|  | /* | 
|  | * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved. | 
|  | * Copyright (c) 2004 Infinicon Corporation.  All rights reserved. | 
|  | * Copyright (c) 2004 Intel Corporation.  All rights reserved. | 
|  | * Copyright (c) 2004 Topspin Corporation.  All rights reserved. | 
|  | * Copyright (c) 2004 Voltaire Corporation.  All rights reserved. | 
|  | * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. | 
|  | * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved. | 
|  | * | 
|  | * This software is available to you under a choice of one of two | 
|  | * licenses.  You may choose to be licensed under the terms of the GNU | 
|  | * General Public License (GPL) Version 2, available from the file | 
|  | * COPYING in the main directory of this source tree, or the | 
|  | * OpenIB.org BSD license below: | 
|  | * | 
|  | *     Redistribution and use in source and binary forms, with or | 
|  | *     without modification, are permitted provided that the following | 
|  | *     conditions are met: | 
|  | * | 
|  | *      - Redistributions of source code must retain the above | 
|  | *        copyright notice, this list of conditions and the following | 
|  | *        disclaimer. | 
|  | * | 
|  | *      - Redistributions in binary form must reproduce the above | 
|  | *        copyright notice, this list of conditions and the following | 
|  | *        disclaimer in the documentation and/or other materials | 
|  | *        provided with the distribution. | 
|  | * | 
|  | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | 
|  | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | 
|  | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | 
|  | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | 
|  | * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | 
|  | * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | 
|  | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | 
|  | * SOFTWARE. | 
|  | */ | 
|  |  | 
|  | #include <linux/errno.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/in.h> | 
|  | #include <linux/in6.h> | 
|  | #include <net/addrconf.h> | 
|  | #include <linux/security.h> | 
|  |  | 
|  | #include <rdma/ib_verbs.h> | 
|  | #include <rdma/ib_cache.h> | 
|  | #include <rdma/ib_addr.h> | 
|  | #include <rdma/rw.h> | 
|  |  | 
|  | #include "core_priv.h" | 
|  |  | 
|  | static const char * const ib_events[] = { | 
|  | [IB_EVENT_CQ_ERR]		= "CQ error", | 
|  | [IB_EVENT_QP_FATAL]		= "QP fatal error", | 
|  | [IB_EVENT_QP_REQ_ERR]		= "QP request error", | 
|  | [IB_EVENT_QP_ACCESS_ERR]	= "QP access error", | 
|  | [IB_EVENT_COMM_EST]		= "communication established", | 
|  | [IB_EVENT_SQ_DRAINED]		= "send queue drained", | 
|  | [IB_EVENT_PATH_MIG]		= "path migration successful", | 
|  | [IB_EVENT_PATH_MIG_ERR]		= "path migration error", | 
|  | [IB_EVENT_DEVICE_FATAL]		= "device fatal error", | 
|  | [IB_EVENT_PORT_ACTIVE]		= "port active", | 
|  | [IB_EVENT_PORT_ERR]		= "port error", | 
|  | [IB_EVENT_LID_CHANGE]		= "LID change", | 
|  | [IB_EVENT_PKEY_CHANGE]		= "P_key change", | 
|  | [IB_EVENT_SM_CHANGE]		= "SM change", | 
|  | [IB_EVENT_SRQ_ERR]		= "SRQ error", | 
|  | [IB_EVENT_SRQ_LIMIT_REACHED]	= "SRQ limit reached", | 
|  | [IB_EVENT_QP_LAST_WQE_REACHED]	= "last WQE reached", | 
|  | [IB_EVENT_CLIENT_REREGISTER]	= "client reregister", | 
|  | [IB_EVENT_GID_CHANGE]		= "GID changed", | 
|  | }; | 
|  |  | 
|  | const char *__attribute_const__ ib_event_msg(enum ib_event_type event) | 
|  | { | 
|  | size_t index = event; | 
|  |  | 
|  | return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ? | 
|  | ib_events[index] : "unrecognized event"; | 
|  | } | 
|  | EXPORT_SYMBOL(ib_event_msg); | 
|  |  | 
|  | static const char * const wc_statuses[] = { | 
|  | [IB_WC_SUCCESS]			= "success", | 
|  | [IB_WC_LOC_LEN_ERR]		= "local length error", | 
|  | [IB_WC_LOC_QP_OP_ERR]		= "local QP operation error", | 
|  | [IB_WC_LOC_EEC_OP_ERR]		= "local EE context operation error", | 
|  | [IB_WC_LOC_PROT_ERR]		= "local protection error", | 
|  | [IB_WC_WR_FLUSH_ERR]		= "WR flushed", | 
|  | [IB_WC_MW_BIND_ERR]		= "memory management operation error", | 
|  | [IB_WC_BAD_RESP_ERR]		= "bad response error", | 
|  | [IB_WC_LOC_ACCESS_ERR]		= "local access error", | 
|  | [IB_WC_REM_INV_REQ_ERR]		= "invalid request error", | 
|  | [IB_WC_REM_ACCESS_ERR]		= "remote access error", | 
|  | [IB_WC_REM_OP_ERR]		= "remote operation error", | 
|  | [IB_WC_RETRY_EXC_ERR]		= "transport retry counter exceeded", | 
|  | [IB_WC_RNR_RETRY_EXC_ERR]	= "RNR retry counter exceeded", | 
|  | [IB_WC_LOC_RDD_VIOL_ERR]	= "local RDD violation error", | 
|  | [IB_WC_REM_INV_RD_REQ_ERR]	= "remote invalid RD request", | 
|  | [IB_WC_REM_ABORT_ERR]		= "operation aborted", | 
|  | [IB_WC_INV_EECN_ERR]		= "invalid EE context number", | 
|  | [IB_WC_INV_EEC_STATE_ERR]	= "invalid EE context state", | 
|  | [IB_WC_FATAL_ERR]		= "fatal error", | 
|  | [IB_WC_RESP_TIMEOUT_ERR]	= "response timeout error", | 
|  | [IB_WC_GENERAL_ERR]		= "general error", | 
|  | }; | 
|  |  | 
|  | const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status) | 
|  | { | 
|  | size_t index = status; | 
|  |  | 
|  | return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ? | 
|  | wc_statuses[index] : "unrecognized status"; | 
|  | } | 
|  | EXPORT_SYMBOL(ib_wc_status_msg); | 
|  |  | 
|  | __attribute_const__ int ib_rate_to_mult(enum ib_rate rate) | 
|  | { | 
|  | switch (rate) { | 
|  | case IB_RATE_2_5_GBPS: return  1; | 
|  | case IB_RATE_5_GBPS:   return  2; | 
|  | case IB_RATE_10_GBPS:  return  4; | 
|  | case IB_RATE_20_GBPS:  return  8; | 
|  | case IB_RATE_30_GBPS:  return 12; | 
|  | case IB_RATE_40_GBPS:  return 16; | 
|  | case IB_RATE_60_GBPS:  return 24; | 
|  | case IB_RATE_80_GBPS:  return 32; | 
|  | case IB_RATE_120_GBPS: return 48; | 
|  | default:	       return -1; | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(ib_rate_to_mult); | 
|  |  | 
|  | __attribute_const__ enum ib_rate mult_to_ib_rate(int mult) | 
|  | { | 
|  | switch (mult) { | 
|  | case 1:  return IB_RATE_2_5_GBPS; | 
|  | case 2:  return IB_RATE_5_GBPS; | 
|  | case 4:  return IB_RATE_10_GBPS; | 
|  | case 8:  return IB_RATE_20_GBPS; | 
|  | case 12: return IB_RATE_30_GBPS; | 
|  | case 16: return IB_RATE_40_GBPS; | 
|  | case 24: return IB_RATE_60_GBPS; | 
|  | case 32: return IB_RATE_80_GBPS; | 
|  | case 48: return IB_RATE_120_GBPS; | 
|  | default: return IB_RATE_PORT_CURRENT; | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(mult_to_ib_rate); | 
|  |  | 
|  | __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate) | 
|  | { | 
|  | switch (rate) { | 
|  | case IB_RATE_2_5_GBPS: return 2500; | 
|  | case IB_RATE_5_GBPS:   return 5000; | 
|  | case IB_RATE_10_GBPS:  return 10000; | 
|  | case IB_RATE_20_GBPS:  return 20000; | 
|  | case IB_RATE_30_GBPS:  return 30000; | 
|  | case IB_RATE_40_GBPS:  return 40000; | 
|  | case IB_RATE_60_GBPS:  return 60000; | 
|  | case IB_RATE_80_GBPS:  return 80000; | 
|  | case IB_RATE_120_GBPS: return 120000; | 
|  | case IB_RATE_14_GBPS:  return 14062; | 
|  | case IB_RATE_56_GBPS:  return 56250; | 
|  | case IB_RATE_112_GBPS: return 112500; | 
|  | case IB_RATE_168_GBPS: return 168750; | 
|  | case IB_RATE_25_GBPS:  return 25781; | 
|  | case IB_RATE_100_GBPS: return 103125; | 
|  | case IB_RATE_200_GBPS: return 206250; | 
|  | case IB_RATE_300_GBPS: return 309375; | 
|  | default:	       return -1; | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(ib_rate_to_mbps); | 
|  |  | 
|  | __attribute_const__ enum rdma_transport_type | 
|  | rdma_node_get_transport(enum rdma_node_type node_type) | 
|  | { | 
|  | switch (node_type) { | 
|  | case RDMA_NODE_IB_CA: | 
|  | case RDMA_NODE_IB_SWITCH: | 
|  | case RDMA_NODE_IB_ROUTER: | 
|  | return RDMA_TRANSPORT_IB; | 
|  | case RDMA_NODE_RNIC: | 
|  | return RDMA_TRANSPORT_IWARP; | 
|  | case RDMA_NODE_USNIC: | 
|  | return RDMA_TRANSPORT_USNIC; | 
|  | case RDMA_NODE_USNIC_UDP: | 
|  | return RDMA_TRANSPORT_USNIC_UDP; | 
|  | default: | 
|  | BUG(); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(rdma_node_get_transport); | 
|  |  | 
|  | enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num) | 
|  | { | 
|  | if (device->get_link_layer) | 
|  | return device->get_link_layer(device, port_num); | 
|  |  | 
|  | switch (rdma_node_get_transport(device->node_type)) { | 
|  | case RDMA_TRANSPORT_IB: | 
|  | return IB_LINK_LAYER_INFINIBAND; | 
|  | case RDMA_TRANSPORT_IWARP: | 
|  | case RDMA_TRANSPORT_USNIC: | 
|  | case RDMA_TRANSPORT_USNIC_UDP: | 
|  | return IB_LINK_LAYER_ETHERNET; | 
|  | default: | 
