|  | /* | 
|  | *	linux/arch/alpha/kernel/core_t2.c | 
|  | * | 
|  | * Written by Jay A Estabrook (jestabro@amt.tay1.dec.com). | 
|  | * December 1996. | 
|  | * | 
|  | * based on CIA code by David A Rusling (david.rusling@reo.mts.dec.com) | 
|  | * | 
|  | * Code common to all T2 core logic chips. | 
|  | */ | 
|  |  | 
|  | #define __EXTERN_INLINE | 
|  | #include <asm/io.h> | 
|  | #include <asm/core_t2.h> | 
|  | #undef __EXTERN_INLINE | 
|  |  | 
|  | #include <linux/types.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/init.h> | 
|  |  | 
|  | #include <asm/ptrace.h> | 
|  | #include <asm/delay.h> | 
|  |  | 
|  | #include "proto.h" | 
|  | #include "pci_impl.h" | 
|  |  | 
|  | /* For dumping initial DMA window settings. */ | 
|  | #define DEBUG_PRINT_INITIAL_SETTINGS 0 | 
|  |  | 
|  | /* For dumping final DMA window settings. */ | 
|  | #define DEBUG_PRINT_FINAL_SETTINGS 0 | 
|  |  | 
|  | /* | 
|  | * By default, we direct-map starting at 2GB, in order to allow the | 
|  | * maximum size direct-map window (2GB) to match the maximum amount of | 
|  | * memory (2GB) that can be present on SABLEs. But that limits the | 
|  | * floppy to DMA only via the scatter/gather window set up for 8MB | 
|  | * ISA DMA, since the maximum ISA DMA address is 2GB-1. | 
|  | * | 
|  | * For now, this seems a reasonable trade-off: even though most SABLEs | 
|  | * have less than 1GB of memory, floppy usage/performance will not | 
|  | * really be affected by forcing it to go via scatter/gather... | 
|  | */ | 
|  | #define T2_DIRECTMAP_2G 1 | 
|  |  | 
|  | #if T2_DIRECTMAP_2G | 
|  | # define T2_DIRECTMAP_START	0x80000000UL | 
|  | # define T2_DIRECTMAP_LENGTH	0x80000000UL | 
|  | #else | 
|  | # define T2_DIRECTMAP_START	0x40000000UL | 
|  | # define T2_DIRECTMAP_LENGTH	0x40000000UL | 
|  | #endif | 
|  |  | 
|  | /* The ISA scatter/gather window settings. */ | 
|  | #define T2_ISA_SG_START		0x00800000UL | 
|  | #define T2_ISA_SG_LENGTH	0x00800000UL | 
|  |  | 
|  | /* | 
|  | * NOTE: Herein lie back-to-back mb instructions.  They are magic. | 
|  | * One plausible explanation is that the i/o controller does not properly | 
|  | * handle the system transaction.  Another involves timing.  Ho hum. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * BIOS32-style PCI interface: | 
|  | */ | 
|  |  | 
|  | #define DEBUG_CONFIG 0 | 
|  |  | 
|  | #if DEBUG_CONFIG | 
|  | # define DBG(args)	printk args | 
|  | #else | 
|  | # define DBG(args) | 
|  | #endif | 
|  |  | 
|  | DEFINE_SPINLOCK(t2_hae_lock); | 
|  |  | 
|  | static volatile unsigned int t2_mcheck_any_expected; | 
|  | static volatile unsigned int t2_mcheck_last_taken; | 
|  |  | 
|  | /* Place to save the DMA Window registers as set up by SRM | 
|  | for restoration during shutdown. */ | 
|  | static struct | 
|  | { | 
|  | struct { | 
|  | unsigned long wbase; | 
|  | unsigned long wmask; | 
|  | unsigned long tbase; | 
