|  | /* | 
|  | * Copyright (C) 2004-2006 Atmel Corporation | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | */ | 
|  | #ifndef __ASM_AVR32_PGTABLE_H | 
|  | #define __ASM_AVR32_PGTABLE_H | 
|  |  | 
|  | #include <asm/addrspace.h> | 
|  |  | 
|  | #ifndef __ASSEMBLY__ | 
|  | #include <linux/sched.h> | 
|  |  | 
|  | #endif /* !__ASSEMBLY__ */ | 
|  |  | 
|  | /* | 
|  | * Use two-level page tables just as the i386 (without PAE) | 
|  | */ | 
|  | #include <asm/pgtable-2level.h> | 
|  |  | 
|  | /* | 
|  | * The following code might need some cleanup when the values are | 
|  | * final... | 
|  | */ | 
|  | #define PMD_SIZE	(1UL << PMD_SHIFT) | 
|  | #define PMD_MASK	(~(PMD_SIZE-1)) | 
|  | #define PGDIR_SIZE	(1UL << PGDIR_SHIFT) | 
|  | #define PGDIR_MASK	(~(PGDIR_SIZE-1)) | 
|  |  | 
|  | #define USER_PTRS_PER_PGD	(TASK_SIZE / PGDIR_SIZE) | 
|  | #define FIRST_USER_ADDRESS	0 | 
|  |  | 
|  | #ifndef __ASSEMBLY__ | 
|  | extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; | 
|  | extern void paging_init(void); | 
|  |  | 
|  | /* | 
|  | * ZERO_PAGE is a global shared page that is always zero: used for | 
|  | * zero-mapped memory areas etc. | 
|  | */ | 
|  | extern struct page *empty_zero_page; | 
|  | #define ZERO_PAGE(vaddr) (empty_zero_page) | 
|  |  | 
|  | /* | 
|  | * Just any arbitrary offset to the start of the vmalloc VM area: the | 
|  | * current 8 MiB value just means that there will be a 8 MiB "hole" | 
|  | * after the uncached physical memory (P2 segment) until the vmalloc | 
|  | * area starts. That means that any out-of-bounds memory accesses will | 
|  | * hopefully be caught; we don't know if the end of the P1/P2 segments | 
|  | * are actually used for anything, but it is anyway safer to let the | 
|  | * MMU catch these kinds of errors than to rely on the memory bus. | 
|  | * | 
|  | * A "hole" of the same size is added to the end of the P3 segment as | 
|  | * well. It might seem wasteful to use 16 MiB of virtual address space | 
|  | * on this, but we do have 512 MiB of it... | 
|  | * | 
|  | * The vmalloc() routines leave a hole of 4 KiB between each vmalloced | 
|  | * area for the same reason. | 
|  | */ | 
|  | #define VMALLOC_OFFSET	(8 * 1024 * 1024) | 
|  | #define VMALLOC_START	(P3SEG + VMALLOC_OFFSET) | 
|  | #define VMALLOC_END	(P4SEG - VMALLOC_OFFSET) | 
|  | #endif /* !__ASSEMBLY__ */ | 
|  |  | 
|  | /* | 
|  | * Page flags. Some of these flags are not directly supported by | 
|  | * hardware, so we have to emulate them. | 
|  | */ | 
|  | #define _TLBEHI_BIT_VALID	9 | 
|  | #define _TLBEHI_VALID		(1 << _TLBEHI_BIT_VALID) | 
|  |  | 
|  | #define _PAGE_BIT_WT		0  /* W-bit   : write-through */ | 
|  | #define _PAGE_BIT_DIRTY		1  /* D-bit   : page changed */ | 
|  | #define _PAGE_BIT_SZ0		2  /* SZ0-bit : Size of page */ | 
|  | #define _PAGE_BIT_SZ1		3  /* SZ1-bit : Size of page */ | 
|  | #define _PAGE_BIT_EXECUTE	4  /* X-bit   : execute access allowed */ | 
