| #include <linux/kernel.h> |
| #include <linux/gcd.h> |
| #include <linux/export.h> |
| |
| /* |
| * This implements the binary GCD algorithm. (Often attributed to Stein, |
| * but as Knuth has noted, appears in a first-century Chinese math text.) |
| * |
| * This is faster than the division-based algorithm even on x86, which |
| * has decent hardware division. |
| */ |
| |
| #if !defined(CONFIG_CPU_NO_EFFICIENT_FFS) && !defined(CPU_NO_EFFICIENT_FFS) |
| |
| /* If __ffs is available, the even/odd algorithm benchmarks slower. */ |
| unsigned long gcd(unsigned long a, unsigned long b) |
| { |
| unsigned long r = a | b; |
| |
| if (!a || !b) |
| return r; |
| |
| b >>= __ffs(b); |
| if (b == 1) |
| return r & -r; |
| |
| for (;;) { |
| a >>= __ffs(a); |
| if (a == 1) |
| return r & -r; |
| if (a == b) |
| return a << __ffs(r); |
| |
| if (a < b) |
| swap(a, b); |
| a -= b; |
| } |
| } |
| |
| #else |
| |
| /* If normalization is done by loops, the even/odd algorithm is a win. */ |
| unsigned long gcd(unsigned long a, unsigned long b) |
| { |
| unsigned long r = a | b; |
| |
| if (!a || !b) |
| return r; |
| |
| /* Isolate lsbit of r */ |
| r &= -r; |
| |
| while (!(b & r)) |
| b >>= 1; |
| if (b == r) |
| return r; |
| |
| for (;;) { |
| while (!(a & r)) |
| a >>= 1; |
| if (a == r) |
| return r; |
| if (a == b) |
| return a; |
| |
| if (a < b) |
| swap(a, b); |
| a -= b; |
| a >>= 1; |
| if (a & r) |
| a += b; |
| a >>= 1; |
| } |
| } |
| |
| #endif |
| |
| EXPORT_SYMBOL_GPL(gcd); |