|  | /* | 
|  | *  linux/arch/i386/traps.c | 
|  | * | 
|  | *  Copyright (C) 1991, 1992  Linus Torvalds | 
|  | * | 
|  | *  Pentium III FXSR, SSE support | 
|  | *	Gareth Hughes <gareth@valinux.com>, May 2000 | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * 'Traps.c' handles hardware traps and faults after we have saved some | 
|  | * state in 'asm.s'. | 
|  | */ | 
|  | #include <linux/config.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/timer.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/kallsyms.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/utsname.h> | 
|  | #include <linux/kprobes.h> | 
|  | #include <linux/kexec.h> | 
|  |  | 
|  | #ifdef CONFIG_EISA | 
|  | #include <linux/ioport.h> | 
|  | #include <linux/eisa.h> | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_MCA | 
|  | #include <linux/mca.h> | 
|  | #endif | 
|  |  | 
|  | #include <asm/processor.h> | 
|  | #include <asm/system.h> | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/io.h> | 
|  | #include <asm/atomic.h> | 
|  | #include <asm/debugreg.h> | 
|  | #include <asm/desc.h> | 
|  | #include <asm/i387.h> | 
|  | #include <asm/nmi.h> | 
|  |  | 
|  | #include <asm/smp.h> | 
|  | #include <asm/arch_hooks.h> | 
|  | #include <asm/kdebug.h> | 
|  |  | 
|  | #include <linux/module.h> | 
|  |  | 
|  | #include "mach_traps.h" | 
|  |  | 
|  | asmlinkage int system_call(void); | 
|  |  | 
|  | struct desc_struct default_ldt[] = { { 0, 0 }, { 0, 0 }, { 0, 0 }, | 
|  | { 0, 0 }, { 0, 0 } }; | 
|  |  | 
|  | /* Do we ignore FPU interrupts ? */ | 
|  | char ignore_fpu_irq = 0; | 
|  |  | 
|  | /* | 
|  | * The IDT has to be page-aligned to simplify the Pentium | 
|  | * F0 0F bug workaround.. We have a special link segment | 
|  | * for this. | 
|  | */ | 
|  | struct desc_struct idt_table[256] __attribute__((__section__(".data.idt"))) = { {0, 0}, }; | 
|  |  | 
|  | asmlinkage void divide_error(void); | 
|  | asmlinkage void debug(void); | 
|  | asmlinkage void nmi(void); | 
|  | asmlinkage void int3(void); | 
|  | asmlinkage void overflow(void); | 
|  | asmlinkage void bounds(void); | 
|  | asmlinkage void invalid_op(void); | 
|  | asmlinkage void device_not_available(void); | 
|  | asmlinkage void coprocessor_segment_overrun(void); | 
|  | asmlinkage void invalid_TSS(void); | 
|  | asmlinkage void segment_not_present(void); | 
|  | asmlinkage void stack_segment(void); | 
|  | asmlinkage void general_protection(void); | 
|  | asmlinkage void page_fault(void); | 
|  | asmlinkage void coprocessor_error(void); | 
|  | asmlinkage void simd_coprocessor_error(void); | 
|  | asmlinkage void alignment_check(void); | 
|  | asmlinkage void spurious_interrupt_bug(void); | 
|  | asmlinkage void machine_check(void); | 
|  |  | 
|  | static int kstack_depth_to_print = 24; | 
|  | struct notifier_block *i386die_chain; | 
|  | static DEFINE_SPINLOCK(die_notifier_lock); | 
|  |  | 
|  | int register_die_notifier(struct notifier_block *nb) | 
|  | { | 
|  | int err = 0; | 
|  | unsigned long flags; | 
|  | spin_lock_irqsave(&die_notifier_lock, flags); | 
|  | err = notifier_chain_register(&i386die_chain, nb); | 
|  | spin_unlock_irqrestore(&die_notifier_lock, flags); | 
|  | return err; | 
|  | } | 
|  | EXPORT_SYMBOL(register_die_notifier); | 
|  |  | 
|  | static inline int valid_stack_ptr(struct thread_info *tinfo, void *p) | 
|  | { | 
|  | return	p > (void *)tinfo && | 
|  | p < (void *)tinfo + THREAD_SIZE - 3; | 
|  | } | 
|  |  | 
|  | static inline unsigned long print_context_stack(struct thread_info *tinfo, | 
|  | unsigned long *stack, unsigned long ebp) | 
|  | { | 
|  | unsigned long addr; | 
|  |  | 
|  | #ifdef	CONFIG_FRAME_POINTER | 
|  | while (valid_stack_ptr(tinfo, (void *)ebp)) { | 
|  | addr = *(unsigned long *)(ebp + 4); | 
|  | printk(" [<%08lx>] ", addr); | 
|  | print_symbol("%s", addr); | 
|  | printk("\n"); | 
|  | ebp = *(unsigned long *)ebp; | 
|  | } | 
|  | #else | 
|  | while (valid_stack_ptr(tinfo, stack)) { | 
|  | addr = *stack++; | 
|  | if (__kernel_text_address(addr)) { | 
|  | printk(" [<%08lx>]", addr); | 
|  | print_symbol(" %s", addr); | 
|  | printk("\n"); | 
|  | } | 
|  | } | 
|  | #endif | 
|  | return ebp; | 
|  | } | 
|  |  | 
|  | void show_trace(struct task_struct *task, unsigned long * stack) | 
|  | { | 
|  | unsigned long ebp; | 
|  |  | 
|  | if (!task) | 
|  | task = current; | 
|  |  | 
|  | if (task == current) { | 
|  | /* Grab ebp right from our regs */ | 
|  | asm ("movl %%ebp, %0" : "=r" (ebp) : ); | 
|  | } else { | 
|  | /* ebp is the last reg pushed by switch_to */ | 
|  | ebp = *(unsigned long *) task->thread.esp; | 
|  | } | 
|  |  | 
|  | while (1) { | 
