| /* | 
 |  * Copyright (C) ST-Ericsson SA 2010 | 
 |  * | 
 |  * License Terms: GNU General Public License v2 | 
 |  * Author: Arun R Murthy <arun.murthy@stericsson.com> | 
 |  * Author: Daniel Willerud <daniel.willerud@stericsson.com> | 
 |  * Author: Johan Palsson <johan.palsson@stericsson.com> | 
 |  */ | 
 | #include <linux/init.h> | 
 | #include <linux/module.h> | 
 | #include <linux/device.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/pm_runtime.h> | 
 | #include <linux/platform_device.h> | 
 | #include <linux/completion.h> | 
 | #include <linux/regulator/consumer.h> | 
 | #include <linux/err.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/list.h> | 
 | #include <linux/mfd/abx500.h> | 
 | #include <linux/mfd/abx500/ab8500.h> | 
 | #include <linux/mfd/abx500/ab8500-gpadc.h> | 
 |  | 
 | /* | 
 |  * GPADC register offsets | 
 |  * Bank : 0x0A | 
 |  */ | 
 | #define AB8500_GPADC_CTRL1_REG		0x00 | 
 | #define AB8500_GPADC_CTRL2_REG		0x01 | 
 | #define AB8500_GPADC_CTRL3_REG		0x02 | 
 | #define AB8500_GPADC_AUTO_TIMER_REG	0x03 | 
 | #define AB8500_GPADC_STAT_REG		0x04 | 
 | #define AB8500_GPADC_MANDATAL_REG	0x05 | 
 | #define AB8500_GPADC_MANDATAH_REG	0x06 | 
 | #define AB8500_GPADC_AUTODATAL_REG	0x07 | 
 | #define AB8500_GPADC_AUTODATAH_REG	0x08 | 
 | #define AB8500_GPADC_MUX_CTRL_REG	0x09 | 
 | #define AB8540_GPADC_MANDATA2L_REG	0x09 | 
 | #define AB8540_GPADC_MANDATA2H_REG	0x0A | 
 | #define AB8540_GPADC_APEAAX_REG		0x10 | 
 | #define AB8540_GPADC_APEAAT_REG		0x11 | 
 | #define AB8540_GPADC_APEAAM_REG		0x12 | 
 | #define AB8540_GPADC_APEAAH_REG		0x13 | 
 | #define AB8540_GPADC_APEAAL_REG		0x14 | 
 |  | 
 | /* | 
 |  * OTP register offsets | 
 |  * Bank : 0x15 | 
 |  */ | 
 | #define AB8500_GPADC_CAL_1		0x0F | 
 | #define AB8500_GPADC_CAL_2		0x10 | 
 | #define AB8500_GPADC_CAL_3		0x11 | 
 | #define AB8500_GPADC_CAL_4		0x12 | 
 | #define AB8500_GPADC_CAL_5		0x13 | 
 | #define AB8500_GPADC_CAL_6		0x14 | 
 | #define AB8500_GPADC_CAL_7		0x15 | 
 | /* New calibration for 8540 */ | 
 | #define AB8540_GPADC_OTP4_REG_7	0x38 | 
 | #define AB8540_GPADC_OTP4_REG_6	0x39 | 
 | #define AB8540_GPADC_OTP4_REG_5	0x3A | 
 |  | 
 | /* gpadc constants */ | 
 | #define EN_VINTCORE12			0x04 | 
 | #define EN_VTVOUT			0x02 | 
 | #define EN_GPADC			0x01 | 
 | #define DIS_GPADC			0x00 | 
 | #define AVG_1				0x00 | 
 | #define AVG_4				0x20 | 
 | #define AVG_8				0x40 | 
 | #define AVG_16				0x60 | 
 | #define ADC_SW_CONV			0x04 | 
 | #define EN_ICHAR			0x80 | 
 | #define BTEMP_PULL_UP			0x08 | 
 | #define EN_BUF				0x40 | 
 | #define DIS_ZERO			0x00 | 
 | #define GPADC_BUSY			0x01 | 
 | #define EN_FALLING			0x10 | 
 | #define EN_TRIG_EDGE			0x02 | 
 | #define EN_VBIAS_XTAL_TEMP		0x02 | 
 |  | 
