| /* |
| * Copyright 2003 Digi International (www.digi.com) |
| * Scott H Kilau <Scott_Kilau at digi dot com> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2, or (at your option) |
| * any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED; without even the |
| * implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR |
| * PURPOSE. See the GNU General Public License for more details. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/sched.h> |
| #include <linux/interrupt.h> |
| #include <linux/delay.h> |
| #include <linux/io.h> |
| #include <linux/serial.h> |
| #include <linux/serial_reg.h> |
| |
| #include "dgnc_driver.h" |
| #include "dgnc_neo.h" |
| #include "dgnc_tty.h" |
| |
| static inline void neo_parse_lsr(struct dgnc_board *brd, uint port); |
| static inline void neo_parse_isr(struct dgnc_board *brd, uint port); |
| static void neo_copy_data_from_uart_to_queue(struct channel_t *ch); |
| static inline void neo_clear_break(struct channel_t *ch, int force); |
| static inline void neo_set_cts_flow_control(struct channel_t *ch); |
| static inline void neo_set_rts_flow_control(struct channel_t *ch); |
| static inline void neo_set_ixon_flow_control(struct channel_t *ch); |
| static inline void neo_set_ixoff_flow_control(struct channel_t *ch); |
| static inline void neo_set_no_output_flow_control(struct channel_t *ch); |
| static inline void neo_set_no_input_flow_control(struct channel_t *ch); |
| static inline void neo_set_new_start_stop_chars(struct channel_t *ch); |
| static void neo_parse_modem(struct channel_t *ch, unsigned char signals); |
| static void neo_tasklet(unsigned long data); |
| static void neo_vpd(struct dgnc_board *brd); |
| static void neo_uart_init(struct channel_t *ch); |
| static void neo_uart_off(struct channel_t *ch); |
| static int neo_drain(struct tty_struct *tty, uint seconds); |
| static void neo_param(struct tty_struct *tty); |
| static void neo_assert_modem_signals(struct channel_t *ch); |
| static void neo_flush_uart_write(struct channel_t *ch); |
| static void neo_flush_uart_read(struct channel_t *ch); |
| static void neo_disable_receiver(struct channel_t *ch); |
| static void neo_enable_receiver(struct channel_t *ch); |
| static void neo_send_break(struct channel_t *ch, int msecs); |
| static void neo_send_start_character(struct channel_t *ch); |
| static void neo_send_stop_character(struct channel_t *ch); |
| static void neo_copy_data_from_queue_to_uart(struct channel_t *ch); |
| static uint neo_get_uart_bytes_left(struct channel_t *ch); |
| static void neo_send_immediate_char(struct channel_t *ch, unsigned char c); |
| static irqreturn_t neo_intr(int irq, void *voidbrd); |
| |
| struct board_ops dgnc_neo_ops = { |
| .tasklet = neo_tasklet, |
| .intr = neo_intr, |
| .uart_init = neo_uart_init, |
| .uart_off = neo_uart_off, |
| .drain = neo_drain, |
| .param = neo_param, |
| .vpd = neo_vpd, |
| .assert_modem_signals = neo_assert_modem_signals, |
| .flush_uart_write = neo_flush_uart_write, |
| .flush_uart_read = neo_flush_uart_read, |
| .disable_receiver = neo_disable_receiver, |
| .enable_receiver = neo_enable_receiver, |
| .send_break = neo_send_break, |
| .send_start_character = neo_send_start_character, |
| .send_stop_character = neo_send_stop_character, |
| .copy_data_from_queue_to_uart = neo_copy_data_from_queue_to_uart, |
| .get_uart_bytes_left = neo_get_uart_bytes_left, |
| .send_immediate_char = neo_send_immediate_char |
| }; |
| |
| /* |
| * This function allows calls to ensure that all outstanding |
| * PCI writes have been completed, by doing a PCI read against |
| * a non-destructive, read-only location on the Neo card. |
| * |
| * In this case, we are reading the DVID (Read-only Device Identification) |
| * value of the Neo card. |
| */ |
| static inline void neo_pci_posting_flush(struct dgnc_board *bd) |
| { |
| readb(bd->re_map_membase + 0x8D); |
| } |
| |
| static inline void neo_set_cts_flow_control(struct channel_t *ch) |
| { |
| unsigned char ier = readb(&ch->ch_neo_uart->ier); |
| unsigned char efr = readb(&ch->ch_neo_uart->efr); |
| |
| /* Turn on auto CTS flow control */ |
| ier |= UART_17158_IER_CTSDSR; |
| efr |= (UART_17158_EFR_ECB | UART_17158_EFR_CTSDSR); |
| |
| /* Turn off auto Xon flow control */ |
| efr &= ~UART_17158_EFR_IXON; |
| |
| /* |
| * Why? Because Exar's spec says we have to zero it |
| * out before setting it |
| */ |
| writeb(0, &ch->ch_neo_uart->efr); |
| |
| /* Turn on UART enhanced bits */ |
| writeb(efr, &ch->ch_neo_uart->efr); |
| |
| /* Turn on table D, with 8 char hi/low watermarks */ |
| writeb(UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_4DELAY, |
| &ch->ch_neo_uart->fctr); |
| |
| /* Feed the UART our trigger levels */ |
| writeb(8, &ch->ch_neo_uart->tfifo); |
| ch->ch_t_tlevel = 8; |
| |
| writeb(ier, &ch->ch_neo_uart->ier); |
| |
| neo_pci_posting_flush(ch->ch_bd); |
| } |
| |
| static inline void neo_set_rts_flow_control(struct channel_t *ch) |
| { |
| unsigned char ier = readb(&ch->ch_neo_uart->ier); |
| unsigned char efr = readb(&ch->ch_neo_uart->efr); |
| |
| /* Turn on auto RTS flow control */ |
| ier |= UART_17158_IER_RTSDTR; |
| efr |= (UART_17158_EFR_ECB | UART_17158_EFR_RTSDTR); |
| |
| /* Turn off auto Xoff flow control */ |
| ier &= ~UART_17158_IER_XOFF; |
| efr &= ~UART_17158_EFR_IXOFF; |
| |
| /* |
| * Why? Because Exar's spec says we have to zero it |
| * out before setting it |
| */ |
| writeb(0, &ch->ch_neo_uart->efr); |
| |
| /* Turn on UART enhanced bits */ |
| writeb(efr, &ch->ch_neo_uart->efr); |
| |
| writeb(UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_4DELAY, |
| &ch->ch_neo_uart->fctr); |
| ch->ch_r_watermark = 4; |
| |
| writeb(32, &ch->ch_neo_uart->rfifo); |
| ch->ch_r_tlevel = 32; |
| |
