|  | /* | 
|  | *  linux/kernel/exit.c | 
|  | * | 
|  | *  Copyright (C) 1991, 1992  Linus Torvalds | 
|  | */ | 
|  |  | 
|  | #include <linux/mm.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/capability.h> | 
|  | #include <linux/completion.h> | 
|  | #include <linux/personality.h> | 
|  | #include <linux/tty.h> | 
|  | #include <linux/iocontext.h> | 
|  | #include <linux/key.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/acct.h> | 
|  | #include <linux/tsacct_kern.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/fdtable.h> | 
|  | #include <linux/freezer.h> | 
|  | #include <linux/binfmts.h> | 
|  | #include <linux/nsproxy.h> | 
|  | #include <linux/pid_namespace.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/profile.h> | 
|  | #include <linux/mount.h> | 
|  | #include <linux/proc_fs.h> | 
|  | #include <linux/kthread.h> | 
|  | #include <linux/mempolicy.h> | 
|  | #include <linux/taskstats_kern.h> | 
|  | #include <linux/delayacct.h> | 
|  | #include <linux/cgroup.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/signal.h> | 
|  | #include <linux/posix-timers.h> | 
|  | #include <linux/cn_proc.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/futex.h> | 
|  | #include <linux/pipe_fs_i.h> | 
|  | #include <linux/audit.h> /* for audit_free() */ | 
|  | #include <linux/resource.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/task_io_accounting_ops.h> | 
|  | #include <linux/tracehook.h> | 
|  | #include <linux/fs_struct.h> | 
|  | #include <linux/init_task.h> | 
|  | #include <linux/perf_event.h> | 
|  | #include <trace/events/sched.h> | 
|  | #include <linux/hw_breakpoint.h> | 
|  | #include <linux/oom.h> | 
|  | #include <linux/writeback.h> | 
|  | #include <linux/shm.h> | 
|  |  | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/unistd.h> | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/mmu_context.h> | 
|  |  | 
|  | static void exit_mm(struct task_struct *tsk); | 
|  |  | 
|  | static void __unhash_process(struct task_struct *p, bool group_dead) | 
|  | { | 
|  | nr_threads--; | 
|  | detach_pid(p, PIDTYPE_PID); | 
|  | if (group_dead) { | 
|  | detach_pid(p, PIDTYPE_PGID); | 
|  | detach_pid(p, PIDTYPE_SID); | 
|  |  | 
|  | list_del_rcu(&p->tasks); | 
|  | list_del_init(&p->sibling); | 
|  | __this_cpu_dec(process_counts); | 
|  | } | 
|  | list_del_rcu(&p->thread_group); | 
|  | list_del_rcu(&p->thread_node); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function expects the tasklist_lock write-locked. | 
|  | */ | 
|  | static void __exit_signal(struct task_struct *tsk) | 
|  | { | 
|  | struct signal_struct *sig = tsk->signal; | 
|  | bool group_dead = thread_group_leader(tsk); | 
|  | struct sighand_struct *sighand; | 
|  | struct tty_struct *uninitialized_var(tty); | 
|  | cputime_t utime, stime; | 
|  |  | 
|  | sighand = rcu_dereference_check(tsk->sighand, | 
|  | lockdep_tasklist_lock_is_held()); | 
|  | spin_lock(&sighand->siglock); | 
|  |  | 
|  | posix_cpu_timers_exit(tsk); | 
|  | if (group_dead) { | 
|  | posix_cpu_timers_exit_group(tsk); | 
|  | tty = sig->tty; | 
|  | sig->tty = NULL; | 
|  | } else { | 
|  | /* | 
|  | * This can only happen if the caller is de_thread(). | 
|  | * FIXME: this is the temporary hack, we should teach | 
|  | * posix-cpu-timers to handle this case correctly. | 
|  | */ | 
|  | if (unlikely(has_group_leader_pid(tsk))) | 
|  | posix_cpu_timers_exit_group(tsk); | 
|  |  | 
|  | /* | 
|  | * If there is any task waiting for the group exit | 
|  | * then notify it: | 
|  | */ | 
|  | if (sig->notify_count > 0 && !--sig->notify_count) | 
|  | wake_up_process(sig->group_exit_task); | 
|  |  | 
|  | if (tsk == sig->curr_target) | 
|  | sig->curr_target = next_thread(tsk); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Accumulate here the counters for all threads as they die. We could | 
|  | * skip the group leader because it is the last user of signal_struct, | 
|  | * but we want to avoid the race with thread_group_cputime() which can | 
|  | * see the empty ->thread_head list. | 
|  | */ | 
|  | task_cputime(tsk, &utime, &stime); | 
|  | write_seqlock(&sig->stats_lock); | 
|  | sig->utime += utime; | 
|  | sig->stime += stime; | 
|  | sig->gtime += task_gtime(tsk); | 
|  | sig->min_flt += tsk->min_flt; | 
|  | sig->maj_flt += tsk->maj_flt; | 
|  | sig->nvcsw += tsk->nvcsw; | 
|  | sig->nivcsw += tsk->nivcsw; | 
|  | sig->inblock += task_io_get_inblock(tsk); | 
|  | sig->oublock += task_io_get_oublock(tsk); | 
|  | task_io_accounting_add(&sig->ioac, &tsk->ioac); | 
|  | sig->sum_sched_runtime += tsk->se.sum_exec_runtime; | 
|  | sig->nr_threads--; | 
|  | __unhash_process(tsk, group_dead); | 
|  | write_sequnlock(&sig->stats_lock); | 
|  |  | 
|  | /* | 
|  | * Do this under ->siglock, we can race with another thread | 
|  | * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. | 
|  | */ | 
|  | flush_sigqueue(&tsk->pending); | 
|  | tsk->sighand = NULL; | 
|  | spin_unlock(&sighand->siglock); | 
|  |  | 
|  | __cleanup_sighand(sighand); | 
|  | clear_tsk_thread_flag(tsk, TIF_SIGPENDING); | 
|  | if (group_dead) { | 
|  | flush_sigqueue(&sig->shared_pending); | 
|  | tty_kref_put(tty); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void delayed_put_task_struct(struct rcu_head *rhp) | 
|  | { | 
|  | struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); | 
|  |  | 
|  | perf_event_delayed_put(tsk); | 
|  | trace_sched_process_free(tsk); | 
|  | put_task_struct(tsk); | 
|  | } | 
|  |  | 
|  |  | 
|  | void release_task(struct task_struct *p) | 
|  | { | 
|  | struct task_struct *leader; | 
|  | int zap_leader; | 
|  | repeat: | 
|  | /* don't need to get the RCU readlock here - the process is dead and | 
|  | * can't be modifying its own credentials. But shut RCU-lockdep up */ | 
|  | rcu_read_lock(); | 
|  | atomic_dec(&__task_cred(p)->user->processes); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | proc_flush_task(p); | 
|  |  | 
|  | write_lock_irq(&tasklist_lock); | 
|  | ptrace_release_task(p); | 
|  | __exit_signal(p); | 
|  |  | 
|  | /* | 
|  | * If we are the last non-leader member of the thread | 
|  | * group, and the leader is zombie, then notify the | 
|  | * group leader's parent process. (if it wants notification.) | 
|  | */ | 
|  | zap_leader = 0; | 
|  | leader = p->group_leader; | 
|  | if (leader != p && thread_group_empty(leader) | 
|  | && leader->exit_state == EXIT_ZOMBIE) { | 
|  | /* | 
|  | * If we were the last child thread and the leader has | 
|  | * exited already, and the leader's parent ignores SIGCHLD, | 