 | /* GPADC constants from AB8500 spec, UM0836 */ | 
 | #define ADC_RESOLUTION			1024 | 
 | #define ADC_CH_BTEMP_MIN		0 | 
 | #define ADC_CH_BTEMP_MAX		1350 | 
 | #define ADC_CH_DIETEMP_MIN		0 | 
 | #define ADC_CH_DIETEMP_MAX		1350 | 
 | #define ADC_CH_CHG_V_MIN		0 | 
 | #define ADC_CH_CHG_V_MAX		20030 | 
 | #define ADC_CH_ACCDET2_MIN		0 | 
 | #define ADC_CH_ACCDET2_MAX		2500 | 
 | #define ADC_CH_VBAT_MIN			2300 | 
 | #define ADC_CH_VBAT_MAX			4800 | 
 | #define ADC_CH_CHG_I_MIN		0 | 
 | #define ADC_CH_CHG_I_MAX		1500 | 
 | #define ADC_CH_BKBAT_MIN		0 | 
 | #define ADC_CH_BKBAT_MAX		3200 | 
 |  | 
 | /* GPADC constants from AB8540 spec */ | 
 | #define ADC_CH_IBAT_MIN			(-6000) /* mA range measured by ADC for ibat*/ | 
 | #define ADC_CH_IBAT_MAX			6000 | 
 | #define ADC_CH_IBAT_MIN_V		(-60)	/* mV range measured by ADC for ibat*/ | 
 | #define ADC_CH_IBAT_MAX_V		60 | 
 | #define IBAT_VDROP_L			(-56)  /* mV */ | 
 | #define IBAT_VDROP_H			56 | 
 |  | 
 | /* This is used to not lose precision when dividing to get gain and offset */ | 
 | #define CALIB_SCALE		1000 | 
 | /* | 
 |  * Number of bits shift used to not lose precision | 
 |  * when dividing to get ibat gain. | 
 |  */ | 
 | #define CALIB_SHIFT_IBAT	20 | 
 |  | 
 | /* Time in ms before disabling regulator */ | 
 | #define GPADC_AUDOSUSPEND_DELAY		1 | 
 |  | 
 | #define CONVERSION_TIME			500 /* ms */ | 
 |  | 
 | enum cal_channels { | 
 | 	ADC_INPUT_VMAIN = 0, | 
 | 	ADC_INPUT_BTEMP, | 
 | 	ADC_INPUT_VBAT, | 
 | 	ADC_INPUT_IBAT, | 
 | 	NBR_CAL_INPUTS, | 
 | }; | 
 |  | 
 | /** | 
 |  * struct adc_cal_data - Table for storing gain and offset for the calibrated | 
 |  * ADC channels | 
 |  * @gain:		Gain of the ADC channel | 
 |  * @offset:		Offset of the ADC channel | 
 |  */ | 
 | struct adc_cal_data { | 
 | 	s64 gain; | 
 | 	s64 offset; | 
 | 	u16 otp_calib_hi; | 
 | 	u16 otp_calib_lo; | 
 | }; | 
 |  | 
 | /** | 
 |  * struct ab8500_gpadc - AB8500 GPADC device information | 
 |  * @dev:			pointer to the struct device | 
 |  * @node:			a list of AB8500 GPADCs, hence prepared for | 
 | 				reentrance | 
 |  * @parent:			pointer to the struct ab8500 | 
 |  * @ab8500_gpadc_complete:	pointer to the struct completion, to indicate | 
 |  *				the completion of gpadc conversion | 
 |  * @ab8500_gpadc_lock:		structure of type mutex | 
 |  * @regu:			pointer to the struct regulator | 
 |  * @irq_sw:			interrupt number that is used by gpadc for Sw | 
 |  *				conversion | 
 |  * @irq_hw:			interrupt number that is used by gpadc for Hw | 
 |  *				conversion | 
 |  * @cal_data			array of ADC calibration data structs | 
 |  */ | 
 | struct ab8500_gpadc { | 
 | 	struct device *dev; | 
 | 	struct list_head node; | 
 | 	struct ab8500 *parent; | 
 | 	struct completion ab8500_gpadc_complete; | 
