| /* |
| * FSE : Finite State Entropy encoder |
| * Copyright (C) 2013-2015, Yann Collet. |
| * |
| * BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: |
| * |
| * * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * * Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following disclaimer |
| * in the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| * This program is free software; you can redistribute it and/or modify it under |
| * the terms of the GNU General Public License version 2 as published by the |
| * Free Software Foundation. This program is dual-licensed; you may select |
| * either version 2 of the GNU General Public License ("GPL") or BSD license |
| * ("BSD"). |
| * |
| * You can contact the author at : |
| * - Source repository : https://github.com/Cyan4973/FiniteStateEntropy |
| */ |
| |
| /* ************************************************************** |
| * Compiler specifics |
| ****************************************************************/ |
| #define FORCE_INLINE static __always_inline |
| |
| /* ************************************************************** |
| * Includes |
| ****************************************************************/ |
| #include "bitstream.h" |
| #include "fse.h" |
| #include <linux/compiler.h> |
| #include <linux/kernel.h> |
| #include <linux/math64.h> |
| #include <linux/string.h> /* memcpy, memset */ |
| |
| /* ************************************************************** |
| * Error Management |
| ****************************************************************/ |
| #define FSE_STATIC_ASSERT(c) \ |
| { \ |
| enum { FSE_static_assert = 1 / (int)(!!(c)) }; \ |
| } /* use only *after* variable declarations */ |
| |
| /* ************************************************************** |
| * Templates |
| ****************************************************************/ |
| /* |
| designed to be included |
| for type-specific functions (template emulation in C) |
| Objective is to write these functions only once, for improved maintenance |
| */ |
| |
| /* safety checks */ |
| #ifndef FSE_FUNCTION_EXTENSION |
| #error "FSE_FUNCTION_EXTENSION must be defined" |
| #endif |
| #ifndef FSE_FUNCTION_TYPE |
| #error "FSE_FUNCTION_TYPE must be defined" |
| #endif |
| |
| /* Function names */ |
| #define FSE_CAT(X, Y) X##Y |
| #define FSE_FUNCTION_NAME(X, Y) FSE_CAT(X, Y) |
| #define FSE_TYPE_NAME(X, Y) FSE_CAT(X, Y) |
| |
| /* Function templates */ |
| |
| /* FSE_buildCTable_wksp() : |
| * Same as FSE_buildCTable(), but using an externally allocated scratch buffer (`workSpace`). |
| * wkspSize should be sized to handle worst case situation, which is `1<<max_tableLog * sizeof(FSE_FUNCTION_TYPE)` |
| * workSpace must also be properly aligned with FSE_FUNCTION_TYPE requirements |
| */ |
| size_t FSE_buildCTable_wksp(FSE_CTable *ct, const short *normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void *workspace, size_t workspaceSize) |
| { |
| U32 const tableSize = 1 << tableLog; |
| U32 const tableMask = tableSize - 1; |
| void *const ptr = ct; |
| U16 *const tableU16 = ((U16 *)ptr) + 2; |
| void *const FSCT = ((U32 *)ptr) + 1 /* header */ + (tableLog ? tableSize >> 1 : 1); |
