| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 1994 Linus Torvalds |
| * |
| * 29 dec 2001 - Fixed oopses caused by unchecked access to the vm86 |
| * stack - Manfred Spraul <manfred@colorfullife.com> |
| * |
| * 22 mar 2002 - Manfred detected the stackfaults, but didn't handle |
| * them correctly. Now the emulation will be in a |
| * consistent state after stackfaults - Kasper Dupont |
| * <kasperd@daimi.au.dk> |
| * |
| * 22 mar 2002 - Added missing clear_IF in set_vflags_* Kasper Dupont |
| * <kasperd@daimi.au.dk> |
| * |
| * ?? ??? 2002 - Fixed premature returns from handle_vm86_fault |
| * caused by Kasper Dupont's changes - Stas Sergeev |
| * |
| * 4 apr 2002 - Fixed CHECK_IF_IN_TRAP broken by Stas' changes. |
| * Kasper Dupont <kasperd@daimi.au.dk> |
| * |
| * 9 apr 2002 - Changed syntax of macros in handle_vm86_fault. |
| * Kasper Dupont <kasperd@daimi.au.dk> |
| * |
| * 9 apr 2002 - Changed stack access macros to jump to a label |
| * instead of returning to userspace. This simplifies |
| * do_int, and is needed by handle_vm6_fault. Kasper |
| * Dupont <kasperd@daimi.au.dk> |
| * |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/capability.h> |
| #include <linux/errno.h> |
| #include <linux/interrupt.h> |
| #include <linux/syscalls.h> |
| #include <linux/sched.h> |
| #include <linux/sched/task_stack.h> |
| #include <linux/kernel.h> |
| #include <linux/signal.h> |
| #include <linux/string.h> |
| #include <linux/mm.h> |
| #include <linux/smp.h> |
| #include <linux/highmem.h> |
| #include <linux/ptrace.h> |
| #include <linux/audit.h> |
| #include <linux/stddef.h> |
| #include <linux/slab.h> |
| #include <linux/security.h> |
| |
| #include <linux/uaccess.h> |
| #include <asm/io.h> |
| #include <asm/tlbflush.h> |
| #include <asm/irq.h> |
| #include <asm/traps.h> |
| #include <asm/vm86.h> |
| |
| /* |
| * Known problems: |
| * |
| * Interrupt handling is not guaranteed: |
| * - a real x86 will disable all interrupts for one instruction |
| * after a "mov ss,xx" to make stack handling atomic even without |
| * the 'lss' instruction. We can't guarantee this in v86 mode, |
| * as the next instruction might result in a page fault or similar. |
| * - a real x86 will have interrupts disabled for one instruction |
| * past the 'sti' that enables them. We don't bother with all the |
| * details yet. |
| * |
| * Let's hope these problems do not actually matter for anything. |
| */ |
| |
| |
| /* |
| * 8- and 16-bit register defines.. |
| */ |
| #define AL(regs) (((unsigned char *)&((regs)->pt.ax))[0]) |
| #define AH(regs) (((unsigned char *)&((regs)->pt.ax))[1]) |
| #define IP(regs) (*(unsigned short *)&((regs)->pt.ip)) |
| #define SP(regs) (*(unsigned short *)&((regs)->pt.sp)) |
| |
| /* |
| * virtual flags (16 and 32-bit versions) |
| */ |
| #define VFLAGS (*(unsigned short *)&(current->thread.vm86->veflags)) |
| #define VEFLAGS (current->thread.vm86->veflags) |
| |
| #define set_flags(X, new, mask) \ |
| ((X) = ((X) & ~(mask)) | ((new) & (mask))) |
| |
| #define SAFE_MASK (0xDD5) |
| #define RETURN_MASK (0xDFF) |
| |
| void save_v86_state(struct kernel_vm86_regs *regs, int retval) |
| { |