 | 	struct mutex ab8500_gpadc_lock; | 
 | 	struct regulator *regu; | 
 | 	int irq_sw; | 
 | 	int irq_hw; | 
 | 	struct adc_cal_data cal_data[NBR_CAL_INPUTS]; | 
 | }; | 
 |  | 
 | static LIST_HEAD(ab8500_gpadc_list); | 
 |  | 
 | /** | 
 |  * ab8500_gpadc_get() - returns a reference to the primary AB8500 GPADC | 
 |  * (i.e. the first GPADC in the instance list) | 
 |  */ | 
 | struct ab8500_gpadc *ab8500_gpadc_get(char *name) | 
 | { | 
 | 	struct ab8500_gpadc *gpadc; | 
 |  | 
 | 	list_for_each_entry(gpadc, &ab8500_gpadc_list, node) { | 
 | 		if (!strcmp(name, dev_name(gpadc->dev))) | 
 | 		    return gpadc; | 
 | 	} | 
 |  | 
 | 	return ERR_PTR(-ENOENT); | 
 | } | 
 | EXPORT_SYMBOL(ab8500_gpadc_get); | 
 |  | 
 | /** | 
 |  * ab8500_gpadc_ad_to_voltage() - Convert a raw ADC value to a voltage | 
 |  */ | 
 | int ab8500_gpadc_ad_to_voltage(struct ab8500_gpadc *gpadc, u8 channel, | 
 | 	int ad_value) | 
 | { | 
 | 	int res; | 
 |  | 
 | 	switch (channel) { | 
 | 	case MAIN_CHARGER_V: | 
 | 		/* For some reason we don't have calibrated data */ | 
 | 		if (!gpadc->cal_data[ADC_INPUT_VMAIN].gain) { | 
 | 			res = ADC_CH_CHG_V_MIN + (ADC_CH_CHG_V_MAX - | 
 | 				ADC_CH_CHG_V_MIN) * ad_value / | 
 | 				ADC_RESOLUTION; | 
 | 			break; | 
 | 		} | 
 | 		/* Here we can use the calibrated data */ | 
 | 		res = (int) (ad_value * gpadc->cal_data[ADC_INPUT_VMAIN].gain + | 
 | 			gpadc->cal_data[ADC_INPUT_VMAIN].offset) / CALIB_SCALE; | 
 | 		break; | 
 |  | 
 | 	case XTAL_TEMP: | 
 | 	case BAT_CTRL: | 
 | 	case BTEMP_BALL: | 
 | 	case ACC_DETECT1: | 
 | 	case ADC_AUX1: | 
 | 	case ADC_AUX2: | 
 | 		/* For some reason we don't have calibrated data */ | 
 | 		if (!gpadc->cal_data[ADC_INPUT_BTEMP].gain) { | 
 | 			res = ADC_CH_BTEMP_MIN + (ADC_CH_BTEMP_MAX - | 
 | 				ADC_CH_BTEMP_MIN) * ad_value / | 
 | 				ADC_RESOLUTION; | 
 | 			break; | 
 | 		} | 
 | 		/* Here we can use the calibrated data */ | 
 | 		res = (int) (ad_value * gpadc->cal_data[ADC_INPUT_BTEMP].gain + | 
 | 			gpadc->cal_data[ADC_INPUT_BTEMP].offset) / CALIB_SCALE; | 
 | 		break; | 
 |  | 
 | 	case MAIN_BAT_V: | 
 | 	case VBAT_TRUE_MEAS: | 
 | 		/* For some reason we don't have calibrated data */ | 
 | 		if (!gpadc->cal_data[ADC_INPUT_VBAT].gain) { | 
 | 			res = ADC_CH_VBAT_MIN + (ADC_CH_VBAT_MAX - | 
 | 				ADC_CH_VBAT_MIN) * ad_value / | 
 | 				ADC_RESOLUTION; | 
 | 			break; | 
 | 		} | 
 | 		/* Here we can use the calibrated data */ | 
 | 		res = (int) (ad_value * gpadc->cal_data[ADC_INPUT_VBAT].gain + | 
 | 			gpadc->cal_data[ADC_INPUT_VBAT].offset) / CALIB_SCALE; | 
 | 		break; | 
 |  | 
 | 	case DIE_TEMP: | 
 | 		res = ADC_CH_DIETEMP_MIN + | 
 | 			(ADC_CH_DIETEMP_MAX - ADC_CH_DIETEMP_MIN) * ad_value / | 
 | 			ADC_RESOLUTION; | 