| FSE_symbolCompressionTransform *const symbolTT = (FSE_symbolCompressionTransform *)(FSCT); |
| U32 const step = FSE_TABLESTEP(tableSize); |
| U32 highThreshold = tableSize - 1; |
| |
| U32 *cumul; |
| FSE_FUNCTION_TYPE *tableSymbol; |
| size_t spaceUsed32 = 0; |
| |
| cumul = (U32 *)workspace + spaceUsed32; |
| spaceUsed32 += FSE_MAX_SYMBOL_VALUE + 2; |
| tableSymbol = (FSE_FUNCTION_TYPE *)((U32 *)workspace + spaceUsed32); |
| spaceUsed32 += ALIGN(sizeof(FSE_FUNCTION_TYPE) * ((size_t)1 << tableLog), sizeof(U32)) >> 2; |
| |
| if ((spaceUsed32 << 2) > workspaceSize) |
| return ERROR(tableLog_tooLarge); |
| workspace = (U32 *)workspace + spaceUsed32; |
| workspaceSize -= (spaceUsed32 << 2); |
| |
| /* CTable header */ |
| tableU16[-2] = (U16)tableLog; |
| tableU16[-1] = (U16)maxSymbolValue; |
| |
| /* For explanations on how to distribute symbol values over the table : |
| * http://fastcompression.blogspot.fr/2014/02/fse-distributing-symbol-values.html */ |
| |
| /* symbol start positions */ |
| { |
| U32 u; |
| cumul[0] = 0; |
| for (u = 1; u <= maxSymbolValue + 1; u++) { |
| if (normalizedCounter[u - 1] == -1) { /* Low proba symbol */ |
| cumul[u] = cumul[u - 1] + 1; |
| tableSymbol[highThreshold--] = (FSE_FUNCTION_TYPE)(u - 1); |
| } else { |
| cumul[u] = cumul[u - 1] + normalizedCounter[u - 1]; |
| } |
| } |
| cumul[maxSymbolValue + 1] = tableSize + 1; |
| } |
| |
| /* Spread symbols */ |
| { |
| U32 position = 0; |
| U32 symbol; |
| for (symbol = 0; symbol <= maxSymbolValue; symbol++) { |
| int nbOccurences; |
| for (nbOccurences = 0; nbOccurences < normalizedCounter[symbol]; nbOccurences++) { |
| tableSymbol[position] = (FSE_FUNCTION_TYPE)symbol; |
| position = (position + step) & tableMask; |
| while (position > highThreshold) |
| position = (position + step) & tableMask; /* Low proba area */ |
| } |
| } |
| |
| if (position != 0) |
| return ERROR(GENERIC); /* Must have gone through all positions */ |
| } |
| |
| /* Build table */ |
| { |
| U32 u; |
| for (u = 0; u < tableSize; u++) { |
| FSE_FUNCTION_TYPE s = tableSymbol[u]; /* note : static analyzer may not understand tableSymbol is properly initialized */ |
| tableU16[cumul[s]++] = (U16)(tableSize + u); /* TableU16 : sorted by symbol order; gives next state value */ |
| } |
| } |
| |
| /* Build Symbol Transformation Table */ |
| { |
| unsigned total = 0; |
| unsigned s; |
| for (s = 0; s <= maxSymbolValue; s++) { |
| switch (normalizedCounter[s]) { |
| case 0: break; |
| |
| case -1: |
| case 1: |
| symbolTT[s].deltaNbBits = (tableLog << 16) - (1 << tableLog); |
| symbolTT[s].deltaFindState = total - 1; |
| total++; |
| break; |
| default: { |
| U32 const maxBitsOut = tableLog - BIT_highbit32(normalizedCounter[s] - 1); |
| U32 const minStatePlus = normalizedCounter[s] << maxBitsOut; |
| symbolTT[s].deltaNbBits = (maxBitsOut << 16) - minStatePlus; |
| symbolTT[s].deltaFindState = total - normalizedCounter[s]; |
| total += normalizedCounter[s]; |
| } |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| /*-************************************************************** |
| * FSE NCount encoding-decoding |
| ****************************************************************/ |