| struct tss_struct *tss; |
| struct task_struct *tsk = current; |
| struct vm86plus_struct __user *user; |
| struct vm86 *vm86 = current->thread.vm86; |
| long err = 0; |
| |
| /* |
| * This gets called from entry.S with interrupts disabled, but |
| * from process context. Enable interrupts here, before trying |
| * to access user space. |
| */ |
| local_irq_enable(); |
| |
| if (!vm86 || !vm86->user_vm86) { |
| pr_alert("no user_vm86: BAD\n"); |
| do_exit(SIGSEGV); |
| } |
| set_flags(regs->pt.flags, VEFLAGS, X86_EFLAGS_VIF | vm86->veflags_mask); |
| user = vm86->user_vm86; |
| |
| if (!access_ok(VERIFY_WRITE, user, vm86->vm86plus.is_vm86pus ? |
| sizeof(struct vm86plus_struct) : |
| sizeof(struct vm86_struct))) { |
| pr_alert("could not access userspace vm86 info\n"); |
| do_exit(SIGSEGV); |
| } |
| |
| put_user_try { |
| put_user_ex(regs->pt.bx, &user->regs.ebx); |
| put_user_ex(regs->pt.cx, &user->regs.ecx); |
| put_user_ex(regs->pt.dx, &user->regs.edx); |
| put_user_ex(regs->pt.si, &user->regs.esi); |
| put_user_ex(regs->pt.di, &user->regs.edi); |
| put_user_ex(regs->pt.bp, &user->regs.ebp); |
| put_user_ex(regs->pt.ax, &user->regs.eax); |
| put_user_ex(regs->pt.ip, &user->regs.eip); |
| put_user_ex(regs->pt.cs, &user->regs.cs); |
| put_user_ex(regs->pt.flags, &user->regs.eflags); |
| put_user_ex(regs->pt.sp, &user->regs.esp); |
| put_user_ex(regs->pt.ss, &user->regs.ss); |
| put_user_ex(regs->es, &user->regs.es); |
| put_user_ex(regs->ds, &user->regs.ds); |
| put_user_ex(regs->fs, &user->regs.fs); |
| put_user_ex(regs->gs, &user->regs.gs); |
| |
| put_user_ex(vm86->screen_bitmap, &user->screen_bitmap); |
| } put_user_catch(err); |
| if (err) { |
| pr_alert("could not access userspace vm86 info\n"); |
| do_exit(SIGSEGV); |
| } |
| |
| tss = &per_cpu(cpu_tss, get_cpu()); |
| tsk->thread.sp0 = vm86->saved_sp0; |
| tsk->thread.sysenter_cs = __KERNEL_CS; |
| load_sp0(tss, &tsk->thread); |
| vm86->saved_sp0 = 0; |
| put_cpu(); |
| |
| memcpy(®s->pt, &vm86->regs32, sizeof(struct pt_regs)); |
| |
| lazy_load_gs(vm86->regs32.gs); |
| |
| regs->pt.ax = retval; |
| } |
| |
| static void mark_screen_rdonly(struct mm_struct *mm) |
| { |
| struct vm_area_struct *vma; |
| spinlock_t *ptl; |
| pgd_t *pgd; |
| p4d_t *p4d; |
| pud_t *pud; |
| pmd_t *pmd; |
| pte_t *pte; |
| int i; |
| |
| down_write(&mm->mmap_sem); |
| pgd = pgd_offset(mm, 0xA0000); |
| if (pgd_none_or_clear_bad(pgd)) |
| goto out; |
| p4d = p4d_offset(pgd, 0xA0000); |
| if (p4d_none_or_clear_bad(p4d)) |
| goto out; |
| pud = pud_offset(p4d, 0xA0000); |
| if (pud_none_or_clear_bad(pud)) |
| goto out; |
| pmd = pmd_offset(pud, 0xA0000); |
| |
| if (pmd_trans_huge(*pmd)) { |
| vma = find_vma(mm, 0xA0000); |
| split_huge_pmd(vma, pmd, 0xA0000); |
| } |
| if (pmd_none_or_clear_bad(pmd)) |
| goto out; |
| pte = pte_offset_map_lock(mm, pmd, 0xA0000, &ptl); |
| for (i = 0; i < 32; i++) { |
| if (pte_present(*pte)) |
| set_pte(pte, pte_wrprotect(*pte)); |
| pte++; |
| } |
| pte_unmap_unlock(pte, ptl); |
| out: |
| up_write(&mm->mmap_sem); |
| flush_tlb_mm_range(mm, 0xA0000, 0xA0000 + 32*PAGE_SIZE, 0UL); |
| } |
| |
| |
| |
| static int do_vm86_irq_handling(int subfunction, int irqnumber); |