|  | struct thread_info *context; | 
|  | context = (struct thread_info *) | 
|  | ((unsigned long)stack & (~(THREAD_SIZE - 1))); | 
|  | ebp = print_context_stack(context, stack, ebp); | 
|  | stack = (unsigned long*)context->previous_esp; | 
|  | if (!stack) | 
|  | break; | 
|  | printk(" =======================\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | void show_stack(struct task_struct *task, unsigned long *esp) | 
|  | { | 
|  | unsigned long *stack; | 
|  | int i; | 
|  |  | 
|  | if (esp == NULL) { | 
|  | if (task) | 
|  | esp = (unsigned long*)task->thread.esp; | 
|  | else | 
|  | esp = (unsigned long *)&esp; | 
|  | } | 
|  |  | 
|  | stack = esp; | 
|  | for(i = 0; i < kstack_depth_to_print; i++) { | 
|  | if (kstack_end(stack)) | 
|  | break; | 
|  | if (i && ((i % 8) == 0)) | 
|  | printk("\n       "); | 
|  | printk("%08lx ", *stack++); | 
|  | } | 
|  | printk("\nCall Trace:\n"); | 
|  | show_trace(task, esp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The architecture-independent dump_stack generator | 
|  | */ | 
|  | void dump_stack(void) | 
|  | { | 
|  | unsigned long stack; | 
|  |  | 
|  | show_trace(current, &stack); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(dump_stack); | 
|  |  | 
|  | void show_registers(struct pt_regs *regs) | 
|  | { | 
|  | int i; | 
|  | int in_kernel = 1; | 
|  | unsigned long esp; | 
|  | unsigned short ss; | 
|  |  | 
|  | esp = (unsigned long) (®s->esp); | 
|  | savesegment(ss, ss); | 
|  | if (user_mode(regs)) { | 
|  | in_kernel = 0; | 
|  | esp = regs->esp; | 
|  | ss = regs->xss & 0xffff; | 
|  | } | 
|  | print_modules(); | 
|  | printk("CPU:    %d\nEIP:    %04x:[<%08lx>]    %s VLI\nEFLAGS: %08lx" | 
|  | "   (%s) \n", | 
|  | smp_processor_id(), 0xffff & regs->xcs, regs->eip, | 
|  | print_tainted(), regs->eflags, system_utsname.release); | 
|  | print_symbol("EIP is at %s\n", regs->eip); | 
|  | printk("eax: %08lx   ebx: %08lx   ecx: %08lx   edx: %08lx\n", | 
|  | regs->eax, regs->ebx, regs->ecx, regs->edx); | 
|  | printk("esi: %08lx   edi: %08lx   ebp: %08lx   esp: %08lx\n", | 
|  | regs->esi, regs->edi, regs->ebp, esp); | 
|  | printk("ds: %04x   es: %04x   ss: %04x\n", | 
|  | regs->xds & 0xffff, regs->xes & 0xffff, ss); | 
|  | printk("Process %s (pid: %d, threadinfo=%p task=%p)", | 
|  | current->comm, current->pid, current_thread_info(), current); | 
|  | /* | 
|  | * When in-kernel, we also print out the stack and code at the | 
|  | * time of the fault.. | 
|  | */ | 
|  | if (in_kernel) { | 
|  | u8 __user *eip; | 
|  |  | 
|  | printk("\nStack: "); | 
|  | show_stack(NULL, (unsigned long*)esp); | 
|  |  | 
|  | printk("Code: "); | 
|  |  | 
|  | eip = (u8 __user *)regs->eip - 43; | 
|  | for (i = 0; i < 64; i++, eip++) { | 
|  | unsigned char c; | 
|  |  | 
|  | if (eip < (u8 __user *)PAGE_OFFSET || __get_user(c, eip)) { | 
|  | printk(" Bad EIP value."); | 
|  | break; | 
|  | } | 
|  | if (eip == (u8 __user *)regs->eip) | 
|  | printk("<%02x> ", c); | 
|  | else | 
|  | printk("%02x ", c); | 
|  | } | 
|  | } | 
|  | printk("\n"); | 
|  | } | 
|  |  | 
|  | static void handle_BUG(struct pt_regs *regs) | 
|  | { | 
|  | unsigned short ud2; | 
|  | unsigned short line; | 
|  | char *file; | 
|  | char c; | 
|  | unsigned long eip; | 
|  |  | 
|  | eip = regs->eip; | 
|  |  | 
|  | if (eip < PAGE_OFFSET) | 
|  | goto no_bug; | 
|  | if (__get_user(ud2, (unsigned short __user *)eip)) | 
|  | goto no_bug; | 
|  | if (ud2 != 0x0b0f) | 
|  | goto no_bug; | 
|  | if (__get_user(line, (unsigned short __user *)(eip + 2))) | 
|  | goto bug; | 
|  | if (__get_user(file, (char * __user *)(eip + 4)) || | 
|  | (unsigned long)file < PAGE_OFFSET || __get_user(c, file)) | 
|  | file = "<bad filename>"; | 
|  |  | 
|  | printk("------------[ cut here ]------------\n"); | 
|  | printk(KERN_ALERT "kernel BUG at %s:%d!\n", file, line); | 
|  |  | 
|  | no_bug: | 
|  | return; | 
|  |  | 
|  | /* Here we know it was a BUG but file-n-line is unavailable */ | 
|  | bug: | 
|  | printk("Kernel BUG\n"); | 
|  | } | 
|  |  | 
|  | /* This is gone through when something in the kernel | 
|  | * has done something bad and is about to be terminated. | 
|  | */ | 
|  | void die(const char * str, struct pt_regs * regs, long err) | 
|  | { | 
|  | static struct { | 
|  | spinlock_t lock; | 
|  | u32 lock_owner; | 
|  | int lock_owner_depth; | 
|  | } die = { | 
|  | .lock =			SPIN_LOCK_UNLOCKED, | 
|  | .lock_owner =		-1, | 
|  | .lock_owner_depth =	0 | 
|  | }; | 
|  | static int die_counter; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (die.lock_owner != raw_smp_processor_id()) { | 
|  | console_verbose(); | 
