RegPwrTblSel, regulation); */
if (Band == BAND_ON_2_4G)
band = 0;
else if (Band == BAND_ON_5G)
band = 1;
if (Bandwidth == CHANNEL_WIDTH_20)
bandwidth = 0;
else if (Bandwidth == CHANNEL_WIDTH_40)
bandwidth = 1;
else if (Bandwidth == CHANNEL_WIDTH_80)
bandwidth = 2;
else if (Bandwidth == CHANNEL_WIDTH_160)
bandwidth = 3;
switch (DataRate) {
case MGN_1M: case MGN_2M: case MGN_5_5M: case MGN_11M:
rateSection = 0;
break;
case MGN_6M: case MGN_9M: case MGN_12M: case MGN_18M:
case MGN_24M: case MGN_36M: case MGN_48M: case MGN_54M:
rateSection = 1;
break;
case MGN_MCS0: case MGN_MCS1: case MGN_MCS2: case MGN_MCS3:
case MGN_MCS4: case MGN_MCS5: case MGN_MCS6: case MGN_MCS7:
rateSection = 2;
break;
case MGN_MCS8: case MGN_MCS9: case MGN_MCS10: case MGN_MCS11:
case MGN_MCS12: case MGN_MCS13: case MGN_MCS14: case MGN_MCS15:
rateSection = 3;
break;
case MGN_MCS16: case MGN_MCS17: case MGN_MCS18: case MGN_MCS19:
case MGN_MCS20: case MGN_MCS21: case MGN_MCS22: case MGN_MCS23:
rateSection = 4;
break;
case MGN_MCS24: case MGN_MCS25: case MGN_MCS26: case MGN_MCS27:
case MGN_MCS28: case MGN_MCS29: case MGN_MCS30: case MGN_MCS31:
rateSection = 5;
break;
case MGN_VHT1SS_MCS0: case MGN_VHT1SS_MCS1: case MGN_VHT1SS_MCS2:
case MGN_VHT1SS_MCS3: case MGN_VHT1SS_MCS4: case MGN_VHT1SS_MCS5:
case MGN_VHT1SS_MCS6: case MGN_VHT1SS_MCS7: case MGN_VHT1SS_MCS8:
case MGN_VHT1SS_MCS9:
rateSection = 6;
break;
case MGN_VHT2SS_MCS0: case MGN_VHT2SS_MCS1: case MGN_VHT2SS_MCS2:
case MGN_VHT2SS_MCS3: case MGN_VHT2SS_MCS4: case MGN_VHT2SS_MCS5:
case MGN_VHT2SS_MCS6: case MGN_VHT2SS_MCS7: case MGN_VHT2SS_MCS8:
case MGN_VHT2SS_MCS9:
rateSection = 7;
break;
case MGN_VHT3SS_MCS0: case MGN_VHT3SS_MCS1: case MGN_VHT3SS_MCS2:
case MGN_VHT3SS_MCS3: case MGN_VHT3SS_MCS4: case MGN_VHT3SS_MCS5:
case MGN_VHT3SS_MCS6: case MGN_VHT3SS_MCS7: case MGN_VHT3SS_MCS8:
case MGN_VHT3SS_MCS9:
rateSection = 8;
break;
case MGN_VHT4SS_MCS0: case MGN_VHT4SS_MCS1: case MGN_VHT4SS_MCS2:
case MGN_VHT4SS_MCS3: case MGN_VHT4SS_MCS4: case MGN_VHT4SS_MCS5:
case MGN_VHT4SS_MCS6: case MGN_VHT4SS_MCS7: case MGN_VHT4SS_MCS8:
case MGN_VHT4SS_MCS9:
rateSection = 9;
break;
default:
DBG_871X("Wrong rate 0x%x\n", DataRate);
break;
}
if (Band == BAND_ON_5G && rateSection == 0)
DBG_871X("Wrong rate 0x%x: No CCK in 5G Band\n", DataRate);
/* workaround for wrong index combination to obtain tx power limit, */
/* OFDM only exists in BW 20M */
if (rateSection == 1)
bandwidth = 0;
/* workaround for wrong index combination to obtain tx power limit, */
/* CCK table will only be given in BW 20M */
if (rateSection == 0)
bandwidth = 0;
/* workaround for wrong indxe combination to obtain tx power limit, */
/* HT on 80M will reference to HT on 40M */
if ((rateSection == 2 || rateSection == 3) && Band == BAND_ON_5G && bandwidth == 2) {
bandwidth = 1;
}
if (Band == BAND_ON_2_4G)
channel = phy_GetChannelIndexOfTxPowerLimit(BAND_ON_2_4G, Channel);
else if (Band == BAND_ON_5G)
channel = phy_GetChannelIndexOfTxPowerLimit(BAND_ON_5G, Channel);
else if (Band == BAND_ON_BOTH) {
/* BAND_ON_BOTH don't care temporarily */
}
if (band == -1 || regulation == -1 || bandwidth == -1 ||
rateSection == -1 || channel == -1) {
/* DBG_871X("Wrong index value to access power limit table [band %d][regulation %d][bandwidth %d][rf_path %d][rate_section %d][chnlGroup %d]\n", */
/* band, regulation, bandwidth, RfPath, rateSection, channelGroup); */
return MAX_POWER_INDEX;
}
if (Band == BAND_ON_2_4G) {
s8 limits[10] = {0}; u8 i = 0;
for (i = 0; i < MAX_REGULATION_NUM; i++)
limits[i] = pHalData->TxPwrLimit_2_4G[i][bandwidth][rateSection][channel][RfPath];
powerLimit = (regulation == TXPWR_LMT_WW) ? phy_GetWorldWideLimit(limits) :
pHalData->TxPwrLimit_2_4G[regulation][bandwidth][rateSection][channel][RfPath];
} else if (Band == BAND_ON_5G) {
s8 limits[10] = {0}; u8 i = 0;
for (i = 0; i < MAX_REGULATION_NUM; ++i)
limits[i] = pHalData->TxPwrLimit_5G[i][bandwidth][rateSection][channel][RfPath];
powerLimit = (regulation == TXPWR_LMT_WW) ? phy_GetWorldWideLimit(limits) :
pHalData->TxPwrLimit_5G[regulation][bandwidth][rateSection][channel][RfPath];
} else
DBG_871X("No power limit table of the specified band\n");
/* combine 5G VHT & HT rate */
/* 5G 20M and 40M HT and VHT can cross reference */
/*
if (Band == BAND_ON_5G && powerLimit == MAX_POWER_INDEX) {
if (bandwidth == 0 || bandwidth == 1) {
RT_TRACE(COMP_INIT, DBG_LOUD, ("No power limit table of the specified band %d, bandwidth %d, ratesection %d, rf path %d\n",
band, bandwidth, rateSection, RfPath));
if (rateSection == 2)
powerLimit = pHalData->TxPwrLimit_5G[regulation]
[bandwidth][4][channelGroup][RfPath];
else if (rateSection == 4)
powerLimit = pHalData->TxPwrLimit_5G[regulation]
[bandwidth][2][channelGroup][RfPath];
else if (rateSection == 3)
powerLimit = pHalData->TxPwrLimit_5G[regulation]
[bandwidth][5][channelGroup][RfPath];
else if (rateSection == 5)
powerLimit = pHalData->TxPwrLimit_5G[regulation]
[bandwidth][3][channelGroup][RfPath];
}
}
*/
/* DBG_871X("TxPwrLmt[Regulation %d][Band %d][BW %d][RFPath %d][Rate 0x%x][Chnl %d] = %d\n", */
/* regulation, pHalData->CurrentBandType, Bandwidth, RfPath, DataRate, Channel, powerLimit); */
return powerLimit;
}
static void phy_CrossReferenceHTAndVHTTxPowerLimit(struct adapter *padapter)
{
struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
u8 regulation, bw, channel, rateSection;
s8 tempPwrLmt = 0;
for (regulation = 0; regulation < MAX_REGULATION_NUM; ++regulation) {
for (bw = 0; bw < MAX_5G_BANDWITH_NUM; ++bw) {
for (channel = 0; channel < CHANNEL_MAX_NUMBER_5G; ++channel) {
for (rateSection = 0; rateSection < MAX_RATE_SECTION_NUM; ++rateSection) {
tempPwrLmt = pHalData->TxPwrLimit_5G[regulation][bw][rateSection][channel][ODM_RF_PATH_A];
if (tempPwrLmt == MAX_POWER_INDEX) {
u8 baseSection = 2, refSection = 6;
if (bw == 0 || bw == 1) { /* 5G 20M 40M VHT and HT can cross reference */
/* DBG_871X("No power limit table of the specified band %d, bandwidth %d, ratesection %d, channel %d, rf path %d\n", */
/* 1, bw, rateSection, channel, ODM_RF_PATH_A); */
if (rateSection >= 2 && rateSection <= 9) {
if (rateSection == 2) {