|  | return IB_LINK_LAYER_UNSPECIFIED; | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(rdma_port_get_link_layer); | 
|  |  | 
|  | /* Protection domains */ | 
|  |  | 
|  | /** | 
|  | * ib_alloc_pd - Allocates an unused protection domain. | 
|  | * @device: The device on which to allocate the protection domain. | 
|  | * | 
|  | * A protection domain object provides an association between QPs, shared | 
|  | * receive queues, address handles, memory regions, and memory windows. | 
|  | * | 
|  | * Every PD has a local_dma_lkey which can be used as the lkey value for local | 
|  | * memory operations. | 
|  | */ | 
|  | struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags, | 
|  | const char *caller) | 
|  | { | 
|  | struct ib_pd *pd; | 
|  | int mr_access_flags = 0; | 
|  |  | 
|  | pd = device->alloc_pd(device, NULL, NULL); | 
|  | if (IS_ERR(pd)) | 
|  | return pd; | 
|  |  | 
|  | pd->device = device; | 
|  | pd->uobject = NULL; | 
|  | pd->__internal_mr = NULL; | 
|  | atomic_set(&pd->usecnt, 0); | 
|  | pd->flags = flags; | 
|  |  | 
|  | if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY) | 
|  | pd->local_dma_lkey = device->local_dma_lkey; | 
|  | else | 
|  | mr_access_flags |= IB_ACCESS_LOCAL_WRITE; | 
|  |  | 
|  | if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) { | 
|  | pr_warn("%s: enabling unsafe global rkey\n", caller); | 
|  | mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE; | 
|  | } | 
|  |  | 
|  | if (mr_access_flags) { | 
|  | struct ib_mr *mr; | 
|  |  | 
|  | mr = pd->device->get_dma_mr(pd, mr_access_flags); | 
|  | if (IS_ERR(mr)) { | 
|  | ib_dealloc_pd(pd); | 
|  | return ERR_CAST(mr); | 
|  | } | 
|  |  | 
|  | mr->device	= pd->device; | 
|  | mr->pd		= pd; | 
|  | mr->uobject	= NULL; | 
|  | mr->need_inval	= false; | 
|  |  | 
|  | pd->__internal_mr = mr; | 
|  |  | 
|  | if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)) | 
|  | pd->local_dma_lkey = pd->__internal_mr->lkey; | 
|  |  | 
|  | if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) | 
|  | pd->unsafe_global_rkey = pd->__internal_mr->rkey; | 
|  | } | 
|  |  | 
|  | return pd; | 
|  | } | 
|  | EXPORT_SYMBOL(__ib_alloc_pd); | 
|  |  | 
|  | /** | 
|  | * ib_dealloc_pd - Deallocates a protection domain. | 
|  | * @pd: The protection domain to deallocate. | 
|  | * | 
|  | * It is an error to call this function while any resources in the pd still | 
|  | * exist.  The caller is responsible to synchronously destroy them and | 
|  | * guarantee no new allocations will happen. | 
|  | */ | 
|  | void ib_dealloc_pd(struct ib_pd *pd) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (pd->__internal_mr) { | 
|  | ret = pd->device->dereg_mr(pd->__internal_mr); | 
|  | WARN_ON(ret); | 
|  | pd->__internal_mr = NULL; | 
|  | } | 
|  |  | 
|  | /* uverbs manipulates usecnt with proper locking, while the kabi | 
|  | requires the caller to guarantee we can't race here. */ | 
|  | WARN_ON(atomic_read(&pd->usecnt)); | 
|  |  | 
|  | /* Making delalloc_pd a void return is a WIP, no driver should return | 
|  | an error here. */ | 
|  | ret = pd->device->dealloc_pd(pd); | 
|  | WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd"); | 
|  | } | 
|  | EXPORT_SYMBOL(ib_dealloc_pd); | 
|  |  | 
|  | /* Address handles */ | 
|  |  | 
|  | struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr) | 
|  | { | 
|  | struct ib_ah *ah; | 
|  |  | 
|  | ah = pd->device->create_ah(pd, ah_attr, NULL); | 
|  |  | 
|  | if (!IS_ERR(ah)) { | 
|  | ah->device  = pd->device; | 
|  | ah->pd      = pd; | 
|  | ah->uobject = NULL; | 
|  | ah->type    = ah_attr->type; | 
|  | atomic_inc(&pd->usecnt); | 
|  | } | 
|  |  | 
|  | return ah; | 
|  | } | 
|  | EXPORT_SYMBOL(rdma_create_ah); | 
|  |  | 
|  | int ib_get_rdma_header_version(const union rdma_network_hdr *hdr) | 
|  | { | 
|  | const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh; | 
|  | struct iphdr ip4h_checked; | 
|  | const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh; | 
|  |  | 
|  | /* If it's IPv6, the version must be 6, otherwise, the first | 
|  | * 20 bytes (before the IPv4 header) are garbled. | 
|  | */ | 
|  | if (ip6h->version != 6) | 
|  | return (ip4h->version == 4) ? 4 : 0; | 
|  | /* version may be 6 or 4 because the first 20 bytes could be garbled */ | 
|  |  | 
|  | /* RoCE v2 requires no options, thus header length | 
|  | * must be 5 words | 
|  | */ | 
|  | if (ip4h->ihl != 5) | 
|  | return 6; | 
|  |  | 
|  | /* Verify checksum. | 
|  | * We can't write on scattered buffers so we need to copy to | 
|  | * temp buffer. | 
|  | */ | 
|  | memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked)); | 
|  | ip4h_checked.check = 0; | 
|  | ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5); | 
|  | /* if IPv4 header checksum is OK, believe it */ | 
|  | if (ip4h->check == ip4h_checked.check) | 
|  | return 4; | 
|  | return 6; | 
|  | } | 
|  | EXPORT_SYMBOL(ib_get_rdma_header_version); | 
|  |  | 
|  | static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device, | 
|  | u8 port_num, | 
|  | const struct ib_grh *grh) | 
|  | { | 
|  | int grh_version; | 
|  |  | 
|  | if (rdma_protocol_ib(device, port_num)) | 
|  | return RDMA_NETWORK_IB; | 
|  |  | 
|  | grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh); | 
|  |  | 
|  | if (grh_version == 4) | 
|  | return RDMA_NETWORK_IPV4; | 
|  |  | 
|  | if (grh->next_hdr == IPPROTO_UDP) | 
|  | return RDMA_NETWORK_IPV6; | 
|  |  | 
|  | return RDMA_NETWORK_ROCE_V1; | 
|  | } | 
|  |  | 
|  | struct find_gid_index_context { | 
|  | u16 vlan_id; | 
|  | enum ib_gid_type gid_type; | 
|  | }; | 
|  |  | 
|  | static bool find_gid_index(const union ib_gid *gid, | 
|  | const struct ib_gid_attr *gid_attr, | 
|  | void *context) | 
|  | { | 
|  | struct find_gid_index_context *ctx = | 
|  | (struct find_gid_index_context *)context; | 
|  |  | 
|  | if (ctx->gid_type != gid_attr->gid_type) | 
|  | return false; | 
|  |  | 
|  | if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) || | 
|  | (is_vlan_dev(gid_attr->ndev) && | 
|  | vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num, | 
|  | u16 vlan_id, const union ib_gid *sgid, | 
|  | enum ib_gid_type gid_type, | 
|  | u16 *gid_index) | 
|  | { | 
|  | struct find_gid_index_context context = {.vlan_id = vlan_id, | 
|  | .gid_type = gid_type}; | 
|  |  | 
|  | return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index, | 
|  | &context, gid_index); | 
|  | } | 
|  |  | 
|  | int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr, | 
|  | enum rdma_network_type net_type, | 
|  | union ib_gid *sgid, union ib_gid *dgid) | 
|  | { | 
|  | struct sockaddr_in  src_in; | 
|  | struct sockaddr_in  dst_in; | 
|  | __be32 src_saddr, dst_saddr; | 
|  |  | 
|  | if (!sgid || !dgid) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (net_type == RDMA_NETWORK_IPV4) { | 
|  | memcpy(&src_in.sin_addr.s_addr, | 
|  | &hdr->roce4grh.saddr, 4); | 
|  | memcpy(&dst_in.sin_addr.s_addr, | 
|  | &hdr->roce4grh.daddr, 4); | 
|  | src_saddr = src_in.sin_addr.s_addr; | 
|  | dst_saddr = dst_in.sin_addr.s_addr; | 
|  | ipv6_addr_set_v4mapped(src_saddr, | 
|  | (struct in6_addr *)sgid); | 
|  | ipv6_addr_set_v4mapped(dst_saddr, | 
|  | (struct in6_addr *)dgid); | 
|  | return 0; | 
|  | } else if (net_type == RDMA_NETWORK_IPV6 || | 
|  | net_type == RDMA_NETWORK_IB) { | 
|  | *dgid = hdr->ibgrh.dgid; | 
|  | *sgid = hdr->ibgrh.sgid; | 
|  | return 0; | 
|  | } else { | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr); | 
|  |  | 
|  | /* | 
|  | * This function creates ah from the incoming packet. | 
|  | * Incoming packet has dgid of the receiver node on which this code is | 
|  | * getting executed and, sgid contains the GID of the sender. | 
|  | * | 
|  | * When resolving mac address of destination, the arrived dgid is used | 
|  | * as sgid and, sgid is used as dgid because sgid contains destinations | 
|  | * GID whom to respond to. | 
|  | * | 
|  | * This is why when calling rdma_addr_find_l2_eth_by_grh() function, the | 
|  | * position of arguments dgid and sgid do not match the order of the | 
|  | * parameters. | 
|  | */ | 
|  | int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, | 
|  | const struct ib_wc *wc, const struct ib_grh *grh, | 
|  | struct rdma_ah_attr *ah_attr) | 
|  | { | 
|  | u32 flow_class; | 
|  | u16 gid_index; | 
|  | int ret; | 
|  | enum rdma_network_type net_type = RDMA_NETWORK_IB; | 
|  | enum ib_gid_type gid_type = IB_GID_TYPE_IB; | 
|  | int hoplimit = 0xff; | 
|  | union ib_gid dgid; | 
|  | union ib_gid sgid; | 
|  |  | 
|  | memset(ah_attr, 0, sizeof *ah_attr); | 
|  | ah_attr->type = rdma_ah_find_type(device, port_num); | 