| static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus); |
| |
| SYSCALL_DEFINE1(vm86old, struct vm86_struct __user *, user_vm86) |
| { |
| return do_sys_vm86((struct vm86plus_struct __user *) user_vm86, false); |
| } |
| |
| |
| SYSCALL_DEFINE2(vm86, unsigned long, cmd, unsigned long, arg) |
| { |
| switch (cmd) { |
| case VM86_REQUEST_IRQ: |
| case VM86_FREE_IRQ: |
| case VM86_GET_IRQ_BITS: |
| case VM86_GET_AND_RESET_IRQ: |
| return do_vm86_irq_handling(cmd, (int)arg); |
| case VM86_PLUS_INSTALL_CHECK: |
| /* |
| * NOTE: on old vm86 stuff this will return the error |
| * from access_ok(), because the subfunction is |
| * interpreted as (invalid) address to vm86_struct. |
| * So the installation check works. |
| */ |
| return 0; |
| } |
| |
| /* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */ |
| return do_sys_vm86((struct vm86plus_struct __user *) arg, true); |
| } |
| |
| |
| static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus) |
| { |
| struct tss_struct *tss; |
| struct task_struct *tsk = current; |
| struct vm86 *vm86 = tsk->thread.vm86; |
| struct kernel_vm86_regs vm86regs; |
| struct pt_regs *regs = current_pt_regs(); |
| unsigned long err = 0; |
| |
| err = security_mmap_addr(0); |
| if (err) { |
| /* |
| * vm86 cannot virtualize the address space, so vm86 users |
| * need to manage the low 1MB themselves using mmap. Given |
| * that BIOS places important data in the first page, vm86 |
| * is essentially useless if mmap_min_addr != 0. DOSEMU, |
| * for example, won't even bother trying to use vm86 if it |
| * can't map a page at virtual address 0. |
| * |
| * To reduce the available kernel attack surface, simply |
| * disallow vm86(old) for users who cannot mmap at va 0. |
| * |
| * The implementation of security_mmap_addr will allow |
| * suitably privileged users to map va 0 even if |
| * vm.mmap_min_addr is set above 0, and we want this |
| * behavior for vm86 as well, as it ensures that legacy |
| * tools like vbetool will not fail just because of |
| * vm.mmap_min_addr. |
| */ |
| pr_info_once("Denied a call to vm86(old) from %s[%d] (uid: %d). Set the vm.mmap_min_addr sysctl to 0 and/or adjust LSM mmap_min_addr policy to enable vm86 if you are using a vm86-based DOS emulator.\n", |
| current->comm, task_pid_nr(current), |
| from_kuid_munged(&init_user_ns, current_uid())); |
| return -EPERM; |
| } |
| |
| if (!vm86) { |
| if (!(vm86 = kzalloc(sizeof(*vm86), GFP_KERNEL))) |
| return -ENOMEM; |
| tsk->thread.vm86 = vm86; |
| } |
| if (vm86->saved_sp0) |
| return -EPERM; |
| |
| if (!access_ok(VERIFY_READ, user_vm86, plus ? |
| sizeof(struct vm86_struct) : |
| sizeof(struct vm86plus_struct))) |
| return -EFAULT; |
| |
| memset(&vm86regs, 0, sizeof(vm86regs)); |
| get_user_try { |
| unsigned short seg; |
| get_user_ex(vm86regs.pt.bx, &user_vm86->regs.ebx); |
| get_user_ex(vm86regs.pt.cx, &user_vm86->regs.ecx); |
| get_user_ex(vm86regs.pt.dx, &user_vm86->regs.edx); |
| get_user_ex(vm86regs.pt.si, &user_vm86->regs.esi); |
| get_user_ex(vm86regs.pt.di, &user_vm86->regs.edi); |
| get_user_ex(vm86regs.pt.bp, &user_vm86->regs.ebp); |
| get_user_ex(vm86regs.pt.ax, &user_vm86->regs.eax); |