|  | spin_lock_irqsave(&die.lock, flags); | 
|  | die.lock_owner = smp_processor_id(); | 
|  | die.lock_owner_depth = 0; | 
|  | bust_spinlocks(1); | 
|  | } | 
|  | else | 
|  | local_save_flags(flags); | 
|  |  | 
|  | if (++die.lock_owner_depth < 3) { | 
|  | int nl = 0; | 
|  | handle_BUG(regs); | 
|  | printk(KERN_ALERT "%s: %04lx [#%d]\n", str, err & 0xffff, ++die_counter); | 
|  | #ifdef CONFIG_PREEMPT | 
|  | printk("PREEMPT "); | 
|  | nl = 1; | 
|  | #endif | 
|  | #ifdef CONFIG_SMP | 
|  | printk("SMP "); | 
|  | nl = 1; | 
|  | #endif | 
|  | #ifdef CONFIG_DEBUG_PAGEALLOC | 
|  | printk("DEBUG_PAGEALLOC"); | 
|  | nl = 1; | 
|  | #endif | 
|  | if (nl) | 
|  | printk("\n"); | 
|  | notify_die(DIE_OOPS, (char *)str, regs, err, 255, SIGSEGV); | 
|  | show_registers(regs); | 
|  | } else | 
|  | printk(KERN_ERR "Recursive die() failure, output suppressed\n"); | 
|  |  | 
|  | bust_spinlocks(0); | 
|  | die.lock_owner = -1; | 
|  | spin_unlock_irqrestore(&die.lock, flags); | 
|  |  | 
|  | if (kexec_should_crash(current)) | 
|  | crash_kexec(regs); | 
|  |  | 
|  | if (in_interrupt()) | 
|  | panic("Fatal exception in interrupt"); | 
|  |  | 
|  | if (panic_on_oops) { | 
|  | printk(KERN_EMERG "Fatal exception: panic in 5 seconds\n"); | 
|  | ssleep(5); | 
|  | panic("Fatal exception"); | 
|  | } | 
|  | do_exit(SIGSEGV); | 
|  | } | 
|  |  | 
|  | static inline void die_if_kernel(const char * str, struct pt_regs * regs, long err) | 
|  | { | 
|  | if (!user_mode_vm(regs)) | 
|  | die(str, regs, err); | 
|  | } | 
|  |  | 
|  | static void __kprobes do_trap(int trapnr, int signr, char *str, int vm86, | 
|  | struct pt_regs * regs, long error_code, | 
|  | siginfo_t *info) | 
|  | { | 
|  | struct task_struct *tsk = current; | 
|  | tsk->thread.error_code = error_code; | 
|  | tsk->thread.trap_no = trapnr; | 
|  |  | 
|  | if (regs->eflags & VM_MASK) { | 
|  | if (vm86) | 
|  | goto vm86_trap; | 
|  | goto trap_signal; | 
|  | } | 
|  |  | 
|  | if (!user_mode(regs)) | 
|  | goto kernel_trap; | 
|  |  | 
|  | trap_signal: { | 
|  | if (info) | 
|  | force_sig_info(signr, info, tsk); | 
|  | else | 
|  | force_sig(signr, tsk); | 
|  | return; | 
|  | } | 
|  |  | 
|  | kernel_trap: { | 
|  | if (!fixup_exception(regs)) | 
|  | die(str, regs, error_code); | 
|  | return; | 
|  | } | 
|  |  | 
|  | vm86_trap: { | 
|  | int ret = handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, trapnr); | 
|  | if (ret) goto trap_signal; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | #define DO_ERROR(trapnr, signr, str, name) \ | 
|  | fastcall void do_##name(struct pt_regs * regs, long error_code) \ | 
|  | { \ | 
|  | if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \ | 
|  | == NOTIFY_STOP) \ | 
|  | return; \ | 
|  | do_trap(trapnr, signr, str, 0, regs, error_code, NULL); \ | 
|  | } | 
|  |  | 
|  | #define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \ | 
|  | fastcall void do_##name(struct pt_regs * regs, long error_code) \ | 
|  | { \ | 
|  | siginfo_t info; \ | 
|  | info.si_signo = signr; \ | 
|  | info.si_errno = 0; \ | 
|  | info.si_code = sicode; \ | 
|  | info.si_addr = (void __user *)siaddr; \ | 
|  | if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \ | 
|  | == NOTIFY_STOP) \ | 
|  | return; \ | 
|  | do_trap(trapnr, signr, str, 0, regs, error_code, &info); \ | 
|  | } | 
|  |  | 
|  | #define DO_VM86_ERROR(trapnr, signr, str, name) \ | 
|  | fastcall void do_##name(struct pt_regs * regs, long error_code) \ | 
|  | { \ | 
|  | if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \ | 
|  | == NOTIFY_STOP) \ | 
|  | return; \ | 
|  | do_trap(trapnr, signr, str, 1, regs, error_code, NULL); \ | 
|  | } | 
|  |  | 
|  | #define DO_VM86_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \ | 
|  | fastcall void do_##name(struct pt_regs * regs, long error_code) \ | 
|  | { \ | 
|  | siginfo_t info; \ | 
|  | info.si_signo = signr; \ | 
|  | info.si_errno = 0; \ | 
|  | info.si_code = sicode; \ | 
|  | info.si_addr = (void __user *)siaddr; \ | 
|  | if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \ | 
|  | == NOTIFY_STOP) \ | 
|  | return; \ | 
|  | do_trap(trapnr, signr, str, 1, regs, error_code, &info); \ | 
|  | } | 
|  |  | 
|  | DO_VM86_ERROR_INFO( 0, SIGFPE,  "divide error", divide_error, FPE_INTDIV, regs->eip) | 
|  | #ifndef CONFIG_KPROBES | 
|  | DO_VM86_ERROR( 3, SIGTRAP, "int3", int3) | 
|  | #endif | 
|  | DO_VM86_ERROR( 4, SIGSEGV, "overflow", overflow) | 
|  | DO_VM86_ERROR( 5, SIGSEGV, "bounds", bounds) | 
|  | DO_ERROR_INFO( 6, SIGILL,  "invalid opcode", invalid_op, ILL_ILLOPN, regs->eip) | 