|  | * then we are the one who should release the leader. | 
|  | */ | 
|  | zap_leader = do_notify_parent(leader, leader->exit_signal); | 
|  | if (zap_leader) | 
|  | leader->exit_state = EXIT_DEAD; | 
|  | } | 
|  |  | 
|  | write_unlock_irq(&tasklist_lock); | 
|  | release_thread(p); | 
|  | call_rcu(&p->rcu, delayed_put_task_struct); | 
|  |  | 
|  | p = leader; | 
|  | if (unlikely(zap_leader)) | 
|  | goto repeat; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Determine if a process group is "orphaned", according to the POSIX | 
|  | * definition in 2.2.2.52.  Orphaned process groups are not to be affected | 
|  | * by terminal-generated stop signals.  Newly orphaned process groups are | 
|  | * to receive a SIGHUP and a SIGCONT. | 
|  | * | 
|  | * "I ask you, have you ever known what it is to be an orphan?" | 
|  | */ | 
|  | static int will_become_orphaned_pgrp(struct pid *pgrp, | 
|  | struct task_struct *ignored_task) | 
|  | { | 
|  | struct task_struct *p; | 
|  |  | 
|  | do_each_pid_task(pgrp, PIDTYPE_PGID, p) { | 
|  | if ((p == ignored_task) || | 
|  | (p->exit_state && thread_group_empty(p)) || | 
|  | is_global_init(p->real_parent)) | 
|  | continue; | 
|  |  | 
|  | if (task_pgrp(p->real_parent) != pgrp && | 
|  | task_session(p->real_parent) == task_session(p)) | 
|  | return 0; | 
|  | } while_each_pid_task(pgrp, PIDTYPE_PGID, p); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int is_current_pgrp_orphaned(void) | 
|  | { | 
|  | int retval; | 
|  |  | 
|  | read_lock(&tasklist_lock); | 
|  | retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); | 
|  | read_unlock(&tasklist_lock); | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static bool has_stopped_jobs(struct pid *pgrp) | 
|  | { | 
|  | struct task_struct *p; | 
|  |  | 
|  | do_each_pid_task(pgrp, PIDTYPE_PGID, p) { | 
|  | if (p->signal->flags & SIGNAL_STOP_STOPPED) | 
|  | return true; | 
|  | } while_each_pid_task(pgrp, PIDTYPE_PGID, p); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check to see if any process groups have become orphaned as | 
|  | * a result of our exiting, and if they have any stopped jobs, | 
|  | * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) | 
|  | */ | 
|  | static void | 
|  | kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) | 
|  | { | 
|  | struct pid *pgrp = task_pgrp(tsk); | 
|  | struct task_struct *ignored_task = tsk; | 
|  |  | 
|  | if (!parent) | 
|  | /* exit: our father is in a different pgrp than | 
|  | * we are and we were the only connection outside. | 
|  | */ | 
|  | parent = tsk->real_parent; | 
|  | else | 
|  | /* reparent: our child is in a different pgrp than | 
|  | * we are, and it was the only connection outside. | 
|  | */ | 
|  | ignored_task = NULL; | 
|  |  | 
|  | if (task_pgrp(parent) != pgrp && | 
|  | task_session(parent) == task_session(tsk) && | 
|  | will_become_orphaned_pgrp(pgrp, ignored_task) && | 
|  | has_stopped_jobs(pgrp)) { | 
|  | __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); | 
|  | __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MEMCG | 
|  | /* | 
|  | * A task is exiting.   If it owned this mm, find a new owner for the mm. | 
|  | */ | 
|  | void mm_update_next_owner(struct mm_struct *mm) | 
|  | { | 
|  | struct task_struct *c, *g, *p = current; | 
|  |  | 
|  | retry: | 
|  | /* | 
|  | * If the exiting or execing task is not the owner, it's | 
|  | * someone else's problem. | 
|  | */ | 
|  | if (mm->owner != p) | 
|  | return; | 
|  | /* | 
|  | * The current owner is exiting/execing and there are no other | 
|  | * candidates.  Do not leave the mm pointing to a possibly | 
|  | * freed task structure. | 
|  | */ | 
|  | if (atomic_read(&mm->mm_users) <= 1) { | 
|  | mm->owner = NULL; | 
|  | return; | 
|  | } | 
|  |  | 
|  | read_lock(&tasklist_lock); | 
|  | /* | 
|  | * Search in the children | 
|  | */ | 
|  | list_for_each_entry(c, &p->children, sibling) { | 
|  | if (c->mm == mm) | 
|  | goto assign_new_owner; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Search in the siblings | 
|  | */ | 
|  | list_for_each_entry(c, &p->real_parent->children, sibling) { | 
|  | if (c->mm == mm) | 
|  | goto assign_new_owner; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Search through everything else, we should not get here often. | 
|  | */ | 
|  | for_each_process(g) { | 
|  | if (g->flags & PF_KTHREAD) | 
|  | continue; | 
|  | for_each_thread(g, c) { | 
|  | if (c->mm == mm) | 
|  | goto assign_new_owner; | 
|  | if (c->mm) | 
|  | break; | 
|  | } | 
|  | } | 
|  | read_unlock(&tasklist_lock); | 
|  | /* | 
|  | * We found no owner yet mm_users > 1: this implies that we are | 
|  | * most likely racing with swapoff (try_to_unuse()) or /proc or | 
|  | * ptrace or page migration (get_task_mm()).  Mark owner as NULL. | 
|  | */ | 
|  | mm->owner = NULL; | 
|  | return; | 
|  |  | 
|  | assign_new_owner: | 
|  | BUG_ON(c == p); | 
|  | get_task_struct(c); | 
|  | /* | 
|  | * The task_lock protects c->mm from changing. | 
|  | * We always want mm->owner->mm == mm | 
|  | */ | 
|  | task_lock(c); | 
|  | /* | 
|  | * Delay read_unlock() till we have the task_lock() | 
|  | * to ensure that c does not slip away underneath us | 
|  | */ | 
|  | read_unlock(&tasklist_lock); | 
|  | if (c->mm != mm) { | 
|  | task_unlock(c); | 
|  | put_task_struct(c); | 
|  | goto retry; | 
|  | } | 
|  | mm->owner = c; | 
|  | task_unlock(c); | 
|  | put_task_struct(c); | 
|  | } | 
|  | #endif /* CONFIG_MEMCG */ | 
|  |  | 
|  | /* | 
|  | * Turn us into a lazy TLB process if we | 
|  | * aren't already.. | 
|  | */ | 
|  | static void exit_mm(struct task_struct *tsk) | 
|  | { | 
|  | struct mm_struct *mm = tsk->mm; | 
|  | struct core_state *core_state; | 
|  |  | 
|  | mm_release(tsk, mm); | 
|  | if (!mm) | 
|  | return; | 
|  | sync_mm_rss(mm); | 
|  | /* | 
|  | * Serialize with any possible pending coredump. | 
|  | * We must hold mmap_sem around checking core_state | 
|  | * and clearing tsk->mm.  The core-inducing thread | 
|  | * will increment ->nr_threads for each thread in the | 
|  | * group with ->mm != NULL. | 
|  | */ | 
|  | down_read(&mm->mmap_sem); | 
|  | core_state = mm->core_state; | 
|  | if (core_state) { | 
|  | struct core_thread self; | 
|  |  | 
|  | up_read(&mm->mmap_sem); | 
|  |  | 
|  | self.task = tsk; | 
|  | self.next = xchg(&core_state->dumper.next, &self); | 
|  | /* | 
|  | * Implies mb(), the result of xchg() must be visible | 
|  | * to core_state->dumper. | 
|  | */ | 