| get_user_ex(vm86regs.pt.ip, &user_vm86->regs.eip); |
| get_user_ex(seg, &user_vm86->regs.cs); |
| vm86regs.pt.cs = seg; |
| get_user_ex(vm86regs.pt.flags, &user_vm86->regs.eflags); |
| get_user_ex(vm86regs.pt.sp, &user_vm86->regs.esp); |
| get_user_ex(seg, &user_vm86->regs.ss); |
| vm86regs.pt.ss = seg; |
| get_user_ex(vm86regs.es, &user_vm86->regs.es); |
| get_user_ex(vm86regs.ds, &user_vm86->regs.ds); |
| get_user_ex(vm86regs.fs, &user_vm86->regs.fs); |
| get_user_ex(vm86regs.gs, &user_vm86->regs.gs); |
| |
| get_user_ex(vm86->flags, &user_vm86->flags); |
| get_user_ex(vm86->screen_bitmap, &user_vm86->screen_bitmap); |
| get_user_ex(vm86->cpu_type, &user_vm86->cpu_type); |
| } get_user_catch(err); |
| if (err) |
| return err; |
| |
| if (copy_from_user(&vm86->int_revectored, |
| &user_vm86->int_revectored, |
| sizeof(struct revectored_struct))) |
| return -EFAULT; |
| if (copy_from_user(&vm86->int21_revectored, |
| &user_vm86->int21_revectored, |
| sizeof(struct revectored_struct))) |
| return -EFAULT; |
| if (plus) { |
| if (copy_from_user(&vm86->vm86plus, &user_vm86->vm86plus, |
| sizeof(struct vm86plus_info_struct))) |
| return -EFAULT; |
| vm86->vm86plus.is_vm86pus = 1; |
| } else |
| memset(&vm86->vm86plus, 0, |
| sizeof(struct vm86plus_info_struct)); |
| |
| memcpy(&vm86->regs32, regs, sizeof(struct pt_regs)); |
| vm86->user_vm86 = user_vm86; |
| |
| /* |
| * The flags register is also special: we cannot trust that the user |
| * has set it up safely, so this makes sure interrupt etc flags are |
| * inherited from protected mode. |
| */ |
| VEFLAGS = vm86regs.pt.flags; |
| vm86regs.pt.flags &= SAFE_MASK; |
| vm86regs.pt.flags |= regs->flags & ~SAFE_MASK; |
| vm86regs.pt.flags |= X86_VM_MASK; |
| |
| vm86regs.pt.orig_ax = regs->orig_ax; |
| |
| switch (vm86->cpu_type) { |
| case CPU_286: |
| vm86->veflags_mask = 0; |
| break; |
| case CPU_386: |
| vm86->veflags_mask = X86_EFLAGS_NT | X86_EFLAGS_IOPL; |
| break; |
| case CPU_486: |
| vm86->veflags_mask = X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL; |
| break; |
| default: |
| vm86->veflags_mask = X86_EFLAGS_ID | X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL; |
| break; |
| } |
| |
| /* |
| * Save old state |
| */ |
| vm86->saved_sp0 = tsk->thread.sp0; |
| lazy_save_gs(vm86->regs32.gs); |
| |
| tss = &per_cpu(cpu_tss, get_cpu()); |
| /* make room for real-mode segments */ |
| tsk->thread.sp0 += 16; |
| |
| if (static_cpu_has(X86_FEATURE_SEP)) |
| tsk->thread.sysenter_cs = 0; |
| |
| load_sp0(tss, &tsk->thread); |
| put_cpu(); |
| |
| if (vm86->flags & VM86_SCREEN_BITMAP) |
| mark_screen_rdonly(tsk->mm); |
| |
| memcpy((struct kernel_vm86_regs *)regs, &vm86regs, sizeof(vm86regs)); |
| force_iret(); |
| return regs->ax; |
| } |
| |
| static inline void set_IF(struct kernel_vm86_regs *regs) |
| { |
| VEFLAGS |= X86_EFLAGS_VIF; |
| } |
| |
| static inline void clear_IF(struct kernel_vm86_regs *regs) |
| { |
| VEFLAGS &= ~X86_EFLAGS_VIF; |
| } |
| |
| static inline void clear_TF(struct kernel_vm86_regs *regs) |
| { |
| regs->pt.flags &= ~X86_EFLAGS_TF; |
| } |
| |
| static inline void clear_AC(struct kernel_vm86_regs *regs) |