|  | DO_ERROR( 9, SIGFPE,  "coprocessor segment overrun", coprocessor_segment_overrun) | 
|  | DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS) | 
|  | DO_ERROR(11, SIGBUS,  "segment not present", segment_not_present) | 
|  | DO_ERROR(12, SIGBUS,  "stack segment", stack_segment) | 
|  | DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0) | 
|  | DO_ERROR_INFO(32, SIGSEGV, "iret exception", iret_error, ILL_BADSTK, 0) | 
|  |  | 
|  | fastcall void __kprobes do_general_protection(struct pt_regs * regs, | 
|  | long error_code) | 
|  | { | 
|  | int cpu = get_cpu(); | 
|  | struct tss_struct *tss = &per_cpu(init_tss, cpu); | 
|  | struct thread_struct *thread = ¤t->thread; | 
|  |  | 
|  | /* | 
|  | * Perform the lazy TSS's I/O bitmap copy. If the TSS has an | 
|  | * invalid offset set (the LAZY one) and the faulting thread has | 
|  | * a valid I/O bitmap pointer, we copy the I/O bitmap in the TSS | 
|  | * and we set the offset field correctly. Then we let the CPU to | 
|  | * restart the faulting instruction. | 
|  | */ | 
|  | if (tss->io_bitmap_base == INVALID_IO_BITMAP_OFFSET_LAZY && | 
|  | thread->io_bitmap_ptr) { | 
|  | memcpy(tss->io_bitmap, thread->io_bitmap_ptr, | 
|  | thread->io_bitmap_max); | 
|  | /* | 
|  | * If the previously set map was extending to higher ports | 
|  | * than the current one, pad extra space with 0xff (no access). | 
|  | */ | 
|  | if (thread->io_bitmap_max < tss->io_bitmap_max) | 
|  | memset((char *) tss->io_bitmap + | 
|  | thread->io_bitmap_max, 0xff, | 
|  | tss->io_bitmap_max - thread->io_bitmap_max); | 
|  | tss->io_bitmap_max = thread->io_bitmap_max; | 
|  | tss->io_bitmap_base = IO_BITMAP_OFFSET; | 
|  | tss->io_bitmap_owner = thread; | 
|  | put_cpu(); | 
|  | return; | 
|  | } | 
|  | put_cpu(); | 
|  |  | 
|  | current->thread.error_code = error_code; | 
|  | current->thread.trap_no = 13; | 
|  |  | 
|  | if (regs->eflags & VM_MASK) | 
|  | goto gp_in_vm86; | 
|  |  | 
|  | if (!user_mode(regs)) | 
|  | goto gp_in_kernel; | 
|  |  | 
|  | current->thread.error_code = error_code; | 
|  | current->thread.trap_no = 13; | 
|  | force_sig(SIGSEGV, current); | 
|  | return; | 
|  |  | 
|  | gp_in_vm86: | 
|  | local_irq_enable(); | 
|  | handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code); | 
|  | return; | 
|  |  | 
|  | gp_in_kernel: | 
|  | if (!fixup_exception(regs)) { | 
|  | if (notify_die(DIE_GPF, "general protection fault", regs, | 
|  | error_code, 13, SIGSEGV) == NOTIFY_STOP) | 
|  | return; | 
|  | die("general protection fault", regs, error_code); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void mem_parity_error(unsigned char reason, struct pt_regs * regs) | 
|  | { | 
|  | printk("Uhhuh. NMI received. Dazed and confused, but trying to continue\n"); | 
|  | printk("You probably have a hardware problem with your RAM chips\n"); | 
|  |  | 
|  | /* Clear and disable the memory parity error line. */ | 
|  | clear_mem_error(reason); | 
|  | } | 
|  |  | 
|  | static void io_check_error(unsigned char reason, struct pt_regs * regs) | 
|  | { | 
|  | unsigned long i; | 
|  |  | 
|  | printk("NMI: IOCK error (debug interrupt?)\n"); | 
|  | show_registers(regs); | 
|  |  | 
|  | /* Re-enable the IOCK line, wait for a few seconds */ | 
|  | reason = (reason & 0xf) | 8; | 
|  | outb(reason, 0x61); | 
|  | i = 2000; | 
|  | while (--i) udelay(1000); | 
|  | reason &= ~8; | 
|  | outb(reason, 0x61); | 
|  | } | 
|  |  | 
|  | static void unknown_nmi_error(unsigned char reason, struct pt_regs * regs) | 
|  | { | 
|  | #ifdef CONFIG_MCA | 
|  | /* Might actually be able to figure out what the guilty party | 
|  | * is. */ | 
|  | if( MCA_bus ) { | 
|  | mca_handle_nmi(); | 
|  | return; | 
|  | } | 
|  | #endif | 
|  | printk("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n", | 
|  | reason, smp_processor_id()); | 
|  | printk("Dazed and confused, but trying to continue\n"); | 
|  | printk("Do you have a strange power saving mode enabled?\n"); | 
|  | } | 
|  |  | 
|  | static DEFINE_SPINLOCK(nmi_print_lock); | 
|  |  | 
|  | void die_nmi (struct pt_regs *regs, const char *msg) | 
|  | { | 
|  | if (notify_die(DIE_NMIWATCHDOG, msg, regs, 0, 0, SIGINT) == | 
|  | NOTIFY_STOP) | 
|  | return; | 
|  |  | 
|  | spin_lock(&nmi_print_lock); | 
|  | /* | 
|  | * We are in trouble anyway, lets at least try | 
|  | * to get a message out. | 
|  | */ | 
|  | bust_spinlocks(1); | 
|  | printk(msg); | 
|  | printk(" on CPU%d, eip %08lx, registers:\n", | 
|  | smp_processor_id(), regs->eip); | 
|  | show_registers(regs); | 
|  | printk("console shuts up ...\n"); | 
|  | console_silent(); | 
|  | spin_unlock(&nmi_print_lock); | 
|  | bust_spinlocks(0); | 
|  |  | 