|  | if (atomic_dec_and_test(&core_state->nr_threads)) | 
|  | complete(&core_state->startup); | 
|  |  | 
|  | for (;;) { | 
|  | set_task_state(tsk, TASK_UNINTERRUPTIBLE); | 
|  | if (!self.task) /* see coredump_finish() */ | 
|  | break; | 
|  | freezable_schedule(); | 
|  | } | 
|  | __set_task_state(tsk, TASK_RUNNING); | 
|  | down_read(&mm->mmap_sem); | 
|  | } | 
|  | atomic_inc(&mm->mm_count); | 
|  | BUG_ON(mm != tsk->active_mm); | 
|  | /* more a memory barrier than a real lock */ | 
|  | task_lock(tsk); | 
|  | tsk->mm = NULL; | 
|  | up_read(&mm->mmap_sem); | 
|  | enter_lazy_tlb(mm, current); | 
|  | task_unlock(tsk); | 
|  | mm_update_next_owner(mm); | 
|  | mmput(mm); | 
|  | if (test_thread_flag(TIF_MEMDIE)) | 
|  | unmark_oom_victim(); | 
|  | } | 
|  |  | 
|  | static struct task_struct *find_alive_thread(struct task_struct *p) | 
|  | { | 
|  | struct task_struct *t; | 
|  |  | 
|  | for_each_thread(p, t) { | 
|  | if (!(t->flags & PF_EXITING)) | 
|  | return t; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static struct task_struct *find_child_reaper(struct task_struct *father) | 
|  | __releases(&tasklist_lock) | 
|  | __acquires(&tasklist_lock) | 
|  | { | 
|  | struct pid_namespace *pid_ns = task_active_pid_ns(father); | 
|  | struct task_struct *reaper = pid_ns->child_reaper; | 
|  |  | 
|  | if (likely(reaper != father)) | 
|  | return reaper; | 
|  |  | 
|  | reaper = find_alive_thread(father); | 
|  | if (reaper) { | 
|  | pid_ns->child_reaper = reaper; | 
|  | return reaper; | 
|  | } | 
|  |  | 
|  | write_unlock_irq(&tasklist_lock); | 
|  | if (unlikely(pid_ns == &init_pid_ns)) { | 
|  | panic("Attempted to kill init! exitcode=0x%08x\n", | 
|  | father->signal->group_exit_code ?: father->exit_code); | 
|  | } | 
|  | zap_pid_ns_processes(pid_ns); | 
|  | write_lock_irq(&tasklist_lock); | 
|  |  | 
|  | return father; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When we die, we re-parent all our children, and try to: | 
|  | * 1. give them to another thread in our thread group, if such a member exists | 
|  | * 2. give it to the first ancestor process which prctl'd itself as a | 
|  | *    child_subreaper for its children (like a service manager) | 
|  | * 3. give it to the init process (PID 1) in our pid namespace | 
|  | */ | 
|  | static struct task_struct *find_new_reaper(struct task_struct *father, | 
|  | struct task_struct *child_reaper) | 
|  | { | 
|  | struct task_struct *thread, *reaper; | 
|  |  | 
|  | thread = find_alive_thread(father); | 
|  | if (thread) | 
|  | return thread; | 
|  |  | 
|  | if (father->signal->has_child_subreaper) { | 
|  | /* | 
|  | * Find the first ->is_child_subreaper ancestor in our pid_ns. | 
|  | * We start from father to ensure we can not look into another | 
|  | * namespace, this is safe because all its threads are dead. | 
|  | */ | 
|  | for (reaper = father; | 
|  | !same_thread_group(reaper, child_reaper); | 
|  | reaper = reaper->real_parent) { | 
|  | /* call_usermodehelper() descendants need this check */ | 
|  | if (reaper == &init_task) | 
|  | break; | 
|  | if (!reaper->signal->is_child_subreaper) | 
|  | continue; | 
|  | thread = find_alive_thread(reaper); | 
|  | if (thread) | 
|  | return thread; | 
|  | } | 
|  | } | 
|  |  | 
|  | return child_reaper; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Any that need to be release_task'd are put on the @dead list. | 
|  | */ | 
|  | static void reparent_leader(struct task_struct *father, struct task_struct *p, | 
|  | struct list_head *dead) | 
|  | { | 
|  | if (unlikely(p->exit_state == EXIT_DEAD)) | 
|  | return; | 
|  |  | 
|  | /* We don't want people slaying init. */ | 
|  | p->exit_signal = SIGCHLD; | 
|  |  | 
|  | /* If it has exited notify the new parent about this child's death. */ | 
|  | if (!p->ptrace && | 
|  | p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { | 
|  | if (do_notify_parent(p, p->exit_signal)) { | 
|  | p->exit_state = EXIT_DEAD; | 
|  | list_add(&p->ptrace_entry, dead); | 
|  | } | 
|  | } | 
|  |  | 
|  | kill_orphaned_pgrp(p, father); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This does two things: | 
|  | * | 
|  | * A.  Make init inherit all the child processes | 
|  | * B.  Check to see if any process groups have become orphaned | 
|  | *	as a result of our exiting, and if they have any stopped | 
|  | *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2) | 
|  | */ | 
|  | static void forget_original_parent(struct task_struct *father, | 
|  | struct list_head *dead) | 
|  | { | 
|  | struct task_struct *p, *t, *reaper; | 
|  |  | 
|  | if (unlikely(!list_empty(&father->ptraced))) | 
|  | exit_ptrace(father, dead); | 
|  |  | 
|  | /* Can drop and reacquire tasklist_lock */ | 
|  | reaper = find_child_reaper(father); | 
|  | if (list_empty(&father->children)) | 
|  | return; | 
|  |  | 
|  | reaper = find_new_reaper(father, reaper); | 
|  | list_for_each_entry(p, &father->children, sibling) { | 
|  | for_each_thread(p, t) { | 
|  | t->real_parent = reaper; | 
|  | BUG_ON((!t->ptrace) != (t->parent == father)); | 
|  | if (likely(!t->ptrace)) | 
|  | t->parent = t->real_parent; | 
|  | if (t->pdeath_signal) | 
|  | group_send_sig_info(t->pdeath_signal, | 
|  | SEND_SIG_NOINFO, t); | 
|  | } | 
|  | /* | 
|  | * If this is a threaded reparent there is no need to | 
|  | * notify anyone anything has happened. | 
|  | */ | 
|  | if (!same_thread_group(reaper, father)) | 
|  | reparent_leader(father, p, dead); | 
|  | } | 
|  | list_splice_tail_init(&father->children, &reaper->children); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Send signals to all our closest relatives so that they know | 
|  | * to properly mourn us.. | 
|  | */ | 
|  | static void exit_notify(struct task_struct *tsk, int group_dead) | 
|  | { | 
|  | bool autoreap; | 
|  | struct task_struct *p, *n; | 
|  | LIST_HEAD(dead); | 
|  |  | 
|  | write_lock_irq(&tasklist_lock); | 
|  | forget_original_parent(tsk, &dead); | 
|  |  | 
|  | if (group_dead) | 
|  | kill_orphaned_pgrp(tsk->group_leader, NULL); | 
|  |  | 
|  | if (unlikely(tsk->ptrace)) { | 
|  | int sig = thread_group_leader(tsk) && | 
|  | thread_group_empty(tsk) && | 
|  | !ptrace_reparented(tsk) ? | 
|  | tsk->exit_signal : SIGCHLD; | 
|  | autoreap = do_notify_parent(tsk, sig); | 
|  | } else if (thread_group_leader(tsk)) { | 
|  | autoreap = thread_group_empty(tsk) && | 
|  | do_notify_parent(tsk, tsk->exit_signal); | 
|  | } else { | 
|  | autoreap = true; | 
|  | } | 
|  |  | 
|  | tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE; | 