baseSection = 2;
refSection = 6;
} else if (rateSection == 3) {
baseSection = 3;
refSection = 7;
} else if (rateSection == 4) {
baseSection = 4;
refSection = 8;
} else if (rateSection == 5) {
baseSection = 5;
refSection = 9;
} else if (rateSection == 6) {
baseSection = 6;
refSection = 2;
} else if (rateSection == 7) {
baseSection = 7;
refSection = 3;
} else if (rateSection == 8) {
baseSection = 8;
refSection = 4;
} else if (rateSection == 9) {
baseSection = 9;
refSection = 5;
}
pHalData->TxPwrLimit_5G[regulation][bw][baseSection][channel][ODM_RF_PATH_A] =
pHalData->TxPwrLimit_5G[regulation][bw][refSection][channel][ODM_RF_PATH_A];
}
/* DBG_871X("use other value %d", tempPwrLmt); */
}
}
}
}
}
}
}
void PHY_ConvertTxPowerLimitToPowerIndex(struct adapter *Adapter)
{
struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
u8 BW40PwrBasedBm2_4G = 0x2E;
u8 regulation, bw, channel, rateSection;
s8 tempValue = 0, tempPwrLmt = 0;
u8 rfPath = 0;
/* DBG_871X("=====> PHY_ConvertTxPowerLimitToPowerIndex()\n"); */
phy_CrossReferenceHTAndVHTTxPowerLimit(Adapter);
for (regulation = 0; regulation < MAX_REGULATION_NUM; ++regulation) {
for (bw = 0; bw < MAX_2_4G_BANDWITH_NUM; ++bw) {
for (channel = 0; channel < CHANNEL_MAX_NUMBER_2G; ++channel) {
for (rateSection = 0; rateSection < MAX_RATE_SECTION_NUM; ++rateSection) {
tempPwrLmt = pHalData->TxPwrLimit_2_4G[regulation][bw][rateSection][channel][ODM_RF_PATH_A];
for (rfPath = ODM_RF_PATH_A; rfPath < MAX_RF_PATH_NUM; ++rfPath) {
if (pHalData->odmpriv.PhyRegPgValueType == PHY_REG_PG_EXACT_VALUE) {
if (rateSection == 5) /* HT 4T */
BW40PwrBasedBm2_4G = PHY_GetTxPowerByRateBase(Adapter, BAND_ON_2_4G, rfPath, RF_4TX, HT_MCS24_MCS31);
else if (rateSection == 4) /* HT 3T */
BW40PwrBasedBm2_4G = PHY_GetTxPowerByRateBase(Adapter, BAND_ON_2_4G, rfPath, RF_3TX, HT_MCS16_MCS23);
else if (rateSection == 3) /* HT 2T */
BW40PwrBasedBm2_4G = PHY_GetTxPowerByRateBase(Adapter, BAND_ON_2_4G, rfPath, RF_2TX, HT_MCS8_MCS15);
else if (rateSection == 2) /* HT 1T */
BW40PwrBasedBm2_4G = PHY_GetTxPowerByRateBase(Adapter, BAND_ON_2_4G, rfPath, RF_1TX, HT_MCS0_MCS7);
else if (rateSection == 1) /* OFDM */
BW40PwrBasedBm2_4G = PHY_GetTxPowerByRateBase(Adapter, BAND_ON_2_4G, rfPath, RF_1TX, OFDM);
else if (rateSection == 0) /* CCK */
BW40PwrBasedBm2_4G = PHY_GetTxPowerByRateBase(Adapter, BAND_ON_2_4G, rfPath, RF_1TX, CCK);
} else
BW40PwrBasedBm2_4G = Adapter->registrypriv.RegPowerBase * 2;
if (tempPwrLmt != MAX_POWER_INDEX) {
tempValue = tempPwrLmt - BW40PwrBasedBm2_4G;
pHalData->TxPwrLimit_2_4G[regulation][bw][rateSection][channel][rfPath] = tempValue;
}
}
}
}
}
}
/* DBG_871X("<===== PHY_ConvertTxPowerLimitToPowerIndex()\n"); */
}
void PHY_InitTxPowerLimit(struct adapter *Adapter)
{
struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
u8 i, j, k, l, m;
/* DBG_871X("=====> PHY_InitTxPowerLimit()!\n"); */
for (i = 0; i < MAX_REGULATION_NUM; ++i) {
for (j = 0; j < MAX_2_4G_BANDWITH_NUM; ++j)
for (k = 0; k < MAX_RATE_SECTION_NUM; ++k)
for (m = 0; m < CHANNEL_MAX_NUMBER_2G; ++m)
for (l = 0; l < MAX_RF_PATH_NUM; ++l)
pHalData->TxPwrLimit_2_4G[i][j][k][m][l] = MAX_POWER_INDEX;
}
for (i = 0; i < MAX_REGULATION_NUM; ++i) {
for (j = 0; j < MAX_5G_BANDWITH_NUM; ++j)
for (k = 0; k < MAX_RATE_SECTION_NUM; ++k)
for (m = 0; m < CHANNEL_MAX_NUMBER_5G; ++m)
for (l = 0; l < MAX_RF_PATH_NUM; ++l)
pHalData->TxPwrLimit_5G[i][j][k][m][l] = MAX_POWER_INDEX;
}
/* DBG_871X("<===== PHY_InitTxPowerLimit()!\n"); */
}
void PHY_SetTxPowerLimit(
struct adapter *Adapter,
u8 *Regulation,
u8 *Band,
u8 *Bandwidth,
u8 *RateSection,
u8 *RfPath,
u8 *Channel,
u8 *PowerLimit
)
{
struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
u8 regulation = 0, bandwidth = 0, rateSection = 0, channel;
s8 powerLimit = 0, prevPowerLimit, channelIndex;
/* DBG_871X("Index of power limit table [band %s][regulation %s][bw %s][rate section %s][rf path %s][chnl %s][val %s]\n", */
/* Band, Regulation, Bandwidth, RateSection, RfPath, Channel, PowerLimit); */
if (!GetU1ByteIntegerFromStringInDecimal((s8 *)Channel, &channel) ||
!GetU1ByteIntegerFromStringInDecimal((s8 *)PowerLimit, &powerLimit))
DBG_871X("Illegal index of power limit table [chnl %s][val %s]\n", Channel, PowerLimit);
powerLimit = powerLimit > MAX_POWER_INDEX ? MAX_POWER_INDEX : powerLimit;
if (eqNByte(Regulation, (u8 *)("FCC"), 3))
regulation = 0;
else if (eqNByte(Regulation, (u8 *)("MKK"), 3))
regulation = 1;
else if (eqNByte(Regulation, (u8 *)("ETSI"), 4))
regulation = 2;
else if (eqNByte(Regulation, (u8 *)("WW13"), 4))
regulation = 3;
if (eqNByte(RateSection, (u8 *)("CCK"), 3) && eqNByte(RfPath, (u8 *)("1T"), 2))
rateSection = 0;
else if (eqNByte(RateSection, (u8 *)("OFDM"), 4) && eqNByte(RfPath, (u8 *)("1T"), 2))
rateSection = 1;
else if (eqNByte(RateSection, (u8 *)("HT"), 2) && eqNByte(RfPath, (u8 *)("1T"), 2))
rateSection = 2;
else if (eqNByte(RateSection, (u8 *)("HT"), 2) && eqNByte(RfPath, (u8 *)("2T"), 2))
rateSection = 3;
else if (eqNByte(RateSection, (u8 *)("HT"), 2) && eqNByte(RfPath, (u8 *)("3T"), 2))
rateSection = 4;
else if (eqNByte(RateSection, (u8 *)("HT"), 2) && eqNByte(RfPath, (u8 *)("4T"), 2))
rateSection = 5;
else if (eqNByte(RateSection, (u8 *)("VHT"), 3) && eqNByte(RfPath, (u8 *)("1T"), 2))
rateSection = 6;
else if (eqNByte(RateSection, (u8 *)("VHT"), 3) && eqNByte(RfPath, (u8 *)("2T"), 2))
rateSection = 7;
else if (eqNByte(RateSection, (u8 *)("VHT"), 3) && eqNByte(RfPath, (u8 *)("3T"), 2))
rateSection = 8;
else if (eqNByte(RateSection, (u8 *)("VHT"), 3) && eqNByte(RfPath, (u8 *)("4T"), 2))
rateSection = 9;
else {
DBG_871X("Wrong rate section!\n");
return;
}
if (eqNByte(Bandwidth, (u8 *)("20M"), 3))
bandwidth = 0;
else if (eqNByte(Bandwidth, (u8 *)("40M"), 3))
bandwidth = 1;
else if (eqNByte(Bandwidth, (u8 *)("80M"), 3))
bandwidth = 2;
else if (eqNByte(Bandwidth, (u8 *)("160M"), 4))
bandwidth = 3;
if (eqNByte(Band, (u8 *)("2.4G"), 4)) {
channelIndex = phy_GetChannelIndexOfTxPowerLimit(BAND_ON_2_4G, channel);
if (channelIndex == -1)
return;
prevPowerLimit = pHalData->TxPwrLimit_2_4G[regulation][bandwidth][rateSection][channelIndex][ODM_RF_PATH_A];
if (powerLimit < prevPowerLimit)