| writeb(ier, &ch->ch_neo_uart->ier); |
| |
| /* |
| * From the Neo UART spec sheet: |
| * The auto RTS/DTR function must be started by asserting |
| * RTS/DTR# output pin (MCR bit-0 or 1 to logic 1 after |
| * it is enabled. |
| */ |
| ch->ch_mostat |= UART_MCR_RTS; |
| |
| neo_pci_posting_flush(ch->ch_bd); |
| } |
| |
| static inline void neo_set_ixon_flow_control(struct channel_t *ch) |
| { |
| unsigned char ier = readb(&ch->ch_neo_uart->ier); |
| unsigned char efr = readb(&ch->ch_neo_uart->efr); |
| |
| /* Turn off auto CTS flow control */ |
| ier &= ~UART_17158_IER_CTSDSR; |
| efr &= ~UART_17158_EFR_CTSDSR; |
| |
| /* Turn on auto Xon flow control */ |
| efr |= (UART_17158_EFR_ECB | UART_17158_EFR_IXON); |
| |
| /* |
| * Why? Because Exar's spec says we have to zero it |
| * out before setting it |
| */ |
| writeb(0, &ch->ch_neo_uart->efr); |
| |
| /* Turn on UART enhanced bits */ |
| writeb(efr, &ch->ch_neo_uart->efr); |
| |
| writeb(UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY, |
| &ch->ch_neo_uart->fctr); |
| ch->ch_r_watermark = 4; |
| |
| writeb(32, &ch->ch_neo_uart->rfifo); |
| ch->ch_r_tlevel = 32; |
| |
| /* Tell UART what start/stop chars it should be looking for */ |
| writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1); |
| writeb(0, &ch->ch_neo_uart->xonchar2); |
| |
| writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1); |
| writeb(0, &ch->ch_neo_uart->xoffchar2); |
| |
| writeb(ier, &ch->ch_neo_uart->ier); |
| |
| neo_pci_posting_flush(ch->ch_bd); |
| } |
| |
| static inline void neo_set_ixoff_flow_control(struct channel_t *ch) |
| { |
| unsigned char ier = readb(&ch->ch_neo_uart->ier); |
| unsigned char efr = readb(&ch->ch_neo_uart->efr); |
| |
| /* Turn off auto RTS flow control */ |
| ier &= ~UART_17158_IER_RTSDTR; |
| efr &= ~UART_17158_EFR_RTSDTR; |
| |
| /* Turn on auto Xoff flow control */ |
| ier |= UART_17158_IER_XOFF; |
| efr |= (UART_17158_EFR_ECB | UART_17158_EFR_IXOFF); |
| |
| /* |
| * Why? Because Exar's spec says we have to zero it |
| * out before setting it |
| */ |
| writeb(0, &ch->ch_neo_uart->efr); |
| |
| /* Turn on UART enhanced bits */ |
| writeb(efr, &ch->ch_neo_uart->efr); |
| |
| /* Turn on table D, with 8 char hi/low watermarks */ |
| writeb(UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY, |
| &ch->ch_neo_uart->fctr); |
| |
| writeb(8, &ch->ch_neo_uart->tfifo); |
| ch->ch_t_tlevel = 8; |
| |
| /* Tell UART what start/stop chars it should be looking for */ |
| writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1); |
| writeb(0, &ch->ch_neo_uart->xonchar2); |
| |
| writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1); |
| writeb(0, &ch->ch_neo_uart->xoffchar2); |
| |
| writeb(ier, &ch->ch_neo_uart->ier); |
| |
| neo_pci_posting_flush(ch->ch_bd); |
| } |
| |
| static inline void neo_set_no_input_flow_control(struct channel_t *ch) |
| { |
| unsigned char ier = readb(&ch->ch_neo_uart->ier); |
| unsigned char efr = readb(&ch->ch_neo_uart->efr); |
| |
| /* Turn off auto RTS flow control */ |
| ier &= ~UART_17158_IER_RTSDTR; |
| efr &= ~UART_17158_EFR_RTSDTR; |
| |
| /* Turn off auto Xoff flow control */ |
| ier &= ~UART_17158_IER_XOFF; |
| if (ch->ch_c_iflag & IXON) |
| efr &= ~(UART_17158_EFR_IXOFF); |
| else |
| efr &= ~(UART_17158_EFR_ECB | UART_17158_EFR_IXOFF); |
| |
| /* |
| * Why? Because Exar's spec says we have to zero |
| * it out before setting it |
| */ |
| writeb(0, &ch->ch_neo_uart->efr); |
| |
| /* Turn on UART enhanced bits */ |
| writeb(efr, &ch->ch_neo_uart->efr); |
| |
| /* Turn on table D, with 8 char hi/low watermarks */ |
| writeb(UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY, |
| &ch->ch_neo_uart->fctr); |
| |
| ch->ch_r_watermark = 0; |
| |
| writeb(16, &ch->ch_neo_uart->tfifo); |
| ch->ch_t_tlevel = 16; |
| |
| writeb(16, &ch->ch_neo_uart->rfifo); |
| ch->ch_r_tlevel = 16; |
| |
| writeb(ier, &ch->ch_neo_uart->ier); |
| |
| neo_pci_posting_flush(ch->ch_bd); |
| } |
| |
| static inline void neo_set_no_output_flow_control(struct channel_t *ch) |
| { |
| unsigned char ier = readb(&ch->ch_neo_uart->ier); |
| unsigned char efr = readb(&ch->ch_neo_uart->efr); |
| |
| /* Turn off auto CTS flow control */ |
| ier &= ~UART_17158_IER_CTSDSR; |
| efr &= ~UART_17158_EFR_CTSDSR; |
| |
| /* Turn off auto Xon flow control */ |
| if (ch->ch_c_iflag & IXOFF) |
| efr &= ~UART_17158_EFR_IXON; |
| else |
| efr &= ~(UART_17158_EFR_ECB | UART_17158_EFR_IXON); |
| |
| /* |
| * Why? Because Exar's spec says we have to zero it |
| * out before setting it |
| */ |
| writeb(0, &ch->ch_neo_uart->efr); |
| |
| /* Turn on UART enhanced bits */ |
| writeb(efr, &ch->ch_neo_uart->efr); |
| |
| /* Turn on table D, with 8 char hi/low watermarks */ |
| writeb(UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY, |
| &ch->ch_neo_uart->fctr); |
| |
| ch->ch_r_watermark = 0; |
| |
| writeb(16, &ch->ch_neo_uart->tfifo); |
| ch->ch_t_tlevel = 16; |
| |
| writeb(16, &ch->ch_neo_uart->rfifo); |
| ch->ch_r_tlevel = 16; |
| |
| writeb(ier, &ch->ch_neo_uart->ier); |
| |
| neo_pci_posting_flush(ch->ch_bd); |
| } |
| |
| /* change UARTs start/stop chars */ |
| static inline void neo_set_new_start_stop_chars(struct channel_t *ch) |
| { |
| /* if hardware flow control is set, then skip this whole thing */ |
| if (ch->ch_digi.digi_flags & (CTSPACE | RTSPACE) || |
| ch->ch_c_cflag & CRTSCTS) |
| return; |
| |
| /* Tell UART what start/stop chars it should be looking for */ |
| writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1); |
| writeb(0, &ch->ch_neo_uart->xonchar2); |
| |
| writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1); |
| writeb(0, &ch->ch_neo_uart->xoffchar2); |
| |
| neo_pci_posting_flush(ch->ch_bd); |
| } |
| |
| /* No locks are assumed to be held when calling this function. */ |