| size_t FSE_NCountWriteBound(unsigned maxSymbolValue, unsigned tableLog) |
| { |
| size_t const maxHeaderSize = (((maxSymbolValue + 1) * tableLog) >> 3) + 3; |
| return maxSymbolValue ? maxHeaderSize : FSE_NCOUNTBOUND; /* maxSymbolValue==0 ? use default */ |
| } |
| |
| static size_t FSE_writeNCount_generic(void *header, size_t headerBufferSize, const short *normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, |
| unsigned writeIsSafe) |
| { |
| BYTE *const ostart = (BYTE *)header; |
| BYTE *out = ostart; |
| BYTE *const oend = ostart + headerBufferSize; |
| int nbBits; |
| const int tableSize = 1 << tableLog; |
| int remaining; |
| int threshold; |
| U32 bitStream; |
| int bitCount; |
| unsigned charnum = 0; |
| int previous0 = 0; |
| |
| bitStream = 0; |
| bitCount = 0; |
| /* Table Size */ |
| bitStream += (tableLog - FSE_MIN_TABLELOG) << bitCount; |
| bitCount += 4; |
| |
| /* Init */ |
| remaining = tableSize + 1; /* +1 for extra accuracy */ |
| threshold = tableSize; |
| nbBits = tableLog + 1; |
| |
| while (remaining > 1) { /* stops at 1 */ |
| if (previous0) { |
| unsigned start = charnum; |
| while (!normalizedCounter[charnum]) |
| charnum++; |
| while (charnum >= start + 24) { |
| start += 24; |
| bitStream += 0xFFFFU << bitCount; |
| if ((!writeIsSafe) && (out > oend - 2)) |
| return ERROR(dstSize_tooSmall); /* Buffer overflow */ |
| out[0] = (BYTE)bitStream; |
| out[1] = (BYTE)(bitStream >> 8); |
| out += 2; |
| bitStream >>= 16; |
| } |
| while (charnum >= start + 3) { |
| start += 3; |
| bitStream += 3 << bitCount; |
| bitCount += 2; |
| } |
| bitStream += (charnum - start) << bitCount; |
| bitCount += 2; |
| if (bitCount > 16) { |
| if ((!writeIsSafe) && (out > oend - 2)) |
| return ERROR(dstSize_tooSmall); /* Buffer overflow */ |
| out[0] = (BYTE)bitStream; |
| out[1] = (BYTE)(bitStream >> 8); |
| out += 2; |
| bitStream >>= 16; |
| bitCount -= 16; |
| } |
| } |
| { |
| int count = normalizedCounter[charnum++]; |
| int const max = (2 * threshold - 1) - remaining; |
| remaining -= count < 0 ? -count : count; |
| count++; /* +1 for extra accuracy */ |
| if (count >= threshold) |
| count += max; /* [0..max[ [max..threshold[ (...) [threshold+max 2*threshold[ */ |
| bitStream += count << bitCount; |
| bitCount += nbBits; |
| bitCount -= (count < max); |
| previous0 = (count == 1); |
| if (remaining < 1) |
| return ERROR(GENERIC); |
| while (remaining < threshold) |
| nbBits--, threshold >>= 1; |
| } |
| if (bitCount > 16) { |
| if ((!writeIsSafe) && (out > oend - 2)) |
| return ERROR(dstSize_tooSmall); /* Buffer overflow */ |
| out[0] = (BYTE)bitStream; |
| out[1] = (BYTE)(bitStream >> 8); |
| out += 2; |
| bitStream >>= 16; |
| bitCount -= 16; |
| } |
| } |
| |
| /* flush remaining bitStream */ |
| if ((!writeIsSafe) && (out > oend - 2)) |
| return ERROR(dstSize_tooSmall); /* Buffer overflow */ |
| out[0] = (BYTE)bitStream; |
| out[1] = (BYTE)(bitStream >> 8); |
| out += (bitCount + 7) / 8; |
| |
| if (charnum > maxSymbolValue + 1) |
| return ERROR(GENERIC); |
| |
| return (out - ostart); |
| } |
| |
| size_t FSE_writeNCount(void *buffer, size_t bufferSize, const short *normalizedCounter, unsigned maxSymbolValue, unsigned tableLog) |
| { |