| { |
| regs->pt.flags &= ~X86_EFLAGS_AC; |
| } |
| |
| /* |
| * It is correct to call set_IF(regs) from the set_vflags_* |
| * functions. However someone forgot to call clear_IF(regs) |
| * in the opposite case. |
| * After the command sequence CLI PUSHF STI POPF you should |
| * end up with interrupts disabled, but you ended up with |
| * interrupts enabled. |
| * ( I was testing my own changes, but the only bug I |
| * could find was in a function I had not changed. ) |
| * [KD] |
| */ |
| |
| static inline void set_vflags_long(unsigned long flags, struct kernel_vm86_regs *regs) |
| { |
| set_flags(VEFLAGS, flags, current->thread.vm86->veflags_mask); |
| set_flags(regs->pt.flags, flags, SAFE_MASK); |
| if (flags & X86_EFLAGS_IF) |
| set_IF(regs); |
| else |
| clear_IF(regs); |
| } |
| |
| static inline void set_vflags_short(unsigned short flags, struct kernel_vm86_regs *regs) |
| { |
| set_flags(VFLAGS, flags, current->thread.vm86->veflags_mask); |
| set_flags(regs->pt.flags, flags, SAFE_MASK); |
| if (flags & X86_EFLAGS_IF) |
| set_IF(regs); |
| else |
| clear_IF(regs); |
| } |
| |
| static inline unsigned long get_vflags(struct kernel_vm86_regs *regs) |
| { |
| unsigned long flags = regs->pt.flags & RETURN_MASK; |
| |
| if (VEFLAGS & X86_EFLAGS_VIF) |
| flags |= X86_EFLAGS_IF; |
| flags |= X86_EFLAGS_IOPL; |
| return flags | (VEFLAGS & current->thread.vm86->veflags_mask); |
| } |
| |
| static inline int is_revectored(int nr, struct revectored_struct *bitmap) |
| { |
| return test_bit(nr, bitmap->__map); |
| } |
| |
| #define val_byte(val, n) (((__u8 *)&val)[n]) |
| |
| #define pushb(base, ptr, val, err_label) \ |
| do { \ |
| __u8 __val = val; \ |
| ptr--; \ |
| if (put_user(__val, base + ptr) < 0) \ |
| goto err_label; \ |
| } while (0) |
| |
| #define pushw(base, ptr, val, err_label) \ |
| do { \ |
| __u16 __val = val; \ |
| ptr--; \ |
| if (put_user(val_byte(__val, 1), base + ptr) < 0) \ |
| goto err_label; \ |
| ptr--; \ |
| if (put_user(val_byte(__val, 0), base + ptr) < 0) \ |
| goto err_label; \ |
| } while (0) |
| |
| #define pushl(base, ptr, val, err_label) \ |
| do { \ |
| __u32 __val = val; \ |
| ptr--; \ |
| if (put_user(val_byte(__val, 3), base + ptr) < 0) \ |
| goto err_label; \ |
| ptr--; \ |
| if (put_user(val_byte(__val, 2), base + ptr) < 0) \ |
| goto err_label; \ |
| ptr--; \ |
| if (put_user(val_byte(__val, 1), base + ptr) < 0) \ |
| goto err_label; \ |
| ptr--; \ |
| if (put_user(val_byte(__val, 0), base + ptr) < 0) \ |
| goto err_label; \ |
| } while (0) |
| |
| #define popb(base, ptr, err_label) \ |
| ({ \ |
| __u8 __res; \ |
| if (get_user(__res, base + ptr) < 0) \ |
| goto err_label; \ |
| ptr++; \ |
| __res; \ |
| }) |
| |
| #define popw(base, ptr, err_label) \ |
| ({ \ |
| __u16 __res; \ |
| if (get_user(val_byte(__res, 0), base + ptr) < 0) \ |
| goto err_label; \ |
| ptr++; \ |
| if (get_user(val_byte(__res, 1), base + ptr) < 0) \ |
| goto err_label; \ |
| ptr++; \ |
| __res; \ |
| }) |
| |
| #define popl(base, ptr, err_label) \ |
| ({ \ |
| __u32 __res; \ |
| if (get_user(val_byte(__res, 0), base + ptr) < 0) \ |
| goto err_label; \ |
| ptr++; \ |
| if (get_user(val_byte(__res, 1), base + ptr) < 0) \ |