|  | } window[2]; | 
|  | unsigned long hae_1; | 
|  | unsigned long hae_2; | 
|  | unsigned long hae_3; | 
|  | unsigned long hae_4; | 
|  | unsigned long hbase; | 
|  | } t2_saved_config __attribute((common)); | 
|  |  | 
|  | /* | 
|  | * Given a bus, device, and function number, compute resulting | 
|  | * configuration space address and setup the T2_HAXR2 register | 
|  | * accordingly.  It is therefore not safe to have concurrent | 
|  | * invocations to configuration space access routines, but there | 
|  | * really shouldn't be any need for this. | 
|  | * | 
|  | * Type 0: | 
|  | * | 
|  | *  3 3|3 3 2 2|2 2 2 2|2 2 2 2|1 1 1 1|1 1 1 1|1 1 | 
|  | *  3 2|1 0 9 8|7 6 5 4|3 2 1 0|9 8 7 6|5 4 3 2|1 0 9 8|7 6 5 4|3 2 1 0 | 
|  | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 
|  | * | | |D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|F|F|F|R|R|R|R|R|R|0|0| | 
|  | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 
|  | * | 
|  | *	31:11	Device select bit. | 
|  | * 	10:8	Function number | 
|  | * 	 7:2	Register number | 
|  | * | 
|  | * Type 1: | 
|  | * | 
|  | *  3 3|3 3 2 2|2 2 2 2|2 2 2 2|1 1 1 1|1 1 1 1|1 1 | 
|  | *  3 2|1 0 9 8|7 6 5 4|3 2 1 0|9 8 7 6|5 4 3 2|1 0 9 8|7 6 5 4|3 2 1 0 | 
|  | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 
|  | * | | | | | | | | | | |B|B|B|B|B|B|B|B|D|D|D|D|D|F|F|F|R|R|R|R|R|R|0|1| | 
|  | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 
|  | * | 
|  | *	31:24	reserved | 
|  | *	23:16	bus number (8 bits = 128 possible buses) | 
|  | *	15:11	Device number (5 bits) | 
|  | *	10:8	function number | 
|  | *	 7:2	register number | 
|  | * | 
|  | * Notes: | 
|  | *	The function number selects which function of a multi-function device | 
|  | *	(e.g., SCSI and Ethernet). | 
|  | * | 
|  | *	The register selects a DWORD (32 bit) register offset.  Hence it | 
|  | *	doesn't get shifted by 2 bits as we want to "drop" the bottom two | 
|  | *	bits. | 
|  | */ | 
|  |  | 
|  | static int | 
|  | mk_conf_addr(struct pci_bus *pbus, unsigned int device_fn, int where, | 
|  | unsigned long *pci_addr, unsigned char *type1) | 
|  | { | 
|  | unsigned long addr; | 
|  | u8 bus = pbus->number; | 
|  |  | 
|  | DBG(("mk_conf_addr(bus=%d, dfn=0x%x, where=0x%x," | 
|  | " addr=0x%lx, type1=0x%x)\n", | 
|  | bus, device_fn, where, pci_addr, type1)); | 
|  |  | 
|  | if (bus == 0) { | 
|  | int device = device_fn >> 3; | 
|  |  | 
|  | /* Type 0 configuration cycle.  */ | 
|  |  | 
|  | if (device > 8) { | 
|  | DBG(("mk_conf_addr: device (%d)>20, returning -1\n", | 
|  | device)); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | *type1 = 0; | 
|  | addr = (0x0800L << device) | ((device_fn & 7) << 8) | (where); | 
|  | } else { | 
|  | /* Type 1 configuration cycle.  */ | 
|  | *type1 = 1; | 
|  | addr = (bus << 16) | (device_fn << 8) | (where); | 
|  | } | 
|  | *pci_addr = addr; | 