 | 		break; | 
 |  | 
 | 	case ACC_DETECT2: | 
 | 		res = ADC_CH_ACCDET2_MIN + | 
 | 			(ADC_CH_ACCDET2_MAX - ADC_CH_ACCDET2_MIN) * ad_value / | 
 | 			ADC_RESOLUTION; | 
 | 		break; | 
 |  | 
 | 	case VBUS_V: | 
 | 		res = ADC_CH_CHG_V_MIN + | 
 | 			(ADC_CH_CHG_V_MAX - ADC_CH_CHG_V_MIN) * ad_value / | 
 | 			ADC_RESOLUTION; | 
 | 		break; | 
 |  | 
 | 	case MAIN_CHARGER_C: | 
 | 	case USB_CHARGER_C: | 
 | 		res = ADC_CH_CHG_I_MIN + | 
 | 			(ADC_CH_CHG_I_MAX - ADC_CH_CHG_I_MIN) * ad_value / | 
 | 			ADC_RESOLUTION; | 
 | 		break; | 
 |  | 
 | 	case BK_BAT_V: | 
 | 		res = ADC_CH_BKBAT_MIN + | 
 | 			(ADC_CH_BKBAT_MAX - ADC_CH_BKBAT_MIN) * ad_value / | 
 | 			ADC_RESOLUTION; | 
 | 		break; | 
 |  | 
 | 	case IBAT_VIRTUAL_CHANNEL: | 
 | 		/* For some reason we don't have calibrated data */ | 
 | 		if (!gpadc->cal_data[ADC_INPUT_IBAT].gain) { | 
 | 			res = ADC_CH_IBAT_MIN + (ADC_CH_IBAT_MAX - | 
 | 				ADC_CH_IBAT_MIN) * ad_value / | 
 | 				ADC_RESOLUTION; | 
 | 			break; | 
 | 		} | 
 | 		/* Here we can use the calibrated data */ | 
 | 		res = (int) (ad_value * gpadc->cal_data[ADC_INPUT_IBAT].gain + | 
 | 				gpadc->cal_data[ADC_INPUT_IBAT].offset) | 
 | 				>> CALIB_SHIFT_IBAT; | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		dev_err(gpadc->dev, | 
 | 			"unknown channel, not possible to convert\n"); | 
 | 		res = -EINVAL; | 
 | 		break; | 
 |  | 
 | 	} | 
 | 	return res; | 
 | } | 
 | EXPORT_SYMBOL(ab8500_gpadc_ad_to_voltage); | 
 |  | 
 | /** | 
 |  * ab8500_gpadc_sw_hw_convert() - gpadc conversion | 
 |  * @channel:	analog channel to be converted to digital data | 
 |  * @avg_sample:  number of ADC sample to average | 
 |  * @trig_egde:  selected ADC trig edge | 
 |  * @trig_timer: selected ADC trigger delay timer | 
 |  * @conv_type: selected conversion type (HW or SW conversion) | 
 |  * | 
 |  * This function converts the selected analog i/p to digital | 
 |  * data. | 
 |  */ | 
 | int ab8500_gpadc_sw_hw_convert(struct ab8500_gpadc *gpadc, u8 channel, | 
 | 		u8 avg_sample, u8 trig_edge, u8 trig_timer, u8 conv_type) | 
 | { | 
 | 	int ad_value; | 
 | 	int voltage; | 
 |  | 
 | 	ad_value = ab8500_gpadc_read_raw(gpadc, channel, avg_sample, | 
 | 			trig_edge, trig_timer, conv_type); | 
 | /* On failure retry a second time */ | 
 | 	if (ad_value < 0) | 
 | 		ad_value = ab8500_gpadc_read_raw(gpadc, channel, avg_sample, | 
 | 			trig_edge, trig_timer, conv_type); | 
 | if (ad_value < 0) { | 
 | 		dev_err(gpadc->dev, "GPADC raw value failed ch: %d\n", | 
 | 				channel); | 
 | 		return ad_value; | 
 | 	} | 
 |  | 
 | 	voltage = ab8500_gpadc_ad_to_voltage(gpadc, channel, ad_value); | 
 | 	if (voltage < 0) | 
 | 		dev_err(gpadc->dev, "GPADC to voltage conversion failed ch:" | 