| if (tableLog > FSE_MAX_TABLELOG) |
| return ERROR(tableLog_tooLarge); /* Unsupported */ |
| if (tableLog < FSE_MIN_TABLELOG) |
| return ERROR(GENERIC); /* Unsupported */ |
| |
| if (bufferSize < FSE_NCountWriteBound(maxSymbolValue, tableLog)) |
| return FSE_writeNCount_generic(buffer, bufferSize, normalizedCounter, maxSymbolValue, tableLog, 0); |
| |
| return FSE_writeNCount_generic(buffer, bufferSize, normalizedCounter, maxSymbolValue, tableLog, 1); |
| } |
| |
| /*-************************************************************** |
| * Counting histogram |
| ****************************************************************/ |
| /*! FSE_count_simple |
| This function counts byte values within `src`, and store the histogram into table `count`. |
| It doesn't use any additional memory. |
| But this function is unsafe : it doesn't check that all values within `src` can fit into `count`. |
| For this reason, prefer using a table `count` with 256 elements. |
| @return : count of most numerous element |
| */ |
| size_t FSE_count_simple(unsigned *count, unsigned *maxSymbolValuePtr, const void *src, size_t srcSize) |
| { |
| const BYTE *ip = (const BYTE *)src; |
| const BYTE *const end = ip + srcSize; |
| unsigned maxSymbolValue = *maxSymbolValuePtr; |
| unsigned max = 0; |
| |
| memset(count, 0, (maxSymbolValue + 1) * sizeof(*count)); |
| if (srcSize == 0) { |
| *maxSymbolValuePtr = 0; |
| return 0; |
| } |
| |
| while (ip < end) |
| count[*ip++]++; |
| |
| while (!count[maxSymbolValue]) |
| maxSymbolValue--; |
| *maxSymbolValuePtr = maxSymbolValue; |
| |
| { |
| U32 s; |
| for (s = 0; s <= maxSymbolValue; s++) |
| if (count[s] > max) |
| max = count[s]; |
| } |
| |
| return (size_t)max; |
| } |
| |
| /* FSE_count_parallel_wksp() : |
| * Same as FSE_count_parallel(), but using an externally provided scratch buffer. |
| * `workSpace` size must be a minimum of `1024 * sizeof(unsigned)`` */ |
| static size_t FSE_count_parallel_wksp(unsigned *count, unsigned *maxSymbolValuePtr, const void *source, size_t sourceSize, unsigned checkMax, |
| unsigned *const workSpace) |
| { |
| const BYTE *ip = (const BYTE *)source; |
| const BYTE *const iend = ip + sourceSize; |
| unsigned maxSymbolValue = *maxSymbolValuePtr; |
| unsigned max = 0; |
| U32 *const Counting1 = workSpace; |
| U32 *const Counting2 = Counting1 + 256; |
| U32 *const Counting3 = Counting2 + 256; |
| U32 *const Counting4 = Counting3 + 256; |
| |
| memset(Counting1, 0, 4 * 256 * sizeof(unsigned)); |
| |
| /* safety checks */ |
| if (!sourceSize) { |
| memset(count, 0, maxSymbolValue + 1); |
| *maxSymbolValuePtr = 0; |
| return 0; |
| } |
| if (!maxSymbolValue) |
| maxSymbolValue = 255; /* 0 == default */ |
| |
| /* by stripes of 16 bytes */ |
| { |
| U32 cached = ZSTD_read32(ip); |
| ip += 4; |
| while (ip < iend - 15) { |
| U32 c = cached; |
| cached = ZSTD_read32(ip); |
| ip += 4; |
| Counting1[(BYTE)c]++; |
| Counting2[(BYTE)(c >> 8)]++; |
| Counting3[(BYTE)(c >> 16)]++; |
| Counting4[c >> 24]++; |
| c = cached; |
| cached = ZSTD_read32(ip); |
| ip += 4; |
| Counting1[(BYTE)c]++; |
| Counting2[(BYTE)(c >> 8)]++; |
| Counting3[(BYTE)(c >> 16)]++; |
| Counting4[c >> 24]++; |
| c = cached; |
| cached = ZSTD_read32(ip); |