|  | if (rdma_cap_eth_ah(device, port_num)) { | 
|  | if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE) | 
|  | net_type = wc->network_hdr_type; | 
|  | else | 
|  | net_type = ib_get_net_type_by_grh(device, port_num, grh); | 
|  | gid_type = ib_network_to_gid_type(net_type); | 
|  | } | 
|  | ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type, | 
|  | &sgid, &dgid); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (rdma_protocol_roce(device, port_num)) { | 
|  | int if_index = 0; | 
|  | u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ? | 
|  | wc->vlan_id : 0xffff; | 
|  | struct net_device *idev; | 
|  | struct net_device *resolved_dev; | 
|  |  | 
|  | if (!(wc->wc_flags & IB_WC_GRH)) | 
|  | return -EPROTOTYPE; | 
|  |  | 
|  | if (!device->get_netdev) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | idev = device->get_netdev(device, port_num); | 
|  | if (!idev) | 
|  | return -ENODEV; | 
|  |  | 
|  | ret = rdma_addr_find_l2_eth_by_grh(&dgid, &sgid, | 
|  | ah_attr->roce.dmac, | 
|  | wc->wc_flags & IB_WC_WITH_VLAN ? | 
|  | NULL : &vlan_id, | 
|  | &if_index, &hoplimit); | 
|  | if (ret) { | 
|  | dev_put(idev); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | resolved_dev = dev_get_by_index(&init_net, if_index); | 
|  | rcu_read_lock(); | 
|  | if (resolved_dev != idev && !rdma_is_upper_dev_rcu(idev, | 
|  | resolved_dev)) | 
|  | ret = -EHOSTUNREACH; | 
|  | rcu_read_unlock(); | 
|  | dev_put(idev); | 
|  | dev_put(resolved_dev); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = get_sgid_index_from_eth(device, port_num, vlan_id, | 
|  | &dgid, gid_type, &gid_index); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | rdma_ah_set_dlid(ah_attr, wc->slid); | 
|  | rdma_ah_set_sl(ah_attr, wc->sl); | 
|  | rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits); | 
|  | rdma_ah_set_port_num(ah_attr, port_num); | 
|  |  | 
|  | if (wc->wc_flags & IB_WC_GRH) { | 
|  | if (!rdma_cap_eth_ah(device, port_num)) { | 
|  | if (dgid.global.interface_id != cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) { | 
|  | ret = ib_find_cached_gid_by_port(device, &dgid, | 
|  | IB_GID_TYPE_IB, | 
|  | port_num, NULL, | 
|  | &gid_index); | 
|  | if (ret) | 
|  | return ret; | 
|  | } else { | 
|  | gid_index = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | flow_class = be32_to_cpu(grh->version_tclass_flow); | 
|  | rdma_ah_set_grh(ah_attr, &sgid, | 
|  | flow_class & 0xFFFFF, | 
|  | (u8)gid_index, hoplimit, | 
|  | (flow_class >> 20) & 0xFF); | 
|  |  | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(ib_init_ah_from_wc); | 
|  |  | 
|  | struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, | 
|  | const struct ib_grh *grh, u8 port_num) | 
|  | { | 
|  | struct rdma_ah_attr ah_attr; | 
|  | int ret; | 
|  |  | 
|  | ret = ib_init_ah_from_wc(pd->device, port_num, wc, grh, &ah_attr); | 
|  | if (ret) | 
|  | return ERR_PTR(ret); | 
|  |  | 
|  | return rdma_create_ah(pd, &ah_attr); | 
|  | } | 
|  | EXPORT_SYMBOL(ib_create_ah_from_wc); | 
|  |  | 
|  | int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr) | 
|  | { | 
|  | if (ah->type != ah_attr->type) | 
|  | return -EINVAL; | 
|  |  | 
|  | return ah->device->modify_ah ? | 
|  | ah->device->modify_ah(ah, ah_attr) : | 
|  | -ENOSYS; | 
|  | } | 
|  | EXPORT_SYMBOL(rdma_modify_ah); | 
|  |  | 
|  | int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr) | 
|  | { | 
|  | return ah->device->query_ah ? | 
|  | ah->device->query_ah(ah, ah_attr) : | 
|  | -ENOSYS; | 
|  | } | 
|  | EXPORT_SYMBOL(rdma_query_ah); | 
|  |  | 
|  | int rdma_destroy_ah(struct ib_ah *ah) | 
|  | { | 
|  | struct ib_pd *pd; | 
|  | int ret; | 
|  |  | 
|  | pd = ah->pd; | 
|  | ret = ah->device->destroy_ah(ah); | 
|  | if (!ret) | 
|  | atomic_dec(&pd->usecnt); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(rdma_destroy_ah); | 
|  |  | 
|  | /* Shared receive queues */ | 
|  |  | 
|  | struct ib_srq *ib_create_srq(struct ib_pd *pd, | 
|  | struct ib_srq_init_attr *srq_init_attr) | 
|  | { | 
|  | struct ib_srq *srq; | 
|  |  | 
|  | if (!pd->device->create_srq) | 
|  | return ERR_PTR(-ENOSYS); | 
|  |  | 
|  | srq = pd->device->create_srq(pd, srq_init_attr, NULL); | 
|  |  | 
|  | if (!IS_ERR(srq)) { | 
|  | srq->device    	   = pd->device; | 
|  | srq->pd        	   = pd; | 
|  | srq->uobject       = NULL; | 
|  | srq->event_handler = srq_init_attr->event_handler; | 
|  | srq->srq_context   = srq_init_attr->srq_context; | 
|  | srq->srq_type      = srq_init_attr->srq_type; | 
|  | if (srq->srq_type == IB_SRQT_XRC) { | 
|  | srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd; | 
|  | srq->ext.xrc.cq   = srq_init_attr->ext.xrc.cq; | 
|  | atomic_inc(&srq->ext.xrc.xrcd->usecnt); | 
|  | atomic_inc(&srq->ext.xrc.cq->usecnt); | 
|  | } | 
|  | atomic_inc(&pd->usecnt); | 
|  | atomic_set(&srq->usecnt, 0); | 
|  | } | 
|  |  | 
|  | return srq; | 
|  | } | 
|  | EXPORT_SYMBOL(ib_create_srq); | 
|  |  | 
|  | int ib_modify_srq(struct ib_srq *srq, | 
|  | struct ib_srq_attr *srq_attr, | 
|  | enum ib_srq_attr_mask srq_attr_mask) | 
|  | { | 
|  | return srq->device->modify_srq ? | 
|  | srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) : | 
|  | -ENOSYS; | 
|  | } | 
|  | EXPORT_SYMBOL(ib_modify_srq); | 
|  |  | 
|  | int ib_query_srq(struct ib_srq *srq, | 
|  | struct ib_srq_attr *srq_attr) | 
|  | { | 
|  | return srq->device->query_srq ? | 
|  | srq->device->query_srq(srq, srq_attr) : -ENOSYS; | 
|  | } | 
|  | EXPORT_SYMBOL(ib_query_srq); | 
|  |  | 
|  | int ib_destroy_srq(struct ib_srq *srq) | 
|  | { | 
|  | struct ib_pd *pd; | 
|  | enum ib_srq_type srq_type; | 
|  | struct ib_xrcd *uninitialized_var(xrcd); | 
|  | struct ib_cq *uninitialized_var(cq); | 
|  | int ret; | 
|  |  | 
|  | if (atomic_read(&srq->usecnt)) | 
|  | return -EBUSY; | 
|  |  | 
|  | pd = srq->pd; | 
|  | srq_type = srq->srq_type; | 
|  | if (srq_type == IB_SRQT_XRC) { | 
|  | xrcd = srq->ext.xrc.xrcd; | 
|  | cq = srq->ext.xrc.cq; | 
|  | } | 
|  |  | 
|  | ret = srq->device->destroy_srq(srq); | 
|  | if (!ret) { | 
|  | atomic_dec(&pd->usecnt); | 
|  | if (srq_type == IB_SRQT_XRC) { | 
|  | atomic_dec(&xrcd->usecnt); | 
|  | atomic_dec(&cq->usecnt); | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(ib_destroy_srq); | 
|  |  | 
|  | /* Queue pairs */ | 
|  |  | 
|  | static void __ib_shared_qp_event_handler(struct ib_event *event, void *context) | 
|  | { | 
|  | struct ib_qp *qp = context; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&qp->device->event_handler_lock, flags); | 
|  | list_for_each_entry(event->element.qp, &qp->open_list, open_list) | 
|  | if (event->element.qp->event_handler) | 
|  | event->element.qp->event_handler(event, event->element.qp->qp_context); | 
|  | spin_unlock_irqrestore(&qp->device->event_handler_lock, flags); | 
|  | } | 
|  |  | 
|  | static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp) | 
|  | { | 
|  | mutex_lock(&xrcd->tgt_qp_mutex); | 
|  | list_add(&qp->xrcd_list, &xrcd->tgt_qp_list); | 
|  | mutex_unlock(&xrcd->tgt_qp_mutex); | 
|  | } | 
|  |  | 
|  | static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp, | 
|  | void (*event_handler)(struct ib_event *, void *), | 
|  | void *qp_context) | 
|  | { | 
|  | struct ib_qp *qp; | 
|  | unsigned long flags; | 
|  | int err; | 
|  |  | 
|  | qp = kzalloc(sizeof *qp, GFP_KERNEL); | 
|  | if (!qp) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | qp->real_qp = real_qp; | 
|  | err = ib_open_shared_qp_security(qp, real_qp->device); | 
|  | if (err) { | 
|  | kfree(qp); | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | qp->real_qp = real_qp; | 
|  | atomic_inc(&real_qp->usecnt); | 
|  | qp->device = real_qp->device; | 
|  | qp->event_handler = event_handler; | 
|  | qp->qp_context = qp_context; | 
|  | qp->qp_num = real_qp->qp_num; | 
|  | qp->qp_type = real_qp->qp_type; | 
|  |  | 
|  | spin_lock_irqsave(&real_qp->device->event_handler_lock, flags); | 
|  | list_add(&qp->open_list, &real_qp->open_list); | 
|  | spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags); | 
|  |  | 
|  | return qp; | 
|  | } | 
|  |  | 
|  | struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, | 
|  | struct ib_qp_open_attr *qp_open_attr) | 
|  | { | 
|  | struct ib_qp *qp, *real_qp; | 
|  |  | 
|  | if (qp_open_attr->qp_type != IB_QPT_XRC_TGT) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | qp = ERR_PTR(-EINVAL); | 
|  | mutex_lock(&xrcd->tgt_qp_mutex); | 
|  | list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) { | 
|  | if (real_qp->qp_num == qp_open_attr->qp_num) { | 
|  | qp = __ib_open_qp(real_qp, qp_open_attr->event_handler, | 