|  | if (tsk->exit_state == EXIT_DEAD) | 
|  | list_add(&tsk->ptrace_entry, &dead); | 
|  |  | 
|  | /* mt-exec, de_thread() is waiting for group leader */ | 
|  | if (unlikely(tsk->signal->notify_count < 0)) | 
|  | wake_up_process(tsk->signal->group_exit_task); | 
|  | write_unlock_irq(&tasklist_lock); | 
|  |  | 
|  | list_for_each_entry_safe(p, n, &dead, ptrace_entry) { | 
|  | list_del_init(&p->ptrace_entry); | 
|  | release_task(p); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_STACK_USAGE | 
|  | static void check_stack_usage(void) | 
|  | { | 
|  | static DEFINE_SPINLOCK(low_water_lock); | 
|  | static int lowest_to_date = THREAD_SIZE; | 
|  | unsigned long free; | 
|  |  | 
|  | free = stack_not_used(current); | 
|  |  | 
|  | if (free >= lowest_to_date) | 
|  | return; | 
|  |  | 
|  | spin_lock(&low_water_lock); | 
|  | if (free < lowest_to_date) { | 
|  | pr_warn("%s (%d) used greatest stack depth: %lu bytes left\n", | 
|  | current->comm, task_pid_nr(current), free); | 
|  | lowest_to_date = free; | 
|  | } | 
|  | spin_unlock(&low_water_lock); | 
|  | } | 
|  | #else | 
|  | static inline void check_stack_usage(void) {} | 
|  | #endif | 
|  |  | 
|  | void do_exit(long code) | 
|  | { | 
|  | struct task_struct *tsk = current; | 
|  | int group_dead; | 
|  | TASKS_RCU(int tasks_rcu_i); | 
|  |  | 
|  | profile_task_exit(tsk); | 
|  |  | 
|  | WARN_ON(blk_needs_flush_plug(tsk)); | 
|  |  | 
|  | if (unlikely(in_interrupt())) | 
|  | panic("Aiee, killing interrupt handler!"); | 
|  | if (unlikely(!tsk->pid)) | 
|  | panic("Attempted to kill the idle task!"); | 
|  |  | 
|  | /* | 
|  | * If do_exit is called because this processes oopsed, it's possible | 
|  | * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before | 
|  | * continuing. Amongst other possible reasons, this is to prevent | 
|  | * mm_release()->clear_child_tid() from writing to a user-controlled | 
|  | * kernel address. | 
|  | */ | 
|  | set_fs(USER_DS); | 
|  |  | 
|  | ptrace_event(PTRACE_EVENT_EXIT, code); | 
|  |  | 
|  | validate_creds_for_do_exit(tsk); | 
|  |  | 
|  | /* | 
|  | * We're taking recursive faults here in do_exit. Safest is to just | 
|  | * leave this task alone and wait for reboot. | 
|  | */ | 
|  | if (unlikely(tsk->flags & PF_EXITING)) { | 
|  | pr_alert("Fixing recursive fault but reboot is needed!\n"); | 
|  | /* | 
|  | * We can do this unlocked here. The futex code uses | 
|  | * this flag just to verify whether the pi state | 
|  | * cleanup has been done or not. In the worst case it | 
|  | * loops once more. We pretend that the cleanup was | 
|  | * done as there is no way to return. Either the | 
|  | * OWNER_DIED bit is set by now or we push the blocked | 
|  | * task into the wait for ever nirwana as well. | 
|  | */ | 
|  | tsk->flags |= PF_EXITPIDONE; | 
|  | set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | schedule(); | 
|  | } | 
|  |  | 
|  | exit_signals(tsk);  /* sets PF_EXITING */ | 
|  | /* | 
|  | * tsk->flags are checked in the futex code to protect against | 
|  | * an exiting task cleaning up the robust pi futexes. | 
|  | */ | 
|  | smp_mb(); | 
|  | raw_spin_unlock_wait(&tsk->pi_lock); | 
|  |  | 
|  | if (unlikely(in_atomic())) | 
|  | pr_info("note: %s[%d] exited with preempt_count %d\n", | 
|  | current->comm, task_pid_nr(current), | 
|  | preempt_count()); | 
|  |  | 
|  | acct_update_integrals(tsk); | 
|  | /* sync mm's RSS info before statistics gathering */ | 
|  | if (tsk->mm) | 
|  | sync_mm_rss(tsk->mm); | 
|  | group_dead = atomic_dec_and_test(&tsk->signal->live); | 
|  | if (group_dead) { | 
|  | hrtimer_cancel(&tsk->signal->real_timer); | 
|  | exit_itimers(tsk->signal); | 
|  | if (tsk->mm) | 
|  | setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); | 
|  | } | 
|  | acct_collect(code, group_dead); | 
|  | if (group_dead) | 
|  | tty_audit_exit(); | 
|  | audit_free(tsk); | 
|  |  | 
|  | tsk->exit_code = code; | 
|  | taskstats_exit(tsk, group_dead); | 
|  |  | 
|  | exit_mm(tsk); | 
|  |  | 
|  | if (group_dead) | 
|  | acct_process(); | 
|  | trace_sched_process_exit(tsk); | 
|  |  | 
|  | exit_sem(tsk); | 
|  | exit_shm(tsk); | 
|  | exit_files(tsk); | 
|  | exit_fs(tsk); | 
|  | if (group_dead) | 
|  | disassociate_ctty(1); | 
|  | exit_task_namespaces(tsk); | 
|  | exit_task_work(tsk); | 
|  | exit_thread(); | 
|  |  | 
|  | /* | 
|  | * Flush inherited counters to the parent - before the parent | 
|  | * gets woken up by child-exit notifications. | 
|  | * | 
|  | * because of cgroup mode, must be called before cgroup_exit() | 
|  | */ | 
|  | perf_event_exit_task(tsk); | 
|  |  | 
|  | cgroup_exit(tsk); | 
|  |  | 
|  | module_put(task_thread_info(tsk)->exec_domain->module); | 
|  |  | 
|  | /* | 
|  | * FIXME: do that only when needed, using sched_exit tracepoint | 
|  | */ | 
|  | flush_ptrace_hw_breakpoint(tsk); | 
|  |  | 
|  | TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu)); | 
|  | exit_notify(tsk, group_dead); | 
|  | proc_exit_connector(tsk); | 
|  | #ifdef CONFIG_NUMA | 
|  | task_lock(tsk); | 
|  | mpol_put(tsk->mempolicy); | 
|  | tsk->mempolicy = NULL; | 
|  | task_unlock(tsk); | 
|  | #endif | 
|  | #ifdef CONFIG_FUTEX | 
|  | if (unlikely(current->pi_state_cache)) | 
|  | kfree(current->pi_state_cache); | 
|  | #endif | 
|  | /* | 
|  | * Make sure we are holding no locks: | 
|  | */ | 
|  | debug_check_no_locks_held(); | 
|  | /* | 
|  | * We can do this unlocked here. The futex code uses this flag | 
|  | * just to verify whether the pi state cleanup has been done | 
|  | * or not. In the worst case it loops once more. | 
|  | */ | 
|  | tsk->flags |= PF_EXITPIDONE; | 
|  |  | 
|  | if (tsk->io_context) | 
|  | exit_io_context(tsk); | 
|  |  | 
|  | if (tsk->splice_pipe) | 
|  | free_pipe_info(tsk->splice_pipe); | 
|  |  | 
|  | if (tsk->task_frag.page) | 
|  | put_page(tsk->task_frag.page); | 
|  |  | 
|  | validate_creds_for_do_exit(tsk); | 
|  |  | 
|  | check_stack_usage(); | 
|  | preempt_disable(); | 
|  | if (tsk->nr_dirtied) | 
|  | __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); | 
|  | exit_rcu(); | 
|  | TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i)); | 
|  |  | 
|  | /* | 
|  | * The setting of TASK_RUNNING by try_to_wake_up() may be delayed | 
|  | * when the following two conditions become true. | 
|  | *   - There is race condition of mmap_sem (It is acquired by | 
|  | *     exit_mm()), and | 
|  | *   - SMI occurs before setting TASK_RUNINNG. | 
|  | *     (or hypervisor of virtual machine switches to other guest) | 
