blob: 5b80d7cd954a824d573a1ea311ef94b9cde42097 [file] [log] [blame]
/*
* Miscellaneous Mac68K-specific stuff
*/
#include <linux/config.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/miscdevice.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/time.h>
#include <linux/rtc.h>
#include <linux/mm.h>
#include <linux/adb.h>
#include <linux/cuda.h>
#include <linux/pmu.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/rtc.h>
#include <asm/system.h>
#include <asm/segment.h>
#include <asm/setup.h>
#include <asm/macintosh.h>
#include <asm/mac_via.h>
#include <asm/mac_oss.h>
#define BOOTINFO_COMPAT_1_0
#include <asm/bootinfo.h>
#include <asm/machdep.h>
/* Offset between Unix time (1970-based) and Mac time (1904-based) */
#define RTC_OFFSET 2082844800
extern struct mac_booter_data mac_bi_data;
static void (*rom_reset)(void);
#ifdef CONFIG_ADB
/*
* Return the current time as the number of seconds since January 1, 1904.
*/
static long adb_read_time(void)
{
volatile struct adb_request req;
long time;
adb_request((struct adb_request *) &req, NULL,
ADBREQ_RAW|ADBREQ_SYNC,
2, CUDA_PACKET, CUDA_GET_TIME);
time = (req.reply[3] << 24) | (req.reply[4] << 16)
| (req.reply[5] << 8) | req.reply[6];
return time - RTC_OFFSET;
}
/*
* Set the current system time
*/
static void adb_write_time(long data)
{
volatile struct adb_request req;
data += RTC_OFFSET;
adb_request((struct adb_request *) &req, NULL,
ADBREQ_RAW|ADBREQ_SYNC,
6, CUDA_PACKET, CUDA_SET_TIME,
(data >> 24) & 0xFF, (data >> 16) & 0xFF,
(data >> 8) & 0xFF, data & 0xFF);
}
/*
* Get a byte from the NVRAM
*/
static __u8 adb_read_pram(int offset)
{
volatile struct adb_request req;
adb_request((struct adb_request *) &req, NULL,
ADBREQ_RAW|ADBREQ_SYNC,
4, CUDA_PACKET, CUDA_GET_PRAM,
(offset >> 8) & 0xFF, offset & 0xFF);
return req.reply[3];
}
/*
* Write a byte to the NVRAM
*/
static void adb_write_pram(int offset, __u8 data)
{
volatile struct adb_request req;
adb_request((struct adb_request *) &req, NULL,
ADBREQ_RAW|ADBREQ_SYNC,
5, CUDA_PACKET, CUDA_SET_PRAM,
(offset >> 8) & 0xFF, offset & 0xFF,
data);
}
#endif /* CONFIG_ADB */
/*
* VIA PRAM/RTC access routines
*
* Must be called with interrupts disabled and
* the RTC should be enabled.
*/
static __u8 via_pram_readbyte(void)
{
int i,reg;
__u8 data;
reg = via1[vBufB] & ~VIA1B_vRTCClk;
/* Set the RTC data line to be an input. */
via1[vDirB] &= ~VIA1B_vRTCData;
/* The bits of the byte come out in MSB order */
data = 0;
for (i = 0 ; i < 8 ; i++) {
via1[vBufB] = reg;
via1[vBufB] = reg | VIA1B_vRTCClk;
data = (data << 1) | (via1[vBufB] & VIA1B_vRTCData);
}
/* Return RTC data line to output state */
via1[vDirB] |= VIA1B_vRTCData;
return data;
}
static void via_pram_writebyte(__u8 data)
{
int i,reg,bit;
reg = via1[vBufB] & ~(VIA1B_vRTCClk | VIA1B_vRTCData);
/* The bits of the byte go in in MSB order */
for (i = 0 ; i < 8 ; i++) {
bit = data & 0x80? 1 : 0;
data <<= 1;
via1[vBufB] = reg | bit;
via1[vBufB] = reg | bit | VIA1B_vRTCClk;
}
}
/*
* Execute a VIA PRAM/RTC command. For read commands
* data should point to a one-byte buffer for the
* resulting data. For write commands it should point
* to the data byte to for the command.