| static inline void neo_clear_break(struct channel_t *ch, int force) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&ch->ch_lock, flags); |
| |
| if (!ch->ch_stop_sending_break) { |
| spin_unlock_irqrestore(&ch->ch_lock, flags); |
| return; |
| } |
| |
| if (ch->ch_flags & CH_BREAK_SENDING) { |
| if (force || |
| time_after_eq(jiffies, ch->ch_stop_sending_break)) { |
| unsigned char temp = readb(&ch->ch_neo_uart->lcr); |
| |
| writeb((temp & ~UART_LCR_SBC), &ch->ch_neo_uart->lcr); |
| neo_pci_posting_flush(ch->ch_bd); |
| ch->ch_flags &= ~(CH_BREAK_SENDING); |
| ch->ch_stop_sending_break = 0; |
| } |
| } |
| spin_unlock_irqrestore(&ch->ch_lock, flags); |
| } |
| |
| /* Parse the ISR register. */ |
| static inline void neo_parse_isr(struct dgnc_board *brd, uint port) |
| { |
| struct channel_t *ch; |
| unsigned char isr; |
| unsigned char cause; |
| unsigned long flags; |
| |
| ch = brd->channels[port]; |
| if (!ch) |
| return; |
| |
| /* Here we try to figure out what caused the interrupt to happen */ |
| while (1) { |
| isr = readb(&ch->ch_neo_uart->isr_fcr); |
| |
| if (isr & UART_IIR_NO_INT) |
| break; |
| |
| /* |
| * Yank off the upper 2 bits, |
| * which just show that the FIFO's are enabled. |
| */ |
| isr &= ~(UART_17158_IIR_FIFO_ENABLED); |
| |
| if (isr & (UART_17158_IIR_RDI_TIMEOUT | UART_IIR_RDI)) { |
| /* Read data from uart -> queue */ |
| neo_copy_data_from_uart_to_queue(ch); |
| /* |
| * Call our tty layer to enforce queue |
| * flow control if needed. |
| */ |
| spin_lock_irqsave(&ch->ch_lock, flags); |
| dgnc_check_queue_flow_control(ch); |
| spin_unlock_irqrestore(&ch->ch_lock, flags); |
| } |
| |
| if (isr & UART_IIR_THRI) { |
| spin_lock_irqsave(&ch->ch_lock, flags); |
| ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); |
| spin_unlock_irqrestore(&ch->ch_lock, flags); |
| neo_copy_data_from_queue_to_uart(ch); |
| } |
| |
| if (isr & UART_17158_IIR_XONXOFF) { |
| cause = readb(&ch->ch_neo_uart->xoffchar1); |
| |
| /* |
| * Since the UART detected either an XON or |
| * XOFF match, we need to figure out which |
| * one it was, so we can suspend or resume data flow. |
| */ |
| if (cause == UART_17158_XON_DETECT) { |
| /* resume output if stopped */ |
| if (brd->channels[port]->ch_flags & CH_STOP) { |
| spin_lock_irqsave(&ch->ch_lock, |
| flags); |
| ch->ch_flags &= ~(CH_STOP); |
| spin_unlock_irqrestore(&ch->ch_lock, |
| flags); |
| } |
| } else if (cause == UART_17158_XOFF_DETECT) { |
| if (!(brd->channels[port]->ch_flags & |
| CH_STOP)) { |
| spin_lock_irqsave(&ch->ch_lock, |
| flags); |
| ch->ch_flags |= CH_STOP; |
| spin_unlock_irqrestore(&ch->ch_lock, |
| flags); |
| } |
| } |
| } |
| |
| if (isr & UART_17158_IIR_HWFLOW_STATE_CHANGE) { |
| /* |
| * If we get here, this means the hardware is |
| * doing auto flow control. Check to see whether |
| * RTS/DTR or CTS/DSR caused this interrupt. |
| */ |
| cause = readb(&ch->ch_neo_uart->mcr); |
| /* Which pin is doing auto flow? RTS or DTR? */ |
| if ((cause & 0x4) == 0) { |
| if (cause & UART_MCR_RTS) { |
| spin_lock_irqsave(&ch->ch_lock, |
| flags); |
| ch->ch_mostat |= UART_MCR_RTS; |
| spin_unlock_irqrestore(&ch->ch_lock, |
| flags); |
| } else { |
| spin_lock_irqsave(&ch->ch_lock, |
| flags); |
| ch->ch_mostat &= ~(UART_MCR_RTS); |
| spin_unlock_irqrestore(&ch->ch_lock, |
| flags); |
| } |
| } else { |
| if (cause & UART_MCR_DTR) { |
| spin_lock_irqsave(&ch->ch_lock, |
| flags); |
| ch->ch_mostat |= UART_MCR_DTR; |
| spin_unlock_irqrestore(&ch->ch_lock, |
| flags); |
| } else { |
| spin_lock_irqsave(&ch->ch_lock, |
| flags); |
| ch->ch_mostat &= ~(UART_MCR_DTR); |
| spin_unlock_irqrestore(&ch->ch_lock, |
| flags); |
| } |
| } |
| } |
| |
| neo_parse_modem(ch, readb(&ch->ch_neo_uart->msr)); |
| } |
| } |
| |
| static inline void neo_parse_lsr(struct dgnc_board *brd, uint port) |
| { |
| struct channel_t *ch; |
| int linestatus; |
| unsigned long flags; |
| |
| if (!brd) |
| return; |
| |
| if (port >= brd->maxports) |
| return; |
| |
| ch = brd->channels[port]; |
| if (!ch) |
| return; |
| |
| linestatus = readb(&ch->ch_neo_uart->lsr); |
| |
| ch->ch_cached_lsr |= linestatus; |
| |
| if (ch->ch_cached_lsr & UART_LSR_DR) { |
| neo_copy_data_from_uart_to_queue(ch); |
| spin_lock_irqsave(&ch->ch_lock, flags); |
| dgnc_check_queue_flow_control(ch); |
| spin_unlock_irqrestore(&ch->ch_lock, flags); |
| } |
| |
| /* |
| * The next 3 tests should *NOT* happen, as the above test |
| * should encapsulate all 3... At least, thats what Exar says. |
| */ |
| |
| if (linestatus & UART_LSR_PE) |
| ch->ch_err_parity++; |
| |
| if (linestatus & UART_LSR_FE) |
| ch->ch_err_frame++; |
| |
| if (linestatus & UART_LSR_BI) |
| ch->ch_err_break++; |
| |
| if (linestatus & UART_LSR_OE) { |
| /* |
| * Rx Oruns. Exar says that an orun will NOT corrupt |
| * the FIFO. It will just replace the holding register |
| * with this new data byte. So basically just ignore this. |
| * Probably we should eventually have an orun stat in our |
| * driver... |
| */ |
| ch->ch_err_overrun++; |
| } |
| |
| if (linestatus & UART_LSR_THRE) { |
| spin_lock_irqsave(&ch->ch_lock, flags); |
| ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); |
| spin_unlock_irqrestore(&ch->ch_lock, flags); |
| |
| neo_copy_data_from_queue_to_uart(ch); |
| } else if (linestatus & UART_17158_TX_AND_FIFO_CLR) { |
| spin_lock_irqsave(&ch->ch_lock, flags); |
| ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); |
| spin_unlock_irqrestore(&ch->ch_lock, flags); |
| |
| neo_copy_data_from_queue_to_uart(ch); |
| } |
| } |
| |
| /* Send any/all changes to the line to the UART. */ |
| static void neo_param(struct tty_struct *tty) |
| { |
| unsigned char lcr = 0; |
| unsigned char uart_lcr = 0; |
| unsigned char ier = 0; |