|  | *  As a result, we may become TASK_RUNNING after becoming TASK_DEAD | 
|  | * | 
|  | * To avoid it, we have to wait for releasing tsk->pi_lock which | 
|  | * is held by try_to_wake_up() | 
|  | */ | 
|  | smp_mb(); | 
|  | raw_spin_unlock_wait(&tsk->pi_lock); | 
|  |  | 
|  | /* causes final put_task_struct in finish_task_switch(). */ | 
|  | tsk->state = TASK_DEAD; | 
|  | tsk->flags |= PF_NOFREEZE;	/* tell freezer to ignore us */ | 
|  | schedule(); | 
|  | BUG(); | 
|  | /* Avoid "noreturn function does return".  */ | 
|  | for (;;) | 
|  | cpu_relax();	/* For when BUG is null */ | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(do_exit); | 
|  |  | 
|  | void complete_and_exit(struct completion *comp, long code) | 
|  | { | 
|  | if (comp) | 
|  | complete(comp); | 
|  |  | 
|  | do_exit(code); | 
|  | } | 
|  | EXPORT_SYMBOL(complete_and_exit); | 
|  |  | 
|  | SYSCALL_DEFINE1(exit, int, error_code) | 
|  | { | 
|  | do_exit((error_code&0xff)<<8); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Take down every thread in the group.  This is called by fatal signals | 
|  | * as well as by sys_exit_group (below). | 
|  | */ | 
|  | void | 
|  | do_group_exit(int exit_code) | 
|  | { | 
|  | struct signal_struct *sig = current->signal; | 
|  |  | 
|  | BUG_ON(exit_code & 0x80); /* core dumps don't get here */ | 
|  |  | 
|  | if (signal_group_exit(sig)) | 
|  | exit_code = sig->group_exit_code; | 
|  | else if (!thread_group_empty(current)) { | 
|  | struct sighand_struct *const sighand = current->sighand; | 
|  |  | 
|  | spin_lock_irq(&sighand->siglock); | 
|  | if (signal_group_exit(sig)) | 
|  | /* Another thread got here before we took the lock.  */ | 
|  | exit_code = sig->group_exit_code; | 
|  | else { | 
|  | sig->group_exit_code = exit_code; | 
|  | sig->flags = SIGNAL_GROUP_EXIT; | 
|  | zap_other_threads(current); | 
|  | } | 
|  | spin_unlock_irq(&sighand->siglock); | 
|  | } | 
|  |  | 
|  | do_exit(exit_code); | 
|  | /* NOTREACHED */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this kills every thread in the thread group. Note that any externally | 
|  | * wait4()-ing process will get the correct exit code - even if this | 
|  | * thread is not the thread group leader. | 
|  | */ | 
|  | SYSCALL_DEFINE1(exit_group, int, error_code) | 
|  | { | 
|  | do_group_exit((error_code & 0xff) << 8); | 
|  | /* NOTREACHED */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct wait_opts { | 
|  | enum pid_type		wo_type; | 
|  | int			wo_flags; | 
|  | struct pid		*wo_pid; | 
|  |  | 
|  | struct siginfo __user	*wo_info; | 
|  | int __user		*wo_stat; | 
|  | struct rusage __user	*wo_rusage; | 
|  |  | 
|  | wait_queue_t		child_wait; | 
|  | int			notask_error; | 
|  | }; | 
|  |  | 
|  | static inline | 
|  | struct pid *task_pid_type(struct task_struct *task, enum pid_type type) | 
|  | { | 
|  | if (type != PIDTYPE_PID) | 
|  | task = task->group_leader; | 
|  | return task->pids[type].pid; | 
|  | } | 
|  |  | 
|  | static int eligible_pid(struct wait_opts *wo, struct task_struct *p) | 
|  | { | 
|  | return	wo->wo_type == PIDTYPE_MAX || | 
|  | task_pid_type(p, wo->wo_type) == wo->wo_pid; | 
|  | } | 
|  |  | 
|  | static int eligible_child(struct wait_opts *wo, struct task_struct *p) | 
|  | { | 
|  | if (!eligible_pid(wo, p)) | 
|  | return 0; | 
|  | /* Wait for all children (clone and not) if __WALL is set; | 
|  | * otherwise, wait for clone children *only* if __WCLONE is | 
|  | * set; otherwise, wait for non-clone children *only*.  (Note: | 
|  | * A "clone" child here is one that reports to its parent | 
|  | * using a signal other than SIGCHLD.) */ | 
|  | if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) | 
|  | && !(wo->wo_flags & __WALL)) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p, | 
|  | pid_t pid, uid_t uid, int why, int status) | 
|  | { | 
|  | struct siginfo __user *infop; | 
|  | int retval = wo->wo_rusage | 
|  | ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; | 
|  |  | 
|  | put_task_struct(p); | 
|  | infop = wo->wo_info; | 
|  | if (infop) { | 
|  | if (!retval) | 
|  | retval = put_user(SIGCHLD, &infop->si_signo); | 
|  | if (!retval) | 
|  | retval = put_user(0, &infop->si_errno); | 
|  | if (!retval) | 
|  | retval = put_user((short)why, &infop->si_code); | 
|  | if (!retval) | 
|  | retval = put_user(pid, &infop->si_pid); | 
|  | if (!retval) | 
|  | retval = put_user(uid, &infop->si_uid); | 
|  | if (!retval) | 
|  | retval = put_user(status, &infop->si_status); | 
|  | } | 
|  | if (!retval) | 
|  | retval = pid; | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold | 
|  | * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold | 
|  | * the lock and this task is uninteresting.  If we return nonzero, we have | 
|  | * released the lock and the system call should return. | 
|  | */ | 
|  | static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) | 
|  | { | 
|  | int state, retval, status; | 
|  | pid_t pid = task_pid_vnr(p); | 
|  | uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); | 
|  | struct siginfo __user *infop; | 
|  |  | 
|  | if (!likely(wo->wo_flags & WEXITED)) | 
|  | return 0; | 
|  |  | 
|  | if (unlikely(wo->wo_flags & WNOWAIT)) { | 
|  | int exit_code = p->exit_code; | 
|  | int why; | 
|  |  | 
|  | get_task_struct(p); | 
|  | read_unlock(&tasklist_lock); | 
|  | sched_annotate_sleep(); | 
|  |  | 
|  | if ((exit_code & 0x7f) == 0) { | 
|  | why = CLD_EXITED; | 
|  | status = exit_code >> 8; | 
|  | } else { | 
|  | why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; | 
|  | status = exit_code & 0x7f; | 
|  | } | 
|  | return wait_noreap_copyout(wo, p, pid, uid, why, status); | 
|  | } | 
|  | /* | 
|  | * Move the task's state to DEAD/TRACE, only one thread can do this. | 
|  | */ | 
|  | state = (ptrace_reparented(p) && thread_group_leader(p)) ? | 
|  | EXIT_TRACE : EXIT_DEAD; | 
|  | if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE) | 
|  | return 0; | 
|  | /* | 
|  | * We own this thread, nobody else can reap it. | 
|  | */ | 
|  | read_unlock(&tasklist_lock); | 
|  | sched_annotate_sleep(); | 
|  |  | 
|  | /* | 
|  | * Check thread_group_leader() to exclude the traced sub-threads. | 
|  | */ | 
|  | if (state == EXIT_DEAD && thread_group_leader(p)) { | 
|  | struct signal_struct *sig = p->signal; | 
|  | struct signal_struct *psig = current->signal; | 
|  | unsigned long maxrss; | 
|  | cputime_t tgutime, tgstime; | 
|  |  | 
|  | /* | 
|  | * The resource counters for the group leader are in its | 