|  | #define _PAGE_BIT_RW		5  /* AP0-bit : write access allowed */ | 
|  | #define _PAGE_BIT_USER		6  /* AP1-bit : user space access allowed */ | 
|  | #define _PAGE_BIT_BUFFER	7  /* B-bit   : bufferable */ | 
|  | #define _PAGE_BIT_GLOBAL	8  /* G-bit   : global (ignore ASID) */ | 
|  | #define _PAGE_BIT_CACHABLE	9  /* C-bit   : cachable */ | 
|  |  | 
|  | /* If we drop support for 1K pages, we get two extra bits */ | 
|  | #define _PAGE_BIT_PRESENT	10 | 
|  | #define _PAGE_BIT_ACCESSED	11 /* software: page was accessed */ | 
|  |  | 
|  | /* The following flags are only valid when !PRESENT */ | 
|  | #define _PAGE_BIT_FILE		0 /* software: pagecache or swap? */ | 
|  |  | 
|  | #define _PAGE_WT		(1 << _PAGE_BIT_WT) | 
|  | #define _PAGE_DIRTY		(1 << _PAGE_BIT_DIRTY) | 
|  | #define _PAGE_EXECUTE		(1 << _PAGE_BIT_EXECUTE) | 
|  | #define _PAGE_RW		(1 << _PAGE_BIT_RW) | 
|  | #define _PAGE_USER		(1 << _PAGE_BIT_USER) | 
|  | #define _PAGE_BUFFER		(1 << _PAGE_BIT_BUFFER) | 
|  | #define _PAGE_GLOBAL		(1 << _PAGE_BIT_GLOBAL) | 
|  | #define _PAGE_CACHABLE		(1 << _PAGE_BIT_CACHABLE) | 
|  |  | 
|  | /* Software flags */ | 
|  | #define _PAGE_ACCESSED		(1 << _PAGE_BIT_ACCESSED) | 
|  | #define _PAGE_PRESENT		(1 << _PAGE_BIT_PRESENT) | 
|  | #define _PAGE_FILE		(1 << _PAGE_BIT_FILE) | 
|  |  | 
|  | /* | 
|  | * Page types, i.e. sizes. _PAGE_TYPE_NONE corresponds to what is | 
|  | * usually called _PAGE_PROTNONE on other architectures. | 
|  | * | 
|  | * XXX: Find out if _PAGE_PROTNONE is equivalent with !_PAGE_USER. If | 
|  | * so, we can encode all possible page sizes (although we can't really | 
|  | * support 1K pages anyway due to the _PAGE_PRESENT and _PAGE_ACCESSED | 
|  | * bits) | 
|  | * | 
|  | */ | 
|  | #define _PAGE_TYPE_MASK		((1 << _PAGE_BIT_SZ0) | (1 << _PAGE_BIT_SZ1)) | 
|  | #define _PAGE_TYPE_NONE		(0 << _PAGE_BIT_SZ0) | 
|  | #define _PAGE_TYPE_SMALL	(1 << _PAGE_BIT_SZ0) | 
|  | #define _PAGE_TYPE_MEDIUM	(2 << _PAGE_BIT_SZ0) | 
|  | #define _PAGE_TYPE_LARGE	(3 << _PAGE_BIT_SZ0) | 
|  |  | 
|  | /* | 
|  | * Mask which drop software flags. We currently can't handle more than | 
|  | * 512 MiB of physical memory, so we can use bits 29-31 for other | 
|  | * stuff.  With a fixed 4K page size, we can use bits 10-11 as well as | 
|  | * bits 2-3 (SZ) | 
|  | */ | 
|  | #define _PAGE_FLAGS_HARDWARE_MASK	0xfffff3ff | 
|  |  | 
|  | #define _PAGE_FLAGS_CACHE_MASK	(_PAGE_CACHABLE | _PAGE_BUFFER | _PAGE_WT) | 
|  |  | 
|  | /* Flags that may be modified by software */ | 
|  | #define _PAGE_CHG_MASK		(PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY \ | 
|  | | _PAGE_FLAGS_CACHE_MASK) | 
|  |  | 
|  | #define _PAGE_FLAGS_READ	(_PAGE_CACHABLE	| _PAGE_BUFFER) | 
|  | #define _PAGE_FLAGS_WRITE	(_PAGE_FLAGS_READ | _PAGE_RW | _PAGE_DIRTY) | 
|  |  | 
|  | #define _PAGE_NORMAL(x)	__pgprot((x) | _PAGE_PRESENT | _PAGE_TYPE_SMALL	\ | 
|  | | _PAGE_ACCESSED) | 