pHalData->TxPwrLimit_2_4G[regulation][bandwidth][rateSection][channelIndex][ODM_RF_PATH_A] = powerLimit;
/* DBG_871X("2.4G Band value : [regulation %d][bw %d][rate_section %d][chnl %d][val %d]\n", */
/* regulation, bandwidth, rateSection, channelIndex, pHalData->TxPwrLimit_2_4G[regulation][bandwidth][rateSection][channelIndex][ODM_RF_PATH_A]); */
} else if (eqNByte(Band, (u8 *)("5G"), 2)) {
channelIndex = phy_GetChannelIndexOfTxPowerLimit(BAND_ON_5G, channel);
if (channelIndex == -1)
return;
prevPowerLimit = pHalData->TxPwrLimit_5G[regulation][bandwidth][rateSection][channelIndex][ODM_RF_PATH_A];
if (powerLimit < prevPowerLimit)
pHalData->TxPwrLimit_5G[regulation][bandwidth][rateSection][channelIndex][ODM_RF_PATH_A] = powerLimit;
/* DBG_871X("5G Band value : [regulation %d][bw %d][rate_section %d][chnl %d][val %d]\n", */
/* regulation, bandwidth, rateSection, channel, pHalData->TxPwrLimit_5G[regulation][bandwidth][rateSection][channelIndex][ODM_RF_PATH_A]); */
} else {
DBG_871X("Cannot recognize the band info in %s\n", Band);
return;
}
}
u8 PHY_GetTxPowerIndex(
struct adapter *padapter,
u8 RFPath,
u8 Rate,
enum CHANNEL_WIDTH BandWidth,
u8 Channel
)
{
return PHY_GetTxPowerIndex_8723B(padapter, RFPath, Rate, BandWidth, Channel);
}
void PHY_SetTxPowerIndex(
struct adapter *padapter, u32 PowerIndex, u8 RFPath, u8 Rate
)
{
PHY_SetTxPowerIndex_8723B(padapter, PowerIndex, RFPath, Rate);
}
void Hal_ChannelPlanToRegulation(struct adapter *Adapter, u16 ChannelPlan)
{
struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
pHalData->Regulation2_4G = TXPWR_LMT_WW;
pHalData->Regulation5G = TXPWR_LMT_WW;
switch (ChannelPlan) {
case RT_CHANNEL_DOMAIN_WORLD_NULL:
pHalData->Regulation2_4G = TXPWR_LMT_WW;
break;
case RT_CHANNEL_DOMAIN_ETSI1_NULL:
pHalData->Regulation2_4G = TXPWR_LMT_ETSI;
break;
case RT_CHANNEL_DOMAIN_FCC1_NULL:
pHalData->Regulation2_4G = TXPWR_LMT_FCC;
break;
case RT_CHANNEL_DOMAIN_MKK1_NULL:
pHalData->Regulation2_4G = TXPWR_LMT_MKK;
break;
case RT_CHANNEL_DOMAIN_ETSI2_NULL:
pHalData->Regulation2_4G = TXPWR_LMT_ETSI;
break;
case RT_CHANNEL_DOMAIN_FCC1_FCC1:
pHalData->Regulation2_4G = TXPWR_LMT_FCC;
pHalData->Regulation5G = TXPWR_LMT_FCC;
break;
case RT_CHANNEL_DOMAIN_WORLD_ETSI1:
pHalData->Regulation2_4G = TXPWR_LMT_FCC;
pHalData->Regulation5G = TXPWR_LMT_ETSI;
break;
case RT_CHANNEL_DOMAIN_MKK1_MKK1:
pHalData->Regulation2_4G = TXPWR_LMT_MKK;
pHalData->Regulation5G = TXPWR_LMT_MKK;
break;
case RT_CHANNEL_DOMAIN_WORLD_KCC1:
pHalData->Regulation2_4G = TXPWR_LMT_FCC;
pHalData->Regulation5G = TXPWR_LMT_MKK;
break;
case RT_CHANNEL_DOMAIN_WORLD_FCC2:
pHalData->Regulation2_4G = TXPWR_LMT_FCC;
pHalData->Regulation5G = TXPWR_LMT_FCC;
break;
case RT_CHANNEL_DOMAIN_WORLD_FCC3:
pHalData->Regulation2_4G = TXPWR_LMT_FCC;
pHalData->Regulation5G = TXPWR_LMT_FCC;
break;
case RT_CHANNEL_DOMAIN_WORLD_FCC4:
pHalData->Regulation2_4G = TXPWR_LMT_FCC;
pHalData->Regulation5G = TXPWR_LMT_FCC;
break;
case RT_CHANNEL_DOMAIN_WORLD_FCC5:
pHalData->Regulation2_4G = TXPWR_LMT_FCC;
pHalData->Regulation5G = TXPWR_LMT_FCC;
break;
case RT_CHANNEL_DOMAIN_WORLD_FCC6:
pHalData->Regulation2_4G = TXPWR_LMT_FCC;
pHalData->Regulation5G = TXPWR_LMT_FCC;
break;
case RT_CHANNEL_DOMAIN_FCC1_FCC7:
pHalData->Regulation2_4G = TXPWR_LMT_FCC;
pHalData->Regulation5G = TXPWR_LMT_FCC;
break;
case RT_CHANNEL_DOMAIN_WORLD_ETSI2:
pHalData->Regulation2_4G = TXPWR_LMT_FCC;
pHalData->Regulation5G = TXPWR_LMT_FCC;
break;
case RT_CHANNEL_DOMAIN_WORLD_ETSI3:
pHalData->Regulation2_4G = TXPWR_LMT_FCC;
pHalData->Regulation5G = TXPWR_LMT_FCC;
break;
case RT_CHANNEL_DOMAIN_MKK1_MKK2:
pHalData->Regulation2_4G = TXPWR_LMT_MKK;
pHalData->Regulation5G = TXPWR_LMT_FCC;
break;
case RT_CHANNEL_DOMAIN_MKK1_MKK3:
pHalData->Regulation2_4G = TXPWR_LMT_MKK;
pHalData->Regulation5G = TXPWR_LMT_FCC;
break;
case RT_CHANNEL_DOMAIN_FCC1_NCC1:
pHalData->Regulation2_4G = TXPWR_LMT_FCC;
pHalData->Regulation5G = TXPWR_LMT_FCC;
break;
case RT_CHANNEL_DOMAIN_FCC1_NCC2:
pHalData->Regulation2_4G = TXPWR_LMT_FCC;
pHalData->Regulation5G = TXPWR_LMT_FCC;
break;
case RT_CHANNEL_DOMAIN_GLOBAL_NULL:
pHalData->Regulation2_4G = TXPWR_LMT_WW;
pHalData->Regulation5G = TXPWR_LMT_WW;
break;
case RT_CHANNEL_DOMAIN_ETSI1_ETSI4:
pHalData->Regulation2_4G = TXPWR_LMT_ETSI;
pHalData->Regulation5G = TXPWR_LMT_ETSI;
break;
case RT_CHANNEL_DOMAIN_FCC1_FCC2:
pHalData->Regulation2_4G = TXPWR_LMT_FCC;
pHalData->Regulation5G = TXPWR_LMT_FCC;
break;
case RT_CHANNEL_DOMAIN_FCC1_NCC3:
pHalData->Regulation2_4G = TXPWR_LMT_FCC;
pHalData->Regulation5G = TXPWR_LMT_FCC;
break;
case RT_CHANNEL_DOMAIN_WORLD_ETSI5:
pHalData->Regulation2_4G = TXPWR_LMT_ETSI;
pHalData->Regulation5G = TXPWR_LMT_ETSI;
break;
case RT_CHANNEL_DOMAIN_FCC1_FCC8:
pHalData->Regulation2_4G = TXPWR_LMT_FCC;
pHalData->Regulation5G = TXPWR_LMT_FCC;
break;
case RT_CHANNEL_DOMAIN_WORLD_ETSI6:
pHalData->Regulation2_4G = TXPWR_LMT_ETSI;
pHalData->Regulation5G = TXPWR_LMT_ETSI;
break;
case RT_CHANNEL_DOMAIN_WORLD_ETSI7:
pHalData->Regulation2_4G = TXPWR_LMT_ETSI;
pHalData->Regulation5G = TXPWR_LMT_ETSI;
break;
case RT_CHANNEL_DOMAIN_WORLD_ETSI8:
pHalData->Regulation2_4G = TXPWR_LMT_ETSI;
pHalData->Regulation5G = TXPWR_LMT_ETSI;
break;
case RT_CHANNEL_DOMAIN_WORLD_ETSI9:
pHalData->Regulation2_4G = TXPWR_LMT_ETSI;
pHalData->Regulation5G = TXPWR_LMT_ETSI;
break;
case RT_CHANNEL_DOMAIN_WORLD_ETSI10:
pHalData->Regulation2_4G = TXPWR_LMT_ETSI;
pHalData->Regulation5G = TXPWR_LMT_ETSI;
break;
case RT_CHANNEL_DOMAIN_WORLD_ETSI11:
pHalData->Regulation2_4G = TXPWR_LMT_ETSI;
pHalData->Regulation5G = TXPWR_LMT_ETSI;
break;
case RT_CHANNEL_DOMAIN_FCC1_NCC4:
pHalData->Regulation2_4G = TXPWR_LMT_FCC;
pHalData->Regulation5G = TXPWR_LMT_FCC;
break;
case RT_CHANNEL_DOMAIN_WORLD_ETSI12:
pHalData->Regulation2_4G = TXPWR_LMT_ETSI;
pHalData->Regulation5G = TXPWR_LMT_ETSI;
break;
case RT_CHANNEL_DOMAIN_FCC1_FCC9:
pHalData->Regulation2_4G = TXPWR_LMT_FCC;
pHalData->Regulation5G = TXPWR_LMT_FCC;
break;
case RT_CHANNEL_DOMAIN_WORLD_ETSI13:
pHalData->Regulation2_4G = TXPWR_LMT_ETSI;
pHalData->Regulation5G = TXPWR_LMT_ETSI;
break;
case RT_CHANNEL_DOMAIN_FCC1_FCC10:
pHalData->Regulation2_4G = TXPWR_LMT_FCC;
pHalData->Regulation5G = TXPWR_LMT_FCC;
break;
case RT_CHANNEL_DOMAIN_REALTEK_DEFINE: /* Realtek Reserve */
pHalData->Regulation2_4G = TXPWR_LMT_WW;
pHalData->Regulation5G = TXPWR_LMT_WW;
break;
default:
break;
}
}
static char file_path_bs[PATH_MAX];
#define GetLineFromBuffer(buffer) strsep(&buffer, "\n")
int phy_ConfigMACWithParaFile(struct adapter *Adapter, char *pFileName)
{
struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
int rlen = 0, rtStatus = _FAIL;
char *szLine, *ptmp;
u32 u4bRegOffset, u4bRegValue, u4bMove;
if (!(Adapter->registrypriv.load_phy_file & LOAD_MAC_PARA_FILE))
return rtStatus;
memset(pHalData->para_file_buf, 0, MAX_PARA_FILE_BUF_LEN);
if ((pHalData->mac_reg_len == 0) && (pHalData->mac_reg == NULL)) {
rtw_merge_string(file_path_bs, PATH_MAX, rtw_phy_file_path, pFileName);
if (rtw_is_file_readable(file_path_bs) == true) {
rlen = rtw_retrive_from_file(file_path_bs, pHalData->para_file_buf, MAX_PARA_FILE_BUF_LEN);
if (rlen > 0) {
rtStatus = _SUCCESS;
pHalData->mac_reg = vzalloc(rlen);
if (pHalData->mac_reg) {
memcpy(pHalData->mac_reg, pHalData->para_file_buf, rlen);
pHalData->mac_reg_len = rlen;
} else
DBG_871X("%s mac_reg alloc fail !\n", __func__);
}
}
} else {
if ((pHalData->mac_reg_len != 0) && (pHalData->mac_reg != NULL)) {
memcpy(pHalData->para_file_buf, pHalData->mac_reg, pHalData->mac_reg_len);
rtStatus = _SUCCESS;
} else
DBG_871X("%s(): Critical Error !!!\n", __func__);
}
if (rtStatus == _SUCCESS) {
ptmp = pHalData->para_file_buf;
for (szLine = GetLineFromBuffer(ptmp); szLine != NULL; szLine = GetLineFromBuffer(ptmp)) {
if (!IsCommentString(szLine)) {
/* Get 1st hex value as register offset */
if (GetHexValueFromString(szLine, &u4bRegOffset, &u4bMove)) {
if (u4bRegOffset == 0xffff) /* Ending. */
break;
/* Get 2nd hex value as register value. */
szLine += u4bMove;
if (GetHexValueFromString(szLine, &u4bRegValue, &u4bMove))
rtw_write8(Adapter, u4bRegOffset, (u8)u4bRegValue);
}
}
}
} else
DBG_871X("%s(): No File %s, Load from HWImg Array!\n", __func__, pFileName);
return rtStatus;
}
int phy_ConfigBBWithParaFile(
struct adapter *Adapter, char *pFileName, u32 ConfigType
)
{
struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
int rlen = 0, rtStatus = _FAIL;
char *szLine, *ptmp;
u32 u4bRegOffset, u4bRegValue, u4bMove;
char *pBuf = NULL;
u32 *pBufLen = NULL;
if (!(Adapter->registrypriv.load_phy_file & LOAD_BB_PARA_FILE))
return rtStatus;
switch (ConfigType) {
case CONFIG_BB_PHY_REG:
pBuf = pHalData->bb_phy_reg;
pBufLen = &pHalData->bb_phy_reg_len;
break;
case CONFIG_BB_AGC_TAB:
pBuf = pHalData->bb_agc_tab;
pBufLen = &pHalData->bb_agc_tab_len;
break;
default:
DBG_871X("Unknown ConfigType!! %d\r\n", ConfigType);
break;
}
memset(pHalData->para_file_buf, 0, MAX_PARA_FILE_BUF_LEN);
if ((pBufLen != NULL) && (*pBufLen == 0) && (pBuf == NULL)) {
rtw_merge_string(file_path_bs, PATH_MAX, rtw_phy_file_path, pFileName);
if (rtw_is_file_readable(file_path_bs) == true) {
rlen = rtw_retrive_from_file(file_path_bs, pHalData->para_file_buf, MAX_PARA_FILE_BUF_LEN);
if (rlen > 0) {
rtStatus = _SUCCESS;
pBuf = vzalloc(rlen);
if (pBuf) {
memcpy(pBuf, pHalData->para_file_buf, rlen);
*pBufLen = rlen;
switch (ConfigType) {
case CONFIG_BB_PHY_REG:
pHalData->bb_phy_reg = pBuf;
break;
case CONFIG_BB_AGC_TAB:
pHalData->bb_agc_tab = pBuf;
break;
}
} else
DBG_871X("%s(): ConfigType %d alloc fail !\n", __func__, ConfigType);
}
}
} else {
if ((pBufLen != NULL) && (*pBufLen == 0) && (pBuf == NULL)) {
memcpy(pHalData->para_file_buf, pBuf, *pBufLen);
rtStatus = _SUCCESS;
} else
DBG_871X("%s(): Critical Error !!!\n", __func__);
}
if (rtStatus == _SUCCESS) {
ptmp = pHalData->para_file_buf;
for (szLine = GetLineFromBuffer(ptmp); szLine != NULL; szLine = GetLineFromBuffer(ptmp)) {
if (!IsCommentString(szLine)) {
/* Get 1st hex value as register offset. */
if (GetHexValueFromString(szLine, &u4bRegOffset, &u4bMove)) {
if (u4bRegOffset == 0xffff) /* Ending. */
break;
else if (u4bRegOffset == 0xfe || u4bRegOffset == 0xffe)
msleep(50);
else if (u4bRegOffset == 0xfd)
mdelay(5);
else if (u4bRegOffset == 0xfc)
mdelay(1);
else if (u4bRegOffset == 0xfb)
udelay(50);
else if (u4bRegOffset == 0xfa)
udelay(5);
else if (u4bRegOffset == 0xf9)
udelay(1);
/* Get 2nd hex value as register value. */
szLine += u4bMove;
if (GetHexValueFromString(szLine, &u4bRegValue, &u4bMove)) {
/* DBG_871X("[BB-ADDR]%03lX =%08lX\n", u4bRegOffset, u4bRegValue); */
PHY_SetBBReg(Adapter, u4bRegOffset, bMaskDWord, u4bRegValue);
if (u4bRegOffset == 0xa24)
pHalData->odmpriv.RFCalibrateInfo.RegA24 = u4bRegValue;
/* Add 1us delay between BB/RF register setting. */
udelay(1);
}
}
}
}
} else
DBG_871X("%s(): No File %s, Load from HWImg Array!\n", __func__, pFileName);
return rtStatus;
}
static void phy_DecryptBBPgParaFile(struct adapter *Adapter, char *buffer)
{
u32 i = 0, j = 0;
u8 map[95] = {0};
u8 currentChar;
char *BufOfLines, *ptmp;
/* DBG_871X("=====>phy_DecryptBBPgParaFile()\n"); */
/* 32 the ascii code of the first visable char, 126 the last one */
for (i = 0; i < 95; ++i)
map[i] = (u8) (94 - i);
ptmp = buffer;
i = 0;
for (BufOfLines = GetLineFromBuffer(ptmp); BufOfLines != NULL; BufOfLines = GetLineFromBuffer(ptmp)) {
/* DBG_871X("Encrypted Line: %s\n", BufOfLines); */
for (j = 0; j < strlen(BufOfLines); ++j) {
currentChar = BufOfLines[j];
if (currentChar == '\0')
break;
currentChar -= (u8) ((((i + j) * 3) % 128));
BufOfLines[j] = map[currentChar - 32] + 32;
}
/* DBG_871X("Decrypted Line: %s\n", BufOfLines); */
if (strlen(BufOfLines) != 0)
i++;
BufOfLines[strlen(BufOfLines)] = '\n';
}
}
static int phy_ParseBBPgParaFile(struct adapter *Adapter, char *buffer)
{
int rtStatus = _SUCCESS;
struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
char *szLine, *ptmp;
u32 u4bRegOffset, u4bRegMask, u4bRegValue;
u32 u4bMove;
bool firstLine = true;
u8 tx_num = 0;
u8 band = 0, rf_path = 0;
/* DBG_871X("=====>phy_ParseBBPgParaFile()\n"); */
if (Adapter->registrypriv.RegDecryptCustomFile == 1)
phy_DecryptBBPgParaFile(Adapter, buffer);
ptmp = buffer;
for (szLine = GetLineFromBuffer(ptmp); szLine != NULL; szLine = GetLineFromBuffer(ptmp)) {