|  | DBG(("mk_conf_addr: returning pci_addr 0x%lx\n", addr)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * NOTE: both conf_read() and conf_write() may set HAE_3 when needing | 
|  | *       to do type1 access. This is protected by the use of spinlock IRQ | 
|  | *       primitives in the wrapper functions pci_{read,write}_config_*() | 
|  | *       defined in drivers/pci/pci.c. | 
|  | */ | 
|  | static unsigned int | 
|  | conf_read(unsigned long addr, unsigned char type1) | 
|  | { | 
|  | unsigned int value, cpu, taken; | 
|  | unsigned long t2_cfg = 0; | 
|  |  | 
|  | cpu = smp_processor_id(); | 
|  |  | 
|  | DBG(("conf_read(addr=0x%lx, type1=%d)\n", addr, type1)); | 
|  |  | 
|  | /* If Type1 access, must set T2 CFG.  */ | 
|  | if (type1) { | 
|  | t2_cfg = *(vulp)T2_HAE_3 & ~0xc0000000UL; | 
|  | *(vulp)T2_HAE_3 = 0x40000000UL | t2_cfg; | 
|  | mb(); | 
|  | } | 
|  | mb(); | 
|  | draina(); | 
|  |  | 
|  | mcheck_expected(cpu) = 1; | 
|  | mcheck_taken(cpu) = 0; | 
|  | t2_mcheck_any_expected |= (1 << cpu); | 
|  | mb(); | 
|  |  | 
|  | /* Access configuration space. */ | 
|  | value = *(vuip)addr; | 
|  | mb(); | 
|  | mb();  /* magic */ | 
|  |  | 
|  | /* Wait for possible mcheck. Also, this lets other CPUs clear | 
|  | their mchecks as well, as they can reliably tell when | 
|  | another CPU is in the midst of handling a real mcheck via | 
|  | the "taken" function. */ | 
|  | udelay(100); | 
|  |  | 
|  | if ((taken = mcheck_taken(cpu))) { | 
|  | mcheck_taken(cpu) = 0; | 
|  | t2_mcheck_last_taken |= (1 << cpu); | 
|  | value = 0xffffffffU; | 
|  | mb(); | 
|  | } | 
|  | mcheck_expected(cpu) = 0; | 
|  | t2_mcheck_any_expected = 0; | 
|  | mb(); | 
|  |  | 
|  | /* If Type1 access, must reset T2 CFG so normal IO space ops work.  */ | 
|  | if (type1) { | 
|  | *(vulp)T2_HAE_3 = t2_cfg; | 
|  | mb(); | 
|  | } | 
|  |  | 
|  | return value; | 
|  | } | 
|  |  | 
|  | static void | 
|  | conf_write(unsigned long addr, unsigned int value, unsigned char type1) | 
|  | { | 
|  | unsigned int cpu, taken; | 
|  | unsigned long t2_cfg = 0; | 
|  |  | 
|  | cpu = smp_processor_id(); | 
|  |  | 
|  | /* If Type1 access, must set T2 CFG.  */ | 
|  | if (type1) { | 
|  | t2_cfg = *(vulp)T2_HAE_3 & ~0xc0000000UL; | 
|  | *(vulp)T2_HAE_3 = t2_cfg | 0x40000000UL; | 
|  | mb(); | 
|  | } | 
|  | mb(); | 
|  | draina(); | 
|  |  | 
|  | mcheck_expected(cpu) = 1; | 
|  | mcheck_taken(cpu) = 0; | 
|  | t2_mcheck_any_expected |= (1 << cpu); | 
|  | mb(); | 
|  |  | 
|  | /* Access configuration space.  */ | 
|  | *(vuip)addr = value; | 
|  | mb(); | 
|  | mb();  /* magic */ | 
|  |  | 
|  | /* Wait for possible mcheck. Also, this lets other CPUs clear | 
|  | their mchecks as well, as they can reliably tell when | 
|  | this CPU is in the midst of handling a real mcheck via | 
|  | the "taken" function. */ | 
|  | udelay(100); | 
|  |  | 
|  | if ((taken = mcheck_taken(cpu))) { | 
|  | mcheck_taken(cpu) = 0; | 
|  | t2_mcheck_last_taken |= (1 << cpu); | 