|  |  | 
|  | #define PAGE_NONE	(_PAGE_ACCESSED | _PAGE_TYPE_NONE) | 
|  | #define PAGE_READ	(_PAGE_FLAGS_READ | _PAGE_USER) | 
|  | #define PAGE_EXEC	(_PAGE_FLAGS_READ | _PAGE_EXECUTE | _PAGE_USER) | 
|  | #define PAGE_WRITE	(_PAGE_FLAGS_WRITE | _PAGE_USER) | 
|  | #define PAGE_KERNEL	_PAGE_NORMAL(_PAGE_FLAGS_WRITE | _PAGE_EXECUTE | _PAGE_GLOBAL) | 
|  | #define PAGE_KERNEL_RO	_PAGE_NORMAL(_PAGE_FLAGS_READ | _PAGE_EXECUTE | _PAGE_GLOBAL) | 
|  |  | 
|  | #define _PAGE_P(x)	_PAGE_NORMAL((x) & ~(_PAGE_RW | _PAGE_DIRTY)) | 
|  | #define _PAGE_S(x)	_PAGE_NORMAL(x) | 
|  |  | 
|  | #define PAGE_COPY	_PAGE_P(PAGE_WRITE | PAGE_READ) | 
|  | #define PAGE_SHARED	_PAGE_S(PAGE_WRITE | PAGE_READ) | 
|  |  | 
|  | #ifndef __ASSEMBLY__ | 
|  | /* | 
|  | * The hardware supports flags for write- and execute access. Read is | 
|  | * always allowed if the page is loaded into the TLB, so the "-w-", | 
|  | * "--x" and "-wx" mappings are implemented as "rw-", "r-x" and "rwx", | 
|  | * respectively. | 
|  | * | 
|  | * The "---" case is handled by software; the page will simply not be | 
|  | * loaded into the TLB if the page type is _PAGE_TYPE_NONE. | 
|  | */ | 
|  |  | 
|  | #define __P000	__pgprot(PAGE_NONE) | 
|  | #define __P001	_PAGE_P(PAGE_READ) | 
|  | #define __P010	_PAGE_P(PAGE_WRITE) | 
|  | #define __P011	_PAGE_P(PAGE_WRITE | PAGE_READ) | 
|  | #define __P100	_PAGE_P(PAGE_EXEC) | 
|  | #define __P101	_PAGE_P(PAGE_EXEC | PAGE_READ) | 
|  | #define __P110	_PAGE_P(PAGE_EXEC | PAGE_WRITE) | 
|  | #define __P111	_PAGE_P(PAGE_EXEC | PAGE_WRITE | PAGE_READ) | 
|  |  | 
|  | #define __S000	__pgprot(PAGE_NONE) | 
|  | #define __S001	_PAGE_S(PAGE_READ) | 
|  | #define __S010	_PAGE_S(PAGE_WRITE) | 
|  | #define __S011	_PAGE_S(PAGE_WRITE | PAGE_READ) | 
|  | #define __S100	_PAGE_S(PAGE_EXEC) | 
|  | #define __S101	_PAGE_S(PAGE_EXEC | PAGE_READ) | 
|  | #define __S110	_PAGE_S(PAGE_EXEC | PAGE_WRITE) | 
|  | #define __S111	_PAGE_S(PAGE_EXEC | PAGE_WRITE | PAGE_READ) | 
|  |  | 
|  | #define pte_none(x)	(!pte_val(x)) | 
|  | #define pte_present(x)	(pte_val(x) & _PAGE_PRESENT) | 
|  |  | 
|  | #define pte_clear(mm,addr,xp)					\ | 
|  | do {							\ | 
|  | set_pte_at(mm, addr, xp, __pte(0));		\ | 
|  | } while (0) | 
|  |  | 
|  | /* | 
|  | * The following only work if pte_present() is true. | 
|  | * Undefined behaviour if not.. | 
|  | */ | 
|  | static inline int pte_write(pte_t pte) | 
|  | { | 
|  | return pte_val(pte) & _PAGE_RW; | 
|  | } | 
|  | static inline int pte_dirty(pte_t pte) | 
|  | { | 
|  | return pte_val(pte) & _PAGE_DIRTY; | 
|  | } | 
|  | static inline int pte_young(pte_t pte) | 
|  | { | 
|  | return pte_val(pte) & _PAGE_ACCESSED; | 
|  | } | 
|  | static inline int pte_special(pte_t pte) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The following only work if pte_present() is not true. | 
|  | */ | 
|  | static inline int pte_file(pte_t pte) | 
|  | { | 