|  | /* If we are in kernel we are probably nested up pretty bad | 
|  | * and might aswell get out now while we still can. | 
|  | */ | 
|  | if (!user_mode(regs)) { | 
|  | current->thread.trap_no = 2; | 
|  | crash_kexec(regs); | 
|  | } | 
|  |  | 
|  | do_exit(SIGSEGV); | 
|  | } | 
|  |  | 
|  | static void default_do_nmi(struct pt_regs * regs) | 
|  | { | 
|  | unsigned char reason = 0; | 
|  |  | 
|  | /* Only the BSP gets external NMIs from the system.  */ | 
|  | if (!smp_processor_id()) | 
|  | reason = get_nmi_reason(); | 
|  |  | 
|  | if (!(reason & 0xc0)) { | 
|  | if (notify_die(DIE_NMI_IPI, "nmi_ipi", regs, reason, 0, SIGINT) | 
|  | == NOTIFY_STOP) | 
|  | return; | 
|  | #ifdef CONFIG_X86_LOCAL_APIC | 
|  | /* | 
|  | * Ok, so this is none of the documented NMI sources, | 
|  | * so it must be the NMI watchdog. | 
|  | */ | 
|  | if (nmi_watchdog) { | 
|  | nmi_watchdog_tick(regs); | 
|  | return; | 
|  | } | 
|  | #endif | 
|  | unknown_nmi_error(reason, regs); | 
|  | return; | 
|  | } | 
|  | if (notify_die(DIE_NMI, "nmi", regs, reason, 0, SIGINT) == NOTIFY_STOP) | 
|  | return; | 
|  | if (reason & 0x80) | 
|  | mem_parity_error(reason, regs); | 
|  | if (reason & 0x40) | 
|  | io_check_error(reason, regs); | 
|  | /* | 
|  | * Reassert NMI in case it became active meanwhile | 
|  | * as it's edge-triggered. | 
|  | */ | 
|  | reassert_nmi(); | 
|  | } | 
|  |  | 
|  | static int dummy_nmi_callback(struct pt_regs * regs, int cpu) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static nmi_callback_t nmi_callback = dummy_nmi_callback; | 
|  |  | 
|  | fastcall void do_nmi(struct pt_regs * regs, long error_code) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | nmi_enter(); | 
|  |  | 
|  | cpu = smp_processor_id(); | 
|  |  | 
|  | ++nmi_count(cpu); | 
|  |  | 
|  | if (!rcu_dereference(nmi_callback)(regs, cpu)) | 
|  | default_do_nmi(regs); | 
|  |  | 
|  | nmi_exit(); | 
|  | } | 
|  |  | 
|  | void set_nmi_callback(nmi_callback_t callback) | 
|  | { | 
|  | rcu_assign_pointer(nmi_callback, callback); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(set_nmi_callback); | 
|  |  | 
|  | void unset_nmi_callback(void) | 
|  | { | 
|  | nmi_callback = dummy_nmi_callback; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(unset_nmi_callback); | 
|  |  | 
|  | #ifdef CONFIG_KPROBES | 
|  | fastcall void __kprobes do_int3(struct pt_regs *regs, long error_code) | 
|  | { | 
|  | if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP) | 
|  | == NOTIFY_STOP) | 
|  | return; | 
|  | /* This is an interrupt gate, because kprobes wants interrupts | 
|  | disabled.  Normal trap handlers don't. */ | 
|  | restore_interrupts(regs); | 
|  | do_trap(3, SIGTRAP, "int3", 1, regs, error_code, NULL); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Our handling of the processor debug registers is non-trivial. | 
|  | * We do not clear them on entry and exit from the kernel. Therefore | 
|  | * it is possible to get a watchpoint trap here from inside the kernel. | 
|  | * However, the code in ./ptrace.c has ensured that the user can | 
|  | * only set watchpoints on userspace addresses. Therefore the in-kernel | 
|  | * watchpoint trap can only occur in code which is reading/writing | 
|  | * from user space. Such code must not hold kernel locks (since it | 
|  | * can equally take a page fault), therefore it is safe to call | 
|  | * force_sig_info even though that claims and releases locks. | 
|  | * | 
|  | * Code in ./signal.c ensures that the debug control register | 
|  | * is restored before we deliver any signal, and therefore that | 
|  | * user code runs with the correct debug control register even though | 
|  | * we clear it here. | 
|  | * | 
|  | * Being careful here means that we don't have to be as careful in a | 
|  | * lot of more complicated places (task switching can be a bit lazy | 
|  | * about restoring all the debug state, and ptrace doesn't have to | 
|  | * find every occurrence of the TF bit that could be saved away even | 
|  | * by user code) | 
|  | */ | 
|  | fastcall void __kprobes do_debug(struct pt_regs * regs, long error_code) | 
|  | { | 
|  | unsigned int condition; | 
|  | struct task_struct *tsk = current; | 
|  |  | 
|  | get_debugreg(condition, 6); | 
|  |  | 
|  | if (notify_die(DIE_DEBUG, "debug", regs, condition, error_code, | 
|  | SIGTRAP) == NOTIFY_STOP) | 
|  | return; | 
|  | /* It's safe to allow irq's after DR6 has been saved */ | 
|  | if (regs->eflags & X86_EFLAGS_IF) | 
|  | local_irq_enable(); | 
|  |  | 
|  | /* Mask out spurious debug traps due to lazy DR7 setting */ | 
|  | if (condition & (DR_TRAP0|DR_TRAP1|DR_TRAP2|DR_TRAP3)) { | 