|  | * own task_struct.  Those for dead threads in the group | 
|  | * are in its signal_struct, as are those for the child | 
|  | * processes it has previously reaped.  All these | 
|  | * accumulate in the parent's signal_struct c* fields. | 
|  | * | 
|  | * We don't bother to take a lock here to protect these | 
|  | * p->signal fields because the whole thread group is dead | 
|  | * and nobody can change them. | 
|  | * | 
|  | * psig->stats_lock also protects us from our sub-theads | 
|  | * which can reap other children at the same time. Until | 
|  | * we change k_getrusage()-like users to rely on this lock | 
|  | * we have to take ->siglock as well. | 
|  | * | 
|  | * We use thread_group_cputime_adjusted() to get times for | 
|  | * the thread group, which consolidates times for all threads | 
|  | * in the group including the group leader. | 
|  | */ | 
|  | thread_group_cputime_adjusted(p, &tgutime, &tgstime); | 
|  | spin_lock_irq(¤t->sighand->siglock); | 
|  | write_seqlock(&psig->stats_lock); | 
|  | psig->cutime += tgutime + sig->cutime; | 
|  | psig->cstime += tgstime + sig->cstime; | 
|  | psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; | 
|  | psig->cmin_flt += | 
|  | p->min_flt + sig->min_flt + sig->cmin_flt; | 
|  | psig->cmaj_flt += | 
|  | p->maj_flt + sig->maj_flt + sig->cmaj_flt; | 
|  | psig->cnvcsw += | 
|  | p->nvcsw + sig->nvcsw + sig->cnvcsw; | 
|  | psig->cnivcsw += | 
|  | p->nivcsw + sig->nivcsw + sig->cnivcsw; | 
|  | psig->cinblock += | 
|  | task_io_get_inblock(p) + | 
|  | sig->inblock + sig->cinblock; | 
|  | psig->coublock += | 
|  | task_io_get_oublock(p) + | 
|  | sig->oublock + sig->coublock; | 
|  | maxrss = max(sig->maxrss, sig->cmaxrss); | 
|  | if (psig->cmaxrss < maxrss) | 
|  | psig->cmaxrss = maxrss; | 
|  | task_io_accounting_add(&psig->ioac, &p->ioac); | 
|  | task_io_accounting_add(&psig->ioac, &sig->ioac); | 
|  | write_sequnlock(&psig->stats_lock); | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  | } | 
|  |  | 
|  | retval = wo->wo_rusage | 
|  | ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; | 
|  | status = (p->signal->flags & SIGNAL_GROUP_EXIT) | 
|  | ? p->signal->group_exit_code : p->exit_code; | 
|  | if (!retval && wo->wo_stat) | 
|  | retval = put_user(status, wo->wo_stat); | 
|  |  | 
|  | infop = wo->wo_info; | 
|  | if (!retval && infop) | 
|  | retval = put_user(SIGCHLD, &infop->si_signo); | 
|  | if (!retval && infop) | 
|  | retval = put_user(0, &infop->si_errno); | 
|  | if (!retval && infop) { | 
|  | int why; | 
|  |  | 
|  | if ((status & 0x7f) == 0) { | 
|  | why = CLD_EXITED; | 
|  | status >>= 8; | 
|  | } else { | 
|  | why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; | 
|  | status &= 0x7f; | 
|  | } | 
|  | retval = put_user((short)why, &infop->si_code); | 
|  | if (!retval) | 
|  | retval = put_user(status, &infop->si_status); | 
|  | } | 
|  | if (!retval && infop) | 
|  | retval = put_user(pid, &infop->si_pid); | 
|  | if (!retval && infop) | 
|  | retval = put_user(uid, &infop->si_uid); | 
|  | if (!retval) | 
|  | retval = pid; | 
|  |  | 
|  | if (state == EXIT_TRACE) { | 
|  | write_lock_irq(&tasklist_lock); | 
|  | /* We dropped tasklist, ptracer could die and untrace */ | 
|  | ptrace_unlink(p); | 
|  |  | 
|  | /* If parent wants a zombie, don't release it now */ | 
|  | state = EXIT_ZOMBIE; | 
|  | if (do_notify_parent(p, p->exit_signal)) | 
|  | state = EXIT_DEAD; | 
|  | p->exit_state = state; | 
|  | write_unlock_irq(&tasklist_lock); | 
|  | } | 
|  | if (state == EXIT_DEAD) | 
|  | release_task(p); | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static int *task_stopped_code(struct task_struct *p, bool ptrace) | 
|  | { | 
|  | if (ptrace) { | 
|  | if (task_is_stopped_or_traced(p) && | 
|  | !(p->jobctl & JOBCTL_LISTENING)) | 
|  | return &p->exit_code; | 
|  | } else { | 
|  | if (p->signal->flags & SIGNAL_STOP_STOPPED) | 
|  | return &p->signal->group_exit_code; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED | 
|  | * @wo: wait options | 
|  | * @ptrace: is the wait for ptrace | 
|  | * @p: task to wait for | 
|  | * | 
|  | * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. | 
|  | * | 
|  | * CONTEXT: | 
|  | * read_lock(&tasklist_lock), which is released if return value is | 
|  | * non-zero.  Also, grabs and releases @p->sighand->siglock. | 
|  | * | 
|  | * RETURNS: | 
|  | * 0 if wait condition didn't exist and search for other wait conditions | 
|  | * should continue.  Non-zero return, -errno on failure and @p's pid on | 
|  | * success, implies that tasklist_lock is released and wait condition | 
|  | * search should terminate. | 
|  | */ | 
|  | static int wait_task_stopped(struct wait_opts *wo, | 
|  | int ptrace, struct task_struct *p) | 
|  | { | 
|  | struct siginfo __user *infop; | 
|  | int retval, exit_code, *p_code, why; | 
|  | uid_t uid = 0; /* unneeded, required by compiler */ | 
|  | pid_t pid; | 
|  |  | 
|  | /* | 
|  | * Traditionally we see ptrace'd stopped tasks regardless of options. | 
|  | */ | 
|  | if (!ptrace && !(wo->wo_flags & WUNTRACED)) | 
|  | return 0; | 
|  |  | 
|  | if (!task_stopped_code(p, ptrace)) | 
|  | return 0; | 
|  |  | 
|  | exit_code = 0; | 
|  | spin_lock_irq(&p->sighand->siglock); | 
|  |  | 
|  | p_code = task_stopped_code(p, ptrace); | 
|  | if (unlikely(!p_code)) | 
|  | goto unlock_sig; | 
|  |  | 
|  | exit_code = *p_code; | 
|  | if (!exit_code) | 
|  | goto unlock_sig; | 
|  |  | 
|  | if (!unlikely(wo->wo_flags & WNOWAIT)) | 
|  | *p_code = 0; | 
|  |  | 
|  | uid = from_kuid_munged(current_user_ns(), task_uid(p)); | 
|  | unlock_sig: | 
|  | spin_unlock_irq(&p->sighand->siglock); | 
|  | if (!exit_code) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Now we are pretty sure this task is interesting. | 
|  | * Make sure it doesn't get reaped out from under us while we | 
|  | * give up the lock and then examine it below.  We don't want to | 
|  | * keep holding onto the tasklist_lock while we call getrusage and | 
|  | * possibly take page faults for user memory. | 
|  | */ | 
|  | get_task_struct(p); | 
|  | pid = task_pid_vnr(p); | 
|  | why = ptrace ? CLD_TRAPPED : CLD_STOPPED; | 
|  | read_unlock(&tasklist_lock); | 
|  | sched_annotate_sleep(); | 
|  |  | 
|  | if (unlikely(wo->wo_flags & WNOWAIT)) | 
|  | return wait_noreap_copyout(wo, p, pid, uid, why, exit_code); | 
|  |  | 
|  | retval = wo->wo_rusage | 
|  | ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; | 
|  | if (!retval && wo->wo_stat) | 
|  | retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat); | 