|  | mb(); | 
|  | } | 
|  | mcheck_expected(cpu) = 0; | 
|  | t2_mcheck_any_expected = 0; | 
|  | mb(); | 
|  |  | 
|  | /* If Type1 access, must reset T2 CFG so normal IO space ops work.  */ | 
|  | if (type1) { | 
|  | *(vulp)T2_HAE_3 = t2_cfg; | 
|  | mb(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int | 
|  | t2_read_config(struct pci_bus *bus, unsigned int devfn, int where, | 
|  | int size, u32 *value) | 
|  | { | 
|  | unsigned long addr, pci_addr; | 
|  | unsigned char type1; | 
|  | int shift; | 
|  | long mask; | 
|  |  | 
|  | if (mk_conf_addr(bus, devfn, where, &pci_addr, &type1)) | 
|  | return PCIBIOS_DEVICE_NOT_FOUND; | 
|  |  | 
|  | mask = (size - 1) * 8; | 
|  | shift = (where & 3) * 8; | 
|  | addr = (pci_addr << 5) + mask + T2_CONF; | 
|  | *value = conf_read(addr, type1) >> (shift); | 
|  | return PCIBIOS_SUCCESSFUL; | 
|  | } | 
|  |  | 
|  | static int | 
|  | t2_write_config(struct pci_bus *bus, unsigned int devfn, int where, int size, | 
|  | u32 value) | 
|  | { | 
|  | unsigned long addr, pci_addr; | 
|  | unsigned char type1; | 
|  | long mask; | 
|  |  | 
|  | if (mk_conf_addr(bus, devfn, where, &pci_addr, &type1)) | 
|  | return PCIBIOS_DEVICE_NOT_FOUND; | 
|  |  | 
|  | mask = (size - 1) * 8; | 
|  | addr = (pci_addr << 5) + mask + T2_CONF; | 
|  | conf_write(addr, value << ((where & 3) * 8), type1); | 
|  | return PCIBIOS_SUCCESSFUL; | 
|  | } | 
|  |  | 
|  | struct pci_ops t2_pci_ops = | 
|  | { | 
|  | .read =		t2_read_config, | 
|  | .write =	t2_write_config, | 
|  | }; | 
|  |  | 
|  | static void __init | 
|  | t2_direct_map_window1(unsigned long base, unsigned long length) | 
|  | { | 
|  | unsigned long temp; | 
|  |  | 
|  | __direct_map_base = base; | 
|  | __direct_map_size = length; | 
|  |  | 
|  | temp = (base & 0xfff00000UL) | ((base + length - 1) >> 20); | 
|  | *(vulp)T2_WBASE1 = temp | 0x80000UL; /* OR in ENABLE bit */ | 
|  | temp = (length - 1) & 0xfff00000UL; | 
|  | *(vulp)T2_WMASK1 = temp; | 
|  | *(vulp)T2_TBASE1 = 0; | 
|  |  | 
|  | #if DEBUG_PRINT_FINAL_SETTINGS | 
|  | printk("%s: setting WBASE1=0x%lx WMASK1=0x%lx TBASE1=0x%lx\n", | 
|  | __func__, *(vulp)T2_WBASE1, *(vulp)T2_WMASK1, *(vulp)T2_TBASE1); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void __init | 
|  | t2_sg_map_window2(struct pci_controller *hose, | 
|  | unsigned long base, | 
|  | unsigned long length) | 
|  | { | 
|  | unsigned long temp; | 
|  |  | 
|  | /* Note we can only do 1 SG window, as the other is for direct, so | 
|  | do an ISA SG area, especially for the floppy. */ | 
|  | hose->sg_isa = iommu_arena_new(hose, base, length, 0); | 
|  | hose->sg_pci = NULL; | 
|  |  | 
|  | temp = (base & 0xfff00000UL) | ((base + length - 1) >> 20); | 
|  | *(vulp)T2_WBASE2 = temp | 0xc0000UL; /* OR in ENABLE/SG bits */ | 
|  | temp = (length - 1) & 0xfff00000UL; | 
|  | *(vulp)T2_WMASK2 = temp; | 
|  | *(vulp)T2_TBASE2 = virt_to_phys(hose->sg_isa->ptes) >> 1; | 