|  | qp_open_attr->qp_context); | 
|  | break; | 
|  | } | 
|  | } | 
|  | mutex_unlock(&xrcd->tgt_qp_mutex); | 
|  | return qp; | 
|  | } | 
|  | EXPORT_SYMBOL(ib_open_qp); | 
|  |  | 
|  | static struct ib_qp *ib_create_xrc_qp(struct ib_qp *qp, | 
|  | struct ib_qp_init_attr *qp_init_attr) | 
|  | { | 
|  | struct ib_qp *real_qp = qp; | 
|  |  | 
|  | qp->event_handler = __ib_shared_qp_event_handler; | 
|  | qp->qp_context = qp; | 
|  | qp->pd = NULL; | 
|  | qp->send_cq = qp->recv_cq = NULL; | 
|  | qp->srq = NULL; | 
|  | qp->xrcd = qp_init_attr->xrcd; | 
|  | atomic_inc(&qp_init_attr->xrcd->usecnt); | 
|  | INIT_LIST_HEAD(&qp->open_list); | 
|  |  | 
|  | qp = __ib_open_qp(real_qp, qp_init_attr->event_handler, | 
|  | qp_init_attr->qp_context); | 
|  | if (!IS_ERR(qp)) | 
|  | __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp); | 
|  | else | 
|  | real_qp->device->destroy_qp(real_qp); | 
|  | return qp; | 
|  | } | 
|  |  | 
|  | struct ib_qp *ib_create_qp(struct ib_pd *pd, | 
|  | struct ib_qp_init_attr *qp_init_attr) | 
|  | { | 
|  | struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device; | 
|  | struct ib_qp *qp; | 
|  | int ret; | 
|  |  | 
|  | if (qp_init_attr->rwq_ind_tbl && | 
|  | (qp_init_attr->recv_cq || | 
|  | qp_init_attr->srq || qp_init_attr->cap.max_recv_wr || | 
|  | qp_init_attr->cap.max_recv_sge)) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | /* | 
|  | * If the callers is using the RDMA API calculate the resources | 
|  | * needed for the RDMA READ/WRITE operations. | 
|  | * | 
|  | * Note that these callers need to pass in a port number. | 
|  | */ | 
|  | if (qp_init_attr->cap.max_rdma_ctxs) | 
|  | rdma_rw_init_qp(device, qp_init_attr); | 
|  |  | 
|  | qp = device->create_qp(pd, qp_init_attr, NULL); | 
|  | if (IS_ERR(qp)) | 
|  | return qp; | 
|  |  | 
|  | ret = ib_create_qp_security(qp, device); | 
|  | if (ret) { | 
|  | ib_destroy_qp(qp); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  |  | 
|  | qp->device     = device; | 
|  | qp->real_qp    = qp; | 
|  | qp->uobject    = NULL; | 
|  | qp->qp_type    = qp_init_attr->qp_type; | 
|  | qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl; | 
|  |  | 
|  | atomic_set(&qp->usecnt, 0); | 
|  | qp->mrs_used = 0; | 
|  | spin_lock_init(&qp->mr_lock); | 
|  | INIT_LIST_HEAD(&qp->rdma_mrs); | 
|  | INIT_LIST_HEAD(&qp->sig_mrs); | 
|  | qp->port = 0; | 
|  |  | 
|  | if (qp_init_attr->qp_type == IB_QPT_XRC_TGT) | 
|  | return ib_create_xrc_qp(qp, qp_init_attr); | 
|  |  | 
|  | qp->event_handler = qp_init_attr->event_handler; | 
|  | qp->qp_context = qp_init_attr->qp_context; | 
|  | if (qp_init_attr->qp_type == IB_QPT_XRC_INI) { | 
|  | qp->recv_cq = NULL; | 
|  | qp->srq = NULL; | 
|  | } else { | 
|  | qp->recv_cq = qp_init_attr->recv_cq; | 
|  | if (qp_init_attr->recv_cq) | 
|  | atomic_inc(&qp_init_attr->recv_cq->usecnt); | 
|  | qp->srq = qp_init_attr->srq; | 
|  | if (qp->srq) | 
|  | atomic_inc(&qp_init_attr->srq->usecnt); | 
|  | } | 
|  |  | 
|  | qp->pd	    = pd; | 
|  | qp->send_cq = qp_init_attr->send_cq; | 
|  | qp->xrcd    = NULL; | 
|  |  | 
|  | atomic_inc(&pd->usecnt); | 
|  | if (qp_init_attr->send_cq) | 
|  | atomic_inc(&qp_init_attr->send_cq->usecnt); | 
|  | if (qp_init_attr->rwq_ind_tbl) | 
|  | atomic_inc(&qp->rwq_ind_tbl->usecnt); | 
|  |  | 
|  | if (qp_init_attr->cap.max_rdma_ctxs) { | 
|  | ret = rdma_rw_init_mrs(qp, qp_init_attr); | 
|  | if (ret) { | 
|  | pr_err("failed to init MR pool ret= %d\n", ret); | 
|  | ib_destroy_qp(qp); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Note: all hw drivers guarantee that max_send_sge is lower than | 
|  | * the device RDMA WRITE SGE limit but not all hw drivers ensure that | 
|  | * max_send_sge <= max_sge_rd. | 
|  | */ | 
|  | qp->max_write_sge = qp_init_attr->cap.max_send_sge; | 
|  | qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge, | 
|  | device->attrs.max_sge_rd); | 
|  |  | 
|  | return qp; | 
|  | } | 
|  | EXPORT_SYMBOL(ib_create_qp); | 
|  |  | 
|  | static const struct { | 
|  | int			valid; | 
|  | enum ib_qp_attr_mask	req_param[IB_QPT_MAX]; | 
|  | enum ib_qp_attr_mask	opt_param[IB_QPT_MAX]; | 
|  | } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = { | 
|  | [IB_QPS_RESET] = { | 
|  | [IB_QPS_RESET] = { .valid = 1 }, | 
|  | [IB_QPS_INIT]  = { | 
|  | .valid = 1, | 
|  | .req_param = { | 
|  | [IB_QPT_UD]  = (IB_QP_PKEY_INDEX		| | 
|  | IB_QP_PORT			| | 
|  | IB_QP_QKEY), | 
|  | [IB_QPT_RAW_PACKET] = IB_QP_PORT, | 
|  | [IB_QPT_UC]  = (IB_QP_PKEY_INDEX		| | 
|  | IB_QP_PORT			| | 
|  | IB_QP_ACCESS_FLAGS), | 
|  | [IB_QPT_RC]  = (IB_QP_PKEY_INDEX		| | 
|  | IB_QP_PORT			| | 
|  | IB_QP_ACCESS_FLAGS), | 
|  | [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX		| | 
|  | IB_QP_PORT			| | 
|  | IB_QP_ACCESS_FLAGS), | 
|  | [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX		| | 
|  | IB_QP_PORT			| | 
|  | IB_QP_ACCESS_FLAGS), | 
|  | [IB_QPT_SMI] = (IB_QP_PKEY_INDEX		| | 
|  | IB_QP_QKEY), | 
|  | [IB_QPT_GSI] = (IB_QP_PKEY_INDEX		| | 
|  | IB_QP_QKEY), | 
|  | } | 
|  | }, | 
|  | }, | 
|  | [IB_QPS_INIT]  = { | 
|  | [IB_QPS_RESET] = { .valid = 1 }, | 
|  | [IB_QPS_ERR] =   { .valid = 1 }, | 
|  | [IB_QPS_INIT]  = { | 
|  | .valid = 1, | 
|  | .opt_param = { | 
|  | [IB_QPT_UD]  = (IB_QP_PKEY_INDEX		| | 
|  | IB_QP_PORT			| | 
|  | IB_QP_QKEY), | 
|  | [IB_QPT_UC]  = (IB_QP_PKEY_INDEX		| | 
|  | IB_QP_PORT			| | 
|  | IB_QP_ACCESS_FLAGS), | 
|  | [IB_QPT_RC]  = (IB_QP_PKEY_INDEX		| | 
|  | IB_QP_PORT			| | 
|  | IB_QP_ACCESS_FLAGS), | 
|  | [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX		| | 
|  | IB_QP_PORT			| | 
|  | IB_QP_ACCESS_FLAGS), | 
|  | [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX		| | 
|  | IB_QP_PORT			| | 
|  | IB_QP_ACCESS_FLAGS), | 
|  | [IB_QPT_SMI] = (IB_QP_PKEY_INDEX		| | 
|  | IB_QP_QKEY), | 
|  | [IB_QPT_GSI] = (IB_QP_PKEY_INDEX		| | 
|  | IB_QP_QKEY), | 
|  | } | 
|  | }, | 
|  | [IB_QPS_RTR]   = { | 
|  | .valid = 1, | 
|  | .req_param = { | 
|  | [IB_QPT_UC]  = (IB_QP_AV			| | 
|  | IB_QP_PATH_MTU			| | 
|  | IB_QP_DEST_QPN			| | 
|  | IB_QP_RQ_PSN), | 
|  | [IB_QPT_RC]  = (IB_QP_AV			| | 
|  | IB_QP_PATH_MTU			| | 
|  | IB_QP_DEST_QPN			| | 
|  | IB_QP_RQ_PSN			| | 
|  | IB_QP_MAX_DEST_RD_ATOMIC	| | 
|  | IB_QP_MIN_RNR_TIMER), | 
|  | [IB_QPT_XRC_INI] = (IB_QP_AV			| | 
|  | IB_QP_PATH_MTU			| | 
|  | IB_QP_DEST_QPN			| | 
|  | IB_QP_RQ_PSN), | 
|  | [IB_QPT_XRC_TGT] = (IB_QP_AV			| | 
|  | IB_QP_PATH_MTU			| | 
|  | IB_QP_DEST_QPN			| | 
|  | IB_QP_RQ_PSN			| | 
|  | IB_QP_MAX_DEST_RD_ATOMIC	| | 
|  | IB_QP_MIN_RNR_TIMER), | 
|  | }, | 
|  | .opt_param = { | 
|  | [IB_QPT_UD]  = (IB_QP_PKEY_INDEX		| | 
|  | IB_QP_QKEY), | 
|  | [IB_QPT_UC]  = (IB_QP_ALT_PATH			| | 
|  | IB_QP_ACCESS_FLAGS		| | 
|  | IB_QP_PKEY_INDEX), | 
|  | [IB_QPT_RC]  = (IB_QP_ALT_PATH			| | 
|  | IB_QP_ACCESS_FLAGS		| | 
|  | IB_QP_PKEY_INDEX), | 
|  | [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH		| | 
|  | IB_QP_ACCESS_FLAGS		| | 
|  | IB_QP_PKEY_INDEX), | 
|  | [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH		| | 
|  | IB_QP_ACCESS_FLAGS		| | 
|  | IB_QP_PKEY_INDEX), | 
|  | [IB_QPT_SMI] = (IB_QP_PKEY_INDEX		| | 
|  | IB_QP_QKEY), | 
|  | [IB_QPT_GSI] = (IB_QP_PKEY_INDEX		| | 
|  | IB_QP_QKEY), | 
|  | }, | 
|  | }, | 
|  | }, | 
|  | [IB_QPS_RTR]   = { | 
|  | [IB_QPS_RESET] = { .valid = 1 }, | 
|  | [IB_QPS_ERR] =   { .valid = 1 }, | 
|  | [IB_QPS_RTS]   = { | 
|  | .valid = 1, | 
|  | .req_param = { | 
|  | [IB_QPT_UD]  = IB_QP_SQ_PSN, | 
|  | [IB_QPT_UC]  = IB_QP_SQ_PSN, | 
|  | [IB_QPT_RC]  = (IB_QP_TIMEOUT			| | 
|  | IB_QP_RETRY_CNT			| | 
|  | IB_QP_RNR_RETRY			| | 
|  | IB_QP_SQ_PSN			| | 
|  | IB_QP_MAX_QP_RD_ATOMIC), | 
|  | [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT		| | 
|  | IB_QP_RETRY_CNT			| | 
|  | IB_QP_RNR_RETRY			| | 
|  | IB_QP_SQ_PSN			| | 
|  | IB_QP_MAX_QP_RD_ATOMIC), | 
|  | [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT		| | 
|  | IB_QP_SQ_PSN), | 
|  | [IB_QPT_SMI] = IB_QP_SQ_PSN, | 
|  | [IB_QPT_GSI] = IB_QP_SQ_PSN, | 
|  | }, | 
|  | .opt_param = { | 
|  | [IB_QPT_UD]  = (IB_QP_CUR_STATE		| | 
|  | IB_QP_QKEY), | 
|  | [IB_QPT_UC]  = (IB_QP_CUR_STATE		| | 
|  | IB_QP_ALT_PATH			| | 
|  | IB_QP_ACCESS_FLAGS		| | 
|  | IB_QP_PATH_MIG_STATE), | 
|  | [IB_QPT_RC]  = (IB_QP_CUR_STATE		| | 
|  | IB_QP_ALT_PATH			| | 
|  | IB_QP_ACCESS_FLAGS		| | 
|  | IB_QP_MIN_RNR_TIMER		| | 
|  | IB_QP_PATH_MIG_STATE), | 
|  | [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		| | 
|  | IB_QP_ALT_PATH			| | 
|  | IB_QP_ACCESS_FLAGS		| | 
|  | IB_QP_PATH_MIG_STATE), | 
|  | [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		| | 