if (!IsCommentString(szLine)) {
if (isAllSpaceOrTab(szLine, sizeof(*szLine)))
continue;
/* Get header info (relative value or exact value) */
if (firstLine) {
if (eqNByte(szLine, (u8 *)("#[v1]"), 5)) {
pHalData->odmpriv.PhyRegPgVersion = szLine[3] - '0';
/* DBG_871X("This is a new format PHY_REG_PG.txt\n"); */
} else if (eqNByte(szLine, (u8 *)("#[v0]"), 5)) {
pHalData->odmpriv.PhyRegPgVersion = szLine[3] - '0';
/* DBG_871X("This is a old format PHY_REG_PG.txt ok\n"); */
} else {
DBG_871X("The format in PHY_REG_PG are invalid %s\n", szLine);
return _FAIL;
}
if (eqNByte(szLine + 5, (u8 *)("[Exact]#"), 8)) {
pHalData->odmpriv.PhyRegPgValueType = PHY_REG_PG_EXACT_VALUE;
/* DBG_871X("The values in PHY_REG_PG are exact values ok\n"); */
firstLine = false;
continue;
} else if (eqNByte(szLine + 5, (u8 *)("[Relative]#"), 11)) {
pHalData->odmpriv.PhyRegPgValueType = PHY_REG_PG_RELATIVE_VALUE;
/* DBG_871X("The values in PHY_REG_PG are relative values ok\n"); */
firstLine = false;
continue;
} else {
DBG_871X("The values in PHY_REG_PG are invalid %s\n", szLine);
return _FAIL;
}
}
if (pHalData->odmpriv.PhyRegPgVersion == 0) {
/* Get 1st hex value as register offset. */
if (GetHexValueFromString(szLine, &u4bRegOffset, &u4bMove)) {
szLine += u4bMove;
if (u4bRegOffset == 0xffff) /* Ending. */
break;
/* Get 2nd hex value as register mask. */
if (GetHexValueFromString(szLine, &u4bRegMask, &u4bMove))
szLine += u4bMove;
else
return _FAIL;
if (pHalData->odmpriv.PhyRegPgValueType == PHY_REG_PG_RELATIVE_VALUE) {
/* Get 3rd hex value as register value. */
if (GetHexValueFromString(szLine, &u4bRegValue, &u4bMove)) {
PHY_StoreTxPowerByRate(Adapter, 0, 0, 1, u4bRegOffset, u4bRegMask, u4bRegValue);
/* DBG_871X("[ADDR] %03X =%08X Mask =%08x\n", u4bRegOffset, u4bRegValue, u4bRegMask); */
} else
return _FAIL;
} else if (pHalData->odmpriv.PhyRegPgValueType == PHY_REG_PG_EXACT_VALUE) {
u32 combineValue = 0;
u8 integer = 0, fraction = 0;
if (GetFractionValueFromString(szLine, &integer, &fraction, &u4bMove))
szLine += u4bMove;
else
return _FAIL;
integer *= 2;
if (fraction == 5)
integer += 1;
combineValue |= (((integer / 10) << 4) + (integer % 10));
/* DBG_871X(" %d", integer); */
if (GetFractionValueFromString(szLine, &integer, &fraction, &u4bMove))
szLine += u4bMove;
else
return _FAIL;
integer *= 2;
if (fraction == 5)
integer += 1;
combineValue <<= 8;
combineValue |= (((integer / 10) << 4) + (integer % 10));
/* DBG_871X(" %d", integer); */
if (GetFractionValueFromString(szLine, &integer, &fraction, &u4bMove))
szLine += u4bMove;
else
return _FAIL;
integer *= 2;
if (fraction == 5)
integer += 1;
combineValue <<= 8;
combineValue |= (((integer / 10) << 4) + (integer % 10));
/* DBG_871X(" %d", integer); */
if (GetFractionValueFromString(szLine, &integer, &fraction, &u4bMove))
szLine += u4bMove;
else
return _FAIL;
integer *= 2;
if (fraction == 5)
integer += 1;
combineValue <<= 8;
combineValue |= (((integer / 10) << 4) + (integer % 10));
/* DBG_871X(" %d", integer); */
PHY_StoreTxPowerByRate(Adapter, 0, 0, 1, u4bRegOffset, u4bRegMask, combineValue);
/* DBG_871X("[ADDR] 0x%3x = 0x%4x\n", u4bRegOffset, combineValue); */
}
}
} else if (pHalData->odmpriv.PhyRegPgVersion > 0) {
u32 index = 0;
if (eqNByte(szLine, "0xffff", 6))
break;
if (!eqNByte("#[END]#", szLine, 7)) {
/* load the table label info */
if (szLine[0] == '#') {
index = 0;
if (eqNByte(szLine, "#[2.4G]", 7)) {
band = BAND_ON_2_4G;
index += 8;
} else if (eqNByte(szLine, "#[5G]", 5)) {
band = BAND_ON_5G;
index += 6;
} else {
DBG_871X("Invalid band %s in PHY_REG_PG.txt\n", szLine);
return _FAIL;
}
rf_path = szLine[index] - 'A';
/* DBG_871X(" Table label Band %d, RfPath %d\n", band, rf_path); */
} else { /* load rows of tables */
if (szLine[1] == '1')
tx_num = RF_1TX;
else if (szLine[1] == '2')
tx_num = RF_2TX;
else if (szLine[1] == '3')
tx_num = RF_3TX;
else if (szLine[1] == '4')
tx_num = RF_4TX;
else {
DBG_871X("Invalid row in PHY_REG_PG.txt %c\n", szLine[1]);
return _FAIL;
}
while (szLine[index] != ']')
++index;
++index;/* skip ] */
/* Get 2nd hex value as register offset. */
szLine += index;
if (GetHexValueFromString(szLine, &u4bRegOffset, &u4bMove))
szLine += u4bMove;
else
return _FAIL;
/* Get 2nd hex value as register mask. */
if (GetHexValueFromString(szLine, &u4bRegMask, &u4bMove))
szLine += u4bMove;
else
return _FAIL;
if (pHalData->odmpriv.PhyRegPgValueType == PHY_REG_PG_RELATIVE_VALUE) {
/* Get 3rd hex value as register value. */
if (GetHexValueFromString(szLine, &u4bRegValue, &u4bMove)) {
PHY_StoreTxPowerByRate(Adapter, band, rf_path, tx_num, u4bRegOffset, u4bRegMask, u4bRegValue);
/* DBG_871X("[ADDR] %03X (tx_num %d) =%08X Mask =%08x\n", u4bRegOffset, tx_num, u4bRegValue, u4bRegMask); */
} else
return _FAIL;
} else if (pHalData->odmpriv.PhyRegPgValueType == PHY_REG_PG_EXACT_VALUE) {
u32 combineValue = 0;
u8 integer = 0, fraction = 0;
if (GetFractionValueFromString(szLine, &integer, &fraction, &u4bMove))
szLine += u4bMove;
else
return _FAIL;
integer *= 2;
if (fraction == 5)
integer += 1;
combineValue |= (((integer / 10) << 4) + (integer % 10));
/* DBG_871X(" %d", integer); */
if (GetFractionValueFromString(szLine, &integer, &fraction, &u4bMove))
szLine += u4bMove;
else
return _FAIL;
integer *= 2;
if (fraction == 5)
integer += 1;
combineValue <<= 8;
combineValue |= (((integer / 10) << 4) + (integer % 10));
/* DBG_871X(" %d", integer); */
if (GetFractionValueFromString(szLine, &integer, &fraction, &u4bMove))
szLine += u4bMove;
else
return _FAIL;
integer *= 2;
if (fraction == 5)
integer += 1;
combineValue <<= 8;
combineValue |= (((integer / 10) << 4) + (integer % 10));
/* DBG_871X(" %d", integer); */
if (GetFractionValueFromString(szLine, &integer, &fraction, &u4bMove))
szLine += u4bMove;
else
return _FAIL;
integer *= 2;
if (fraction == 5)
integer += 1;
combineValue <<= 8;
combineValue |= (((integer / 10) << 4) + (integer % 10));
/* DBG_871X(" %d", integer); */
PHY_StoreTxPowerByRate(Adapter, band, rf_path, tx_num, u4bRegOffset, u4bRegMask, combineValue);
/* DBG_871X("[ADDR] 0x%3x (tx_num %d) = 0x%4x\n", u4bRegOffset, tx_num, combineValue); */
}
}
}
}
}
}