|  | mb(); | 
|  |  | 
|  | t2_pci_tbi(hose, 0, -1); /* flush TLB all */ | 
|  |  | 
|  | #if DEBUG_PRINT_FINAL_SETTINGS | 
|  | printk("%s: setting WBASE2=0x%lx WMASK2=0x%lx TBASE2=0x%lx\n", | 
|  | __func__, *(vulp)T2_WBASE2, *(vulp)T2_WMASK2, *(vulp)T2_TBASE2); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void __init | 
|  | t2_save_configuration(void) | 
|  | { | 
|  | #if DEBUG_PRINT_INITIAL_SETTINGS | 
|  | printk("%s: HAE_1 was 0x%lx\n", __func__, srm_hae); /* HW is 0 */ | 
|  | printk("%s: HAE_2 was 0x%lx\n", __func__, *(vulp)T2_HAE_2); | 
|  | printk("%s: HAE_3 was 0x%lx\n", __func__, *(vulp)T2_HAE_3); | 
|  | printk("%s: HAE_4 was 0x%lx\n", __func__, *(vulp)T2_HAE_4); | 
|  | printk("%s: HBASE was 0x%lx\n", __func__, *(vulp)T2_HBASE); | 
|  |  | 
|  | printk("%s: WBASE1=0x%lx WMASK1=0x%lx TBASE1=0x%lx\n", __func__, | 
|  | *(vulp)T2_WBASE1, *(vulp)T2_WMASK1, *(vulp)T2_TBASE1); | 
|  | printk("%s: WBASE2=0x%lx WMASK2=0x%lx TBASE2=0x%lx\n", __func__, | 
|  | *(vulp)T2_WBASE2, *(vulp)T2_WMASK2, *(vulp)T2_TBASE2); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Save the DMA Window registers. | 
|  | */ | 
|  | t2_saved_config.window[0].wbase = *(vulp)T2_WBASE1; | 
|  | t2_saved_config.window[0].wmask = *(vulp)T2_WMASK1; | 
|  | t2_saved_config.window[0].tbase = *(vulp)T2_TBASE1; | 
|  | t2_saved_config.window[1].wbase = *(vulp)T2_WBASE2; | 
|  | t2_saved_config.window[1].wmask = *(vulp)T2_WMASK2; | 
|  | t2_saved_config.window[1].tbase = *(vulp)T2_TBASE2; | 
|  |  | 
|  | t2_saved_config.hae_1 = srm_hae; /* HW is already set to 0 */ | 
|  | t2_saved_config.hae_2 = *(vulp)T2_HAE_2; | 
|  | t2_saved_config.hae_3 = *(vulp)T2_HAE_3; | 
|  | t2_saved_config.hae_4 = *(vulp)T2_HAE_4; | 
|  | t2_saved_config.hbase = *(vulp)T2_HBASE; | 
|  | } | 
|  |  | 
|  | void __init | 
|  | t2_init_arch(void) | 
|  | { | 
|  | struct pci_controller *hose; | 
|  | unsigned long temp; | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < NR_CPUS; i++) { | 
|  | mcheck_expected(i) = 0; | 
|  | mcheck_taken(i) = 0; | 
|  | } | 
|  | t2_mcheck_any_expected = 0; | 
|  | t2_mcheck_last_taken = 0; | 
|  |  | 
|  | /* Enable scatter/gather TLB use.  */ | 
|  | temp = *(vulp)T2_IOCSR; | 
|  | if (!(temp & (0x1UL << 26))) { | 
|  | printk("t2_init_arch: enabling SG TLB, IOCSR was 0x%lx\n", | 
|  | temp); | 
|  | *(vulp)T2_IOCSR = temp | (0x1UL << 26); | 
|  | mb(); | 
|  | *(vulp)T2_IOCSR; /* read it back to make sure */ | 
|  | } | 
|  |  | 
|  | t2_save_configuration(); | 
|  |  | 
|  | /* | 
|  | * Create our single hose. | 
|  | */ | 
|  | pci_isa_hose = hose = alloc_pci_controller(); | 
|  | hose->io_space = &ioport_resource; | 
|  | hose->mem_space = &iomem_resource; | 
|  | hose->index = 0; | 
|  |  | 
|  | hose->sparse_mem_base = T2_SPARSE_MEM - IDENT_ADDR; | 
|  | hose->dense_mem_base = T2_DENSE_MEM - IDENT_ADDR; | 
|  | hose->sparse_io_base = T2_IO - IDENT_ADDR; | 