| unsigned char uart_ier = 0; |
| uint baud = 9600; |
| int quot = 0; |
| struct dgnc_board *bd; |
| struct channel_t *ch; |
| struct un_t *un; |
| |
| if (!tty) |
| return; |
| |
| un = (struct un_t *)tty->driver_data; |
| if (!un) |
| return; |
| |
| ch = un->un_ch; |
| if (!ch) |
| return; |
| |
| bd = ch->ch_bd; |
| if (!bd) |
| return; |
| |
| /* If baud rate is zero, flush queues, and set mval to drop DTR. */ |
| if ((ch->ch_c_cflag & (CBAUD)) == 0) { |
| ch->ch_r_head = 0; |
| ch->ch_r_tail = 0; |
| ch->ch_e_head = 0; |
| ch->ch_e_tail = 0; |
| ch->ch_w_head = 0; |
| ch->ch_w_tail = 0; |
| |
| neo_flush_uart_write(ch); |
| neo_flush_uart_read(ch); |
| |
| /* The baudrate is B0 so all modem lines are to be dropped. */ |
| ch->ch_flags |= (CH_BAUD0); |
| ch->ch_mostat &= ~(UART_MCR_RTS | UART_MCR_DTR); |
| neo_assert_modem_signals(ch); |
| ch->ch_old_baud = 0; |
| return; |
| |
| } else if (ch->ch_custom_speed) { |
| baud = ch->ch_custom_speed; |
| /* Handle transition from B0 */ |
| if (ch->ch_flags & CH_BAUD0) { |
| ch->ch_flags &= ~(CH_BAUD0); |
| |
| /* |
| * Bring back up RTS and DTR... |
| * Also handle RTS or DTR toggle if set. |
| */ |
| if (!(ch->ch_digi.digi_flags & DIGI_RTS_TOGGLE)) |
| ch->ch_mostat |= (UART_MCR_RTS); |
| if (!(ch->ch_digi.digi_flags & DIGI_DTR_TOGGLE)) |
| ch->ch_mostat |= (UART_MCR_DTR); |
| } |
| } else { |
| int iindex = 0; |
| int jindex = 0; |
| |
| ulong bauds[4][16] = { |
| { /* slowbaud */ |
| 0, 50, 75, 110, |
| 134, 150, 200, 300, |
| 600, 1200, 1800, 2400, |
| 4800, 9600, 19200, 38400 }, |
| { /* slowbaud & CBAUDEX */ |
| 0, 57600, 115200, 230400, |
| 460800, 150, 200, 921600, |
| 600, 1200, 1800, 2400, |
| 4800, 9600, 19200, 38400 }, |
| { /* fastbaud */ |
| 0, 57600, 76800, 115200, |
| 131657, 153600, 230400, 460800, |
| 921600, 1200, 1800, 2400, |
| 4800, 9600, 19200, 38400 }, |
| { /* fastbaud & CBAUDEX */ |
| 0, 57600, 115200, 230400, |
| 460800, 150, 200, 921600, |
| 600, 1200, 1800, 2400, |
| 4800, 9600, 19200, 38400 } |
| }; |
| |
| /* |
| * Only use the TXPrint baud rate if the terminal unit |
| * is NOT open |
| */ |
| if (!(ch->ch_tun.un_flags & UN_ISOPEN) && |
| (un->un_type == DGNC_PRINT)) |
| baud = C_BAUD(ch->ch_pun.un_tty) & 0xff; |
| else |
| baud = C_BAUD(ch->ch_tun.un_tty) & 0xff; |
| |
| if (ch->ch_c_cflag & CBAUDEX) |
| iindex = 1; |
| |
| if (ch->ch_digi.digi_flags & DIGI_FAST) |
| iindex += 2; |
| |
| jindex = baud; |
| |
| if ((iindex >= 0) && (iindex < 4) && |
| (jindex >= 0) && (jindex < 16)) |
| baud = bauds[iindex][jindex]; |
| else |
| baud = 0; |
| |
| if (baud == 0) |
| baud = 9600; |
| |
| /* Handle transition from B0 */ |
| if (ch->ch_flags & CH_BAUD0) { |
| ch->ch_flags &= ~(CH_BAUD0); |
| |
| /* |
| * Bring back up RTS and DTR... |
| * Also handle RTS or DTR toggle if set. |
| */ |
| if (!(ch->ch_digi.digi_flags & DIGI_RTS_TOGGLE)) |
| ch->ch_mostat |= (UART_MCR_RTS); |
| if (!(ch->ch_digi.digi_flags & DIGI_DTR_TOGGLE)) |
| ch->ch_mostat |= (UART_MCR_DTR); |
| } |
| } |
| |
| if (ch->ch_c_cflag & PARENB) |
| lcr |= UART_LCR_PARITY; |
| |
| if (!(ch->ch_c_cflag & PARODD)) |
| lcr |= UART_LCR_EPAR; |
| |
| #ifdef CMSPAR |
| if (ch->ch_c_cflag & CMSPAR) |
| lcr |= UART_LCR_SPAR; |
| #endif |
| |
| if (ch->ch_c_cflag & CSTOPB) |
| lcr |= UART_LCR_STOP; |
| |
| switch (ch->ch_c_cflag & CSIZE) { |
| case CS5: |
| lcr |= UART_LCR_WLEN5; |
| break; |
| case CS6: |
| lcr |= UART_LCR_WLEN6; |
| break; |
| case CS7: |
| lcr |= UART_LCR_WLEN7; |
| break; |
| case CS8: |
| default: |
| lcr |= UART_LCR_WLEN8; |
| break; |
| } |
| |
| uart_ier = readb(&ch->ch_neo_uart->ier); |
| ier = uart_ier; |
| |
| uart_lcr = readb(&ch->ch_neo_uart->lcr); |
| |
| if (baud == 0) |
| baud = 9600; |
| |
| quot = ch->ch_bd->bd_dividend / baud; |
| |
| if (quot != 0 && ch->ch_old_baud != baud) { |
| ch->ch_old_baud = baud; |
| writeb(UART_LCR_DLAB, &ch->ch_neo_uart->lcr); |
| writeb((quot & 0xff), &ch->ch_neo_uart->txrx); |
| writeb((quot >> 8), &ch->ch_neo_uart->ier); |
| writeb(lcr, &ch->ch_neo_uart->lcr); |
| } |
| |
| if (uart_lcr != lcr) |
| writeb(lcr, &ch->ch_neo_uart->lcr); |
| |
| if (ch->ch_c_cflag & CREAD) |
| ier |= (UART_IER_RDI | UART_IER_RLSI); |
| else |
| ier &= ~(UART_IER_RDI | UART_IER_RLSI); |
| |
| /* |
| * Have the UART interrupt on modem signal changes ONLY when |
| * we are in hardware flow control mode, or CLOCAL/FORCEDCD is not set. |
| */ |
| if ((ch->ch_digi.digi_flags & CTSPACE) || |
| (ch->ch_digi.digi_flags & RTSPACE) || |
| (ch->ch_c_cflag & CRTSCTS) || |
| !(ch->ch_digi.digi_flags & DIGI_FORCEDCD) || |
| !(ch->ch_c_cflag & CLOCAL)) |
| ier |= UART_IER_MSI; |
| else |
| ier &= ~UART_IER_MSI; |
| |
| ier |= UART_IER_THRI; |
| |
| if (ier != uart_ier) |
| writeb(ier, &ch->ch_neo_uart->ier); |
| |
| neo_set_new_start_stop_chars(ch); |
| |
| if (ch->ch_digi.digi_flags & CTSPACE || ch->ch_c_cflag & CRTSCTS) { |
| neo_set_cts_flow_control(ch); |
| } else if (ch->ch_c_iflag & IXON) { |
| if ((ch->ch_startc == _POSIX_VDISABLE) || |
| (ch->ch_stopc == _POSIX_VDISABLE)) |
| neo_set_no_output_flow_control(ch); |
| else |
| neo_set_ixon_flow_control(ch); |
| } else { |
| neo_set_no_output_flow_control(ch); |
| } |
| |
| if (ch->ch_digi.digi_flags & RTSPACE || ch->ch_c_cflag & CRTSCTS) { |
| neo_set_rts_flow_control(ch); |
| } else if (ch->ch_c_iflag & IXOFF) { |
| if ((ch->ch_startc == _POSIX_VDISABLE) || |
| (ch->ch_stopc == _POSIX_VDISABLE)) |
| neo_set_no_input_flow_control(ch); |
| else |
| neo_set_ixoff_flow_control(ch); |
| } else { |
| neo_set_no_input_flow_control(ch); |
| } |
| |
| /* |
| * Adjust the RX FIFO Trigger level if baud is less than 9600. |
| * Not exactly elegant, but this is needed because of the Exar chip's |
| * delay on firing off the RX FIFO interrupt on slower baud rates. |