|  |  | 
|  | infop = wo->wo_info; | 
|  | if (!retval && infop) | 
|  | retval = put_user(SIGCHLD, &infop->si_signo); | 
|  | if (!retval && infop) | 
|  | retval = put_user(0, &infop->si_errno); | 
|  | if (!retval && infop) | 
|  | retval = put_user((short)why, &infop->si_code); | 
|  | if (!retval && infop) | 
|  | retval = put_user(exit_code, &infop->si_status); | 
|  | if (!retval && infop) | 
|  | retval = put_user(pid, &infop->si_pid); | 
|  | if (!retval && infop) | 
|  | retval = put_user(uid, &infop->si_uid); | 
|  | if (!retval) | 
|  | retval = pid; | 
|  | put_task_struct(p); | 
|  |  | 
|  | BUG_ON(!retval); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle do_wait work for one task in a live, non-stopped state. | 
|  | * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold | 
|  | * the lock and this task is uninteresting.  If we return nonzero, we have | 
|  | * released the lock and the system call should return. | 
|  | */ | 
|  | static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) | 
|  | { | 
|  | int retval; | 
|  | pid_t pid; | 
|  | uid_t uid; | 
|  |  | 
|  | if (!unlikely(wo->wo_flags & WCONTINUED)) | 
|  | return 0; | 
|  |  | 
|  | if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) | 
|  | return 0; | 
|  |  | 
|  | spin_lock_irq(&p->sighand->siglock); | 
|  | /* Re-check with the lock held.  */ | 
|  | if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { | 
|  | spin_unlock_irq(&p->sighand->siglock); | 
|  | return 0; | 
|  | } | 
|  | if (!unlikely(wo->wo_flags & WNOWAIT)) | 
|  | p->signal->flags &= ~SIGNAL_STOP_CONTINUED; | 
|  | uid = from_kuid_munged(current_user_ns(), task_uid(p)); | 
|  | spin_unlock_irq(&p->sighand->siglock); | 
|  |  | 
|  | pid = task_pid_vnr(p); | 
|  | get_task_struct(p); | 
|  | read_unlock(&tasklist_lock); | 
|  | sched_annotate_sleep(); | 
|  |  | 
|  | if (!wo->wo_info) { | 
|  | retval = wo->wo_rusage | 
|  | ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; | 
|  | put_task_struct(p); | 
|  | if (!retval && wo->wo_stat) | 
|  | retval = put_user(0xffff, wo->wo_stat); | 
|  | if (!retval) | 
|  | retval = pid; | 
|  | } else { | 
|  | retval = wait_noreap_copyout(wo, p, pid, uid, | 
|  | CLD_CONTINUED, SIGCONT); | 
|  | BUG_ON(retval == 0); | 
|  | } | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Consider @p for a wait by @parent. | 
|  | * | 
|  | * -ECHILD should be in ->notask_error before the first call. | 
|  | * Returns nonzero for a final return, when we have unlocked tasklist_lock. | 
|  | * Returns zero if the search for a child should continue; | 
|  | * then ->notask_error is 0 if @p is an eligible child, | 
|  | * or another error from security_task_wait(), or still -ECHILD. | 
|  | */ | 
|  | static int wait_consider_task(struct wait_opts *wo, int ptrace, | 
|  | struct task_struct *p) | 
|  | { | 
|  | /* | 
|  | * We can race with wait_task_zombie() from another thread. | 
|  | * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition | 
|  | * can't confuse the checks below. | 
|  | */ | 
|  | int exit_state = ACCESS_ONCE(p->exit_state); | 
|  | int ret; | 
|  |  | 
|  | if (unlikely(exit_state == EXIT_DEAD)) | 
|  | return 0; | 
|  |  | 
|  | ret = eligible_child(wo, p); | 
|  | if (!ret) | 
|  | return ret; | 
|  |  | 
|  | ret = security_task_wait(p); | 
|  | if (unlikely(ret < 0)) { | 
|  | /* | 
|  | * If we have not yet seen any eligible child, | 
|  | * then let this error code replace -ECHILD. | 
|  | * A permission error will give the user a clue | 
|  | * to look for security policy problems, rather | 
|  | * than for mysterious wait bugs. | 
|  | */ | 
|  | if (wo->notask_error) | 
|  | wo->notask_error = ret; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (unlikely(exit_state == EXIT_TRACE)) { | 
|  | /* | 
|  | * ptrace == 0 means we are the natural parent. In this case | 
|  | * we should clear notask_error, debugger will notify us. | 
|  | */ | 
|  | if (likely(!ptrace)) | 
|  | wo->notask_error = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (likely(!ptrace) && unlikely(p->ptrace)) { | 
|  | /* | 
|  | * If it is traced by its real parent's group, just pretend | 
|  | * the caller is ptrace_do_wait() and reap this child if it | 
|  | * is zombie. | 
|  | * | 
|  | * This also hides group stop state from real parent; otherwise | 
|  | * a single stop can be reported twice as group and ptrace stop. | 
|  | * If a ptracer wants to distinguish these two events for its | 
|  | * own children it should create a separate process which takes | 
|  | * the role of real parent. | 
|  | */ | 
|  | if (!ptrace_reparented(p)) | 
|  | ptrace = 1; | 
|  | } | 
|  |  | 
|  | /* slay zombie? */ | 
|  | if (exit_state == EXIT_ZOMBIE) { | 
|  | /* we don't reap group leaders with subthreads */ | 
|  | if (!delay_group_leader(p)) { | 
|  | /* | 
|  | * A zombie ptracee is only visible to its ptracer. | 
|  | * Notification and reaping will be cascaded to the | 
|  | * real parent when the ptracer detaches. | 
|  | */ | 
|  | if (unlikely(ptrace) || likely(!p->ptrace)) | 
|  | return wait_task_zombie(wo, p); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allow access to stopped/continued state via zombie by | 
|  | * falling through.  Clearing of notask_error is complex. | 
|  | * | 
|  | * When !@ptrace: | 
|  | * | 
|  | * If WEXITED is set, notask_error should naturally be | 
|  | * cleared.  If not, subset of WSTOPPED|WCONTINUED is set, | 
|  | * so, if there are live subthreads, there are events to | 
|  | * wait for.  If all subthreads are dead, it's still safe | 
|  | * to clear - this function will be called again in finite | 
|  | * amount time once all the subthreads are released and | 
|  | * will then return without clearing. | 
|  | * | 
|  | * When @ptrace: | 
|  | * | 
|  | * Stopped state is per-task and thus can't change once the | 
|  | * target task dies.  Only continued and exited can happen. | 
|  | * Clear notask_error if WCONTINUED | WEXITED. | 
|  | */ | 
|  | if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) | 
|  | wo->notask_error = 0; | 
|  | } else { | 
|  | /* | 
|  | * @p is alive and it's gonna stop, continue or exit, so | 
|  | * there always is something to wait for. | 
|  | */ | 
|  | wo->notask_error = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Wait for stopped.  Depending on @ptrace, different stopped state | 
|  | * is used and the two don't interact with each other. | 
|  | */ | 