 | 			" %d AD: 0x%x\n", channel, ad_value); | 
 |  | 
 | 	return voltage; | 
 | } | 
 | EXPORT_SYMBOL(ab8500_gpadc_sw_hw_convert); | 
 |  | 
 | /** | 
 |  * ab8500_gpadc_read_raw() - gpadc read | 
 |  * @channel:	analog channel to be read | 
 |  * @avg_sample:  number of ADC sample to average | 
 |  * @trig_edge:  selected trig edge | 
 |  * @trig_timer: selected ADC trigger delay timer | 
 |  * @conv_type: selected conversion type (HW or SW conversion) | 
 |  * | 
 |  * This function obtains the raw ADC value for an hardware conversion, | 
 |  * this then needs to be converted by calling ab8500_gpadc_ad_to_voltage() | 
 |  */ | 
 | int ab8500_gpadc_read_raw(struct ab8500_gpadc *gpadc, u8 channel, | 
 | 		u8 avg_sample, u8 trig_edge, u8 trig_timer, u8 conv_type) | 
 | { | 
 | 	int raw_data; | 
 | 	raw_data = ab8500_gpadc_double_read_raw(gpadc, channel, | 
 | 			avg_sample, trig_edge, trig_timer, conv_type, NULL); | 
 | 	return raw_data; | 
 | } | 
 |  | 
 | int ab8500_gpadc_double_read_raw(struct ab8500_gpadc *gpadc, u8 channel, | 
 | 		u8 avg_sample, u8 trig_edge, u8 trig_timer, u8 conv_type, | 
 | 		int *ibat) | 
 | { | 
 | 	int ret; | 
 | 	int looplimit = 0; | 
 | 	unsigned long completion_timeout; | 
 | 	u8 val, low_data, high_data, low_data2, high_data2; | 
 | 	u8 val_reg1 = 0; | 
 | 	unsigned int delay_min = 0; | 
 | 	unsigned int delay_max = 0; | 
 | 	u8 data_low_addr, data_high_addr; | 
 |  | 
 | 	if (!gpadc) | 
 | 		return -ENODEV; | 
 |  | 
 | 	/* check if convertion is supported */ | 
 | 	if ((gpadc->irq_sw < 0) && (conv_type == ADC_SW)) | 
 | 		return -ENOTSUPP; | 
 | 	if ((gpadc->irq_hw < 0) && (conv_type == ADC_HW)) | 
 | 		return -ENOTSUPP; | 
 |  | 
 | 	mutex_lock(&gpadc->ab8500_gpadc_lock); | 
 | 	/* Enable VTVout LDO this is required for GPADC */ | 
 | 	pm_runtime_get_sync(gpadc->dev); | 
 |  | 
 | 	/* Check if ADC is not busy, lock and proceed */ | 
 | 	do { | 
 | 		ret = abx500_get_register_interruptible(gpadc->dev, | 
 | 			AB8500_GPADC, AB8500_GPADC_STAT_REG, &val); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 | 		if (!(val & GPADC_BUSY)) | 
 | 			break; | 
 | 		msleep(10); | 
 | 	} while (++looplimit < 10); | 
 | 	if (looplimit >= 10 && (val & GPADC_BUSY)) { | 
 | 		dev_err(gpadc->dev, "gpadc_conversion: GPADC busy"); | 
 | 		ret = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* Enable GPADC */ | 
 | 	val_reg1 |= EN_GPADC; | 
 |  | 
 | 	/* Select the channel source and set average samples */ | 
 | 	switch (avg_sample) { | 
 | 	case SAMPLE_1: | 
 | 		val = channel | AVG_1; | 
 | 		break; | 
 | 	case SAMPLE_4: | 
 | 		val = channel | AVG_4; | 
 | 		break; | 
 | 	case SAMPLE_8: | 
 | 		val = channel | AVG_8; | 
 | 		break; | 
 | 	default: | 