*
* This function disables all interrupts while running.
*/
static void via_pram_command(int command, __u8 *data)
{
unsigned long flags;
int is_read;
local_irq_save(flags);
/* Enable the RTC and make sure the strobe line is high */
via1[vBufB] = (via1[vBufB] | VIA1B_vRTCClk) & ~VIA1B_vRTCEnb;
if (command & 0xFF00) { /* extended (two-byte) command */
via_pram_writebyte((command & 0xFF00) >> 8);
via_pram_writebyte(command & 0xFF);
is_read = command & 0x8000;
} else { /* one-byte command */
via_pram_writebyte(command);
is_read = command & 0x80;
}
if (is_read) {
*data = via_pram_readbyte();
} else {
via_pram_writebyte(*data);
}
/* All done, disable the RTC */
via1[vBufB] |= VIA1B_vRTCEnb;
local_irq_restore(flags);
}
static __u8 via_read_pram(int offset)
{
return 0;
}
static void via_write_pram(int offset, __u8 data)
{
}
/*
* Return the current time in seconds since January 1, 1904.
*
* This only works on machines with the VIA-based PRAM/RTC, which
* is basically any machine with Mac II-style ADB.
*/
static long via_read_time(void)
{
union {
__u8 cdata[4];
long idata;
} result, last_result;
int ct;
/*
* The NetBSD guys say to loop until you get the same reading
* twice in a row.
*/
ct = 0;
do {
if (++ct > 10) {
printk("via_read_time: couldn't get valid time, "
"last read = 0x%08lx and 0x%08lx\n",
last_result.idata, result.idata);
break;
}
last_result.idata = result.idata;
result.idata = 0;
via_pram_command(0x81, &result.cdata[3]);
via_pram_command(0x85, &result.cdata[2]);
via_pram_command(0x89, &result.cdata[1]);
via_pram_command(0x8D, &result.cdata[0]);
} while (result.idata != last_result.idata);
return result.idata - RTC_OFFSET;
}
/*
* Set the current time to a number of seconds since January 1, 1904.
*
* This only works on machines with the VIA-based PRAM/RTC, which
* is basically any machine with Mac II-style ADB.
*/
static void via_write_time(long time)
{
union {
__u8 cdata[4];
long idata;
} data;
__u8 temp;
/* Clear the write protect bit */
temp = 0x55;
via_pram_command(0x35, &temp);
data.idata = time + RTC_OFFSET;
via_pram_command(0x01, &data.cdata[3]);
via_pram_command(0x05, &data.cdata[2]);
via_pram_command(0x09, &data.cdata[1]);
via_pram_command(0x0D, &data.cdata[0]);
/* Set the write protect bit */
temp = 0xD5;
via_pram_command(0x35, &temp);
}
static void via_shutdown(void)
{
if (rbv_present) {
via2[rBufB] &= ~0x04;
} else {
/* Direction of vDirB is output */
via2[vDirB] |= 0x04;
/* Send a value of 0 on that line */
via2[vBufB] &= ~0x04;
mdelay(1000);
}
}
/*
* FIXME: not sure how this is supposed to work exactly...