|  | if (!tsk->thread.debugreg[7]) | 
|  | goto clear_dr7; | 
|  | } | 
|  |  | 
|  | if (regs->eflags & VM_MASK) | 
|  | goto debug_vm86; | 
|  |  | 
|  | /* Save debug status register where ptrace can see it */ | 
|  | tsk->thread.debugreg[6] = condition; | 
|  |  | 
|  | /* | 
|  | * Single-stepping through TF: make sure we ignore any events in | 
|  | * kernel space (but re-enable TF when returning to user mode). | 
|  | */ | 
|  | if (condition & DR_STEP) { | 
|  | /* | 
|  | * We already checked v86 mode above, so we can | 
|  | * check for kernel mode by just checking the CPL | 
|  | * of CS. | 
|  | */ | 
|  | if (!user_mode(regs)) | 
|  | goto clear_TF_reenable; | 
|  | } | 
|  |  | 
|  | /* Ok, finally something we can handle */ | 
|  | send_sigtrap(tsk, regs, error_code); | 
|  |  | 
|  | /* Disable additional traps. They'll be re-enabled when | 
|  | * the signal is delivered. | 
|  | */ | 
|  | clear_dr7: | 
|  | set_debugreg(0, 7); | 
|  | return; | 
|  |  | 
|  | debug_vm86: | 
|  | handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, 1); | 
|  | return; | 
|  |  | 
|  | clear_TF_reenable: | 
|  | set_tsk_thread_flag(tsk, TIF_SINGLESTEP); | 
|  | regs->eflags &= ~TF_MASK; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Note that we play around with the 'TS' bit in an attempt to get | 
|  | * the correct behaviour even in the presence of the asynchronous | 
|  | * IRQ13 behaviour | 
|  | */ | 
|  | void math_error(void __user *eip) | 
|  | { | 
|  | struct task_struct * task; | 
|  | siginfo_t info; | 
|  | unsigned short cwd, swd; | 
|  |  | 
|  | /* | 
|  | * Save the info for the exception handler and clear the error. | 
|  | */ | 
|  | task = current; | 
|  | save_init_fpu(task); | 
|  | task->thread.trap_no = 16; | 
|  | task->thread.error_code = 0; | 
|  | info.si_signo = SIGFPE; | 
|  | info.si_errno = 0; | 
|  | info.si_code = __SI_FAULT; | 
|  | info.si_addr = eip; | 
|  | /* | 
|  | * (~cwd & swd) will mask out exceptions that are not set to unmasked | 
|  | * status.  0x3f is the exception bits in these regs, 0x200 is the | 
|  | * C1 reg you need in case of a stack fault, 0x040 is the stack | 
|  | * fault bit.  We should only be taking one exception at a time, | 
|  | * so if this combination doesn't produce any single exception, | 
|  | * then we have a bad program that isn't syncronizing its FPU usage | 
|  | * and it will suffer the consequences since we won't be able to | 
|  | * fully reproduce the context of the exception | 
|  | */ | 
|  | cwd = get_fpu_cwd(task); | 
|  | swd = get_fpu_swd(task); | 
|  | switch (swd & ~cwd & 0x3f) { | 
|  | case 0x000: /* No unmasked exception */ | 
|  | return; | 
|  | default:    /* Multiple exceptions */ | 
|  | break; | 
|  | case 0x001: /* Invalid Op */ | 
|  | /* | 
|  | * swd & 0x240 == 0x040: Stack Underflow | 
|  | * swd & 0x240 == 0x240: Stack Overflow | 
|  | * User must clear the SF bit (0x40) if set | 
|  | */ | 
|  | info.si_code = FPE_FLTINV; | 
|  | break; | 
|  | case 0x002: /* Denormalize */ | 
|  | case 0x010: /* Underflow */ | 
|  | info.si_code = FPE_FLTUND; | 
|  | break; | 
|  | case 0x004: /* Zero Divide */ | 
|  | info.si_code = FPE_FLTDIV; | 
|  | break; | 
|  | case 0x008: /* Overflow */ | 
|  | info.si_code = FPE_FLTOVF; | 
|  | break; | 
|  | case 0x020: /* Precision */ | 
|  | info.si_code = FPE_FLTRES; | 
|  | break; | 
|  | } | 
|  | force_sig_info(SIGFPE, &info, task); | 
|  | } | 
|  |  | 
|  | fastcall void do_coprocessor_error(struct pt_regs * regs, long error_code) | 
|  | { | 
|  | ignore_fpu_irq = 1; | 
|  | math_error((void __user *)regs->eip); | 
|  | } | 
|  |  | 
|  | static void simd_math_error(void __user *eip) | 
|  | { | 
|  | struct task_struct * task; | 
|  | siginfo_t info; | 
|  | unsigned short mxcsr; | 
|  |  | 
|  | /* | 
|  | * Save the info for the exception handler and clear the error. | 
|  | */ | 
|  | task = current; | 
|  | save_init_fpu(task); | 
|  | task->thread.trap_no = 19; | 
|  | task->thread.error_code = 0; | 
|  | info.si_signo = SIGFPE; | 
|  | info.si_errno = 0; | 
|  | info.si_code = __SI_FAULT; | 
|  | info.si_addr = eip; | 
|  | /* | 
|  | * The SIMD FPU exceptions are handled a little differently, as there | 
|  | * is only a single status/control register.  Thus, to determine which | 
|  | * unmasked exception was caught we must mask the exception mask bits | 
|  | * at 0x1f80, and then use these to mask the exception bits at 0x3f. | 
|  | */ | 
|  | mxcsr = get_fpu_mxcsr(task); | 
|  | switch (~((mxcsr & 0x1f80) >> 7) & (mxcsr & 0x3f)) { | 
|  | case 0x000: | 
|  | default: | 
|  | break; | 
|  | case 0x001: /* Invalid Op */ | 