| ip += 4; |
| Counting1[(BYTE)c]++; |
| Counting2[(BYTE)(c >> 8)]++; |
| Counting3[(BYTE)(c >> 16)]++; |
| Counting4[c >> 24]++; |
| c = cached; |
| cached = ZSTD_read32(ip); |
| ip += 4; |
| Counting1[(BYTE)c]++; |
| Counting2[(BYTE)(c >> 8)]++; |
| Counting3[(BYTE)(c >> 16)]++; |
| Counting4[c >> 24]++; |
| } |
| ip -= 4; |
| } |
| |
| /* finish last symbols */ |
| while (ip < iend) |
| Counting1[*ip++]++; |
| |
| if (checkMax) { /* verify stats will fit into destination table */ |
| U32 s; |
| for (s = 255; s > maxSymbolValue; s--) { |
| Counting1[s] += Counting2[s] + Counting3[s] + Counting4[s]; |
| if (Counting1[s]) |
| return ERROR(maxSymbolValue_tooSmall); |
| } |
| } |
| |
| { |
| U32 s; |
| for (s = 0; s <= maxSymbolValue; s++) { |
| count[s] = Counting1[s] + Counting2[s] + Counting3[s] + Counting4[s]; |
| if (count[s] > max) |
| max = count[s]; |
| } |
| } |
| |
| while (!count[maxSymbolValue]) |
| maxSymbolValue--; |
| *maxSymbolValuePtr = maxSymbolValue; |
| return (size_t)max; |
| } |
| |
| /* FSE_countFast_wksp() : |
| * Same as FSE_countFast(), but using an externally provided scratch buffer. |
| * `workSpace` size must be table of >= `1024` unsigned */ |
| size_t FSE_countFast_wksp(unsigned *count, unsigned *maxSymbolValuePtr, const void *source, size_t sourceSize, unsigned *workSpace) |
| { |
| if (sourceSize < 1500) |
| return FSE_count_simple(count, maxSymbolValuePtr, source, sourceSize); |
| return FSE_count_parallel_wksp(count, maxSymbolValuePtr, source, sourceSize, 0, workSpace); |
| } |
| |
| /* FSE_count_wksp() : |
| * Same as FSE_count(), but using an externally provided scratch buffer. |
| * `workSpace` size must be table of >= `1024` unsigned */ |
| size_t FSE_count_wksp(unsigned *count, unsigned *maxSymbolValuePtr, const void *source, size_t sourceSize, unsigned *workSpace) |
| { |
| if (*maxSymbolValuePtr < 255) |
| return FSE_count_parallel_wksp(count, maxSymbolValuePtr, source, sourceSize, 1, workSpace); |
| *maxSymbolValuePtr = 255; |
| return FSE_countFast_wksp(count, maxSymbolValuePtr, source, sourceSize, workSpace); |
| } |
| |
| /*-************************************************************** |
| * FSE Compression Code |
| ****************************************************************/ |
| /*! FSE_sizeof_CTable() : |
| FSE_CTable is a variable size structure which contains : |
| `U16 tableLog;` |
| `U16 maxSymbolValue;` |
| `U16 nextStateNumber[1 << tableLog];` // This size is variable |
| `FSE_symbolCompressionTransform symbolTT[maxSymbolValue+1];` // This size is variable |
| Allocation is manual (C standard does not support variable-size structures). |
| */ |
| size_t FSE_sizeof_CTable(unsigned maxSymbolValue, unsigned tableLog) |
| { |
| if (tableLog > FSE_MAX_TABLELOG) |
| return ERROR(tableLog_tooLarge); |
| return FSE_CTABLE_SIZE_U32(tableLog, maxSymbolValue) * sizeof(U32); |
| } |
| |
| /* provides the minimum logSize to safely represent a distribution */ |
| static unsigned FSE_minTableLog(size_t srcSize, unsigned maxSymbolValue) |
| { |
| U32 minBitsSrc = BIT_highbit32((U32)(srcSize - 1)) + 1; |
| U32 minBitsSymbols = BIT_highbit32(maxSymbolValue) + 2; |