| */ |
| if (baud < 9600) { |
| writeb(1, &ch->ch_neo_uart->rfifo); |
| ch->ch_r_tlevel = 1; |
| } |
| |
| neo_assert_modem_signals(ch); |
| |
| neo_parse_modem(ch, readb(&ch->ch_neo_uart->msr)); |
| } |
| |
| /* Board poller function. */ |
| static void neo_tasklet(unsigned long data) |
| { |
| struct dgnc_board *bd = (struct dgnc_board *)data; |
| struct channel_t *ch; |
| unsigned long flags; |
| int i; |
| int state = 0; |
| int ports = 0; |
| |
| if (!bd) |
| return; |
| |
| spin_lock_irqsave(&bd->bd_lock, flags); |
| state = bd->state; |
| ports = bd->nasync; |
| spin_unlock_irqrestore(&bd->bd_lock, flags); |
| |
| /* |
| * Do NOT allow the interrupt routine to read the intr registers |
| * Until we release this lock. |
| */ |
| spin_lock_irqsave(&bd->bd_intr_lock, flags); |
| |
| if ((state == BOARD_READY) && (ports > 0)) { |
| for (i = 0; i < ports; i++) { |
| ch = bd->channels[i]; |
| if (!ch) |
| continue; |
| |
| /* |
| * NOTE: Remember you CANNOT hold any channel |
| * locks when calling the input routine. |
| * |
| * During input processing, its possible we |
| * will call the Linux ld, which might in turn, |
| * do a callback right back into us, resulting |
| * in us trying to grab the channel lock twice! |
| */ |
| dgnc_input(ch); |
| |
| /* |
| * Channel lock is grabbed and then released |
| * inside both of these routines, but neither |
| * call anything else that could call back into us. |
| */ |
| neo_copy_data_from_queue_to_uart(ch); |
| dgnc_wakeup_writes(ch); |
| |
| dgnc_carrier(ch); |
| |
| /* |
| * Check to see if we need to turn off a sending break. |
| * The timing check is done inside clear_break() |
| */ |
| if (ch->ch_stop_sending_break) |
| neo_clear_break(ch, 0); |
| } |
| } |
| |
| spin_unlock_irqrestore(&bd->bd_intr_lock, flags); |
| } |
| |
| /* Neo specific interrupt handler. */ |
| static irqreturn_t neo_intr(int irq, void *voidbrd) |
| { |
| struct dgnc_board *brd = voidbrd; |
| struct channel_t *ch; |
| int port = 0; |
| int type; |
| u32 uart_poll; |
| unsigned long flags; |
| unsigned long flags2; |
| |
| if (!brd) |
| return IRQ_NONE; |
| |
| /* Lock out the slow poller from running on this board. */ |
| spin_lock_irqsave(&brd->bd_intr_lock, flags); |
| |
| /* |
| * Read in "extended" IRQ information from the 32bit Neo register. |
| * Bits 0-7: What port triggered the interrupt. |
| * Bits 8-31: Each 3bits indicate what type of interrupt occurred. |
| */ |
| uart_poll = readl(brd->re_map_membase + UART_17158_POLL_ADDR_OFFSET); |
| |
| /* |
| * If 0, no interrupts pending. |
| * This can happen if the IRQ is shared among a couple Neo/Classic |
| * boards. |
| */ |
| if (!uart_poll) { |
| spin_unlock_irqrestore(&brd->bd_intr_lock, flags); |
| return IRQ_NONE; |
| } |
| |
| while ((uart_poll & 0xff) != 0) { |
| type = uart_poll >> (8 + (port * 3)); |
| type &= 0x7; |
| |
| uart_poll &= ~(0x01 << port); |
| |
| switch (type) { |
| case UART_17158_RXRDY_TIMEOUT: |
| /* |
| * RXRDY Time-out is cleared by reading data in the |
| * RX FIFO until it falls below the trigger level. |
| */ |
| |
| if (port >= brd->nasync) |
| break; |
| |
| ch = brd->channels[port]; |
| neo_copy_data_from_uart_to_queue(ch); |
| |
| /* |
| * Call our tty layer to enforce queue flow control if |
| * needed. |
| */ |
| spin_lock_irqsave(&ch->ch_lock, flags2); |
| dgnc_check_queue_flow_control(ch); |
| spin_unlock_irqrestore(&ch->ch_lock, flags2); |
| |
| break; |
| |
| case UART_17158_RX_LINE_STATUS: |
| |
| /* RXRDY and RX LINE Status (logic OR of LSR[4:1]) */ |
| |
| neo_parse_lsr(brd, port); |
| break; |
| |
| case UART_17158_TXRDY: |
| /* |
| * TXRDY interrupt clears after reading ISR register |
| * for the UART channel. |
| */ |
| |
| /* |
| * Yes, this is odd... |
| * Why would I check EVERY possibility of type of |
| * interrupt, when we know its TXRDY??? |
| * Becuz for some reason, even tho we got triggered for |
| * TXRDY, it seems to be occasionally wrong. Instead of |
| * TX, which it should be, I was getting things like |
| * RXDY too. Weird. |
| */ |
| neo_parse_isr(brd, port); |
| break; |
| |
| case UART_17158_MSR: |
| /* MSR or flow control was seen. */ |
| neo_parse_isr(brd, port); |
| break; |
| |
| default: |
| break; |
| } |
| |
| port++; |
| } |
| |
| tasklet_schedule(&brd->helper_tasklet); |
| |
| spin_unlock_irqrestore(&brd->bd_intr_lock, flags); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * Neo specific way of turning off the receiver. |
| * Used as a way to enforce queue flow control when in |
| * hardware flow control mode. |
| */ |
| static void neo_disable_receiver(struct channel_t *ch) |
| { |
| unsigned char tmp = readb(&ch->ch_neo_uart->ier); |
| |
| tmp &= ~(UART_IER_RDI); |
| writeb(tmp, &ch->ch_neo_uart->ier); |
| neo_pci_posting_flush(ch->ch_bd); |
| } |
| |
| /* |
| * Neo specific way of turning on the receiver. |
| * Used as a way to un-enforce queue flow control when in |
| * hardware flow control mode. |
| */ |
| static void neo_enable_receiver(struct channel_t *ch) |
| { |
| unsigned char tmp = readb(&ch->ch_neo_uart->ier); |
| |
| tmp |= (UART_IER_RDI); |
| writeb(tmp, &ch->ch_neo_uart->ier); |
| neo_pci_posting_flush(ch->ch_bd); |
| } |
| |
| static void neo_copy_data_from_uart_to_queue(struct channel_t *ch) |
| { |
| int qleft = 0; |
| unsigned char linestatus = 0; |
| unsigned char error_mask = 0; |
| int n = 0; |
| int total = 0; |
| ushort head; |
| ushort tail; |
| unsigned long flags; |
| |
| if (!ch) |
| return; |
| |
| spin_lock_irqsave(&ch->ch_lock, flags); |
| |
| head = ch->ch_r_head & RQUEUEMASK; |
| tail = ch->ch_r_tail & RQUEUEMASK; |
| |
| linestatus = ch->ch_cached_lsr; |
| ch->ch_cached_lsr = 0; |
| |
| qleft = tail - head - 1; |
| if (qleft < 0) |