*/
static void oss_shutdown(void)
{
oss->rom_ctrl = OSS_POWEROFF;
}
#ifdef CONFIG_ADB_CUDA
static void cuda_restart(void)
{
adb_request(NULL, NULL, ADBREQ_RAW|ADBREQ_SYNC,
2, CUDA_PACKET, CUDA_RESET_SYSTEM);
}
static void cuda_shutdown(void)
{
adb_request(NULL, NULL, ADBREQ_RAW|ADBREQ_SYNC,
2, CUDA_PACKET, CUDA_POWERDOWN);
}
#endif /* CONFIG_ADB_CUDA */
#ifdef CONFIG_ADB_PMU
void pmu_restart(void)
{
adb_request(NULL, NULL, ADBREQ_RAW|ADBREQ_SYNC,
3, PMU_PACKET, PMU_SET_INTR_MASK,
PMU_INT_ADB|PMU_INT_TICK);
adb_request(NULL, NULL, ADBREQ_RAW|ADBREQ_SYNC,
2, PMU_PACKET, PMU_RESET);
}
void pmu_shutdown(void)
{
adb_request(NULL, NULL, ADBREQ_RAW|ADBREQ_SYNC,
3, PMU_PACKET, PMU_SET_INTR_MASK,
PMU_INT_ADB|PMU_INT_TICK);
adb_request(NULL, NULL, ADBREQ_RAW|ADBREQ_SYNC,
6, PMU_PACKET, PMU_SHUTDOWN,
'M', 'A', 'T', 'T');
}
#endif /* CONFIG_ADB_PMU */
/*
*-------------------------------------------------------------------
* Below this point are the generic routines; they'll dispatch to the
* correct routine for the hardware on which we're running.
*-------------------------------------------------------------------
*/
void mac_pram_read(int offset, __u8 *buffer, int len)
{
__u8 (*func)(int) = NULL;
int i;
if (macintosh_config->adb_type == MAC_ADB_IISI ||
macintosh_config->adb_type == MAC_ADB_PB1 ||
macintosh_config->adb_type == MAC_ADB_PB2 ||
macintosh_config->adb_type == MAC_ADB_CUDA) {
#ifdef CONFIG_ADB
func = adb_read_pram;
#else
return;
#endif
} else {
func = via_read_pram;
}
for (i = 0 ; i < len ; i++) {
buffer[i] = (*func)(offset++);
}
}
void mac_pram_write(int offset, __u8 *buffer, int len)
{
void (*func)(int, __u8) = NULL;
int i;
if (macintosh_config->adb_type == MAC_ADB_IISI ||
macintosh_config->adb_type == MAC_ADB_PB1 ||
macintosh_config->adb_type == MAC_ADB_PB2 ||
macintosh_config->adb_type == MAC_ADB_CUDA) {
#ifdef CONFIG_ADB
func = adb_write_pram;
#else
return;
#endif
} else {
func = via_write_pram;
}
for (i = 0 ; i < len ; i++) {
(*func)(offset++, buffer[i]);
}
}
void mac_poweroff(void)
{
/*
* MAC_ADB_IISI may need to be moved up here if it doesn't actually
* work using the ADB packet method. --David Kilzer
*/
if (oss_present) {
oss_shutdown();
} else if (macintosh_config->adb_type == MAC_ADB_II) {
via_shutdown();
#ifdef CONFIG_ADB_CUDA
} else if (macintosh_config->adb_type == MAC_ADB_CUDA) {
cuda_shutdown();
#endif
#ifdef CONFIG_ADB_PMU
} else if (macintosh_config->adb_type == MAC_ADB_PB1
|| macintosh_config->adb_type == MAC_ADB_PB2) {
pmu_shutdown();
#endif
}
local_irq_enable();
printk("It is now safe to turn off your Macintosh.\n");
while(1);
}
void mac_reset(void)
{
if (macintosh_config->adb_type == MAC_ADB_II) {
unsigned long flags;
/* need ROMBASE in booter */
/* indeed, plus need to MAP THE ROM !! */
if (mac_bi_data.rombase == 0)
mac_bi_data.rombase = 0x40800000;
/* works on some */
rom_reset = (void *) (mac_bi_data.rombase + 0xa);
if (macintosh_config->ident == MAC_MODEL_SE30) {
/*
* MSch: Machines known to crash on ROM reset ...