|  | return pte_val(pte) & _PAGE_FILE; | 
|  | } | 
|  |  | 
|  | /* Mutator functions for PTE bits */ | 
|  | static inline pte_t pte_wrprotect(pte_t pte) | 
|  | { | 
|  | set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_RW)); | 
|  | return pte; | 
|  | } | 
|  | static inline pte_t pte_mkclean(pte_t pte) | 
|  | { | 
|  | set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_DIRTY)); | 
|  | return pte; | 
|  | } | 
|  | static inline pte_t pte_mkold(pte_t pte) | 
|  | { | 
|  | set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_ACCESSED)); | 
|  | return pte; | 
|  | } | 
|  | static inline pte_t pte_mkwrite(pte_t pte) | 
|  | { | 
|  | set_pte(&pte, __pte(pte_val(pte) | _PAGE_RW)); | 
|  | return pte; | 
|  | } | 
|  | static inline pte_t pte_mkdirty(pte_t pte) | 
|  | { | 
|  | set_pte(&pte, __pte(pte_val(pte) | _PAGE_DIRTY)); | 
|  | return pte; | 
|  | } | 
|  | static inline pte_t pte_mkyoung(pte_t pte) | 
|  | { | 
|  | set_pte(&pte, __pte(pte_val(pte) | _PAGE_ACCESSED)); | 
|  | return pte; | 
|  | } | 
|  | static inline pte_t pte_mkspecial(pte_t pte) | 
|  | { | 
|  | return pte; | 
|  | } | 
|  |  | 
|  | #define pmd_none(x)	(!pmd_val(x)) | 
|  | #define pmd_present(x)	(pmd_val(x)) | 
|  |  | 
|  | static inline void pmd_clear(pmd_t *pmdp) | 
|  | { | 
|  | set_pmd(pmdp, __pmd(0)); | 
|  | } | 
|  |  | 
|  | #define	pmd_bad(x)	(pmd_val(x) & ~PAGE_MASK) | 
|  |  | 
|  | /* | 
|  | * Permanent address of a page. We don't support highmem, so this is | 
|  | * trivial. | 
|  | */ | 
|  | #define pages_to_mb(x)	((x) >> (20-PAGE_SHIFT)) | 
|  | #define pte_page(x)	(pfn_to_page(pte_pfn(x))) | 
|  |  | 
|  | /* | 
|  | * Mark the prot value as uncacheable and unbufferable | 
|  | */ | 
|  | #define pgprot_noncached(prot)						\ | 
|  | __pgprot(pgprot_val(prot) & ~(_PAGE_BUFFER | _PAGE_CACHABLE)) | 
|  |  | 
|  | /* | 
|  | * Mark the prot value as uncacheable but bufferable | 
|  | */ | 
|  | #define pgprot_writecombine(prot)					\ | 
|  | __pgprot((pgprot_val(prot) & ~_PAGE_CACHABLE) | _PAGE_BUFFER) | 
|  |  | 
|  | /* | 
|  | * Conversion functions: convert a page and protection to a page entry, | 
|  | * and a page entry and page directory to the page they refer to. | 
|  | * | 
|  | * extern pte_t mk_pte(struct page *page, pgprot_t pgprot) | 
|  | */ | 
|  | #define mk_pte(page, pgprot)	pfn_pte(page_to_pfn(page), (pgprot)) | 
|  |  | 
|  | static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) | 
|  | { | 
|  | set_pte(&pte, __pte((pte_val(pte) & _PAGE_CHG_MASK) | 
|  | | pgprot_val(newprot))); | 
|  | return pte; | 
|  | } | 
|  |  | 
|  | #define page_pte(page)	page_pte_prot(page, __pgprot(0)) | 
|  |  | 
|  | #define pmd_page_vaddr(pmd)	pmd_val(pmd) | 
|  | #define pmd_page(pmd)		(virt_to_page(pmd_val(pmd))) | 
|  |  | 
|  | /* to find an entry in a page-table-directory. */ | 
|  | #define pgd_index(address)	(((address) >> PGDIR_SHIFT)	\ | 
|  | & (PTRS_PER_PGD - 1)) | 