|  | IB_QP_ALT_PATH			| | 
|  | IB_QP_ACCESS_FLAGS		| | 
|  | IB_QP_MIN_RNR_TIMER		| | 
|  | IB_QP_PATH_MIG_STATE), | 
|  | [IB_QPT_SMI] = (IB_QP_CUR_STATE		| | 
|  | IB_QP_QKEY), | 
|  | [IB_QPT_GSI] = (IB_QP_CUR_STATE		| | 
|  | IB_QP_QKEY), | 
|  | [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT, | 
|  | } | 
|  | } | 
|  | }, | 
|  | [IB_QPS_RTS]   = { | 
|  | [IB_QPS_RESET] = { .valid = 1 }, | 
|  | [IB_QPS_ERR] =   { .valid = 1 }, | 
|  | [IB_QPS_RTS]   = { | 
|  | .valid = 1, | 
|  | .opt_param = { | 
|  | [IB_QPT_UD]  = (IB_QP_CUR_STATE			| | 
|  | IB_QP_QKEY), | 
|  | [IB_QPT_UC]  = (IB_QP_CUR_STATE			| | 
|  | IB_QP_ACCESS_FLAGS		| | 
|  | IB_QP_ALT_PATH			| | 
|  | IB_QP_PATH_MIG_STATE), | 
|  | [IB_QPT_RC]  = (IB_QP_CUR_STATE			| | 
|  | IB_QP_ACCESS_FLAGS		| | 
|  | IB_QP_ALT_PATH			| | 
|  | IB_QP_PATH_MIG_STATE		| | 
|  | IB_QP_MIN_RNR_TIMER), | 
|  | [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		| | 
|  | IB_QP_ACCESS_FLAGS		| | 
|  | IB_QP_ALT_PATH			| | 
|  | IB_QP_PATH_MIG_STATE), | 
|  | [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		| | 
|  | IB_QP_ACCESS_FLAGS		| | 
|  | IB_QP_ALT_PATH			| | 
|  | IB_QP_PATH_MIG_STATE		| | 
|  | IB_QP_MIN_RNR_TIMER), | 
|  | [IB_QPT_SMI] = (IB_QP_CUR_STATE			| | 
|  | IB_QP_QKEY), | 
|  | [IB_QPT_GSI] = (IB_QP_CUR_STATE			| | 
|  | IB_QP_QKEY), | 
|  | [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT, | 
|  | } | 
|  | }, | 
|  | [IB_QPS_SQD]   = { | 
|  | .valid = 1, | 
|  | .opt_param = { | 
|  | [IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY, | 
|  | [IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY, | 
|  | [IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY, | 
|  | [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY, | 
|  | [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */ | 
|  | [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY, | 
|  | [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY | 
|  | } | 
|  | }, | 
|  | }, | 
|  | [IB_QPS_SQD]   = { | 
|  | [IB_QPS_RESET] = { .valid = 1 }, | 
|  | [IB_QPS_ERR] =   { .valid = 1 }, | 
|  | [IB_QPS_RTS]   = { | 
|  | .valid = 1, | 
|  | .opt_param = { | 
|  | [IB_QPT_UD]  = (IB_QP_CUR_STATE			| | 
|  | IB_QP_QKEY), | 
|  | [IB_QPT_UC]  = (IB_QP_CUR_STATE			| | 
|  | IB_QP_ALT_PATH			| | 
|  | IB_QP_ACCESS_FLAGS		| | 
|  | IB_QP_PATH_MIG_STATE), | 
|  | [IB_QPT_RC]  = (IB_QP_CUR_STATE			| | 
|  | IB_QP_ALT_PATH			| | 
|  | IB_QP_ACCESS_FLAGS		| | 
|  | IB_QP_MIN_RNR_TIMER		| | 
|  | IB_QP_PATH_MIG_STATE), | 
|  | [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		| | 
|  | IB_QP_ALT_PATH			| | 
|  | IB_QP_ACCESS_FLAGS		| | 
|  | IB_QP_PATH_MIG_STATE), | 
|  | [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		| | 
|  | IB_QP_ALT_PATH			| | 
|  | IB_QP_ACCESS_FLAGS		| | 
|  | IB_QP_MIN_RNR_TIMER		| | 
|  | IB_QP_PATH_MIG_STATE), | 
|  | [IB_QPT_SMI] = (IB_QP_CUR_STATE			| | 
|  | IB_QP_QKEY), | 
|  | [IB_QPT_GSI] = (IB_QP_CUR_STATE			| | 
|  | IB_QP_QKEY), | 
|  | } | 
|  | }, | 
|  | [IB_QPS_SQD]   = { | 
|  | .valid = 1, | 
|  | .opt_param = { | 
|  | [IB_QPT_UD]  = (IB_QP_PKEY_INDEX		| | 
|  | IB_QP_QKEY), | 
|  | [IB_QPT_UC]  = (IB_QP_AV			| | 
|  | IB_QP_ALT_PATH			| | 
|  | IB_QP_ACCESS_FLAGS		| | 
|  | IB_QP_PKEY_INDEX		| | 
|  | IB_QP_PATH_MIG_STATE), | 
|  | [IB_QPT_RC]  = (IB_QP_PORT			| | 
|  | IB_QP_AV			| | 
|  | IB_QP_TIMEOUT			| | 
|  | IB_QP_RETRY_CNT			| | 
|  | IB_QP_RNR_RETRY			| | 
|  | IB_QP_MAX_QP_RD_ATOMIC		| | 
|  | IB_QP_MAX_DEST_RD_ATOMIC	| | 
|  | IB_QP_ALT_PATH			| | 
|  | IB_QP_ACCESS_FLAGS		| | 
|  | IB_QP_PKEY_INDEX		| | 
|  | IB_QP_MIN_RNR_TIMER		| | 
|  | IB_QP_PATH_MIG_STATE), | 
|  | [IB_QPT_XRC_INI] = (IB_QP_PORT			| | 
|  | IB_QP_AV			| | 
|  | IB_QP_TIMEOUT			| | 
|  | IB_QP_RETRY_CNT			| | 
|  | IB_QP_RNR_RETRY			| | 
|  | IB_QP_MAX_QP_RD_ATOMIC		| | 
|  | IB_QP_ALT_PATH			| | 
|  | IB_QP_ACCESS_FLAGS		| | 
|  | IB_QP_PKEY_INDEX		| | 
|  | IB_QP_PATH_MIG_STATE), | 
|  | [IB_QPT_XRC_TGT] = (IB_QP_PORT			| | 
|  | IB_QP_AV			| | 
|  | IB_QP_TIMEOUT			| | 
|  | IB_QP_MAX_DEST_RD_ATOMIC	| | 
|  | IB_QP_ALT_PATH			| | 
|  | IB_QP_ACCESS_FLAGS		| | 
|  | IB_QP_PKEY_INDEX		| | 
|  | IB_QP_MIN_RNR_TIMER		| | 
|  | IB_QP_PATH_MIG_STATE), | 
|  | [IB_QPT_SMI] = (IB_QP_PKEY_INDEX		| | 
|  | IB_QP_QKEY), | 
|  | [IB_QPT_GSI] = (IB_QP_PKEY_INDEX		| | 
|  | IB_QP_QKEY), | 
|  | } | 
|  | } | 
|  | }, | 
|  | [IB_QPS_SQE]   = { | 
|  | [IB_QPS_RESET] = { .valid = 1 }, | 
|  | [IB_QPS_ERR] =   { .valid = 1 }, | 
|  | [IB_QPS_RTS]   = { | 
|  | .valid = 1, | 
|  | .opt_param = { | 
|  | [IB_QPT_UD]  = (IB_QP_CUR_STATE			| | 
|  | IB_QP_QKEY), | 
|  | [IB_QPT_UC]  = (IB_QP_CUR_STATE			| | 
|  | IB_QP_ACCESS_FLAGS), | 
|  | [IB_QPT_SMI] = (IB_QP_CUR_STATE			| | 
|  | IB_QP_QKEY), | 
|  | [IB_QPT_GSI] = (IB_QP_CUR_STATE			| | 
|  | IB_QP_QKEY), | 
|  | } | 
|  | } | 
|  | }, | 
|  | [IB_QPS_ERR] = { | 
|  | [IB_QPS_RESET] = { .valid = 1 }, | 
|  | [IB_QPS_ERR] =   { .valid = 1 } | 
|  | } | 
|  | }; | 
|  |  | 
|  | int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, | 
|  | enum ib_qp_type type, enum ib_qp_attr_mask mask, | 
|  | enum rdma_link_layer ll) | 
|  | { | 
|  | enum ib_qp_attr_mask req_param, opt_param; | 
|  |  | 
|  | if (cur_state  < 0 || cur_state  > IB_QPS_ERR || | 
|  | next_state < 0 || next_state > IB_QPS_ERR) | 
|  | return 0; | 
|  |  | 
|  | if (mask & IB_QP_CUR_STATE  && | 
|  | cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS && | 
|  | cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE) | 
|  | return 0; | 
|  |  | 
|  | if (!qp_state_table[cur_state][next_state].valid) | 
|  | return 0; | 
|  |  | 
|  | req_param = qp_state_table[cur_state][next_state].req_param[type]; | 
|  | opt_param = qp_state_table[cur_state][next_state].opt_param[type]; | 
|  |  | 
|  | if ((mask & req_param) != req_param) | 
|  | return 0; | 
|  |  | 
|  | if (mask & ~(req_param | opt_param | IB_QP_STATE)) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | EXPORT_SYMBOL(ib_modify_qp_is_ok); | 
|  |  | 
|  | int ib_resolve_eth_dmac(struct ib_device *device, | 
|  | struct rdma_ah_attr *ah_attr) | 
|  | { | 
|  | int           ret = 0; | 
|  | struct ib_global_route *grh; | 
|  |  | 
|  | if (!rdma_is_port_valid(device, rdma_ah_get_port_num(ah_attr))) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (ah_attr->type != RDMA_AH_ATTR_TYPE_ROCE) | 
|  | return 0; | 
|  |  | 
|  | grh = rdma_ah_retrieve_grh(ah_attr); | 
|  |  | 
|  | if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw)) { | 
|  | rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw, | 
|  | ah_attr->roce.dmac); | 
|  | } else { | 
|  | union ib_gid		sgid; | 
|  | struct ib_gid_attr	sgid_attr; | 
|  | int			ifindex; | 
|  | int			hop_limit; | 
|  |  | 
|  | ret = ib_query_gid(device, | 
|  | rdma_ah_get_port_num(ah_attr), | 
|  | grh->sgid_index, | 
|  | &sgid, &sgid_attr); | 
|  |  | 
|  | if (ret || !sgid_attr.ndev) { | 
|  | if (!ret) | 
|  | ret = -ENXIO; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ifindex = sgid_attr.ndev->ifindex; | 
|  |  | 
|  | ret = | 
|  | rdma_addr_find_l2_eth_by_grh(&sgid, &grh->dgid, | 
|  | ah_attr->roce.dmac, | 
|  | NULL, &ifindex, &hop_limit); | 
|  |  | 
|  | dev_put(sgid_attr.ndev); | 
|  |  | 
|  | grh->hop_limit = hop_limit; | 
|  | } | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(ib_resolve_eth_dmac); | 
|  |  | 
|  | /** | 
|  | * ib_modify_qp_with_udata - Modifies the attributes for the specified QP. | 
|  | * @qp: The QP to modify. | 
|  | * @attr: On input, specifies the QP attributes to modify.  On output, | 
|  | *   the current values of selected QP attributes are returned. | 
|  | * @attr_mask: A bit-mask used to specify which attributes of the QP | 
|  | *   are being modified. | 
|  | * @udata: pointer to user's input output buffer information | 
|  | *   are being modified. | 
|  | * It returns 0 on success and returns appropriate error code on error. | 
|  | */ | 
|  | int ib_modify_qp_with_udata(struct ib_qp *qp, struct ib_qp_attr *attr, | 
|  | int attr_mask, struct ib_udata *udata) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (attr_mask & IB_QP_AV) { | 
|  | ret = ib_resolve_eth_dmac(qp->device, &attr->ah_attr); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  | ret = ib_security_modify_qp(qp, attr, attr_mask, udata); | 
|  | if (!ret && (attr_mask & IB_QP_PORT)) | 
|  | qp->port = attr->port_num; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(ib_modify_qp_with_udata); | 
|  |  | 
|  | int ib_modify_qp(struct ib_qp *qp, | 
|  | struct ib_qp_attr *qp_attr, | 
|  | int qp_attr_mask) | 
|  | { | 
|  | return ib_modify_qp_with_udata(qp, qp_attr, qp_attr_mask, NULL); | 
