| /* |
| * linux/mm/filemap_xip.c |
| * |
| * Copyright (C) 2005 IBM Corporation |
| * Author: Carsten Otte <cotte@de.ibm.com> |
| * |
| * derived from linux/mm/filemap.c - Copyright (C) Linus Torvalds |
| * |
| */ |
| |
| #include <linux/fs.h> |
| #include <linux/pagemap.h> |
| #include <linux/module.h> |
| #include <linux/uio.h> |
| #include <linux/rmap.h> |
| #include <asm/tlbflush.h> |
| #include "filemap.h" |
| |
| /* |
| * This is a file read routine for execute in place files, and uses |
| * the mapping->a_ops->get_xip_page() function for the actual low-level |
| * stuff. |
| * |
| * Note the struct file* is not used at all. It may be NULL. |
| */ |
| static void |
| do_xip_mapping_read(struct address_space *mapping, |
| struct file_ra_state *_ra, |
| struct file *filp, |
| loff_t *ppos, |
| read_descriptor_t *desc, |
| read_actor_t actor) |
| { |
| struct inode *inode = mapping->host; |
| unsigned long index, end_index, offset; |
| loff_t isize; |
| |
| BUG_ON(!mapping->a_ops->get_xip_page); |
| |
| index = *ppos >> PAGE_CACHE_SHIFT; |
| offset = *ppos & ~PAGE_CACHE_MASK; |
| |
| isize = i_size_read(inode); |
| if (!isize) |
| goto out; |
| |
| end_index = (isize - 1) >> PAGE_CACHE_SHIFT; |
| for (;;) { |
| struct page *page; |
| unsigned long nr, ret; |
| |
| /* nr is the maximum number of bytes to copy from this page */ |
| nr = PAGE_CACHE_SIZE; |
| if (index >= end_index) { |
| if (index > end_index) |
| goto out; |
| nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; |
| if (nr <= offset) { |
| goto out; |
| } |
| } |
| nr = nr - offset; |
| |
| page = mapping->a_ops->get_xip_page(mapping, |
| index*(PAGE_SIZE/512), 0); |
| if (!page) |
| goto no_xip_page; |
| if (unlikely(IS_ERR(page))) { |
| if (PTR_ERR(page) == -ENODATA) { |
| /* sparse */ |
| page = ZERO_PAGE(0); |
| } else { |
| desc->error = PTR_ERR(page); |
| goto out; |
| } |
| } |
| |
| /* If users can be writing to this page using arbitrary |
| * virtual addresses, take care about potential aliasing |
| * before reading the page on the kernel side. |
| */ |
| if (mapping_writably_mapped(mapping)) |
| flush_dcache_page(page); |
| |
| /* |
| * Ok, we have the page, so now we can copy it to user space... |
| * |
| * The actor routine returns how many bytes were actually used.. |
| * NOTE! This may not be the same as how much of a user buffer |
| * we filled up (we may be padding etc), so we can only update |
| * "pos" here (the actor routine has to update the user buffer |
| * pointers and the remaining count). |
| */ |
| ret = actor(desc, page, offset, nr); |
| offset += ret; |
| index += offset >> PAGE_CACHE_SHIFT; |
| offset &= ~PAGE_CACHE_MASK; |
| |
| if (ret == nr && desc->count) |
| continue; |
| goto out; |
| |
| no_xip_page: |
| /* Did not get the page. Report it */ |
| desc->error = -EIO; |
| goto out; |
| } |
| |
| out: |
| *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset; |
| if (filp) |
| file_accessed(filp); |
| } |
| |
| ssize_t |
| xip_file_read(struct file *filp, char __user *buf, size_t len, loff_t *ppos) |
| { |
| read_descriptor_t desc; |
| |
| if (!access_ok(VERIFY_WRITE, buf, len)) |
| return -EFAULT; |
| |
| desc.written = 0; |
| desc.arg.buf = buf; |
| desc.count = len; |
| desc.error = 0; |
| |
| do_xip_mapping_read(filp->f_mapping, &filp->f_ra, filp, |
| ppos, &desc, file_read_actor); |
| |
| if (desc.written) |
| return desc.written; |
| else |
| return desc.error; |
| } |
| EXPORT_SYMBOL_GPL(xip_file_read); |
| |
| ssize_t |
| xip_file_sendfile(struct file *in_file, loff_t *ppos, |
| size_t count, read_actor_t actor, void *target) |
| { |
| read_descriptor_t desc; |
| |
| if (!count) |
| return 0; |
| |
| desc.written = 0; |
| desc.count = count; |
| desc.arg.data = target; |
| desc.error = 0; |
| |
| do_xip_mapping_read(in_file->f_mapping, &in_file->f_ra, in_file, |
| ppos, &desc, actor); |
| if (desc.written) |