|  | ret = wait_task_stopped(wo, ptrace, p); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * Wait for continued.  There's only one continued state and the | 
|  | * ptracer can consume it which can confuse the real parent.  Don't | 
|  | * use WCONTINUED from ptracer.  You don't need or want it. | 
|  | */ | 
|  | return wait_task_continued(wo, p); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Do the work of do_wait() for one thread in the group, @tsk. | 
|  | * | 
|  | * -ECHILD should be in ->notask_error before the first call. | 
|  | * Returns nonzero for a final return, when we have unlocked tasklist_lock. | 
|  | * Returns zero if the search for a child should continue; then | 
|  | * ->notask_error is 0 if there were any eligible children, | 
|  | * or another error from security_task_wait(), or still -ECHILD. | 
|  | */ | 
|  | static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) | 
|  | { | 
|  | struct task_struct *p; | 
|  |  | 
|  | list_for_each_entry(p, &tsk->children, sibling) { | 
|  | int ret = wait_consider_task(wo, 0, p); | 
|  |  | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) | 
|  | { | 
|  | struct task_struct *p; | 
|  |  | 
|  | list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { | 
|  | int ret = wait_consider_task(wo, 1, p); | 
|  |  | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int child_wait_callback(wait_queue_t *wait, unsigned mode, | 
|  | int sync, void *key) | 
|  | { | 
|  | struct wait_opts *wo = container_of(wait, struct wait_opts, | 
|  | child_wait); | 
|  | struct task_struct *p = key; | 
|  |  | 
|  | if (!eligible_pid(wo, p)) | 
|  | return 0; | 
|  |  | 
|  | if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) | 
|  | return 0; | 
|  |  | 
|  | return default_wake_function(wait, mode, sync, key); | 
|  | } | 
|  |  | 
|  | void __wake_up_parent(struct task_struct *p, struct task_struct *parent) | 
|  | { | 
|  | __wake_up_sync_key(&parent->signal->wait_chldexit, | 
|  | TASK_INTERRUPTIBLE, 1, p); | 
|  | } | 
|  |  | 
|  | static long do_wait(struct wait_opts *wo) | 
|  | { | 
|  | struct task_struct *tsk; | 
|  | int retval; | 
|  |  | 
|  | trace_sched_process_wait(wo->wo_pid); | 
|  |  | 
|  | init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); | 
|  | wo->child_wait.private = current; | 
|  | add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); | 
|  | repeat: | 
|  | /* | 
|  | * If there is nothing that can match our critiera just get out. | 
|  | * We will clear ->notask_error to zero if we see any child that | 
|  | * might later match our criteria, even if we are not able to reap | 
|  | * it yet. | 
|  | */ | 
|  | wo->notask_error = -ECHILD; | 
|  | if ((wo->wo_type < PIDTYPE_MAX) && | 
|  | (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type]))) | 
|  | goto notask; | 
|  |  | 
|  | set_current_state(TASK_INTERRUPTIBLE); | 
|  | read_lock(&tasklist_lock); | 
|  | tsk = current; | 
|  | do { | 
|  | retval = do_wait_thread(wo, tsk); | 
|  | if (retval) | 
|  | goto end; | 
|  |  | 
|  | retval = ptrace_do_wait(wo, tsk); | 
|  | if (retval) | 
|  | goto end; | 
|  |  | 
|  | if (wo->wo_flags & __WNOTHREAD) | 
|  | break; | 
|  | } while_each_thread(current, tsk); | 
|  | read_unlock(&tasklist_lock); | 
|  |  | 
|  | notask: | 
|  | retval = wo->notask_error; | 
|  | if (!retval && !(wo->wo_flags & WNOHANG)) { | 
|  | retval = -ERESTARTSYS; | 
|  | if (!signal_pending(current)) { | 
|  | schedule(); | 
|  | goto repeat; | 
|  | } | 
|  | } | 
|  | end: | 
|  | __set_current_state(TASK_RUNNING); | 
|  | remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, | 
|  | infop, int, options, struct rusage __user *, ru) | 
|  | { | 
|  | struct wait_opts wo; | 
|  | struct pid *pid = NULL; | 
|  | enum pid_type type; | 
|  | long ret; | 
|  |  | 
|  | if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) | 
|  | return -EINVAL; | 
|  | if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) | 
|  | return -EINVAL; | 
|  |  | 
|  | switch (which) { | 
|  | case P_ALL: | 
|  | type = PIDTYPE_MAX; | 
|  | break; | 
|  | case P_PID: | 
|  | type = PIDTYPE_PID; | 
|  | if (upid <= 0) | 
|  | return -EINVAL; | 
|  | break; | 
|  | case P_PGID: | 
|  | type = PIDTYPE_PGID; | 
|  | if (upid <= 0) | 
|  | return -EINVAL; | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (type < PIDTYPE_MAX) | 
|  | pid = find_get_pid(upid); | 
|  |  | 
|  | wo.wo_type	= type; | 
|  | wo.wo_pid	= pid; | 
|  | wo.wo_flags	= options; | 
|  | wo.wo_info	= infop; | 
|  | wo.wo_stat	= NULL; | 
|  | wo.wo_rusage	= ru; | 
|  | ret = do_wait(&wo); | 
|  |  | 
|  | if (ret > 0) { | 
|  | ret = 0; | 
|  | } else if (infop) { | 
|  | /* | 
|  | * For a WNOHANG return, clear out all the fields | 
|  | * we would set so the user can easily tell the | 
|  | * difference. | 
|  | */ | 
|  | if (!ret) | 
|  | ret = put_user(0, &infop->si_signo); | 
|  | if (!ret) | 
|  | ret = put_user(0, &infop->si_errno); | 
|  | if (!ret) | 
|  | ret = put_user(0, &infop->si_code); | 
|  | if (!ret) | 
|  | ret = put_user(0, &infop->si_pid); | 
|  | if (!ret) | 
|  | ret = put_user(0, &infop->si_uid); | 
|  | if (!ret) | 
|  | ret = put_user(0, &infop->si_status); | 
|  | } | 
|  |  | 
|  | put_pid(pid); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, | 
|  | int, options, struct rusage __user *, ru) | 
|  | { | 
|  | struct wait_opts wo; | 
|  | struct pid *pid = NULL; | 
|  | enum pid_type type; | 
|  | long ret; | 
|  |  | 
|  | if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| | 
|  | __WNOTHREAD|__WCLONE|__WALL)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (upid == -1) | 
|  | type = PIDTYPE_MAX; | 
|  | else if (upid < 0) { | 
|  | type = PIDTYPE_PGID; | 
|  | pid = find_get_pid(-upid); | 
|  | } else if (upid == 0) { | 
|  | type = PIDTYPE_PGID; | 
|  | pid = get_task_pid(current, PIDTYPE_PGID); | 
|  | } else /* upid > 0 */ { | 
|  | type = PIDTYPE_PID; | 
|  | pid = find_get_pid(upid); | 
|  | } | 
|  |  | 
|  | wo.wo_type	= type; | 
|  | wo.wo_pid	= pid; | 
|  | wo.wo_flags	= options | WEXITED; | 
|  | wo.wo_info	= NULL; | 
|  | wo.wo_stat	= stat_addr; | 
|  | wo.wo_rusage	= ru; | 
|  | ret = do_wait(&wo); | 
|  | put_pid(pid); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #ifdef __ARCH_WANT_SYS_WAITPID | 
|  |  | 
|  | /* | 
|  | * sys_waitpid() remains for compatibility. waitpid() should be | 
|  | * implemented by calling sys_wait4() from libc.a. | 
|  | */ | 
|  | SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) | 
|  | { | 
|  | return sys_wait4(pid, stat_addr, options, NULL); | 
|  | } | 
|  |  | 
|  | #endif |