*/
} else {
local_irq_save(flags);
rom_reset();
local_irq_restore(flags);
}
#ifdef CONFIG_ADB_CUDA
} else if (macintosh_config->adb_type == MAC_ADB_CUDA) {
cuda_restart();
#endif
#ifdef CONFIG_ADB_PMU
} else if (macintosh_config->adb_type == MAC_ADB_PB1
|| macintosh_config->adb_type == MAC_ADB_PB2) {
pmu_restart();
#endif
} else if (CPU_IS_030) {
/* 030-specific reset routine. The idea is general, but the
* specific registers to reset are '030-specific. Until I
* have a non-030 machine, I can't test anything else.
* -- C. Scott Ananian <cananian@alumni.princeton.edu>
*/
unsigned long rombase = 0x40000000;
/* make a 1-to-1 mapping, using the transparent tran. reg. */
unsigned long virt = (unsigned long) mac_reset;
unsigned long phys = virt_to_phys(mac_reset);
unsigned long offset = phys-virt;
local_irq_disable(); /* lets not screw this up, ok? */
__asm__ __volatile__(".chip 68030\n\t"
"pmove %0,%/tt0\n\t"
".chip 68k"
: : "m" ((phys&0xFF000000)|0x8777));
/* Now jump to physical address so we can disable MMU */
__asm__ __volatile__(
".chip 68030\n\t"
"lea %/pc@(1f),%/a0\n\t"
"addl %0,%/a0\n\t"/* fixup target address and stack ptr */
"addl %0,%/sp\n\t"
"pflusha\n\t"
"jmp %/a0@\n\t" /* jump into physical memory */
"0:.long 0\n\t" /* a constant zero. */
/* OK. Now reset everything and jump to reset vector. */
"1:\n\t"
"lea %/pc@(0b),%/a0\n\t"
"pmove %/a0@, %/tc\n\t" /* disable mmu */
"pmove %/a0@, %/tt0\n\t" /* disable tt0 */
"pmove %/a0@, %/tt1\n\t" /* disable tt1 */
"movel #0, %/a0\n\t"
"movec %/a0, %/vbr\n\t" /* clear vector base register */
"movec %/a0, %/cacr\n\t" /* disable caches */
"movel #0x0808,%/a0\n\t"
"movec %/a0, %/cacr\n\t" /* flush i&d caches */
"movew #0x2700,%/sr\n\t" /* set up status register */
"movel %1@(0x0),%/a0\n\t"/* load interrupt stack pointer */
"movec %/a0, %/isp\n\t"
"movel %1@(0x4),%/a0\n\t" /* load reset vector */
"reset\n\t" /* reset external devices */
"jmp %/a0@\n\t" /* jump to the reset vector */
".chip 68k"
: : "r" (offset), "a" (rombase) : "a0");
}
/* should never get here */
local_irq_enable();
printk ("Restart failed. Please restart manually.\n");
while(1);
}
/*
* This function translates seconds since 1970 into a proper date.
*
* Algorithm cribbed from glibc2.1, __offtime().