| return desc.written; |
| return desc.error; |
| } |
| EXPORT_SYMBOL_GPL(xip_file_sendfile); |
| |
| /* |
| * __xip_unmap is invoked from xip_unmap and |
| * xip_write |
| * |
| * This function walks all vmas of the address_space and unmaps the |
| * ZERO_PAGE when found at pgoff. Should it go in rmap.c? |
| */ |
| static void |
| __xip_unmap (struct address_space * mapping, |
| unsigned long pgoff) |
| { |
| struct vm_area_struct *vma; |
| struct mm_struct *mm; |
| struct prio_tree_iter iter; |
| unsigned long address; |
| pte_t *pte; |
| pte_t pteval; |
| struct page *page = ZERO_PAGE(address); |
| |
| spin_lock(&mapping->i_mmap_lock); |
| vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { |
| mm = vma->vm_mm; |
| address = vma->vm_start + |
| ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); |
| BUG_ON(address < vma->vm_start || address >= vma->vm_end); |
| /* |
| * We need the page_table_lock to protect us from page faults, |
| * munmap, fork, etc... |
| */ |
| pte = page_check_address(page, mm, address); |
| if (!IS_ERR(pte)) { |
| /* Nuke the page table entry. */ |
| flush_cache_page(vma, address, pte_pfn(*pte)); |
| pteval = ptep_clear_flush(vma, address, pte); |
| page_remove_rmap(page); |
| dec_mm_counter(mm, file_rss); |
| BUG_ON(pte_dirty(pteval)); |
| pte_unmap(pte); |
| spin_unlock(&mm->page_table_lock); |
| page_cache_release(page); |
| } |
| } |
| spin_unlock(&mapping->i_mmap_lock); |
| } |
| |
| /* |
| * xip_nopage() is invoked via the vma operations vector for a |
| * mapped memory region to read in file data during a page fault. |
| * |
| * This function is derived from filemap_nopage, but used for execute in place |
| */ |
| static struct page * |
| xip_file_nopage(struct vm_area_struct * area, |
| unsigned long address, |
| int *type) |
| { |
| struct file *file = area->vm_file; |
| struct address_space *mapping = file->f_mapping; |
| struct inode *inode = mapping->host; |
| struct page *page; |
| unsigned long size, pgoff, endoff; |
| |
| pgoff = ((address - area->vm_start) >> PAGE_CACHE_SHIFT) |
| + area->vm_pgoff; |
| endoff = ((area->vm_end - area->vm_start) >> PAGE_CACHE_SHIFT) |
| + area->vm_pgoff; |
| |
| size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; |
| if (pgoff >= size) { |
| return NULL; |
| } |
| |
| page = mapping->a_ops->get_xip_page(mapping, pgoff*(PAGE_SIZE/512), 0); |
| if (!IS_ERR(page)) { |
| goto out; |
| } |
| if (PTR_ERR(page) != -ENODATA) |
| return NULL; |
| |
| /* sparse block */ |
| if ((area->vm_flags & (VM_WRITE | VM_MAYWRITE)) && |
| (area->vm_flags & (VM_SHARED| VM_MAYSHARE)) && |
| (!(mapping->host->i_sb->s_flags & MS_RDONLY))) { |
| /* maybe shared writable, allocate new block */ |
| page = mapping->a_ops->get_xip_page (mapping, |
| pgoff*(PAGE_SIZE/512), 1); |
| if (IS_ERR(page)) |
| return NULL; |
| /* unmap page at pgoff from all other vmas */ |
| __xip_unmap(mapping, pgoff); |
| } else { |
| /* not shared and writable, use ZERO_PAGE() */ |
| page = ZERO_PAGE(address); |
| } |
| |
| out: |
| page_cache_get(page); |
| return page; |
| } |
| |
| static struct vm_operations_struct xip_file_vm_ops = { |
| .nopage = xip_file_nopage, |
| }; |
| |
| int xip_file_mmap(struct file * file, struct vm_area_struct * vma) |
| { |
| BUG_ON(!file->f_mapping->a_ops->get_xip_page); |
| |
| file_accessed(file); |
| vma->vm_ops = &xip_file_vm_ops; |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(xip_file_mmap); |
| |
| static ssize_t |
| __xip_file_write(struct file *filp, const char __user *buf, |
| size_t count, loff_t pos, loff_t *ppos) |
| { |
| struct address_space * mapping = filp->f_mapping; |
| struct address_space_operations *a_ops = mapping->a_ops; |
| struct inode *inode = mapping->host; |
| long status = 0; |
| struct page *page; |
| size_t bytes; |
| ssize_t written = 0; |
| |
| BUG_ON(!mapping->a_ops->get_xip_page); |
| |
| do { |
| unsigned long index; |