| U32 minBits = minBitsSrc < minBitsSymbols ? minBitsSrc : minBitsSymbols; |
| return minBits; |
| } |
| |
| unsigned FSE_optimalTableLog_internal(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue, unsigned minus) |
| { |
| U32 maxBitsSrc = BIT_highbit32((U32)(srcSize - 1)) - minus; |
| U32 tableLog = maxTableLog; |
| U32 minBits = FSE_minTableLog(srcSize, maxSymbolValue); |
| if (tableLog == 0) |
| tableLog = FSE_DEFAULT_TABLELOG; |
| if (maxBitsSrc < tableLog) |
| tableLog = maxBitsSrc; /* Accuracy can be reduced */ |
| if (minBits > tableLog) |
| tableLog = minBits; /* Need a minimum to safely represent all symbol values */ |
| if (tableLog < FSE_MIN_TABLELOG) |
| tableLog = FSE_MIN_TABLELOG; |
| if (tableLog > FSE_MAX_TABLELOG) |
| tableLog = FSE_MAX_TABLELOG; |
| return tableLog; |
| } |
| |
| unsigned FSE_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue) |
| { |
| return FSE_optimalTableLog_internal(maxTableLog, srcSize, maxSymbolValue, 2); |
| } |
| |
| /* Secondary normalization method. |
| To be used when primary method fails. */ |
| |
| static size_t FSE_normalizeM2(short *norm, U32 tableLog, const unsigned *count, size_t total, U32 maxSymbolValue) |
| { |
| short const NOT_YET_ASSIGNED = -2; |
| U32 s; |
| U32 distributed = 0; |
| U32 ToDistribute; |
| |
| /* Init */ |
| U32 const lowThreshold = (U32)(total >> tableLog); |
| U32 lowOne = (U32)((total * 3) >> (tableLog + 1)); |
| |
| for (s = 0; s <= maxSymbolValue; s++) { |
| if (count[s] == 0) { |
| norm[s] = 0; |
| continue; |
| } |
| if (count[s] <= lowThreshold) { |
| norm[s] = -1; |
| distributed++; |
| total -= count[s]; |
| continue; |
| } |
| if (count[s] <= lowOne) { |
| norm[s] = 1; |
| distributed++; |
| total -= count[s]; |
| continue; |
| } |
| |
| norm[s] = NOT_YET_ASSIGNED; |
| } |
| ToDistribute = (1 << tableLog) - distributed; |
| |
| if ((total / ToDistribute) > lowOne) { |
| /* risk of rounding to zero */ |
| lowOne = (U32)((total * 3) / (ToDistribute * 2)); |
| for (s = 0; s <= maxSymbolValue; s++) { |
| if ((norm[s] == NOT_YET_ASSIGNED) && (count[s] <= lowOne)) { |
| norm[s] = 1; |
| distributed++; |
| total -= count[s]; |
| continue; |
| } |
| } |
| ToDistribute = (1 << tableLog) - distributed; |
| } |
| |
| if (distributed == maxSymbolValue + 1) { |
| /* all values are pretty poor; |
| probably incompressible data (should have already been detected); |
| find max, then give all remaining points to max */ |
| U32 maxV = 0, maxC = 0; |
| for (s = 0; s <= maxSymbolValue; s++) |
| if (count[s] > maxC) |
| maxV = s, maxC = count[s]; |
| norm[maxV] += (short)ToDistribute; |
| return 0; |
| } |
| |
| if (total == 0) { |
| /* all of the symbols were low enough for the lowOne or lowThreshold */ |
| for (s = 0; ToDistribute > 0; s = (s + 1) % (maxSymbolValue + 1)) |
| if (norm[s] > 0) |
| ToDistribute--, norm[s]++; |
| return 0; |
| } |
| |
| { |
| U64 const vStepLog = 62 - tableLog; |
| U64 const mid = (1ULL << (vStepLog - 1)) - 1; |
| U64 const rStep = div_u64((((U64)1 << vStepLog) * ToDistribute) + mid, (U32)total); /* scale on remaining */ |
| U64 tmpTotal = mid; |
| for (s = 0; s <= maxSymbolValue; s++) { |
| if (norm[s] == NOT_YET_ASSIGNED) { |
| U64 const end = tmpTotal + (count[s] * rStep); |