 | 		val = channel | AVG_16; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	if (conv_type == ADC_HW) { | 
 | 		ret = abx500_set_register_interruptible(gpadc->dev, | 
 | 				AB8500_GPADC, AB8500_GPADC_CTRL3_REG, val); | 
 | 		val_reg1 |= EN_TRIG_EDGE; | 
 | 		if (trig_edge) | 
 | 			val_reg1 |= EN_FALLING; | 
 | 	} | 
 | 	else | 
 | 		ret = abx500_set_register_interruptible(gpadc->dev, | 
 | 				AB8500_GPADC, AB8500_GPADC_CTRL2_REG, val); | 
 | 	if (ret < 0) { | 
 | 		dev_err(gpadc->dev, | 
 | 			"gpadc_conversion: set avg samples failed\n"); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Enable ADC, buffering, select rising edge and enable ADC path | 
 | 	 * charging current sense if it needed, ABB 3.0 needs some special | 
 | 	 * treatment too. | 
 | 	 */ | 
 | 	switch (channel) { | 
 | 	case MAIN_CHARGER_C: | 
 | 	case USB_CHARGER_C: | 
 | 		val_reg1 |= EN_BUF | EN_ICHAR; | 
 | 		break; | 
 | 	case BTEMP_BALL: | 
 | 		if (!is_ab8500_2p0_or_earlier(gpadc->parent)) { | 
 | 			val_reg1 |= EN_BUF | BTEMP_PULL_UP; | 
 | 			/* | 
 | 			* Delay might be needed for ABB8500 cut 3.0, if not, | 
 | 			* remove when hardware will be availible | 
 | 			*/ | 
 | 			delay_min = 1000; /* Delay in micro seconds */ | 
 | 			delay_max = 10000; /* large range to optimise sleep mode */ | 
 | 			break; | 
 | 		} | 
 | 		/* Intentional fallthrough */ | 
 | 	default: | 
 | 		val_reg1 |= EN_BUF; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* Write configuration to register */ | 
 | 	ret = abx500_set_register_interruptible(gpadc->dev, | 
 | 		AB8500_GPADC, AB8500_GPADC_CTRL1_REG, val_reg1); | 
 | 	if (ret < 0) { | 
 | 		dev_err(gpadc->dev, | 
 | 			"gpadc_conversion: set Control register failed\n"); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (delay_min != 0) | 
 | 		usleep_range(delay_min, delay_max); | 
 |  | 
 | 	if (conv_type == ADC_HW) { | 
 | 		/* Set trigger delay timer */ | 
 | 		ret = abx500_set_register_interruptible(gpadc->dev, | 
 | 			AB8500_GPADC, AB8500_GPADC_AUTO_TIMER_REG, trig_timer); | 
 | 		if (ret < 0) { | 
 | 			dev_err(gpadc->dev, | 
 | 				"gpadc_conversion: trig timer failed\n"); | 
 | 			goto out; | 
 | 		} | 
 | 		completion_timeout = 2 * HZ; | 
 | 		data_low_addr = AB8500_GPADC_AUTODATAL_REG; | 
 | 		data_high_addr = AB8500_GPADC_AUTODATAH_REG; | 
 | 	} else { | 
 | 		/* Start SW conversion */ | 
 | 		ret = abx500_mask_and_set_register_interruptible(gpadc->dev, | 
 | 			AB8500_GPADC, AB8500_GPADC_CTRL1_REG, | 
 | 			ADC_SW_CONV, ADC_SW_CONV); | 
 | 		if (ret < 0) { | 
 | 			dev_err(gpadc->dev, | 
 | 				"gpadc_conversion: start s/w conv failed\n"); | 
 | 			goto out; | 
 | 		} | 
 | 		completion_timeout = msecs_to_jiffies(CONVERSION_TIME); | 
 | 		data_low_addr = AB8500_GPADC_MANDATAL_REG; | 