|  | } | 
|  | EXPORT_SYMBOL(ib_modify_qp); | 
|  |  | 
|  | int ib_query_qp(struct ib_qp *qp, | 
|  | struct ib_qp_attr *qp_attr, | 
|  | int qp_attr_mask, | 
|  | struct ib_qp_init_attr *qp_init_attr) | 
|  | { | 
|  | return qp->device->query_qp ? | 
|  | qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) : | 
|  | -ENOSYS; | 
|  | } | 
|  | EXPORT_SYMBOL(ib_query_qp); | 
|  |  | 
|  | int ib_close_qp(struct ib_qp *qp) | 
|  | { | 
|  | struct ib_qp *real_qp; | 
|  | unsigned long flags; | 
|  |  | 
|  | real_qp = qp->real_qp; | 
|  | if (real_qp == qp) | 
|  | return -EINVAL; | 
|  |  | 
|  | spin_lock_irqsave(&real_qp->device->event_handler_lock, flags); | 
|  | list_del(&qp->open_list); | 
|  | spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags); | 
|  |  | 
|  | atomic_dec(&real_qp->usecnt); | 
|  | ib_close_shared_qp_security(qp->qp_sec); | 
|  | kfree(qp); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(ib_close_qp); | 
|  |  | 
|  | static int __ib_destroy_shared_qp(struct ib_qp *qp) | 
|  | { | 
|  | struct ib_xrcd *xrcd; | 
|  | struct ib_qp *real_qp; | 
|  | int ret; | 
|  |  | 
|  | real_qp = qp->real_qp; | 
|  | xrcd = real_qp->xrcd; | 
|  |  | 
|  | mutex_lock(&xrcd->tgt_qp_mutex); | 
|  | ib_close_qp(qp); | 
|  | if (atomic_read(&real_qp->usecnt) == 0) | 
|  | list_del(&real_qp->xrcd_list); | 
|  | else | 
|  | real_qp = NULL; | 
|  | mutex_unlock(&xrcd->tgt_qp_mutex); | 
|  |  | 
|  | if (real_qp) { | 
|  | ret = ib_destroy_qp(real_qp); | 
|  | if (!ret) | 
|  | atomic_dec(&xrcd->usecnt); | 
|  | else | 
|  | __ib_insert_xrcd_qp(xrcd, real_qp); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int ib_destroy_qp(struct ib_qp *qp) | 
|  | { | 
|  | struct ib_pd *pd; | 
|  | struct ib_cq *scq, *rcq; | 
|  | struct ib_srq *srq; | 
|  | struct ib_rwq_ind_table *ind_tbl; | 
|  | struct ib_qp_security *sec; | 
|  | int ret; | 
|  |  | 
|  | WARN_ON_ONCE(qp->mrs_used > 0); | 
|  |  | 
|  | if (atomic_read(&qp->usecnt)) | 
|  | return -EBUSY; | 
|  |  | 
|  | if (qp->real_qp != qp) | 
|  | return __ib_destroy_shared_qp(qp); | 
|  |  | 
|  | pd   = qp->pd; | 
|  | scq  = qp->send_cq; | 
|  | rcq  = qp->recv_cq; | 
|  | srq  = qp->srq; | 
|  | ind_tbl = qp->rwq_ind_tbl; | 
|  | sec  = qp->qp_sec; | 
|  | if (sec) | 
|  | ib_destroy_qp_security_begin(sec); | 
|  |  | 
|  | if (!qp->uobject) | 
|  | rdma_rw_cleanup_mrs(qp); | 
|  |  | 
|  | ret = qp->device->destroy_qp(qp); | 
|  | if (!ret) { | 
|  | if (pd) | 
|  | atomic_dec(&pd->usecnt); | 
|  | if (scq) | 
|  | atomic_dec(&scq->usecnt); | 
|  | if (rcq) | 
|  | atomic_dec(&rcq->usecnt); | 
|  | if (srq) | 
|  | atomic_dec(&srq->usecnt); | 
|  | if (ind_tbl) | 
|  | atomic_dec(&ind_tbl->usecnt); | 
|  | if (sec) | 
|  | ib_destroy_qp_security_end(sec); | 
|  | } else { | 
|  | if (sec) | 
|  | ib_destroy_qp_security_abort(sec); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(ib_destroy_qp); | 
|  |  | 
|  | /* Completion queues */ | 
|  |  | 
|  | struct ib_cq *ib_create_cq(struct ib_device *device, | 
|  | ib_comp_handler comp_handler, | 
|  | void (*event_handler)(struct ib_event *, void *), | 
|  | void *cq_context, | 
|  | const struct ib_cq_init_attr *cq_attr) | 
|  | { | 
|  | struct ib_cq *cq; | 
|  |  | 
|  | cq = device->create_cq(device, cq_attr, NULL, NULL); | 
|  |  | 
|  | if (!IS_ERR(cq)) { | 
|  | cq->device        = device; | 
|  | cq->uobject       = NULL; | 
|  | cq->comp_handler  = comp_handler; | 
|  | cq->event_handler = event_handler; | 
|  | cq->cq_context    = cq_context; | 
|  | atomic_set(&cq->usecnt, 0); | 
|  | } | 
|  |  | 
|  | return cq; | 
|  | } | 
|  | EXPORT_SYMBOL(ib_create_cq); | 
|  |  | 
|  | int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period) | 
|  | { | 
|  | return cq->device->modify_cq ? | 
|  | cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS; | 
|  | } | 
|  | EXPORT_SYMBOL(ib_modify_cq); | 
|  |  | 
|  | int ib_destroy_cq(struct ib_cq *cq) | 
|  | { | 
|  | if (atomic_read(&cq->usecnt)) | 
|  | return -EBUSY; | 
|  |  | 
|  | return cq->device->destroy_cq(cq); | 
|  | } | 
|  | EXPORT_SYMBOL(ib_destroy_cq); | 
|  |  | 
|  | int ib_resize_cq(struct ib_cq *cq, int cqe) | 
|  | { | 
|  | return cq->device->resize_cq ? | 
|  | cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS; | 
|  | } | 
|  | EXPORT_SYMBOL(ib_resize_cq); | 
|  |  | 
|  | /* Memory regions */ | 
|  |  | 
|  | int ib_dereg_mr(struct ib_mr *mr) | 
|  | { | 
|  | struct ib_pd *pd = mr->pd; | 
|  | int ret; | 
|  |  | 
|  | ret = mr->device->dereg_mr(mr); | 
|  | if (!ret) | 
|  | atomic_dec(&pd->usecnt); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(ib_dereg_mr); | 
|  |  | 
|  | /** | 
|  | * ib_alloc_mr() - Allocates a memory region | 
|  | * @pd:            protection domain associated with the region | 
|  | * @mr_type:       memory region type | 
|  | * @max_num_sg:    maximum sg entries available for registration. | 
|  | * | 
|  | * Notes: | 
|  | * Memory registeration page/sg lists must not exceed max_num_sg. | 
|  | * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed | 
|  | * max_num_sg * used_page_size. | 
|  | * | 
|  | */ | 
|  | struct ib_mr *ib_alloc_mr(struct ib_pd *pd, | 
|  | enum ib_mr_type mr_type, | 
|  | u32 max_num_sg) | 
|  | { | 
|  | struct ib_mr *mr; | 
|  |  | 
|  | if (!pd->device->alloc_mr) | 
|  | return ERR_PTR(-ENOSYS); | 
|  |  | 
|  | mr = pd->device->alloc_mr(pd, mr_type, max_num_sg); | 
|  | if (!IS_ERR(mr)) { | 
|  | mr->device  = pd->device; | 
|  | mr->pd      = pd; | 
|  | mr->uobject = NULL; | 
|  | atomic_inc(&pd->usecnt); | 
|  | mr->need_inval = false; | 
|  | } | 
|  |  | 
|  | return mr; | 
|  | } | 
|  | EXPORT_SYMBOL(ib_alloc_mr); | 
|  |  | 
|  | /* "Fast" memory regions */ | 
|  |  | 
|  | struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, | 
|  | int mr_access_flags, | 
|  | struct ib_fmr_attr *fmr_attr) | 
|  | { | 
|  | struct ib_fmr *fmr; | 
|  |  | 
|  | if (!pd->device->alloc_fmr) | 
|  | return ERR_PTR(-ENOSYS); | 
|  |  | 
|  | fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr); | 
|  | if (!IS_ERR(fmr)) { | 
|  | fmr->device = pd->device; | 
|  | fmr->pd     = pd; | 
|  | atomic_inc(&pd->usecnt); | 
|  | } | 
|  |  | 
|  | return fmr; | 
|  | } | 
|  | EXPORT_SYMBOL(ib_alloc_fmr); | 
|  |  | 
|  | int ib_unmap_fmr(struct list_head *fmr_list) | 
|  | { | 
|  | struct ib_fmr *fmr; | 
|  |  | 
|  | if (list_empty(fmr_list)) | 
|  | return 0; | 
|  |  | 
|  | fmr = list_entry(fmr_list->next, struct ib_fmr, list); | 
|  | return fmr->device->unmap_fmr(fmr_list); | 
|  | } | 
|  | EXPORT_SYMBOL(ib_unmap_fmr); | 
|  |  | 
|  | int ib_dealloc_fmr(struct ib_fmr *fmr) | 
|  | { | 
|  | struct ib_pd *pd; | 
|  | int ret; | 
|  |  | 
|  | pd = fmr->pd; | 
|  | ret = fmr->device->dealloc_fmr(fmr); | 
|  | if (!ret) | 
|  | atomic_dec(&pd->usecnt); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(ib_dealloc_fmr); | 
|  |  | 
|  | /* Multicast groups */ | 
|  |  | 
|  | int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (!qp->device->attach_mcast) | 
|  | return -ENOSYS; | 
|  | if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD || | 
|  | lid < be16_to_cpu(IB_MULTICAST_LID_BASE) || | 
|  | lid == be16_to_cpu(IB_LID_PERMISSIVE)) | 
|  | return -EINVAL; | 
|  |  | 
|  | ret = qp->device->attach_mcast(qp, gid, lid); | 
|  | if (!ret) | 
|  | atomic_inc(&qp->usecnt); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(ib_attach_mcast); | 
|  |  | 
|  | int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (!qp->device->detach_mcast) | 
|  | return -ENOSYS; | 
|  | if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD || | 
|  | lid < be16_to_cpu(IB_MULTICAST_LID_BASE) || | 
|  | lid == be16_to_cpu(IB_LID_PERMISSIVE)) | 
|  | return -EINVAL; | 
|  |  | 
|  | ret = qp->device->detach_mcast(qp, gid, lid); | 
|  | if (!ret) | 
|  | atomic_dec(&qp->usecnt); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(ib_detach_mcast); | 
|  |  | 
|  | struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device) | 
|  | { | 
|  | struct ib_xrcd *xrcd; | 
|  |  | 
|  | if (!device->alloc_xrcd) | 
|  | return ERR_PTR(-ENOSYS); | 
|  |  | 
|  | xrcd = device->alloc_xrcd(device, NULL, NULL); | 
|  | if (!IS_ERR(xrcd)) { | 
|  | xrcd->device = device; | 
|  | xrcd->inode = NULL; | 
|  | atomic_set(&xrcd->usecnt, 0); | 
|  | mutex_init(&xrcd->tgt_qp_mutex); | 
|  | INIT_LIST_HEAD(&xrcd->tgt_qp_list); | 
|  | } | 
|  |  | 
|  | return xrcd; | 
|  | } | 
|  | EXPORT_SYMBOL(ib_alloc_xrcd); | 
|  |  | 
|  | int ib_dealloc_xrcd(struct ib_xrcd *xrcd) | 
|  | { | 
|  | struct ib_qp *qp; | 
|  | int ret; | 
|  |  | 