|  | #define pgd_offset(mm, address)	((mm)->pgd + pgd_index(address)) | 
|  |  | 
|  | /* to find an entry in a kernel page-table-directory */ | 
|  | #define pgd_offset_k(address)	pgd_offset(&init_mm, address) | 
|  |  | 
|  | /* Find an entry in the third-level page table.. */ | 
|  | #define pte_index(address)				\ | 
|  | ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) | 
|  | #define pte_offset(dir, address)					\ | 
|  | ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(address)) | 
|  | #define pte_offset_kernel(dir, address)					\ | 
|  | ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(address)) | 
|  | #define pte_offset_map(dir, address) pte_offset_kernel(dir, address) | 
|  | #define pte_offset_map_nested(dir, address) pte_offset_kernel(dir, address) | 
|  | #define pte_unmap(pte)		do { } while (0) | 
|  | #define pte_unmap_nested(pte)	do { } while (0) | 
|  |  | 
|  | struct vm_area_struct; | 
|  | extern void update_mmu_cache(struct vm_area_struct * vma, | 
|  | unsigned long address, pte_t pte); | 
|  |  | 
|  | /* | 
|  | * Encode and decode a swap entry | 
|  | * | 
|  | * Constraints: | 
|  | *   _PAGE_FILE at bit 0 | 
|  | *   _PAGE_TYPE_* at bits 2-3 (for emulating _PAGE_PROTNONE) | 
|  | *   _PAGE_PRESENT at bit 10 | 
|  | * | 
|  | * We encode the type into bits 4-9 and offset into bits 11-31. This | 
|  | * gives us a 21 bits offset, or 2**21 * 4K = 8G usable swap space per | 
|  | * device, and 64 possible types. | 
|  | * | 
|  | * NOTE: We should set ZEROs at the position of _PAGE_PRESENT | 
|  | *       and _PAGE_PROTNONE bits | 
|  | */ | 
|  | #define __swp_type(x)		(((x).val >> 4) & 0x3f) | 
|  | #define __swp_offset(x)		((x).val >> 11) | 
|  | #define __swp_entry(type, offset) ((swp_entry_t) { ((type) << 4) | ((offset) << 11) }) | 
|  | #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) }) | 
|  | #define __swp_entry_to_pte(x)	((pte_t) { (x).val }) | 
|  |  | 
|  | /* | 
|  | * Encode and decode a nonlinear file mapping entry. We have to | 
|  | * preserve _PAGE_FILE and _PAGE_PRESENT here. _PAGE_TYPE_* isn't | 
|  | * necessary, since _PAGE_FILE implies !_PAGE_PROTNONE (?) | 
|  | */ | 
|  | #define PTE_FILE_MAX_BITS	30 | 
|  | #define pte_to_pgoff(pte)	(((pte_val(pte) >> 1) & 0x1ff)		\ | 
|  | | ((pte_val(pte) >> 11) << 9)) | 
|  | #define pgoff_to_pte(off)	((pte_t) { ((((off) & 0x1ff) << 1)	\ | 
|  | | (((off) >> 9) << 11)	\ | 
|  | | _PAGE_FILE) }) | 
|  |  | 
|  | typedef pte_t *pte_addr_t; | 
|  |  | 
|  | #define kern_addr_valid(addr)	(1) | 
|  |  | 
|  | #define io_remap_pfn_range(vma, vaddr, pfn, size, prot)	\ | 
|  | remap_pfn_range(vma, vaddr, pfn, size, prot) | 
|  |  | 
|  | /* No page table caches to initialize (?) */ | 
|  | #define pgtable_cache_init()	do { } while(0) | 
|  |  | 
|  | #include <asm-generic/pgtable.h> | 
|  |  | 
|  | #endif /* !__ASSEMBLY__ */ | 
|  |  | 
|  | #endif /* __ASM_AVR32_PGTABLE_H */ |