| qleft += RQUEUEMASK + 1; |
| |
| if (!(ch->ch_flags & CH_FIFO_ENABLED)) { |
| /* force the FIFO copy to NOT be run */ |
| total = 0; |
| } else { |
| total = readb(&ch->ch_neo_uart->rfifo); |
| |
| /* |
| * EXAR chip bug - RX FIFO COUNT - Fudge factor. |
| * |
| * This resolves a problem/bug with the Exar chip that sometimes |
| * returns a bogus value in the rfifo register. |
| * The count can be any where from 0-3 bytes "off". |
| * Bizarre, but true. |
| */ |
| if ((ch->ch_bd->dvid & 0xf0) >= UART_XR17E158_DVID) |
| total -= 1; |
| else |
| total -= 3; |
| } |
| |
| total = min(total, qleft); |
| |
| while (total > 0) { |
| linestatus = readb(&ch->ch_neo_uart->lsr); |
| |
| if (linestatus & UART_17158_RX_FIFO_DATA_ERROR) |
| break; |
| |
| /* Make sure we don't go over the end of our queue */ |
| n = min(((uint)total), (RQUEUESIZE - (uint)head)); |
| |
| /* |
| * Cut down n even further if needed, this is to fix |
| * a problem with memcpy_fromio() with the Neo on the |
| * IBM pSeries platform. |
| * 15 bytes max appears to be the magic number. |
| */ |
| n = min_t(uint, n, 12); |
| |
| /* |
| * Since we are grabbing the linestatus register, which |
| * will reset some bits after our read, we need to ensure |
| * we don't miss our TX FIFO emptys. |
| */ |
| if (linestatus & (UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR)) |
| ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); |
| |
| linestatus = 0; |
| |
| memcpy_fromio(ch->ch_rqueue + head, |
| &ch->ch_neo_uart->txrxburst, n); |
| |
| /* |
| * Since RX_FIFO_DATA_ERROR was 0, we are guaranteed |
| * that all the data currently in the FIFO is free of |
| * breaks and parity/frame/orun errors. |
| */ |
| memset(ch->ch_equeue + head, 0, n); |
| |
| head = (head + n) & RQUEUEMASK; |
| total -= n; |
| qleft -= n; |
| ch->ch_rxcount += n; |
| } |
| |
| /* |
| * Create a mask to determine whether we should |
| * insert the character (if any) into our queue. |
| */ |
| if (ch->ch_c_iflag & IGNBRK) |
| error_mask |= UART_LSR_BI; |
| |
| /* |
| * Now cleanup any leftover bytes still in the UART. |
| * Also deal with any possible queue overflow here as well. |
| */ |
| while (1) { |
| /* |
| * Its possible we have a linestatus from the loop above |
| * this, so we "OR" on any extra bits. |
| */ |
| linestatus |= readb(&ch->ch_neo_uart->lsr); |
| |
| /* |
| * If the chip tells us there is no more data pending to |
| * be read, we can then leave. |
| * But before we do, cache the linestatus, just in case. |
| */ |
| if (!(linestatus & UART_LSR_DR)) { |
| ch->ch_cached_lsr = linestatus; |
| break; |
| } |
| |
| /* No need to store this bit */ |
| linestatus &= ~UART_LSR_DR; |
| |
| /* |
| * Since we are grabbing the linestatus register, which |
| * will reset some bits after our read, we need to ensure |
| * we don't miss our TX FIFO emptys. |
| */ |
| if (linestatus & (UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR)) { |
| linestatus &= ~(UART_LSR_THRE | |
| UART_17158_TX_AND_FIFO_CLR); |
| ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); |
| } |
| |
| if (linestatus & error_mask) { |
| unsigned char discard; |
| |
| linestatus = 0; |
| memcpy_fromio(&discard, &ch->ch_neo_uart->txrxburst, 1); |
| continue; |
| } |
| |
| /* |
| * If our queue is full, we have no choice but to drop |
| * some data. The assumption is that HWFLOW or SWFLOW |
| * should have stopped things way way before we got to |
| * this point. |
| */ |
| while (qleft < 1) { |
| tail = (tail + 1) & RQUEUEMASK; |
| ch->ch_r_tail = tail; |
| ch->ch_err_overrun++; |
| qleft++; |
| } |
| |
| memcpy_fromio(ch->ch_rqueue + head, |
| &ch->ch_neo_uart->txrxburst, 1); |
| ch->ch_equeue[head] = (unsigned char)linestatus; |
| |
| linestatus = 0; |
| |
| head = (head + 1) & RQUEUEMASK; |
| |
| qleft--; |
| ch->ch_rxcount++; |
| } |
| |
| ch->ch_r_head = head & RQUEUEMASK; |
| ch->ch_e_head = head & EQUEUEMASK; |
| |
| spin_unlock_irqrestore(&ch->ch_lock, flags); |
| } |
| |
| /* |
| * This function basically goes to sleep for secs, or until |
| * it gets signalled that the port has fully drained. |
| */ |
| static int neo_drain(struct tty_struct *tty, uint seconds) |
| { |
| unsigned long flags; |
| struct channel_t *ch; |
| struct un_t *un; |
| int rc = 0; |
| |
| if (!tty) |
| return -ENXIO; |
| |
| un = (struct un_t *)tty->driver_data; |
| if (!un) |
| return -ENXIO; |
| |
| ch = un->un_ch; |
| if (!ch) |
| return -ENXIO; |
| |
| spin_lock_irqsave(&ch->ch_lock, flags); |
| un->un_flags |= UN_EMPTY; |
| spin_unlock_irqrestore(&ch->ch_lock, flags); |
| |
| rc = wait_event_interruptible_timeout(un->un_flags_wait, |
| ((un->un_flags & UN_EMPTY) == 0), |
| msecs_to_jiffies(seconds * 1000)); |
| |
| /* If ret is non-zero, user ctrl-c'ed us */ |
| return rc; |
| } |
| |
| /* |
| * Flush the WRITE FIFO on the Neo. |
| * Channel lock MUST be held before calling this function! |
| */ |
| static void neo_flush_uart_write(struct channel_t *ch) |
| { |
| unsigned char tmp = 0; |
| int i = 0; |
| |
| if (!ch) |
| return; |
| |
| writeb((UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_XMIT), |
| &ch->ch_neo_uart->isr_fcr); |
| neo_pci_posting_flush(ch->ch_bd); |
| |
| for (i = 0; i < 10; i++) { |
| /* |
| * Check to see if the UART completely flushed the FIFO |
| * FIFO. |
| */ |
| tmp = readb(&ch->ch_neo_uart->isr_fcr); |
| if (tmp & 4) |
| udelay(10); |
| else |
| break; |
| } |
| |
| ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); |
| } |
| |
| /* |
| * Flush the READ FIFO on the Neo. |
| * Channel lock MUST be held before calling this function! |
| */ |
| static void neo_flush_uart_read(struct channel_t *ch) |
| { |
| unsigned char tmp = 0; |
| int i = 0; |
| |
| if (!ch) |
| return; |
| |