|  | if (atomic_read(&xrcd->usecnt)) | 
|  | return -EBUSY; | 
|  |  | 
|  | while (!list_empty(&xrcd->tgt_qp_list)) { | 
|  | qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list); | 
|  | ret = ib_destroy_qp(qp); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return xrcd->device->dealloc_xrcd(xrcd); | 
|  | } | 
|  | EXPORT_SYMBOL(ib_dealloc_xrcd); | 
|  |  | 
|  | /** | 
|  | * ib_create_wq - Creates a WQ associated with the specified protection | 
|  | * domain. | 
|  | * @pd: The protection domain associated with the WQ. | 
|  | * @wq_init_attr: A list of initial attributes required to create the | 
|  | * WQ. If WQ creation succeeds, then the attributes are updated to | 
|  | * the actual capabilities of the created WQ. | 
|  | * | 
|  | * wq_init_attr->max_wr and wq_init_attr->max_sge determine | 
|  | * the requested size of the WQ, and set to the actual values allocated | 
|  | * on return. | 
|  | * If ib_create_wq() succeeds, then max_wr and max_sge will always be | 
|  | * at least as large as the requested values. | 
|  | */ | 
|  | struct ib_wq *ib_create_wq(struct ib_pd *pd, | 
|  | struct ib_wq_init_attr *wq_attr) | 
|  | { | 
|  | struct ib_wq *wq; | 
|  |  | 
|  | if (!pd->device->create_wq) | 
|  | return ERR_PTR(-ENOSYS); | 
|  |  | 
|  | wq = pd->device->create_wq(pd, wq_attr, NULL); | 
|  | if (!IS_ERR(wq)) { | 
|  | wq->event_handler = wq_attr->event_handler; | 
|  | wq->wq_context = wq_attr->wq_context; | 
|  | wq->wq_type = wq_attr->wq_type; | 
|  | wq->cq = wq_attr->cq; | 
|  | wq->device = pd->device; | 
|  | wq->pd = pd; | 
|  | wq->uobject = NULL; | 
|  | atomic_inc(&pd->usecnt); | 
|  | atomic_inc(&wq_attr->cq->usecnt); | 
|  | atomic_set(&wq->usecnt, 0); | 
|  | } | 
|  | return wq; | 
|  | } | 
|  | EXPORT_SYMBOL(ib_create_wq); | 
|  |  | 
|  | /** | 
|  | * ib_destroy_wq - Destroys the specified WQ. | 
|  | * @wq: The WQ to destroy. | 
|  | */ | 
|  | int ib_destroy_wq(struct ib_wq *wq) | 
|  | { | 
|  | int err; | 
|  | struct ib_cq *cq = wq->cq; | 
|  | struct ib_pd *pd = wq->pd; | 
|  |  | 
|  | if (atomic_read(&wq->usecnt)) | 
|  | return -EBUSY; | 
|  |  | 
|  | err = wq->device->destroy_wq(wq); | 
|  | if (!err) { | 
|  | atomic_dec(&pd->usecnt); | 
|  | atomic_dec(&cq->usecnt); | 
|  | } | 
|  | return err; | 
|  | } | 
|  | EXPORT_SYMBOL(ib_destroy_wq); | 
|  |  | 
|  | /** | 
|  | * ib_modify_wq - Modifies the specified WQ. | 
|  | * @wq: The WQ to modify. | 
|  | * @wq_attr: On input, specifies the WQ attributes to modify. | 
|  | * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ | 
|  | *   are being modified. | 
|  | * On output, the current values of selected WQ attributes are returned. | 
|  | */ | 
|  | int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr, | 
|  | u32 wq_attr_mask) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | if (!wq->device->modify_wq) | 
|  | return -ENOSYS; | 
|  |  | 
|  | err = wq->device->modify_wq(wq, wq_attr, wq_attr_mask, NULL); | 
|  | return err; | 
|  | } | 
|  | EXPORT_SYMBOL(ib_modify_wq); | 
|  |  | 
|  | /* | 
|  | * ib_create_rwq_ind_table - Creates a RQ Indirection Table. | 
|  | * @device: The device on which to create the rwq indirection table. | 
|  | * @ib_rwq_ind_table_init_attr: A list of initial attributes required to | 
|  | * create the Indirection Table. | 
|  | * | 
|  | * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less | 
|  | *	than the created ib_rwq_ind_table object and the caller is responsible | 
|  | *	for its memory allocation/free. | 
|  | */ | 
|  | struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device, | 
|  | struct ib_rwq_ind_table_init_attr *init_attr) | 
|  | { | 
|  | struct ib_rwq_ind_table *rwq_ind_table; | 
|  | int i; | 
|  | u32 table_size; | 
|  |  | 
|  | if (!device->create_rwq_ind_table) | 
|  | return ERR_PTR(-ENOSYS); | 
|  |  | 
|  | table_size = (1 << init_attr->log_ind_tbl_size); | 
|  | rwq_ind_table = device->create_rwq_ind_table(device, | 
|  | init_attr, NULL); | 
|  | if (IS_ERR(rwq_ind_table)) | 
|  | return rwq_ind_table; | 
|  |  | 
|  | rwq_ind_table->ind_tbl = init_attr->ind_tbl; | 
|  | rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size; | 
|  | rwq_ind_table->device = device; | 
|  | rwq_ind_table->uobject = NULL; | 
|  | atomic_set(&rwq_ind_table->usecnt, 0); | 
|  |  | 
|  | for (i = 0; i < table_size; i++) | 
|  | atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt); | 
|  |  | 
|  | return rwq_ind_table; | 
|  | } | 
|  | EXPORT_SYMBOL(ib_create_rwq_ind_table); | 
|  |  | 
|  | /* | 
|  | * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table. | 
|  | * @wq_ind_table: The Indirection Table to destroy. | 
|  | */ | 
|  | int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table) | 
|  | { | 
|  | int err, i; | 
|  | u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size); | 
|  | struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl; | 
|  |  | 
|  | if (atomic_read(&rwq_ind_table->usecnt)) | 
|  | return -EBUSY; | 
|  |  | 
|  | err = rwq_ind_table->device->destroy_rwq_ind_table(rwq_ind_table); | 
|  | if (!err) { | 
|  | for (i = 0; i < table_size; i++) | 
|  | atomic_dec(&ind_tbl[i]->usecnt); | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  | EXPORT_SYMBOL(ib_destroy_rwq_ind_table); | 
|  |  | 
|  | struct ib_flow *ib_create_flow(struct ib_qp *qp, | 
|  | struct ib_flow_attr *flow_attr, | 
|  | int domain) | 
|  | { | 
|  | struct ib_flow *flow_id; | 
|  | if (!qp->device->create_flow) | 
|  | return ERR_PTR(-ENOSYS); | 
|  |  | 
|  | flow_id = qp->device->create_flow(qp, flow_attr, domain); | 
|  | if (!IS_ERR(flow_id)) { | 
|  | atomic_inc(&qp->usecnt); | 
|  | flow_id->qp = qp; | 
|  | } | 
|  | return flow_id; | 
|  | } | 
|  | EXPORT_SYMBOL(ib_create_flow); | 
|  |  | 
|  | int ib_destroy_flow(struct ib_flow *flow_id) | 
|  | { | 
|  | int err; | 
|  | struct ib_qp *qp = flow_id->qp; | 
|  |  | 
|  | err = qp->device->destroy_flow(flow_id); | 
|  | if (!err) | 
|  | atomic_dec(&qp->usecnt); | 
|  | return err; | 
|  | } | 
|  | EXPORT_SYMBOL(ib_destroy_flow); | 
|  |  | 
|  | int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, | 
|  | struct ib_mr_status *mr_status) | 
|  | { | 
|  | return mr->device->check_mr_status ? | 
|  | mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS; | 
|  | } | 
|  | EXPORT_SYMBOL(ib_check_mr_status); | 
|  |  | 
|  | int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port, | 
|  | int state) | 
|  | { | 
|  | if (!device->set_vf_link_state) | 
|  | return -ENOSYS; | 
|  |  | 
|  | return device->set_vf_link_state(device, vf, port, state); | 
|  | } | 
|  | EXPORT_SYMBOL(ib_set_vf_link_state); | 
|  |  | 
|  | int ib_get_vf_config(struct ib_device *device, int vf, u8 port, | 
|  | struct ifla_vf_info *info) | 
|  | { | 
|  | if (!device->get_vf_config) | 
|  | return -ENOSYS; | 
|  |  | 
|  | return device->get_vf_config(device, vf, port, info); | 
|  | } | 
|  | EXPORT_SYMBOL(ib_get_vf_config); | 
|  |  | 
|  | int ib_get_vf_stats(struct ib_device *device, int vf, u8 port, | 
|  | struct ifla_vf_stats *stats) | 
|  | { | 
|  | if (!device->get_vf_stats) | 
|  | return -ENOSYS; | 
|  |  | 
|  | return device->get_vf_stats(device, vf, port, stats); | 
|  | } | 
|  | EXPORT_SYMBOL(ib_get_vf_stats); | 
|  |  | 
|  | int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid, | 
|  | int type) | 
|  | { | 
|  | if (!device->set_vf_guid) | 
|  | return -ENOSYS; | 
|  |  | 
|  | return device->set_vf_guid(device, vf, port, guid, type); | 
|  | } | 
|  | EXPORT_SYMBOL(ib_set_vf_guid); | 
|  |  | 
|  | /** | 
|  | * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list | 
|  | *     and set it the memory region. | 
|  | * @mr:            memory region | 
|  | * @sg:            dma mapped scatterlist | 
|  | * @sg_nents:      number of entries in sg | 
|  | * @sg_offset:     offset in bytes into sg | 
|  | * @page_size:     page vector desired page size | 
|  | * | 
|  | * Constraints: | 
|  | * - The first sg element is allowed to have an offset. | 
|  | * - Each sg element must either be aligned to page_size or virtually | 
|  | *   contiguous to the previous element. In case an sg element has a | 
|  | *   non-contiguous offset, the mapping prefix will not include it. | 
|  | * - The last sg element is allowed to have length less than page_size. | 
|  | * - If sg_nents total byte length exceeds the mr max_num_sge * page_size | 
|  | *   then only max_num_sg entries will be mapped. | 
|  | * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these | 
|  | *   constraints holds and the page_size argument is ignored. | 
|  | * | 