|  | hose->dense_io_base = 0; | 
|  |  | 
|  | /* | 
|  | * Set up the PCI->physical memory translation windows. | 
|  | * | 
|  | * Window 1 is direct mapped. | 
|  | * Window 2 is scatter/gather (for ISA). | 
|  | */ | 
|  |  | 
|  | t2_direct_map_window1(T2_DIRECTMAP_START, T2_DIRECTMAP_LENGTH); | 
|  |  | 
|  | /* Always make an ISA DMA window. */ | 
|  | t2_sg_map_window2(hose, T2_ISA_SG_START, T2_ISA_SG_LENGTH); | 
|  |  | 
|  | *(vulp)T2_HBASE = 0x0; /* Disable HOLES. */ | 
|  |  | 
|  | /* Zero HAE.  */ | 
|  | *(vulp)T2_HAE_1 = 0; mb(); /* Sparse MEM HAE */ | 
|  | *(vulp)T2_HAE_2 = 0; mb(); /* Sparse I/O HAE */ | 
|  | *(vulp)T2_HAE_3 = 0; mb(); /* Config Space HAE */ | 
|  |  | 
|  | /* | 
|  | * We also now zero out HAE_4, the dense memory HAE, so that | 
|  | * we need not account for its "offset" when accessing dense | 
|  | * memory resources which we allocated in our normal way. This | 
|  | * HAE would need to stay untouched were we to keep the SRM | 
|  | * resource settings. | 
|  | * | 
|  | * Thus we can now run standard X servers on SABLE/LYNX. :-) | 
|  | */ | 
|  | *(vulp)T2_HAE_4 = 0; mb(); | 
|  | } | 
|  |  | 
|  | void | 
|  | t2_kill_arch(int mode) | 
|  | { | 
|  | /* | 
|  | * Restore the DMA Window registers. | 
|  | */ | 
|  | *(vulp)T2_WBASE1 = t2_saved_config.window[0].wbase; | 
|  | *(vulp)T2_WMASK1 = t2_saved_config.window[0].wmask; | 
|  | *(vulp)T2_TBASE1 = t2_saved_config.window[0].tbase; | 
|  | *(vulp)T2_WBASE2 = t2_saved_config.window[1].wbase; | 
|  | *(vulp)T2_WMASK2 = t2_saved_config.window[1].wmask; | 
|  | *(vulp)T2_TBASE2 = t2_saved_config.window[1].tbase; | 
|  | mb(); | 
|  |  | 
|  | *(vulp)T2_HAE_1 = srm_hae; | 
|  | *(vulp)T2_HAE_2 = t2_saved_config.hae_2; | 
|  | *(vulp)T2_HAE_3 = t2_saved_config.hae_3; | 
|  | *(vulp)T2_HAE_4 = t2_saved_config.hae_4; | 
|  | *(vulp)T2_HBASE = t2_saved_config.hbase; | 
|  | mb(); | 
|  | *(vulp)T2_HBASE; /* READ it back to ensure WRITE occurred. */ | 
|  | } | 
|  |  | 
|  | void | 
|  | t2_pci_tbi(struct pci_controller *hose, dma_addr_t start, dma_addr_t end) | 
|  | { | 
|  | unsigned long t2_iocsr; | 
|  |  | 
|  | t2_iocsr = *(vulp)T2_IOCSR; | 
|  |  | 
|  | /* set the TLB Clear bit */ | 
|  | *(vulp)T2_IOCSR = t2_iocsr | (0x1UL << 28); | 
|  | mb(); | 
|  | *(vulp)T2_IOCSR; /* read it back to make sure */ | 
|  |  | 
|  | /* clear the TLB Clear bit */ | 
|  | *(vulp)T2_IOCSR = t2_iocsr & ~(0x1UL << 28); | 
|  | mb(); | 
|  | *(vulp)T2_IOCSR; /* read it back to make sure */ | 
|  | } | 
|  |  | 
|  | #define SIC_SEIC (1UL << 33)    /* System Event Clear */ | 
|  |  | 
|  | static void | 
|  | t2_clear_errors(int cpu) | 
|  | { | 
|  | struct sable_cpu_csr *cpu_regs; | 
|  |  | 
|  | cpu_regs = (struct sable_cpu_csr *)T2_CPUn_BASE(cpu); | 
|  |  | 
|  | cpu_regs->sic &= ~SIC_SEIC; | 
|  |  | 
|  | /* Clear CPU errors.  */ | 
|  | cpu_regs->bcce |= cpu_regs->bcce; | 
|  | cpu_regs->cbe  |= cpu_regs->cbe; | 