| writeb(UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_RCVR, |
| &ch->ch_neo_uart->isr_fcr); |
| neo_pci_posting_flush(ch->ch_bd); |
| |
| for (i = 0; i < 10; i++) { |
| /* |
| * Check to see if the UART feels it completely flushed the |
| * FIFO. |
| */ |
| tmp = readb(&ch->ch_neo_uart->isr_fcr); |
| if (tmp & 2) |
| udelay(10); |
| else |
| break; |
| } |
| } |
| |
| static void neo_copy_data_from_queue_to_uart(struct channel_t *ch) |
| { |
| ushort head; |
| ushort tail; |
| int n; |
| int s; |
| int qlen; |
| uint len_written = 0; |
| unsigned long flags; |
| |
| if (!ch) |
| return; |
| |
| spin_lock_irqsave(&ch->ch_lock, flags); |
| |
| if (ch->ch_w_tail == ch->ch_w_head) |
| goto exit_unlock; |
| |
| /* If port is "stopped", don't send any data to the UART */ |
| if ((ch->ch_flags & CH_FORCED_STOP) || |
| (ch->ch_flags & CH_BREAK_SENDING)) |
| goto exit_unlock; |
| |
| if (!(ch->ch_flags & CH_FIFO_ENABLED)) { |
| /* Send data directly to txrx register */ |
| unsigned char lsrbits = readb(&ch->ch_neo_uart->lsr); |
| |
| ch->ch_cached_lsr |= lsrbits; |
| if (ch->ch_cached_lsr & UART_LSR_THRE) { |
| ch->ch_cached_lsr &= ~(UART_LSR_THRE); |
| |
| /* |
| * If RTS Toggle mode is on, turn on RTS now if not |
| * already set, and make sure we get an event when the |
| * data transfer has completed. |
| */ |
| if (ch->ch_digi.digi_flags & DIGI_RTS_TOGGLE) { |
| if (!(ch->ch_mostat & UART_MCR_RTS)) { |
| ch->ch_mostat |= (UART_MCR_RTS); |
| neo_assert_modem_signals(ch); |
| } |
| ch->ch_tun.un_flags |= (UN_EMPTY); |
| } |
| /* |
| * If DTR Toggle mode is on, turn on DTR now if not |
| * already set, and make sure we get an event when the |
| * data transfer has completed. |
| */ |
| if (ch->ch_digi.digi_flags & DIGI_DTR_TOGGLE) { |
| if (!(ch->ch_mostat & UART_MCR_DTR)) { |
| ch->ch_mostat |= (UART_MCR_DTR); |
| neo_assert_modem_signals(ch); |
| } |
| ch->ch_tun.un_flags |= (UN_EMPTY); |
| } |
| |
| writeb(ch->ch_wqueue[ch->ch_w_tail], |
| &ch->ch_neo_uart->txrx); |
| ch->ch_w_tail++; |
| ch->ch_w_tail &= WQUEUEMASK; |
| ch->ch_txcount++; |
| } |
| |
| goto exit_unlock; |
| } |
| |
| /* We have to do it this way, because of the EXAR TXFIFO count bug. */ |
| |
| if ((ch->ch_bd->dvid & 0xf0) < UART_XR17E158_DVID) { |
| if (!(ch->ch_flags & (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM))) |
| goto exit_unlock; |
| |
| len_written = 0; |
| |
| n = readb(&ch->ch_neo_uart->tfifo); |
| |
| if ((unsigned int)n > ch->ch_t_tlevel) |
| goto exit_unlock; |
| |
| n = UART_17158_TX_FIFOSIZE - ch->ch_t_tlevel; |
| } else { |
| n = UART_17158_TX_FIFOSIZE - readb(&ch->ch_neo_uart->tfifo); |
| } |
| |
| head = ch->ch_w_head & WQUEUEMASK; |
| tail = ch->ch_w_tail & WQUEUEMASK; |
| qlen = (head - tail) & WQUEUEMASK; |
| |
| n = min(n, qlen); |
| |
| while (n > 0) { |
| s = ((head >= tail) ? head : WQUEUESIZE) - tail; |
| s = min(s, n); |
| |
| if (s <= 0) |
| break; |
| |
| /* |
| * If RTS Toggle mode is on, turn on RTS now if not already set, |
| * and make sure we get an event when the data transfer has |
| * completed. |
| */ |
| if (ch->ch_digi.digi_flags & DIGI_RTS_TOGGLE) { |
| if (!(ch->ch_mostat & UART_MCR_RTS)) { |
| ch->ch_mostat |= (UART_MCR_RTS); |
| neo_assert_modem_signals(ch); |
| } |
| ch->ch_tun.un_flags |= (UN_EMPTY); |
| } |
| |
| /* |
| * If DTR Toggle mode is on, turn on DTR now if not already set, |
| * and make sure we get an event when the data transfer has |
| * completed. |
| */ |
| if (ch->ch_digi.digi_flags & DIGI_DTR_TOGGLE) { |
| if (!(ch->ch_mostat & UART_MCR_DTR)) { |
| ch->ch_mostat |= (UART_MCR_DTR); |
| neo_assert_modem_signals(ch); |
| } |
| ch->ch_tun.un_flags |= (UN_EMPTY); |
| } |
| |
| memcpy_toio(&ch->ch_neo_uart->txrxburst, |
| ch->ch_wqueue + tail, s); |
| |
| tail = (tail + s) & WQUEUEMASK; |
| n -= s; |
| ch->ch_txcount += s; |
| len_written += s; |
| } |
| |
| ch->ch_w_tail = tail & WQUEUEMASK; |
| |
| if (len_written > 0) { |
| neo_pci_posting_flush(ch->ch_bd); |
| ch->ch_flags &= ~(CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); |
| } |
| |
| exit_unlock: |
| spin_unlock_irqrestore(&ch->ch_lock, flags); |
| } |
| |
| static void neo_parse_modem(struct channel_t *ch, unsigned char signals) |
| { |
| unsigned char msignals = signals; |
| |
| if (!ch) |
| return; |
| |
| /* |
| * Do altpin switching. Altpin switches DCD and DSR. |
| * This prolly breaks DSRPACE, so we should be more clever here. |
| */ |
| if (ch->ch_digi.digi_flags & DIGI_ALTPIN) { |
| unsigned char mswap = msignals; |
| |
| if (mswap & UART_MSR_DDCD) { |
| msignals &= ~UART_MSR_DDCD; |
| msignals |= UART_MSR_DDSR; |
| } |
| if (mswap & UART_MSR_DDSR) { |
| msignals &= ~UART_MSR_DDSR; |
| msignals |= UART_MSR_DDCD; |
| } |
| if (mswap & UART_MSR_DCD) { |
| msignals &= ~UART_MSR_DCD; |
| msignals |= UART_MSR_DSR; |
| } |
| if (mswap & UART_MSR_DSR) { |
| msignals &= ~UART_MSR_DSR; |
| msignals |= UART_MSR_DCD; |
| } |
| } |
| |
| /* Scrub off lower bits. They signify delta's */ |
| msignals &= 0xf0; |
| |
| if (msignals & UART_MSR_DCD) |
| ch->ch_mistat |= UART_MSR_DCD; |
| else |
| ch->ch_mistat &= ~UART_MSR_DCD; |
| |
| if (msignals & UART_MSR_DSR) |
| ch->ch_mistat |= UART_MSR_DSR; |
| else |
| ch->ch_mistat &= ~UART_MSR_DSR; |
| |
| if (msignals & UART_MSR_RI) |
| ch->ch_mistat |= UART_MSR_RI; |
| else |
| ch->ch_mistat &= ~UART_MSR_RI; |
| |
| if (msignals & UART_MSR_CTS) |
| ch->ch_mistat |= UART_MSR_CTS; |
| else |
| ch->ch_mistat &= ~UART_MSR_CTS; |
| } |
| |
| /* Make the UART raise any of the output signals we want up */ |
| static void neo_assert_modem_signals(struct channel_t *ch) |
| { |
| unsigned char out; |
| |
| if (!ch) |
| return; |
| |
| out = ch->ch_mostat; |
| |
| if (ch->ch_flags & CH_LOOPBACK) |
| out |= UART_MCR_LOOP; |
| |