| U32 const sStart = (U32)(tmpTotal >> vStepLog); |
| U32 const sEnd = (U32)(end >> vStepLog); |
| U32 const weight = sEnd - sStart; |
| if (weight < 1) |
| return ERROR(GENERIC); |
| norm[s] = (short)weight; |
| tmpTotal = end; |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| size_t FSE_normalizeCount(short *normalizedCounter, unsigned tableLog, const unsigned *count, size_t total, unsigned maxSymbolValue) |
| { |
| /* Sanity checks */ |
| if (tableLog == 0) |
| tableLog = FSE_DEFAULT_TABLELOG; |
| if (tableLog < FSE_MIN_TABLELOG) |
| return ERROR(GENERIC); /* Unsupported size */ |
| if (tableLog > FSE_MAX_TABLELOG) |
| return ERROR(tableLog_tooLarge); /* Unsupported size */ |
| if (tableLog < FSE_minTableLog(total, maxSymbolValue)) |
| return ERROR(GENERIC); /* Too small tableLog, compression potentially impossible */ |
| |
| { |
| U32 const rtbTable[] = {0, 473195, 504333, 520860, 550000, 700000, 750000, 830000}; |
| U64 const scale = 62 - tableLog; |
| U64 const step = div_u64((U64)1 << 62, (U32)total); /* <== here, one division ! */ |
| U64 const vStep = 1ULL << (scale - 20); |
| int stillToDistribute = 1 << tableLog; |
| unsigned s; |
| unsigned largest = 0; |
| short largestP = 0; |
| U32 lowThreshold = (U32)(total >> tableLog); |
| |
| for (s = 0; s <= maxSymbolValue; s++) { |
| if (count[s] == total) |
| return 0; /* rle special case */ |
| if (count[s] == 0) { |
| normalizedCounter[s] = 0; |
| continue; |
| } |
| if (count[s] <= lowThreshold) { |
| normalizedCounter[s] = -1; |
| stillToDistribute--; |
| } else { |
| short proba = (short)((count[s] * step) >> scale); |
| if (proba < 8) { |
| U64 restToBeat = vStep * rtbTable[proba]; |
| proba += (count[s] * step) - ((U64)proba << scale) > restToBeat; |
| } |
| if (proba > largestP) |
| largestP = proba, largest = s; |
| normalizedCounter[s] = proba; |
| stillToDistribute -= proba; |
| } |
| } |
| if (-stillToDistribute >= (normalizedCounter[largest] >> 1)) { |
| /* corner case, need another normalization method */ |
| size_t const errorCode = FSE_normalizeM2(normalizedCounter, tableLog, count, total, maxSymbolValue); |
| if (FSE_isError(errorCode)) |
| return errorCode; |
| } else |
| normalizedCounter[largest] += (short)stillToDistribute; |
| } |
| |
| return tableLog; |
| } |
| |
| /* fake FSE_CTable, for raw (uncompressed) input */ |
| size_t FSE_buildCTable_raw(FSE_CTable *ct, unsigned nbBits) |
| { |
| const unsigned tableSize = 1 << nbBits; |
| const unsigned tableMask = tableSize - 1; |
| const unsigned maxSymbolValue = tableMask; |
| void *const ptr = ct; |
| U16 *const tableU16 = ((U16 *)ptr) + 2; |
| void *const FSCT = ((U32 *)ptr) + 1 /* header */ + (tableSize >> 1); /* assumption : tableLog >= 1 */ |
| FSE_symbolCompressionTransform *const symbolTT = (FSE_symbolCompressionTransform *)(FSCT); |
| unsigned s; |
| |
| /* Sanity checks */ |
| if (nbBits < 1) |
| return ERROR(GENERIC); /* min size */ |
| |
| /* header */ |
| tableU16[-2] = (U16)nbBits; |
| tableU16[-1] = (U16)maxSymbolValue; |
| |
| /* Build table */ |
| for (s = 0; s < tableSize; s++) |
| tableU16[s] = (U16)(tableSize + s); |
| |
| /* Build Symbol Transformation Table */ |
| { |