|  | * Returns the number of sg elements that were mapped to the memory region. | 
|  | * | 
|  | * After this completes successfully, the  memory region | 
|  | * is ready for registration. | 
|  | */ | 
|  | int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, | 
|  | unsigned int *sg_offset, unsigned int page_size) | 
|  | { | 
|  | if (unlikely(!mr->device->map_mr_sg)) | 
|  | return -ENOSYS; | 
|  |  | 
|  | mr->page_size = page_size; | 
|  |  | 
|  | return mr->device->map_mr_sg(mr, sg, sg_nents, sg_offset); | 
|  | } | 
|  | EXPORT_SYMBOL(ib_map_mr_sg); | 
|  |  | 
|  | /** | 
|  | * ib_sg_to_pages() - Convert the largest prefix of a sg list | 
|  | *     to a page vector | 
|  | * @mr:            memory region | 
|  | * @sgl:           dma mapped scatterlist | 
|  | * @sg_nents:      number of entries in sg | 
|  | * @sg_offset_p:   IN:  start offset in bytes into sg | 
|  | *                 OUT: offset in bytes for element n of the sg of the first | 
|  | *                      byte that has not been processed where n is the return | 
|  | *                      value of this function. | 
|  | * @set_page:      driver page assignment function pointer | 
|  | * | 
|  | * Core service helper for drivers to convert the largest | 
|  | * prefix of given sg list to a page vector. The sg list | 
|  | * prefix converted is the prefix that meet the requirements | 
|  | * of ib_map_mr_sg. | 
|  | * | 
|  | * Returns the number of sg elements that were assigned to | 
|  | * a page vector. | 
|  | */ | 
|  | int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, | 
|  | unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64)) | 
|  | { | 
|  | struct scatterlist *sg; | 
|  | u64 last_end_dma_addr = 0; | 
|  | unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0; | 
|  | unsigned int last_page_off = 0; | 
|  | u64 page_mask = ~((u64)mr->page_size - 1); | 
|  | int i, ret; | 
|  |  | 
|  | if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0]))) | 
|  | return -EINVAL; | 
|  |  | 
|  | mr->iova = sg_dma_address(&sgl[0]) + sg_offset; | 
|  | mr->length = 0; | 
|  |  | 
|  | for_each_sg(sgl, sg, sg_nents, i) { | 
|  | u64 dma_addr = sg_dma_address(sg) + sg_offset; | 
|  | u64 prev_addr = dma_addr; | 
|  | unsigned int dma_len = sg_dma_len(sg) - sg_offset; | 
|  | u64 end_dma_addr = dma_addr + dma_len; | 
|  | u64 page_addr = dma_addr & page_mask; | 
|  |  | 
|  | /* | 
|  | * For the second and later elements, check whether either the | 
|  | * end of element i-1 or the start of element i is not aligned | 
|  | * on a page boundary. | 
|  | */ | 
|  | if (i && (last_page_off != 0 || page_addr != dma_addr)) { | 
|  | /* Stop mapping if there is a gap. */ | 
|  | if (last_end_dma_addr != dma_addr) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * Coalesce this element with the last. If it is small | 
|  | * enough just update mr->length. Otherwise start | 
|  | * mapping from the next page. | 
|  | */ | 
|  | goto next_page; | 
|  | } | 
|  |  | 
|  | do { | 
|  | ret = set_page(mr, page_addr); | 
|  | if (unlikely(ret < 0)) { | 
|  | sg_offset = prev_addr - sg_dma_address(sg); | 
|  | mr->length += prev_addr - dma_addr; | 
|  | if (sg_offset_p) | 
|  | *sg_offset_p = sg_offset; | 
|  | return i || sg_offset ? i : ret; | 
|  | } | 
|  | prev_addr = page_addr; | 
|  | next_page: | 
|  | page_addr += mr->page_size; | 
|  | } while (page_addr < end_dma_addr); | 
|  |  | 
|  | mr->length += dma_len; | 
|  | last_end_dma_addr = end_dma_addr; | 
|  | last_page_off = end_dma_addr & ~page_mask; | 
|  |  | 
|  | sg_offset = 0; | 
|  | } | 
|  |  | 
|  | if (sg_offset_p) | 
|  | *sg_offset_p = 0; | 
|  | return i; | 
|  | } | 
|  | EXPORT_SYMBOL(ib_sg_to_pages); | 
|  |  | 
|  | struct ib_drain_cqe { | 
|  | struct ib_cqe cqe; | 
|  | struct completion done; | 
|  | }; | 
|  |  | 
|  | static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc) | 
|  | { | 
|  | struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe, | 
|  | cqe); | 
|  |  | 
|  | complete(&cqe->done); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Post a WR and block until its completion is reaped for the SQ. | 
|  | */ | 
|  | static void __ib_drain_sq(struct ib_qp *qp) | 
|  | { | 
|  | struct ib_cq *cq = qp->send_cq; | 
|  | struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR }; | 
|  | struct ib_drain_cqe sdrain; | 
|  | struct ib_send_wr swr = {}, *bad_swr; | 
|  | int ret; | 
|  |  | 
|  | swr.wr_cqe = &sdrain.cqe; | 
|  | sdrain.cqe.done = ib_drain_qp_done; | 
|  | init_completion(&sdrain.done); | 
|  |  | 
|  | ret = ib_modify_qp(qp, &attr, IB_QP_STATE); | 
|  | if (ret) { | 
|  | WARN_ONCE(ret, "failed to drain send queue: %d\n", ret); | 
|  | return; | 
|  | } | 
|  |  | 
|  | ret = ib_post_send(qp, &swr, &bad_swr); | 
|  | if (ret) { | 
|  | WARN_ONCE(ret, "failed to drain send queue: %d\n", ret); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (cq->poll_ctx == IB_POLL_DIRECT) | 
|  | while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0) | 
|  | ib_process_cq_direct(cq, -1); | 
|  | else | 
|  | wait_for_completion(&sdrain.done); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Post a WR and block until its completion is reaped for the RQ. | 
|  | */ | 
|  | static void __ib_drain_rq(struct ib_qp *qp) | 
|  | { | 
|  | struct ib_cq *cq = qp->recv_cq; | 
|  | struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR }; | 
|  | struct ib_drain_cqe rdrain; | 
|  | struct ib_recv_wr rwr = {}, *bad_rwr; | 
|  | int ret; | 
|  |  | 
|  | rwr.wr_cqe = &rdrain.cqe; | 
|  | rdrain.cqe.done = ib_drain_qp_done; | 
|  | init_completion(&rdrain.done); | 
|  |  | 
|  | ret = ib_modify_qp(qp, &attr, IB_QP_STATE); | 
|  | if (ret) { | 
|  | WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret); | 
|  | return; | 
|  | } | 
|  |  | 
|  | ret = ib_post_recv(qp, &rwr, &bad_rwr); | 
|  | if (ret) { | 
|  | WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (cq->poll_ctx == IB_POLL_DIRECT) | 
|  | while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0) | 
|  | ib_process_cq_direct(cq, -1); | 
|  | else | 
|  | wait_for_completion(&rdrain.done); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ib_drain_sq() - Block until all SQ CQEs have been consumed by the | 
|  | *		   application. | 
|  | * @qp:            queue pair to drain | 
|  | * | 
|  | * If the device has a provider-specific drain function, then | 
|  | * call that.  Otherwise call the generic drain function | 
|  | * __ib_drain_sq(). | 
|  | * | 
|  | * The caller must: | 
|  | * | 
|  | * ensure there is room in the CQ and SQ for the drain work request and | 
|  | * completion. | 
|  | * | 
|  | * allocate the CQ using ib_alloc_cq(). | 
|  | * | 
|  | * ensure that there are no other contexts that are posting WRs concurrently. | 
|  | * Otherwise the drain is not guaranteed. | 
|  | */ | 
|  | void ib_drain_sq(struct ib_qp *qp) | 
|  | { | 
|  | if (qp->device->drain_sq) | 
|  | qp->device->drain_sq(qp); | 
|  | else | 
|  | __ib_drain_sq(qp); | 
|  | } | 
|  | EXPORT_SYMBOL(ib_drain_sq); | 
|  |  | 
|  | /** | 
|  | * ib_drain_rq() - Block until all RQ CQEs have been consumed by the | 
|  | *		   application. | 
|  | * @qp:            queue pair to drain | 
|  | * | 
|  | * If the device has a provider-specific drain function, then | 
|  | * call that.  Otherwise call the generic drain function | 
|  | * __ib_drain_rq(). | 
|  | * | 
|  | * The caller must: | 
|  | * | 
|  | * ensure there is room in the CQ and RQ for the drain work request and | 
|  | * completion. | 
|  | * | 
|  | * allocate the CQ using ib_alloc_cq(). | 
|  | * | 
|  | * ensure that there are no other contexts that are posting WRs concurrently. | 
|  | * Otherwise the drain is not guaranteed. | 
|  | */ | 
|  | void ib_drain_rq(struct ib_qp *qp) | 
|  | { | 
|  | if (qp->device->drain_rq) | 
|  | qp->device->drain_rq(qp); | 
|  | else | 
|  | __ib_drain_rq(qp); | 
|  | } | 
|  | EXPORT_SYMBOL(ib_drain_rq); | 
|  |  | 
|  | /** | 
|  | * ib_drain_qp() - Block until all CQEs have been consumed by the | 
|  | *		   application on both the RQ and SQ. | 
|  | * @qp:            queue pair to drain | 
|  | * | 
|  | * The caller must: | 
|  | * | 
|  | * ensure there is room in the CQ(s), SQ, and RQ for drain work requests | 
|  | * and completions. | 
|  | * | 
|  | * allocate the CQs using ib_alloc_cq(). | 
|  | * | 
|  | * ensure that there are no other contexts that are posting WRs concurrently. | 
|  | * Otherwise the drain is not guaranteed. | 
|  | */ | 
|  | void ib_drain_qp(struct ib_qp *qp) | 
|  | { | 
|  | ib_drain_sq(qp); | 
|  | if (!qp->srq) | 
|  | ib_drain_rq(qp); | 
|  | } | 
|  | EXPORT_SYMBOL(ib_drain_qp); |