| writeb(out, &ch->ch_neo_uart->mcr); |
| neo_pci_posting_flush(ch->ch_bd); |
| |
| /* Give time for the UART to actually raise/drop the signals */ |
| udelay(10); |
| } |
| |
| static void neo_send_start_character(struct channel_t *ch) |
| { |
| if (!ch) |
| return; |
| |
| if (ch->ch_startc != _POSIX_VDISABLE) { |
| ch->ch_xon_sends++; |
| writeb(ch->ch_startc, &ch->ch_neo_uart->txrx); |
| neo_pci_posting_flush(ch->ch_bd); |
| udelay(10); |
| } |
| } |
| |
| static void neo_send_stop_character(struct channel_t *ch) |
| { |
| if (!ch) |
| return; |
| |
| if (ch->ch_stopc != _POSIX_VDISABLE) { |
| ch->ch_xoff_sends++; |
| writeb(ch->ch_stopc, &ch->ch_neo_uart->txrx); |
| neo_pci_posting_flush(ch->ch_bd); |
| udelay(10); |
| } |
| } |
| |
| /* neo_uart_init */ |
| |
| static void neo_uart_init(struct channel_t *ch) |
| { |
| writeb(0, &ch->ch_neo_uart->ier); |
| writeb(0, &ch->ch_neo_uart->efr); |
| writeb(UART_EFR_ECB, &ch->ch_neo_uart->efr); |
| |
| /* Clear out UART and FIFO */ |
| readb(&ch->ch_neo_uart->txrx); |
| writeb(UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_RCVR | UART_FCR_CLEAR_XMIT, |
| &ch->ch_neo_uart->isr_fcr); |
| readb(&ch->ch_neo_uart->lsr); |
| readb(&ch->ch_neo_uart->msr); |
| |
| ch->ch_flags |= CH_FIFO_ENABLED; |
| |
| /* Assert any signals we want up */ |
| writeb(ch->ch_mostat, &ch->ch_neo_uart->mcr); |
| neo_pci_posting_flush(ch->ch_bd); |
| } |
| |
| /* Make the UART completely turn off. */ |
| static void neo_uart_off(struct channel_t *ch) |
| { |
| /* Turn off UART enhanced bits */ |
| writeb(0, &ch->ch_neo_uart->efr); |
| |
| /* Stop all interrupts from occurring. */ |
| writeb(0, &ch->ch_neo_uart->ier); |
| neo_pci_posting_flush(ch->ch_bd); |
| } |
| |
| static uint neo_get_uart_bytes_left(struct channel_t *ch) |
| { |
| unsigned char left = 0; |
| unsigned char lsr = readb(&ch->ch_neo_uart->lsr); |
| |
| /* We must cache the LSR as some of the bits get reset once read... */ |
| ch->ch_cached_lsr |= lsr; |
| |
| /* Determine whether the Transmitter is empty or not */ |
| if (!(lsr & UART_LSR_TEMT)) { |
| if (ch->ch_flags & CH_TX_FIFO_EMPTY) |
| tasklet_schedule(&ch->ch_bd->helper_tasklet); |
| left = 1; |
| } else { |
| ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); |
| left = 0; |
| } |
| |
| return left; |
| } |
| |
| /* Channel lock MUST be held by the calling function! */ |
| static void neo_send_break(struct channel_t *ch, int msecs) |
| { |
| /* If we receive a time of 0, this means turn off the break. */ |
| |
| if (msecs == 0) { |
| if (ch->ch_flags & CH_BREAK_SENDING) { |
| unsigned char temp = readb(&ch->ch_neo_uart->lcr); |
| |
| writeb((temp & ~UART_LCR_SBC), &ch->ch_neo_uart->lcr); |
| neo_pci_posting_flush(ch->ch_bd); |
| ch->ch_flags &= ~(CH_BREAK_SENDING); |
| ch->ch_stop_sending_break = 0; |
| } |
| return; |
| } |
| |
| /* |
| * Set the time we should stop sending the break. |
| * If we are already sending a break, toss away the existing |
| * time to stop, and use this new value instead. |
| */ |
| ch->ch_stop_sending_break = jiffies + dgnc_jiffies_from_ms(msecs); |
| |
| /* Tell the UART to start sending the break */ |
| if (!(ch->ch_flags & CH_BREAK_SENDING)) { |
| unsigned char temp = readb(&ch->ch_neo_uart->lcr); |
| |
| writeb((temp | UART_LCR_SBC), &ch->ch_neo_uart->lcr); |
| neo_pci_posting_flush(ch->ch_bd); |
| ch->ch_flags |= (CH_BREAK_SENDING); |
| } |
| } |
| |
| /* |
| * Sends a specific character as soon as possible to the UART, |
| * jumping over any bytes that might be in the write queue. |
| * |
| * The channel lock MUST be held by the calling function. |
| */ |
| static void neo_send_immediate_char(struct channel_t *ch, unsigned char c) |
| { |
| if (!ch) |
| return; |
| |
| writeb(c, &ch->ch_neo_uart->txrx); |
| neo_pci_posting_flush(ch->ch_bd); |
| } |
| |
| static unsigned int neo_read_eeprom(unsigned char __iomem *base, |
| unsigned int address) |
| { |
| unsigned int enable; |
| unsigned int bits; |
| unsigned int databit; |
| unsigned int val; |
| |
| /* enable chip select */ |
| writeb(NEO_EECS, base + NEO_EEREG); |
| /* READ */ |
| enable = address | 0x180; |
| |
| for (bits = 9; bits--; ) { |
| databit = (enable & (1 << bits)) ? NEO_EEDI : 0; |
| /* Set read address */ |
| writeb(databit | NEO_EECS, base + NEO_EEREG); |
| writeb(databit | NEO_EECS | NEO_EECK, base + NEO_EEREG); |
| } |
| |
| val = 0; |
| |
| for (bits = 17; bits--; ) { |
| /* clock to EEPROM */ |
| writeb(NEO_EECS, base + NEO_EEREG); |
| writeb(NEO_EECS | NEO_EECK, base + NEO_EEREG); |
| val <<= 1; |
| /* read EEPROM */ |
| if (readb(base + NEO_EEREG) & NEO_EEDO) |
| val |= 1; |
| } |
| |
| /* clock falling edge */ |
| writeb(NEO_EECS, base + NEO_EEREG); |
| |
| /* drop chip select */ |
| writeb(0x00, base + NEO_EEREG); |
| |
| return val; |
| } |
| |
| static void neo_vpd(struct dgnc_board *brd) |
| { |
| unsigned int i = 0; |
| unsigned int a; |
| |
| if (!brd) |
| return; |
| |
| if (!brd->re_map_membase) |
| return; |
| |
| /* Store the VPD into our buffer */ |
| for (i = 0; i < NEO_VPD_IMAGESIZE; i++) { |
| a = neo_read_eeprom(brd->re_map_membase, i); |
| brd->vpd[i * 2] = a & 0xff; |
| brd->vpd[(i * 2) + 1] = (a >> 8) & 0xff; |
| } |
| |
| /* |
| * brd->vpd has different name tags by below index. |
| * 0x08 : long resource name tag |
| * 0x10 : long resource name tage (PCI-66 files) |
| * 0x7F : small resource end tag |
| */ |
| if (((brd->vpd[0x08] != 0x82) && |
| (brd->vpd[0x10] != 0x82)) || |
| (brd->vpd[0x7F] != 0x78)) { |
| memset(brd->vpd, '\0', NEO_VPD_IMAGESIZE); |
| } else { |
| /* Search for the serial number */ |
| for (i = 0; i < NEO_VPD_IMAGEBYTES - 3; i++) |
| if (brd->vpd[i] == 'S' && brd->vpd[i + 1] == 'N') |
| strncpy(brd->serial_num, &brd->vpd[i + 3], 9); |
| } |
| } |