| goto err_label; \ |
| ptr++; \ |
| if (get_user(val_byte(__res, 2), base + ptr) < 0) \ |
| goto err_label; \ |
| ptr++; \ |
| if (get_user(val_byte(__res, 3), base + ptr) < 0) \ |
| goto err_label; \ |
| ptr++; \ |
| __res; \ |
| }) |
| |
| /* There are so many possible reasons for this function to return |
| * VM86_INTx, so adding another doesn't bother me. We can expect |
| * userspace programs to be able to handle it. (Getting a problem |
| * in userspace is always better than an Oops anyway.) [KD] |
| */ |
| static void do_int(struct kernel_vm86_regs *regs, int i, |
| unsigned char __user *ssp, unsigned short sp) |
| { |
| unsigned long __user *intr_ptr; |
| unsigned long segoffs; |
| struct vm86 *vm86 = current->thread.vm86; |
| |
| if (regs->pt.cs == BIOSSEG) |
| goto cannot_handle; |
| if (is_revectored(i, &vm86->int_revectored)) |
| goto cannot_handle; |
| if (i == 0x21 && is_revectored(AH(regs), &vm86->int21_revectored)) |
| goto cannot_handle; |
| intr_ptr = (unsigned long __user *) (i << 2); |
| if (get_user(segoffs, intr_ptr)) |
| goto cannot_handle; |
| if ((segoffs >> 16) == BIOSSEG) |
| goto cannot_handle; |
| pushw(ssp, sp, get_vflags(regs), cannot_handle); |
| pushw(ssp, sp, regs->pt.cs, cannot_handle); |
| pushw(ssp, sp, IP(regs), cannot_handle); |
| regs->pt.cs = segoffs >> 16; |
| SP(regs) -= 6; |
| IP(regs) = segoffs & 0xffff; |
| clear_TF(regs); |
| clear_IF(regs); |
| clear_AC(regs); |
| return; |
| |
| cannot_handle: |
| save_v86_state(regs, VM86_INTx + (i << 8)); |
| } |
| |
| int handle_vm86_trap(struct kernel_vm86_regs *regs, long error_code, int trapno) |
| { |
| struct vm86 *vm86 = current->thread.vm86; |
| |
| if (vm86->vm86plus.is_vm86pus) { |
| if ((trapno == 3) || (trapno == 1)) { |
| save_v86_state(regs, VM86_TRAP + (trapno << 8)); |
| return 0; |
| } |
| do_int(regs, trapno, (unsigned char __user *) (regs->pt.ss << 4), SP(regs)); |
| return 0; |
| } |
| if (trapno != 1) |
| return 1; /* we let this handle by the calling routine */ |
| current->thread.trap_nr = trapno; |
| current->thread.error_code = error_code; |
| force_sig(SIGTRAP, current); |
| return 0; |
| } |
| |
| void handle_vm86_fault(struct kernel_vm86_regs *regs, long error_code) |
| { |
| unsigned char opcode; |
| unsigned char __user *csp; |
| unsigned char __user *ssp; |
| unsigned short ip, sp, orig_flags; |
| int data32, pref_done; |
| struct vm86plus_info_struct *vmpi = ¤t->thread.vm86->vm86plus; |
| |
| #define CHECK_IF_IN_TRAP \ |
| if (vmpi->vm86dbg_active && vmpi->vm86dbg_TFpendig) \ |
| newflags |= X86_EFLAGS_TF |
| |
| orig_flags = *(unsigned short *)®s->pt.flags; |
| |
| csp = (unsigned char __user *) (regs->pt.cs << 4); |
| ssp = (unsigned char __user *) (regs->pt.ss << 4); |
| sp = SP(regs); |
| ip = IP(regs); |
| |
| data32 = 0; |
| pref_done = 0; |
| do { |
| switch (opcode = popb(csp, ip, simulate_sigsegv)) { |
| case 0x66: /* 32-bit data */ data32 = 1; break; |
| case 0x67: /* 32-bit address */ break; |
| case 0x2e: /* CS */ break; |
| case 0x3e: /* DS */ break; |
| case 0x26: /* ES */ break; |
| case 0x36: /* SS */ break; |
| case 0x65: /* GS */ break; |
| case 0x64: /* FS */ break; |