|  | info.si_code = FPE_FLTINV; | 
|  | break; | 
|  | case 0x002: /* Denormalize */ | 
|  | case 0x010: /* Underflow */ | 
|  | info.si_code = FPE_FLTUND; | 
|  | break; | 
|  | case 0x004: /* Zero Divide */ | 
|  | info.si_code = FPE_FLTDIV; | 
|  | break; | 
|  | case 0x008: /* Overflow */ | 
|  | info.si_code = FPE_FLTOVF; | 
|  | break; | 
|  | case 0x020: /* Precision */ | 
|  | info.si_code = FPE_FLTRES; | 
|  | break; | 
|  | } | 
|  | force_sig_info(SIGFPE, &info, task); | 
|  | } | 
|  |  | 
|  | fastcall void do_simd_coprocessor_error(struct pt_regs * regs, | 
|  | long error_code) | 
|  | { | 
|  | if (cpu_has_xmm) { | 
|  | /* Handle SIMD FPU exceptions on PIII+ processors. */ | 
|  | ignore_fpu_irq = 1; | 
|  | simd_math_error((void __user *)regs->eip); | 
|  | } else { | 
|  | /* | 
|  | * Handle strange cache flush from user space exception | 
|  | * in all other cases.  This is undocumented behaviour. | 
|  | */ | 
|  | if (regs->eflags & VM_MASK) { | 
|  | handle_vm86_fault((struct kernel_vm86_regs *)regs, | 
|  | error_code); | 
|  | return; | 
|  | } | 
|  | current->thread.trap_no = 19; | 
|  | current->thread.error_code = error_code; | 
|  | die_if_kernel("cache flush denied", regs, error_code); | 
|  | force_sig(SIGSEGV, current); | 
|  | } | 
|  | } | 
|  |  | 
|  | fastcall void do_spurious_interrupt_bug(struct pt_regs * regs, | 
|  | long error_code) | 
|  | { | 
|  | #if 0 | 
|  | /* No need to warn about this any longer. */ | 
|  | printk("Ignoring P6 Local APIC Spurious Interrupt Bug...\n"); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | fastcall void setup_x86_bogus_stack(unsigned char * stk) | 
|  | { | 
|  | unsigned long *switch16_ptr, *switch32_ptr; | 
|  | struct pt_regs *regs; | 
|  | unsigned long stack_top, stack_bot; | 
|  | unsigned short iret_frame16_off; | 
|  | int cpu = smp_processor_id(); | 
|  | /* reserve the space on 32bit stack for the magic switch16 pointer */ | 
|  | memmove(stk, stk + 8, sizeof(struct pt_regs)); | 
|  | switch16_ptr = (unsigned long *)(stk + sizeof(struct pt_regs)); | 
|  | regs = (struct pt_regs *)stk; | 
|  | /* now the switch32 on 16bit stack */ | 
|  | stack_bot = (unsigned long)&per_cpu(cpu_16bit_stack, cpu); | 
|  | stack_top = stack_bot +	CPU_16BIT_STACK_SIZE; | 
|  | switch32_ptr = (unsigned long *)(stack_top - 8); | 
|  | iret_frame16_off = CPU_16BIT_STACK_SIZE - 8 - 20; | 
|  | /* copy iret frame on 16bit stack */ | 
|  | memcpy((void *)(stack_bot + iret_frame16_off), ®s->eip, 20); | 
|  | /* fill in the switch pointers */ | 
|  | switch16_ptr[0] = (regs->esp & 0xffff0000) | iret_frame16_off; | 
|  | switch16_ptr[1] = __ESPFIX_SS; | 
|  | switch32_ptr[0] = (unsigned long)stk + sizeof(struct pt_regs) + | 
|  | 8 - CPU_16BIT_STACK_SIZE; | 
|  | switch32_ptr[1] = __KERNEL_DS; | 
|  | } | 
|  |  | 
|  | fastcall unsigned char * fixup_x86_bogus_stack(unsigned short sp) | 
|  | { | 
|  | unsigned long *switch32_ptr; | 
|  | unsigned char *stack16, *stack32; | 
|  | unsigned long stack_top, stack_bot; | 
|  | int len; | 
|  | int cpu = smp_processor_id(); | 
|  | stack_bot = (unsigned long)&per_cpu(cpu_16bit_stack, cpu); | 
|  | stack_top = stack_bot +	CPU_16BIT_STACK_SIZE; | 
|  | switch32_ptr = (unsigned long *)(stack_top - 8); | 
|  | /* copy the data from 16bit stack to 32bit stack */ | 
|  | len = CPU_16BIT_STACK_SIZE - 8 - sp; | 
|  | stack16 = (unsigned char *)(stack_bot + sp); | 
|  | stack32 = (unsigned char *) | 
|  | (switch32_ptr[0] + CPU_16BIT_STACK_SIZE - 8 - len); | 
|  | memcpy(stack32, stack16, len); | 
|  | return stack32; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *  'math_state_restore()' saves the current math information in the | 
|  | * old math state array, and gets the new ones from the current task | 
|  | * | 
|  | * Careful.. There are problems with IBM-designed IRQ13 behaviour. | 
|  | * Don't touch unless you *really* know how it works. | 
|  | * | 
|  | * Must be called with kernel preemption disabled (in this case, | 
|  | * local interrupts are disabled at the call-site in entry.S). | 
|  | */ | 
|  | asmlinkage void math_state_restore(struct pt_regs regs) | 
|  | { | 
|  | struct thread_info *thread = current_thread_info(); | 
|  | struct task_struct *tsk = thread->task; | 
|  |  | 
|  | clts();		/* Allow maths ops (or we recurse) */ | 
|  | if (!tsk_used_math(tsk)) | 
|  | init_fpu(tsk); | 
|  | restore_fpu(tsk); | 
|  | thread->status |= TS_USEDFPU;	/* So we fnsave on switch_to() */ | 
|  | } | 
|  |  | 
|  | #ifndef CONFIG_MATH_EMULATION | 
|  |  | 
|  | asmlinkage void math_emulate(long arg) | 
|  | { | 
|  | printk("math-emulation not enabled and no coprocessor found.\n"); | 