| unsigned long offset; |
| size_t copied; |
| |
| offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */ |
| index = pos >> PAGE_CACHE_SHIFT; |
| bytes = PAGE_CACHE_SIZE - offset; |
| if (bytes > count) |
| bytes = count; |
| |
| /* |
| * Bring in the user page that we will copy from _first_. |
| * Otherwise there's a nasty deadlock on copying from the |
| * same page as we're writing to, without it being marked |
| * up-to-date. |
| */ |
| fault_in_pages_readable(buf, bytes); |
| |
| page = a_ops->get_xip_page(mapping, |
| index*(PAGE_SIZE/512), 0); |
| if (IS_ERR(page) && (PTR_ERR(page) == -ENODATA)) { |
| /* we allocate a new page unmap it */ |
| page = a_ops->get_xip_page(mapping, |
| index*(PAGE_SIZE/512), 1); |
| if (!IS_ERR(page)) |
| /* unmap page at pgoff from all other vmas */ |
| __xip_unmap(mapping, index); |
| } |
| |
| if (IS_ERR(page)) { |
| status = PTR_ERR(page); |
| break; |
| } |
| |
| copied = filemap_copy_from_user(page, offset, buf, bytes); |
| flush_dcache_page(page); |
| if (likely(copied > 0)) { |
| status = copied; |
| |
| if (status >= 0) { |
| written += status; |
| count -= status; |
| pos += status; |
| buf += status; |
| } |
| } |
| if (unlikely(copied != bytes)) |
| if (status >= 0) |
| status = -EFAULT; |
| if (status < 0) |
| break; |
| } while (count); |
| *ppos = pos; |
| /* |
| * No need to use i_size_read() here, the i_size |
| * cannot change under us because we hold i_sem. |
| */ |
| if (pos > inode->i_size) { |
| i_size_write(inode, pos); |
| mark_inode_dirty(inode); |
| } |
| |
| return written ? written : status; |
| } |
| |
| ssize_t |
| xip_file_write(struct file *filp, const char __user *buf, size_t len, |
| loff_t *ppos) |
| { |
| struct address_space *mapping = filp->f_mapping; |
| struct inode *inode = mapping->host; |
| size_t count; |
| loff_t pos; |
| ssize_t ret; |
| |
| down(&inode->i_sem); |
| |
| if (!access_ok(VERIFY_READ, buf, len)) { |
| ret=-EFAULT; |
| goto out_up; |
| } |
| |
| pos = *ppos; |
| count = len; |
| |
| vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); |
| |
| /* We can write back this queue in page reclaim */ |
| current->backing_dev_info = mapping->backing_dev_info; |
| |
| ret = generic_write_checks(filp, &pos, &count, S_ISBLK(inode->i_mode)); |
| if (ret) |
| goto out_backing; |
| if (count == 0) |
| goto out_backing; |
| |
| ret = remove_suid(filp->f_dentry); |
| if (ret) |
| goto out_backing; |
| |
| inode_update_time(inode, 1); |
| |
| ret = __xip_file_write (filp, buf, count, pos, ppos); |
| |
| out_backing: |
| current->backing_dev_info = NULL; |
| out_up: |
| up(&inode->i_sem); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(xip_file_write); |
| |
| /* |
| * truncate a page used for execute in place |
| * functionality is analog to block_truncate_page but does use get_xip_page |
| * to get the page instead of page cache |
| */ |
| int |
| xip_truncate_page(struct address_space *mapping, loff_t from) |
| { |
| pgoff_t index = from >> PAGE_CACHE_SHIFT; |
| unsigned offset = from & (PAGE_CACHE_SIZE-1); |
| unsigned blocksize; |
| unsigned length; |
| struct page *page; |
| void *kaddr; |
| |
| BUG_ON(!mapping->a_ops->get_xip_page); |
| |
| blocksize = 1 << mapping->host->i_blkbits; |
| length = offset & (blocksize - 1); |
| |
| /* Block boundary? Nothing to do */ |
| if (!length) |
| return 0; |
| |
| length = blocksize - length; |
| |
| page = mapping->a_ops->get_xip_page(mapping, |
| index*(PAGE_SIZE/512), 0); |
| if (!page) |
| return -ENOMEM; |
| if (unlikely(IS_ERR(page))) { |
| if (PTR_ERR(page) == -ENODATA) |
| /* Hole? No need to truncate */ |
| return 0; |
| else |
| return PTR_ERR(page); |
| } |
| kaddr = kmap_atomic(page, KM_USER0); |
| memset(kaddr + offset, 0, length); |
| kunmap_atomic(kaddr, KM_USER0); |
| |
| flush_dcache_page(page); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(xip_truncate_page); |