/* DBG_871X("<=====phy_ParseBBPgParaFile()\n"); */
return rtStatus;
}
int phy_ConfigBBWithPgParaFile(struct adapter *Adapter, char *pFileName)
{
struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
int rlen = 0, rtStatus = _FAIL;
if (!(Adapter->registrypriv.load_phy_file & LOAD_BB_PG_PARA_FILE))
return rtStatus;
memset(pHalData->para_file_buf, 0, MAX_PARA_FILE_BUF_LEN);
if ((pHalData->bb_phy_reg_pg_len == 0) && (pHalData->bb_phy_reg_pg == NULL)) {
rtw_merge_string(file_path_bs, PATH_MAX, rtw_phy_file_path, pFileName);
if (rtw_is_file_readable(file_path_bs) == true) {
rlen = rtw_retrive_from_file(file_path_bs, pHalData->para_file_buf, MAX_PARA_FILE_BUF_LEN);
if (rlen > 0) {
rtStatus = _SUCCESS;
pHalData->bb_phy_reg_pg = vzalloc(rlen);
if (pHalData->bb_phy_reg_pg) {
memcpy(pHalData->bb_phy_reg_pg, pHalData->para_file_buf, rlen);
pHalData->bb_phy_reg_pg_len = rlen;
} else
DBG_871X("%s bb_phy_reg_pg alloc fail !\n", __func__);
}
}
} else {
if ((pHalData->bb_phy_reg_pg_len != 0) && (pHalData->bb_phy_reg_pg != NULL)) {
memcpy(pHalData->para_file_buf, pHalData->bb_phy_reg_pg, pHalData->bb_phy_reg_pg_len);
rtStatus = _SUCCESS;
} else
DBG_871X("%s(): Critical Error !!!\n", __func__);
}
if (rtStatus == _SUCCESS) {
/* DBG_871X("phy_ConfigBBWithPgParaFile(): read %s ok\n", pFileName); */
phy_ParseBBPgParaFile(Adapter, pHalData->para_file_buf);
} else
DBG_871X("%s(): No File %s, Load from HWImg Array!\n", __func__, pFileName);
return rtStatus;
}
int PHY_ConfigRFWithParaFile(
struct adapter *Adapter, char *pFileName, u8 eRFPath
)
{
struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
int rlen = 0, rtStatus = _FAIL;
char *szLine, *ptmp;
u32 u4bRegOffset, u4bRegValue, u4bMove;
u16 i;
char *pBuf = NULL;
u32 *pBufLen = NULL;
if (!(Adapter->registrypriv.load_phy_file & LOAD_RF_PARA_FILE))
return rtStatus;
switch (eRFPath) {
case ODM_RF_PATH_A:
pBuf = pHalData->rf_radio_a;
pBufLen = &pHalData->rf_radio_a_len;
break;
case ODM_RF_PATH_B:
pBuf = pHalData->rf_radio_b;
pBufLen = &pHalData->rf_radio_b_len;
break;
default:
DBG_871X("Unknown RF path!! %d\r\n", eRFPath);
break;
}
memset(pHalData->para_file_buf, 0, MAX_PARA_FILE_BUF_LEN);
if ((pBufLen != NULL) && (*pBufLen == 0) && (pBuf == NULL)) {
rtw_merge_string(file_path_bs, PATH_MAX, rtw_phy_file_path, pFileName);
if (rtw_is_file_readable(file_path_bs) == true) {
rlen = rtw_retrive_from_file(file_path_bs, pHalData->para_file_buf, MAX_PARA_FILE_BUF_LEN);
if (rlen > 0) {
rtStatus = _SUCCESS;
pBuf = vzalloc(rlen);
if (pBuf) {
memcpy(pBuf, pHalData->para_file_buf, rlen);
*pBufLen = rlen;
switch (eRFPath) {
case ODM_RF_PATH_A:
pHalData->rf_radio_a = pBuf;
break;
case ODM_RF_PATH_B:
pHalData->rf_radio_b = pBuf;
break;
}
} else
DBG_871X("%s(): eRFPath =%d alloc fail !\n", __func__, eRFPath);
}
}
} else {
if ((pBufLen != NULL) && (*pBufLen == 0) && (pBuf == NULL)) {
memcpy(pHalData->para_file_buf, pBuf, *pBufLen);
rtStatus = _SUCCESS;
} else
DBG_871X("%s(): Critical Error !!!\n", __func__);
}
if (rtStatus == _SUCCESS) {
/* DBG_871X("%s(): read %s successfully\n", __func__, pFileName); */
ptmp = pHalData->para_file_buf;
for (szLine = GetLineFromBuffer(ptmp); szLine != NULL; szLine = GetLineFromBuffer(ptmp)) {
if (!IsCommentString(szLine)) {
/* Get 1st hex value as register offset. */
if (GetHexValueFromString(szLine, &u4bRegOffset, &u4bMove)) {
if (u4bRegOffset == 0xfe || u4bRegOffset == 0xffe) /* Deay specific ms. Only RF configuration require delay. */
msleep(50);
else if (u4bRegOffset == 0xfd) {
/* mdelay(5); */
for (i = 0; i < 100; i++)
udelay(MAX_STALL_TIME);
} else if (u4bRegOffset == 0xfc) {
/* mdelay(1); */
for (i = 0; i < 20; i++)
udelay(MAX_STALL_TIME);
} else if (u4bRegOffset == 0xfb)
udelay(50);
else if (u4bRegOffset == 0xfa)
udelay(5);
else if (u4bRegOffset == 0xf9)
udelay(1);
else if (u4bRegOffset == 0xffff)
break;
/* Get 2nd hex value as register value. */
szLine += u4bMove;
if (GetHexValueFromString(szLine, &u4bRegValue, &u4bMove)) {
PHY_SetRFReg(Adapter, eRFPath, u4bRegOffset, bRFRegOffsetMask, u4bRegValue);
/* Temp add, for frequency lock, if no delay, that may cause */
/* frequency shift, ex: 2412MHz => 2417MHz */
/* If frequency shift, the following action may works. */
/* Fractional-N table in radio_a.txt */
/* 0x2a 0x00001 channel 1 */
/* 0x2b 0x00808 frequency divider. */
/* 0x2b 0x53333 */
/* 0x2c 0x0000c */
udelay(1);
}
}
}
}
} else
DBG_871X("%s(): No File %s, Load from HWImg Array!\n", __func__, pFileName);
return rtStatus;
}
static void initDeltaSwingIndexTables(
struct adapter *Adapter,
char *Band,
char *Path,
char *Sign,
char *Channel,
char *Rate,
char *Data
)
{
#define STR_EQUAL_5G(_band, _path, _sign, _rate, _chnl) \
((strcmp(Band, _band) == 0) && (strcmp(Path, _path) == 0) && (strcmp(Sign, _sign) == 0) &&\
(strcmp(Rate, _rate) == 0) && (strcmp(Channel, _chnl) == 0)\
)
#define STR_EQUAL_2G(_band, _path, _sign, _rate) \
((strcmp(Band, _band) == 0) && (strcmp(Path, _path) == 0) && (strcmp(Sign, _sign) == 0) &&\
(strcmp(Rate, _rate) == 0)\
)
#define STORE_SWING_TABLE(_array, _iteratedIdx) \
for (token = strsep(&Data, delim); token != NULL; token = strsep(&Data, delim)) {\
sscanf(token, "%d", &idx);\
_array[_iteratedIdx++] = (u8)idx;\
} \
struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
PDM_ODM_T pDM_Odm = &pHalData->odmpriv;
PODM_RF_CAL_T pRFCalibrateInfo = &(pDM_Odm->RFCalibrateInfo);
u32 j = 0;
char *token;
char delim[] = ",";
u32 idx = 0;
/* DBG_871X("===>initDeltaSwingIndexTables(): Band: %s;\nPath: %s;\nSign: %s;\nChannel: %s;\nRate: %s;\n, Data: %s;\n", */
/* Band, Path, Sign, Channel, Rate, Data); */
if (STR_EQUAL_2G("2G", "A", "+", "CCK")) {
STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_2GCCKA_P, j);
} else if (STR_EQUAL_2G("2G", "A", "-", "CCK")) {
STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_2GCCKA_N, j);
} else if (STR_EQUAL_2G("2G", "B", "+", "CCK")) {
STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_2GCCKB_P, j);
} else if (STR_EQUAL_2G("2G", "B", "-", "CCK")) {
STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_2GCCKB_N, j);
} else if (STR_EQUAL_2G("2G", "A", "+", "ALL")) {
STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_2GA_P, j);
} else if (STR_EQUAL_2G("2G", "A", "-", "ALL")) {
STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_2GA_N, j);
} else if (STR_EQUAL_2G("2G", "B", "+", "ALL")) {
STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_2GB_P, j);
} else if (STR_EQUAL_2G("2G", "B", "-", "ALL")) {
STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_2GB_N, j);
} else if (STR_EQUAL_5G("5G", "A", "+", "ALL", "0")) {
STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GA_P[0], j);
} else if (STR_EQUAL_5G("5G", "A", "-", "ALL", "0")) {
STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GA_N[0], j);
} else if (STR_EQUAL_5G("5G", "B", "+", "ALL", "0")) {
STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GB_P[0], j);
} else if (STR_EQUAL_5G("5G", "B", "-", "ALL", "0")) {
STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GB_N[0], j);
} else if (STR_EQUAL_5G("5G", "A", "+", "ALL", "1")) {
STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GA_P[1], j);
} else if (STR_EQUAL_5G("5G", "A", "-", "ALL", "1")) {
STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GA_N[1], j);
} else if (STR_EQUAL_5G("5G", "B", "+", "ALL", "1")) {
STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GB_P[1], j);
} else if (STR_EQUAL_5G("5G", "B", "-", "ALL", "1")) {
STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GB_N[1], j);
} else if (STR_EQUAL_5G("5G", "A", "+", "ALL", "2")) {
STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GA_P[2], j);
} else if (STR_EQUAL_5G("5G", "A", "-", "ALL", "2")) {
STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GA_N[2], j);
} else if (STR_EQUAL_5G("5G", "B", "+", "ALL", "2")) {
STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GB_P[2], j);
} else if (STR_EQUAL_5G("5G", "B", "-", "ALL", "2")) {
STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GB_N[2], j);
} else if (STR_EQUAL_5G("5G", "A", "+", "ALL", "3")) {
STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GA_P[3], j);
} else if (STR_EQUAL_5G("5G", "A", "-", "ALL", "3")) {
STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GA_N[3], j);
} else if (STR_EQUAL_5G("5G", "B", "+", "ALL", "3")) {
STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GB_P[3], j);
} else if (STR_EQUAL_5G("5G", "B", "-", "ALL", "3")) {
STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GB_N[3], j);
} else
DBG_871X("===>initDeltaSwingIndexTables(): The input is invalid!!\n");
}
int PHY_ConfigRFWithTxPwrTrackParaFile(struct adapter *Adapter, char *pFileName)
{
struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
int rlen = 0, rtStatus = _FAIL;
char *szLine, *ptmp;
u32 i = 0;
if (!(Adapter->registrypriv.load_phy_file & LOAD_RF_TXPWR_TRACK_PARA_FILE))
return rtStatus;
memset(pHalData->para_file_buf, 0, MAX_PARA_FILE_BUF_LEN);
if ((pHalData->rf_tx_pwr_track_len == 0) && (pHalData->rf_tx_pwr_track == NULL)) {
rtw_merge_string(file_path_bs, PATH_MAX, rtw_phy_file_path, pFileName);
if (rtw_is_file_readable(file_path_bs) == true) {
rlen = rtw_retrive_from_file(file_path_bs, pHalData->para_file_buf, MAX_PARA_FILE_BUF_LEN);
if (rlen > 0) {
rtStatus = _SUCCESS;
pHalData->rf_tx_pwr_track = vzalloc(rlen);
if (pHalData->rf_tx_pwr_track) {
memcpy(pHalData->rf_tx_pwr_track, pHalData->para_file_buf, rlen);
pHalData->rf_tx_pwr_track_len = rlen;
} else
DBG_871X("%s rf_tx_pwr_track alloc fail !\n", __func__);
}
}
} else {
if ((pHalData->rf_tx_pwr_track_len != 0) && (pHalData->rf_tx_pwr_track != NULL)) {
memcpy(pHalData->para_file_buf, pHalData->rf_tx_pwr_track, pHalData->rf_tx_pwr_track_len);
rtStatus = _SUCCESS;
} else
DBG_871X("%s(): Critical Error !!!\n", __func__);
}
if (rtStatus == _SUCCESS) {
/* DBG_871X("%s(): read %s successfully\n", __func__, pFileName); */
ptmp = pHalData->para_file_buf;
for (szLine = GetLineFromBuffer(ptmp); szLine != NULL; szLine = GetLineFromBuffer(ptmp)) {
if (!IsCommentString(szLine)) {
char band[5] = "", path[5] = "", sign[5] = "";
char chnl[5] = "", rate[10] = "";
char data[300] = ""; /* 100 is too small */
if (strlen(szLine) < 10 || szLine[0] != '[')
continue;
strncpy(band, szLine+1, 2);
strncpy(path, szLine+5, 1);
strncpy(sign, szLine+8, 1);
i = 10; /* szLine+10 */
if (!ParseQualifiedString(szLine, &i, rate, '[', ']')) {
/* DBG_871X("Fail to parse rate!\n"); */
}
if (!ParseQualifiedString(szLine, &i, chnl, '[', ']')) {
/* DBG_871X("Fail to parse channel group!\n"); */
}
while (szLine[i] != '{' && i < strlen(szLine))
i++;
if (!ParseQualifiedString(szLine, &i, data, '{', '}')) {
/* DBG_871X("Fail to parse data!\n"); */
}
initDeltaSwingIndexTables(Adapter, band, path, sign, chnl, rate, data);
}
}
} else
DBG_871X("%s(): No File %s, Load from HWImg Array!\n", __func__, pFileName);
return rtStatus;
}
static int phy_ParsePowerLimitTableFile(struct adapter *Adapter, char *buffer)
{
u32 i = 0, forCnt = 0;
u8 loadingStage = 0, limitValue = 0, fraction = 0;
char *szLine, *ptmp;
int rtStatus = _SUCCESS;
char band[10], bandwidth[10], rateSection[10],
regulation[TXPWR_LMT_MAX_REGULATION_NUM][10], rfPath[10], colNumBuf[10];
u8 colNum = 0;
DBG_871X("===>phy_ParsePowerLimitTableFile()\n");
if (Adapter->registrypriv.RegDecryptCustomFile == 1)
phy_DecryptBBPgParaFile(Adapter, buffer);
ptmp = buffer;
for (szLine = GetLineFromBuffer(ptmp); szLine != NULL; szLine = GetLineFromBuffer(ptmp)) {
/* skip comment */
if (IsCommentString(szLine)) {
continue;
}
if (loadingStage == 0) {
for (forCnt = 0; forCnt < TXPWR_LMT_MAX_REGULATION_NUM; ++forCnt)
memset((void *) regulation[forCnt], 0, 10);
memset((void *) band, 0, 10);
memset((void *) bandwidth, 0, 10);
memset((void *) rateSection, 0, 10);
memset((void *) rfPath, 0, 10);
memset((void *) colNumBuf, 0, 10);
if (szLine[0] != '#' || szLine[1] != '#')
continue;
/* skip the space */
i = 2;
while (szLine[i] == ' ' || szLine[i] == '\t')
++i;
szLine[--i] = ' '; /* return the space in front of the regulation info */
/* Parse the label of the table */
if (!ParseQualifiedString(szLine, &i, band, ' ', ',')) {
DBG_871X("Fail to parse band!\n");
return _FAIL;
}
if (!ParseQualifiedString(szLine, &i, bandwidth, ' ', ',')) {