| case 0xf2: /* repnz */ break; |
| case 0xf3: /* rep */ break; |
| default: pref_done = 1; |
| } |
| } while (!pref_done); |
| |
| switch (opcode) { |
| |
| /* pushf */ |
| case 0x9c: |
| if (data32) { |
| pushl(ssp, sp, get_vflags(regs), simulate_sigsegv); |
| SP(regs) -= 4; |
| } else { |
| pushw(ssp, sp, get_vflags(regs), simulate_sigsegv); |
| SP(regs) -= 2; |
| } |
| IP(regs) = ip; |
| goto vm86_fault_return; |
| |
| /* popf */ |
| case 0x9d: |
| { |
| unsigned long newflags; |
| if (data32) { |
| newflags = popl(ssp, sp, simulate_sigsegv); |
| SP(regs) += 4; |
| } else { |
| newflags = popw(ssp, sp, simulate_sigsegv); |
| SP(regs) += 2; |
| } |
| IP(regs) = ip; |
| CHECK_IF_IN_TRAP; |
| if (data32) |
| set_vflags_long(newflags, regs); |
| else |
| set_vflags_short(newflags, regs); |
| |
| goto check_vip; |
| } |
| |
| /* int xx */ |
| case 0xcd: { |
| int intno = popb(csp, ip, simulate_sigsegv); |
| IP(regs) = ip; |
| if (vmpi->vm86dbg_active) { |
| if ((1 << (intno & 7)) & vmpi->vm86dbg_intxxtab[intno >> 3]) { |
| save_v86_state(regs, VM86_INTx + (intno << 8)); |
| return; |
| } |
| } |
| do_int(regs, intno, ssp, sp); |
| return; |
| } |
| |
| /* iret */ |
| case 0xcf: |
| { |
| unsigned long newip; |
| unsigned long newcs; |
| unsigned long newflags; |
| if (data32) { |
| newip = popl(ssp, sp, simulate_sigsegv); |
| newcs = popl(ssp, sp, simulate_sigsegv); |
| newflags = popl(ssp, sp, simulate_sigsegv); |
| SP(regs) += 12; |
| } else { |
| newip = popw(ssp, sp, simulate_sigsegv); |
| newcs = popw(ssp, sp, simulate_sigsegv); |
| newflags = popw(ssp, sp, simulate_sigsegv); |
| SP(regs) += 6; |
| } |
| IP(regs) = newip; |
| regs->pt.cs = newcs; |
| CHECK_IF_IN_TRAP; |
| if (data32) { |
| set_vflags_long(newflags, regs); |
| } else { |
| set_vflags_short(newflags, regs); |
| } |
| goto check_vip; |
| } |
| |
| /* cli */ |
| case 0xfa: |
| IP(regs) = ip; |
| clear_IF(regs); |
| goto vm86_fault_return; |
| |
| /* sti */ |
| /* |
| * Damn. This is incorrect: the 'sti' instruction should actually |
| * enable interrupts after the /next/ instruction. Not good. |
| * |
| * Probably needs some horsing around with the TF flag. Aiee.. |
| */ |
| case 0xfb: |
| IP(regs) = ip; |
| set_IF(regs); |
| goto check_vip; |
| |
| default: |
| save_v86_state(regs, VM86_UNKNOWN); |
| } |
| |
| return; |
| |
| check_vip: |
| if (VEFLAGS & X86_EFLAGS_VIP) { |
| save_v86_state(regs, VM86_STI); |
| return; |
| } |
| |
| vm86_fault_return: |
| if (vmpi->force_return_for_pic && (VEFLAGS & (X86_EFLAGS_IF | X86_EFLAGS_VIF))) { |
| save_v86_state(regs, VM86_PICRETURN); |
| return; |
| } |
| if (orig_flags & X86_EFLAGS_TF) |
| handle_vm86_trap(regs, 0, X86_TRAP_DB); |
| return; |
| |
| simulate_sigsegv: |
| /* FIXME: After a long discussion with Stas we finally |
| * agreed, that this is wrong. Here we should |
| * really send a SIGSEGV to the user program. |
| * But how do we create the correct context? We |
| * are inside a general protection fault handler |
| * and has just returned from a page fault handler. |
| * The correct context for the signal handler |
| * should be a mixture of the two, but how do we |