| const U32 deltaNbBits = (nbBits << 16) - (1 << nbBits); |
| for (s = 0; s <= maxSymbolValue; s++) { |
| symbolTT[s].deltaNbBits = deltaNbBits; |
| symbolTT[s].deltaFindState = s - 1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* fake FSE_CTable, for rle input (always same symbol) */ |
| size_t FSE_buildCTable_rle(FSE_CTable *ct, BYTE symbolValue) |
| { |
| void *ptr = ct; |
| U16 *tableU16 = ((U16 *)ptr) + 2; |
| void *FSCTptr = (U32 *)ptr + 2; |
| FSE_symbolCompressionTransform *symbolTT = (FSE_symbolCompressionTransform *)FSCTptr; |
| |
| /* header */ |
| tableU16[-2] = (U16)0; |
| tableU16[-1] = (U16)symbolValue; |
| |
| /* Build table */ |
| tableU16[0] = 0; |
| tableU16[1] = 0; /* just in case */ |
| |
| /* Build Symbol Transformation Table */ |
| symbolTT[symbolValue].deltaNbBits = 0; |
| symbolTT[symbolValue].deltaFindState = 0; |
| |
| return 0; |
| } |
| |
| static size_t FSE_compress_usingCTable_generic(void *dst, size_t dstSize, const void *src, size_t srcSize, const FSE_CTable *ct, const unsigned fast) |
| { |
| const BYTE *const istart = (const BYTE *)src; |
| const BYTE *const iend = istart + srcSize; |
| const BYTE *ip = iend; |
| |
| BIT_CStream_t bitC; |
| FSE_CState_t CState1, CState2; |
| |
| /* init */ |
| if (srcSize <= 2) |
| return 0; |
| { |
| size_t const initError = BIT_initCStream(&bitC, dst, dstSize); |
| if (FSE_isError(initError)) |
| return 0; /* not enough space available to write a bitstream */ |
| } |
| |
| #define FSE_FLUSHBITS(s) (fast ? BIT_flushBitsFast(s) : BIT_flushBits(s)) |
| |
| if (srcSize & 1) { |
| FSE_initCState2(&CState1, ct, *--ip); |
| FSE_initCState2(&CState2, ct, *--ip); |
| FSE_encodeSymbol(&bitC, &CState1, *--ip); |
| FSE_FLUSHBITS(&bitC); |
| } else { |
| FSE_initCState2(&CState2, ct, *--ip); |
| FSE_initCState2(&CState1, ct, *--ip); |
| } |
| |
| /* join to mod 4 */ |
| srcSize -= 2; |
| if ((sizeof(bitC.bitContainer) * 8 > FSE_MAX_TABLELOG * 4 + 7) && (srcSize & 2)) { /* test bit 2 */ |
| FSE_encodeSymbol(&bitC, &CState2, *--ip); |
| FSE_encodeSymbol(&bitC, &CState1, *--ip); |
| FSE_FLUSHBITS(&bitC); |
| } |
| |
| /* 2 or 4 encoding per loop */ |
| while (ip > istart) { |
| |
| FSE_encodeSymbol(&bitC, &CState2, *--ip); |
| |
| if (sizeof(bitC.bitContainer) * 8 < FSE_MAX_TABLELOG * 2 + 7) /* this test must be static */ |
| FSE_FLUSHBITS(&bitC); |
| |
| FSE_encodeSymbol(&bitC, &CState1, *--ip); |
| |
| if (sizeof(bitC.bitContainer) * 8 > FSE_MAX_TABLELOG * 4 + 7) { /* this test must be static */ |
| FSE_encodeSymbol(&bitC, &CState2, *--ip); |
| FSE_encodeSymbol(&bitC, &CState1, *--ip); |
| } |
| |
| FSE_FLUSHBITS(&bitC); |
| } |
| |
| FSE_flushCState(&bitC, &CState2); |
| FSE_flushCState(&bitC, &CState1); |
| return BIT_closeCStream(&bitC); |
| } |
| |
| size_t FSE_compress_usingCTable(void *dst, size_t dstSize, const void *src, size_t srcSize, const FSE_CTable *ct) |
| { |
| unsigned const fast = (dstSize >= FSE_BLOCKBOUND(srcSize)); |
| |
| if (fast) |
| return FSE_compress_usingCTable_generic(dst, dstSize, src, srcSize, ct, 1); |
| else |
| return FSE_compress_usingCTable_generic(dst, dstSize, src, srcSize, ct, 0); |
| } |
| |
| size_t FSE_compressBound(size_t size) { return FSE_COMPRESSBOUND(size); } |