DBG_871X("Fail to parse bandwidth!\n");
return _FAIL;
}
if (!ParseQualifiedString(szLine, &i, rfPath, ' ', ',')) {
DBG_871X("Fail to parse rf path!\n");
return _FAIL;
}
if (!ParseQualifiedString(szLine, &i, rateSection, ' ', ',')) {
DBG_871X("Fail to parse rate!\n");
return _FAIL;
}
loadingStage = 1;
} else if (loadingStage == 1) {
if (szLine[0] != '#' || szLine[1] != '#')
continue;
/* skip the space */
i = 2;
while (szLine[i] == ' ' || szLine[i] == '\t')
++i;
if (!eqNByte((u8 *)(szLine + i), (u8 *)("START"), 5)) {
DBG_871X("Lost \"## START\" label\n");
return _FAIL;
}
loadingStage = 2;
} else if (loadingStage == 2) {
if (szLine[0] != '#' || szLine[1] != '#')
continue;
/* skip the space */
i = 2;
while (szLine[i] == ' ' || szLine[i] == '\t')
++i;
if (!ParseQualifiedString(szLine, &i, colNumBuf, '#', '#')) {
DBG_871X("Fail to parse column number!\n");
return _FAIL;
}
if (!GetU1ByteIntegerFromStringInDecimal(colNumBuf, &colNum))
return _FAIL;
if (colNum > TXPWR_LMT_MAX_REGULATION_NUM) {
DBG_871X(
"unvalid col number %d (greater than max %d)\n",
colNum, TXPWR_LMT_MAX_REGULATION_NUM
);
return _FAIL;
}
for (forCnt = 0; forCnt < colNum; ++forCnt) {
u8 regulation_name_cnt = 0;
/* skip the space */
while (szLine[i] == ' ' || szLine[i] == '\t')
++i;
while (szLine[i] != ' ' && szLine[i] != '\t' && szLine[i] != '\0')
regulation[forCnt][regulation_name_cnt++] = szLine[i++];
/* DBG_871X("regulation %s!\n", regulation[forCnt]); */
if (regulation_name_cnt == 0) {
DBG_871X("unvalid number of regulation!\n");
return _FAIL;
}
}
loadingStage = 3;
} else if (loadingStage == 3) {
char channel[10] = {0}, powerLimit[10] = {0};
u8 cnt = 0;
/* the table ends */
if (szLine[0] == '#' && szLine[1] == '#') {
i = 2;
while (szLine[i] == ' ' || szLine[i] == '\t')
++i;
if (eqNByte((u8 *)(szLine + i), (u8 *)("END"), 3)) {
loadingStage = 0;
continue;
} else {
DBG_871X("Wrong format\n");
DBG_871X("<===== phy_ParsePowerLimitTableFile()\n");
return _FAIL;
}
}
if ((szLine[0] != 'c' && szLine[0] != 'C') ||
(szLine[1] != 'h' && szLine[1] != 'H')) {
DBG_871X("Meet wrong channel => power limt pair\n");
continue;
}
i = 2;/* move to the location behind 'h' */
/* load the channel number */
cnt = 0;
while (szLine[i] >= '0' && szLine[i] <= '9') {
channel[cnt] = szLine[i];
++cnt;
++i;
}
/* DBG_871X("chnl %s!\n", channel); */
for (forCnt = 0; forCnt < colNum; ++forCnt) {
/* skip the space between channel number and the power limit value */
while (szLine[i] == ' ' || szLine[i] == '\t')
++i;
/* load the power limit value */
cnt = 0;
fraction = 0;
memset((void *) powerLimit, 0, 10);
while ((szLine[i] >= '0' && szLine[i] <= '9') || szLine[i] == '.') {
if (szLine[i] == '.') {
if ((szLine[i+1] >= '0' && szLine[i+1] <= '9')) {
fraction = szLine[i+1];
i += 2;
} else {
DBG_871X("Wrong fraction in TXPWR_LMT.txt\n");
return _FAIL;
}
break;
}
powerLimit[cnt] = szLine[i];
++cnt;
++i;
}
if (powerLimit[0] == '\0') {
powerLimit[0] = '6';
powerLimit[1] = '3';
i += 2;
} else {
if (!GetU1ByteIntegerFromStringInDecimal(powerLimit, &limitValue))
return _FAIL;
limitValue *= 2;
cnt = 0;
if (fraction == '5')
++limitValue;
/* the value is greater or equal to 100 */
if (limitValue >= 100) {
powerLimit[cnt++] = limitValue/100 + '0';
limitValue %= 100;
if (limitValue >= 10) {
powerLimit[cnt++] = limitValue/10 + '0';
limitValue %= 10;
} else
powerLimit[cnt++] = '0';
powerLimit[cnt++] = limitValue + '0';
} else if (limitValue >= 10) { /* the value is greater or equal to 10 */
powerLimit[cnt++] = limitValue/10 + '0';
limitValue %= 10;
powerLimit[cnt++] = limitValue + '0';
}
/* the value is less than 10 */
else
powerLimit[cnt++] = limitValue + '0';
powerLimit[cnt] = '\0';
}
/* DBG_871X("ch%s => %s\n", channel, powerLimit); */
/* store the power limit value */
PHY_SetTxPowerLimit(Adapter, (u8 *)regulation[forCnt], (u8 *)band,
(u8 *)bandwidth, (u8 *)rateSection, (u8 *)rfPath, (u8 *)channel, (u8 *)powerLimit);
}
} else {
DBG_871X("Abnormal loading stage in phy_ParsePowerLimitTableFile()!\n");
rtStatus = _FAIL;
break;
}
}
DBG_871X("<===phy_ParsePowerLimitTableFile()\n");
return rtStatus;
}
int PHY_ConfigRFWithPowerLimitTableParaFile(
struct adapter *Adapter, char *pFileName
)
{
struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
int rlen = 0, rtStatus = _FAIL;
if (!(Adapter->registrypriv.load_phy_file & LOAD_RF_TXPWR_LMT_PARA_FILE))
return rtStatus;
memset(pHalData->para_file_buf, 0, MAX_PARA_FILE_BUF_LEN);
if ((pHalData->rf_tx_pwr_lmt_len == 0) && (pHalData->rf_tx_pwr_lmt == NULL)) {
rtw_merge_string(file_path_bs, PATH_MAX, rtw_phy_file_path, pFileName);
if (rtw_is_file_readable(file_path_bs) == true) {
rlen = rtw_retrive_from_file(file_path_bs, pHalData->para_file_buf, MAX_PARA_FILE_BUF_LEN);
if (rlen > 0) {
rtStatus = _SUCCESS;
pHalData->rf_tx_pwr_lmt = vzalloc(rlen);
if (pHalData->rf_tx_pwr_lmt) {
memcpy(pHalData->rf_tx_pwr_lmt, pHalData->para_file_buf, rlen);
pHalData->rf_tx_pwr_lmt_len = rlen;
} else
DBG_871X("%s rf_tx_pwr_lmt alloc fail !\n", __func__);
}
}
} else {
if ((pHalData->rf_tx_pwr_lmt_len != 0) && (pHalData->rf_tx_pwr_lmt != NULL)) {
memcpy(pHalData->para_file_buf, pHalData->rf_tx_pwr_lmt, pHalData->rf_tx_pwr_lmt_len);
rtStatus = _SUCCESS;
} else
DBG_871X("%s(): Critical Error !!!\n", __func__);
}
if (rtStatus == _SUCCESS) {
/* DBG_871X("%s(): read %s ok\n", __func__, pFileName); */
rtStatus = phy_ParsePowerLimitTableFile(Adapter, pHalData->para_file_buf);
} else
DBG_871X("%s(): No File %s, Load from HWImg Array!\n", __func__, pFileName);
return rtStatus;
}
void phy_free_filebuf(struct adapter *padapter)
{
struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
if (pHalData->mac_reg)
vfree(pHalData->mac_reg);
if (pHalData->bb_phy_reg)
vfree(pHalData->bb_phy_reg);
if (pHalData->bb_agc_tab)
vfree(pHalData->bb_agc_tab);
if (pHalData->bb_phy_reg_pg)
vfree(pHalData->bb_phy_reg_pg);
if (pHalData->bb_phy_reg_mp)
vfree(pHalData->bb_phy_reg_mp);
if (pHalData->rf_radio_a)
vfree(pHalData->rf_radio_a);
if (pHalData->rf_radio_b)
vfree(pHalData->rf_radio_b);
if (pHalData->rf_tx_pwr_track)
vfree(pHalData->rf_tx_pwr_track);
if (pHalData->rf_tx_pwr_lmt)
vfree(pHalData->rf_tx_pwr_lmt);
}