|  | printk("killing %s.\n",current->comm); | 
|  | force_sig(SIGFPE,current); | 
|  | schedule(); | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_MATH_EMULATION */ | 
|  |  | 
|  | #ifdef CONFIG_X86_F00F_BUG | 
|  | void __init trap_init_f00f_bug(void) | 
|  | { | 
|  | __set_fixmap(FIX_F00F_IDT, __pa(&idt_table), PAGE_KERNEL_RO); | 
|  |  | 
|  | /* | 
|  | * Update the IDT descriptor and reload the IDT so that | 
|  | * it uses the read-only mapped virtual address. | 
|  | */ | 
|  | idt_descr.address = fix_to_virt(FIX_F00F_IDT); | 
|  | load_idt(&idt_descr); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #define _set_gate(gate_addr,type,dpl,addr,seg) \ | 
|  | do { \ | 
|  | int __d0, __d1; \ | 
|  | __asm__ __volatile__ ("movw %%dx,%%ax\n\t" \ | 
|  | "movw %4,%%dx\n\t" \ | 
|  | "movl %%eax,%0\n\t" \ | 
|  | "movl %%edx,%1" \ | 
|  | :"=m" (*((long *) (gate_addr))), \ | 
|  | "=m" (*(1+(long *) (gate_addr))), "=&a" (__d0), "=&d" (__d1) \ | 
|  | :"i" ((short) (0x8000+(dpl<<13)+(type<<8))), \ | 
|  | "3" ((char *) (addr)),"2" ((seg) << 16)); \ | 
|  | } while (0) | 
|  |  | 
|  |  | 
|  | /* | 
|  | * This needs to use 'idt_table' rather than 'idt', and | 
|  | * thus use the _nonmapped_ version of the IDT, as the | 
|  | * Pentium F0 0F bugfix can have resulted in the mapped | 
|  | * IDT being write-protected. | 
|  | */ | 
|  | void set_intr_gate(unsigned int n, void *addr) | 
|  | { | 
|  | _set_gate(idt_table+n,14,0,addr,__KERNEL_CS); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This routine sets up an interrupt gate at directory privilege level 3. | 
|  | */ | 
|  | static inline void set_system_intr_gate(unsigned int n, void *addr) | 
|  | { | 
|  | _set_gate(idt_table+n, 14, 3, addr, __KERNEL_CS); | 
|  | } | 
|  |  | 
|  | static void __init set_trap_gate(unsigned int n, void *addr) | 
|  | { | 
|  | _set_gate(idt_table+n,15,0,addr,__KERNEL_CS); | 
|  | } | 
|  |  | 
|  | static void __init set_system_gate(unsigned int n, void *addr) | 
|  | { | 
|  | _set_gate(idt_table+n,15,3,addr,__KERNEL_CS); | 
|  | } | 
|  |  | 
|  | static void __init set_task_gate(unsigned int n, unsigned int gdt_entry) | 
|  | { | 
|  | _set_gate(idt_table+n,5,0,0,(gdt_entry<<3)); | 
|  | } | 
|  |  | 
|  |  | 
|  | void __init trap_init(void) | 
|  | { | 
|  | #ifdef CONFIG_EISA | 
|  | void __iomem *p = ioremap(0x0FFFD9, 4); | 
|  | if (readl(p) == 'E'+('I'<<8)+('S'<<16)+('A'<<24)) { | 
|  | EISA_bus = 1; | 
|  | } | 
|  | iounmap(p); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_X86_LOCAL_APIC | 
|  | init_apic_mappings(); | 
|  | #endif | 
|  |  | 
|  | set_trap_gate(0,÷_error); | 
|  | set_intr_gate(1,&debug); | 
|  | set_intr_gate(2,&nmi); | 
|  | set_system_intr_gate(3, &int3); /* int3/4 can be called from all */ | 
|  | set_system_gate(4,&overflow); | 
|  | set_trap_gate(5,&bounds); | 
|  | set_trap_gate(6,&invalid_op); | 
|  | set_trap_gate(7,&device_not_available); | 
|  | set_task_gate(8,GDT_ENTRY_DOUBLEFAULT_TSS); | 
|  | set_trap_gate(9,&coprocessor_segment_overrun); | 
|  | set_trap_gate(10,&invalid_TSS); | 
|  | set_trap_gate(11,&segment_not_present); | 
|  | set_trap_gate(12,&stack_segment); | 
|  | set_trap_gate(13,&general_protection); | 
|  | set_intr_gate(14,&page_fault); | 
|  | set_trap_gate(15,&spurious_interrupt_bug); | 
|  | set_trap_gate(16,&coprocessor_error); | 
|  | set_trap_gate(17,&alignment_check); | 
|  | #ifdef CONFIG_X86_MCE | 
|  | set_trap_gate(18,&machine_check); | 
|  | #endif | 
|  | set_trap_gate(19,&simd_coprocessor_error); | 
|  |  | 
|  | if (cpu_has_fxsr) { | 
|  | /* | 
|  | * Verify that the FXSAVE/FXRSTOR data will be 16-byte aligned. | 
|  | * Generates a compile-time "error: zero width for bit-field" if | 
|  | * the alignment is wrong. | 
|  | */ | 
|  | struct fxsrAlignAssert { | 
|  | int _:!(offsetof(struct task_struct, | 
|  | thread.i387.fxsave) & 15); | 
|  | }; | 
|  |  | 
|  | printk(KERN_INFO "Enabling fast FPU save and restore... "); | 
|  | set_in_cr4(X86_CR4_OSFXSR); | 
|  | printk("done.\n"); | 
|  | } | 
|  | if (cpu_has_xmm) { | 
|  | printk(KERN_INFO "Enabling unmasked SIMD FPU exception " | 
|  | "support... "); | 
|  | set_in_cr4(X86_CR4_OSXMMEXCPT); | 
|  | printk("done.\n"); | 
|  | } | 
|  |  | 
|  | set_system_gate(SYSCALL_VECTOR,&system_call); | 
|  |  | 
|  | /* | 
|  | * Should be a barrier for any external CPU state. | 
|  | */ | 
|  | cpu_init(); | 
|  |  | 
|  | trap_init_hook(); | 
|  | } | 
|  |  | 
|  | static int __init kstack_setup(char *s) | 
|  | { | 
|  | kstack_depth_to_print = simple_strtoul(s, NULL, 0); | 
|  | return 0; | 
|  | } | 
|  | __setup("kstack=", kstack_setup); |