|  | cpu_regs->bcue |= cpu_regs->bcue; | 
|  | cpu_regs->dter |= cpu_regs->dter; | 
|  |  | 
|  | *(vulp)T2_CERR1 |= *(vulp)T2_CERR1; | 
|  | *(vulp)T2_PERR1 |= *(vulp)T2_PERR1; | 
|  |  | 
|  | mb(); | 
|  | mb();  /* magic */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * SABLE seems to have a "broadcast" style machine check, in that all | 
|  | * CPUs receive it. And, the issuing CPU, in the case of PCI Config | 
|  | * space read/write faults, will also receive a second mcheck, upon | 
|  | * lowering IPL during completion processing in pci_read_config_byte() | 
|  | * et al. | 
|  | * | 
|  | * Hence all the taken/expected/any_expected/last_taken stuff... | 
|  | */ | 
|  | void | 
|  | t2_machine_check(unsigned long vector, unsigned long la_ptr) | 
|  | { | 
|  | int cpu = smp_processor_id(); | 
|  | #ifdef CONFIG_VERBOSE_MCHECK | 
|  | struct el_common *mchk_header = (struct el_common *)la_ptr; | 
|  | #endif | 
|  |  | 
|  | /* Clear the error before any reporting.  */ | 
|  | mb(); | 
|  | mb();  /* magic */ | 
|  | draina(); | 
|  | t2_clear_errors(cpu); | 
|  |  | 
|  | /* This should not actually be done until the logout frame is | 
|  | examined, but, since we don't do that, go on and do this... */ | 
|  | wrmces(0x7); | 
|  | mb(); | 
|  |  | 
|  | /* Now, do testing for the anomalous conditions. */ | 
|  | if (!mcheck_expected(cpu) && t2_mcheck_any_expected) { | 
|  | /* | 
|  | * FUNKY: Received mcheck on a CPU and not | 
|  | * expecting it, but another CPU is expecting one. | 
|  | * | 
|  | * Just dismiss it for now on this CPU... | 
|  | */ | 
|  | #ifdef CONFIG_VERBOSE_MCHECK | 
|  | if (alpha_verbose_mcheck > 1) { | 
|  | printk("t2_machine_check(cpu%d): any_expected 0x%x -" | 
|  | " (assumed) spurious -" | 
|  | " code 0x%x\n", cpu, t2_mcheck_any_expected, | 
|  | (unsigned int)mchk_header->code); | 
|  | } | 
|  | #endif | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!mcheck_expected(cpu) && !t2_mcheck_any_expected) { | 
|  | if (t2_mcheck_last_taken & (1 << cpu)) { | 
|  | #ifdef CONFIG_VERBOSE_MCHECK | 
|  | if (alpha_verbose_mcheck > 1) { | 
|  | printk("t2_machine_check(cpu%d): last_taken 0x%x - " | 
|  | "unexpected mcheck - code 0x%x\n", | 
|  | cpu, t2_mcheck_last_taken, | 
|  | (unsigned int)mchk_header->code); | 
|  | } | 
|  | #endif | 
|  | t2_mcheck_last_taken = 0; | 
|  | mb(); | 
|  | return; | 
|  | } else { | 
|  | t2_mcheck_last_taken = 0; | 
|  | mb(); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_VERBOSE_MCHECK | 
|  | if (alpha_verbose_mcheck > 1) { | 
|  | printk("%s t2_mcheck(cpu%d): last_taken 0x%x - " | 
|  | "any_expected 0x%x - code 0x%x\n", | 
|  | (mcheck_expected(cpu) ? "EX" : "UN"), cpu, | 
|  | t2_mcheck_last_taken, t2_mcheck_any_expected, | 
|  | (unsigned int)mchk_header->code); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | process_mcheck_info(vector, la_ptr, "T2", mcheck_expected(cpu)); | 
|  | } |