*/
#define SECS_PER_MINUTE (60)
#define SECS_PER_HOUR (SECS_PER_MINUTE * 60)
#define SECS_PER_DAY (SECS_PER_HOUR * 24)
static void unmktime(unsigned long time, long offset,
int *yearp, int *monp, int *dayp,
int *hourp, int *minp, int *secp)
{
/* How many days come before each month (0-12). */
static const unsigned short int __mon_yday[2][13] =
{
/* Normal years. */
{ 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365 },
/* Leap years. */
{ 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366 }
};
long int days, rem, y, wday, yday;
const unsigned short int *ip;
days = time / SECS_PER_DAY;
rem = time % SECS_PER_DAY;
rem += offset;
while (rem < 0) {
rem += SECS_PER_DAY;
--days;
}
while (rem >= SECS_PER_DAY) {
rem -= SECS_PER_DAY;
++days;
}
*hourp = rem / SECS_PER_HOUR;
rem %= SECS_PER_HOUR;
*minp = rem / SECS_PER_MINUTE;
*secp = rem % SECS_PER_MINUTE;
/* January 1, 1970 was a Thursday. */
wday = (4 + days) % 7; /* Day in the week. Not currently used */
if (wday < 0) wday += 7;
y = 1970;
#define DIV(a, b) ((a) / (b) - ((a) % (b) < 0))
#define LEAPS_THRU_END_OF(y) (DIV (y, 4) - DIV (y, 100) + DIV (y, 400))
#define __isleap(year) \
((year) % 4 == 0 && ((year) % 100 != 0 || (year) % 400 == 0))
while (days < 0 || days >= (__isleap (y) ? 366 : 365))
{
/* Guess a corrected year, assuming 365 days per year. */
long int yg = y + days / 365 - (days % 365 < 0);
/* Adjust DAYS and Y to match the guessed year. */
days -= ((yg - y) * 365
+ LEAPS_THRU_END_OF (yg - 1)
- LEAPS_THRU_END_OF (y - 1));
y = yg;
}
*yearp = y - 1900;
yday = days; /* day in the year. Not currently used. */
ip = __mon_yday[__isleap(y)];
for (y = 11; days < (long int) ip[y]; --y)
continue;
days -= ip[y];
*monp = y;
*dayp = days + 1; /* day in the month */
return;
}
/*
* Read/write the hardware clock.
*/
int mac_hwclk(int op, struct rtc_time *t)
{
unsigned long now;
if (!op) { /* read */
if (macintosh_config->adb_type == MAC_ADB_II) {
now = via_read_time();
} else
#ifdef CONFIG_ADB
if ((macintosh_config->adb_type == MAC_ADB_IISI) ||
(macintosh_config->adb_type == MAC_ADB_PB1) ||
(macintosh_config->adb_type == MAC_ADB_PB2) ||
(macintosh_config->adb_type == MAC_ADB_CUDA)) {
now = adb_read_time();
} else
#endif
if (macintosh_config->adb_type == MAC_ADB_IOP) {
now = via_read_time();
} else {
now = 0;
}
t->tm_wday = 0;
unmktime(now, 0,
&t->tm_year, &t->tm_mon, &t->tm_mday,
&t->tm_hour, &t->tm_min, &t->tm_sec);
printk("mac_hwclk: read %04d-%02d-%-2d %02d:%02d:%02d\n",
t->tm_year + 1900, t->tm_mon + 1, t->tm_mday, t->tm_hour, t->tm_min, t->tm_sec);
} else { /* write */
printk("mac_hwclk: tried to write %04d-%02d-%-2d %02d:%02d:%02d\n",
t->tm_year + 1900, t->tm_mon + 1, t->tm_mday, t->tm_hour, t->tm_min, t->tm_sec);
#if 0 /* it trashes my rtc */
now = mktime(t->tm_year + 1900, t->tm_mon + 1, t->tm_mday,
t->tm_hour, t->tm_min, t->tm_sec);
if (macintosh_config->adb_type == MAC_ADB_II) {
via_write_time(now);
} else if ((macintosh_config->adb_type == MAC_ADB_IISI) ||
(macintosh_config->adb_type == MAC_ADB_PB1) ||
(macintosh_config->adb_type == MAC_ADB_PB2) ||
(macintosh_config->adb_type == MAC_ADB_CUDA)) {
adb_write_time(now);
} else if (macintosh_config->adb_type == MAC_ADB_IOP) {
via_write_time(now);
}
#endif
}
return 0;
}
/*
* Set minutes/seconds in the hardware clock
*/
int mac_set_clock_mmss (unsigned long nowtime)
{
struct rtc_time now;
mac_hwclk(0, &now);
now.tm_sec = nowtime % 60;
now.tm_min = (nowtime / 60) % 60;
mac_hwclk(1, &now);
return 0;
}