| * get the information? [KD] |
| */ |
| save_v86_state(regs, VM86_UNKNOWN); |
| } |
| |
| /* ---------------- vm86 special IRQ passing stuff ----------------- */ |
| |
| #define VM86_IRQNAME "vm86irq" |
| |
| static struct vm86_irqs { |
| struct task_struct *tsk; |
| int sig; |
| } vm86_irqs[16]; |
| |
| static DEFINE_SPINLOCK(irqbits_lock); |
| static int irqbits; |
| |
| #define ALLOWED_SIGS (1 /* 0 = don't send a signal */ \ |
| | (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO) | (1 << SIGURG) \ |
| | (1 << SIGUNUSED)) |
| |
| static irqreturn_t irq_handler(int intno, void *dev_id) |
| { |
| int irq_bit; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&irqbits_lock, flags); |
| irq_bit = 1 << intno; |
| if ((irqbits & irq_bit) || !vm86_irqs[intno].tsk) |
| goto out; |
| irqbits |= irq_bit; |
| if (vm86_irqs[intno].sig) |
| send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1); |
| /* |
| * IRQ will be re-enabled when user asks for the irq (whether |
| * polling or as a result of the signal) |
| */ |
| disable_irq_nosync(intno); |
| spin_unlock_irqrestore(&irqbits_lock, flags); |
| return IRQ_HANDLED; |
| |
| out: |
| spin_unlock_irqrestore(&irqbits_lock, flags); |
| return IRQ_NONE; |
| } |
| |
| static inline void free_vm86_irq(int irqnumber) |
| { |
| unsigned long flags; |
| |
| free_irq(irqnumber, NULL); |
| vm86_irqs[irqnumber].tsk = NULL; |
| |
| spin_lock_irqsave(&irqbits_lock, flags); |
| irqbits &= ~(1 << irqnumber); |
| spin_unlock_irqrestore(&irqbits_lock, flags); |
| } |
| |
| void release_vm86_irqs(struct task_struct *task) |
| { |
| int i; |
| for (i = FIRST_VM86_IRQ ; i <= LAST_VM86_IRQ; i++) |
| if (vm86_irqs[i].tsk == task) |
| free_vm86_irq(i); |
| } |
| |
| static inline int get_and_reset_irq(int irqnumber) |
| { |
| int bit; |
| unsigned long flags; |
| int ret = 0; |
| |
| if (invalid_vm86_irq(irqnumber)) return 0; |
| if (vm86_irqs[irqnumber].tsk != current) return 0; |
| spin_lock_irqsave(&irqbits_lock, flags); |
| bit = irqbits & (1 << irqnumber); |
| irqbits &= ~bit; |
| if (bit) { |
| enable_irq(irqnumber); |
| ret = 1; |
| } |
| |
| spin_unlock_irqrestore(&irqbits_lock, flags); |
| return ret; |
| } |
| |
| |
| static int do_vm86_irq_handling(int subfunction, int irqnumber) |
| { |
| int ret; |
| switch (subfunction) { |
| case VM86_GET_AND_RESET_IRQ: { |
| return get_and_reset_irq(irqnumber); |
| } |
| case VM86_GET_IRQ_BITS: { |
| return irqbits; |
| } |
| case VM86_REQUEST_IRQ: { |
| int sig = irqnumber >> 8; |
| int irq = irqnumber & 255; |
| if (!capable(CAP_SYS_ADMIN)) return -EPERM; |
| if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM; |
| if (invalid_vm86_irq(irq)) return -EPERM; |
| if (vm86_irqs[irq].tsk) return -EPERM; |
| ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, NULL); |
| if (ret) return ret; |
| vm86_irqs[irq].sig = sig; |
| vm86_irqs[irq].tsk = current; |
| return irq; |
| } |
| case VM86_FREE_IRQ: { |
| if (invalid_vm86_irq(irqnumber)) return -EPERM; |
| if (!vm86_irqs[irqnumber].tsk) return 0; |
| if (vm86_irqs[irqnumber].tsk != current) return -EPERM; |
| free_vm86_irq(irqnumber); |
| return 0; |
| } |
| } |
| return -EINVAL; |
| } |
| |