 | 		data_high_addr = AB8500_GPADC_MANDATAH_REG; | 
 | 	} | 
 |  | 
 | 	/* wait for completion of conversion */ | 
 | 	if (!wait_for_completion_timeout(&gpadc->ab8500_gpadc_complete, | 
 | 			completion_timeout)) { | 
 | 		dev_err(gpadc->dev, | 
 | 			"timeout didn't receive GPADC conv interrupt\n"); | 
 | 		ret = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* Read the converted RAW data */ | 
 | 	ret = abx500_get_register_interruptible(gpadc->dev, | 
 | 			AB8500_GPADC, data_low_addr, &low_data); | 
 | 	if (ret < 0) { | 
 | 		dev_err(gpadc->dev, "gpadc_conversion: read low data failed\n"); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	ret = abx500_get_register_interruptible(gpadc->dev, | 
 | 		AB8500_GPADC, data_high_addr, &high_data); | 
 | 	if (ret < 0) { | 
 | 		dev_err(gpadc->dev, "gpadc_conversion: read high data failed\n"); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* Check if double convertion is required */ | 
 | 	if ((channel == BAT_CTRL_AND_IBAT) || | 
 | 			(channel == VBAT_MEAS_AND_IBAT) || | 
 | 			(channel == VBAT_TRUE_MEAS_AND_IBAT) || | 
 | 			(channel == BAT_TEMP_AND_IBAT)) { | 
 |  | 
 | 		if (conv_type == ADC_HW) { | 
 | 			/* not supported */ | 
 | 			ret = -ENOTSUPP; | 
 | 			dev_err(gpadc->dev, | 
 | 				"gpadc_conversion: only SW double conversion supported\n"); | 
 | 			goto out; | 
 | 		} else { | 
 | 			/* Read the converted RAW data 2 */ | 
 | 			ret = abx500_get_register_interruptible(gpadc->dev, | 
 | 				AB8500_GPADC, AB8540_GPADC_MANDATA2L_REG, | 
 | 				&low_data2); | 
 | 			if (ret < 0) { | 
 | 				dev_err(gpadc->dev, | 
 | 					"gpadc_conversion: read sw low data 2 failed\n"); | 
 | 				goto out; | 
 | 			} | 
 |  | 
 | 			ret = abx500_get_register_interruptible(gpadc->dev, | 
 | 				AB8500_GPADC, AB8540_GPADC_MANDATA2H_REG, | 
 | 				&high_data2); | 
 | 			if (ret < 0) { | 
 | 				dev_err(gpadc->dev, | 
 | 					"gpadc_conversion: read sw high data 2 failed\n"); | 
 | 				goto out; | 
 | 			} | 
 | 			if (ibat != NULL) { | 
 | 				*ibat = (high_data2 << 8) | low_data2; | 
 | 			} else { | 
 | 				dev_warn(gpadc->dev, | 
 | 					"gpadc_conversion: ibat not stored\n"); | 
 | 			} | 
 |  | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Disable GPADC */ | 
 | 	ret = abx500_set_register_interruptible(gpadc->dev, AB8500_GPADC, | 
 | 		AB8500_GPADC_CTRL1_REG, DIS_GPADC); | 
 | 	if (ret < 0) { | 
 | 		dev_err(gpadc->dev, "gpadc_conversion: disable gpadc failed\n"); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* Disable VTVout LDO this is required for GPADC */ | 
 | 	pm_runtime_mark_last_busy(gpadc->dev); | 
 | 	pm_runtime_put_autosuspend(gpadc->dev); | 
 |  | 
 | 	mutex_unlock(&gpadc->ab8500_gpadc_lock); | 
 |  | 
 | 	return (high_data << 8) | low_data; | 
 |  | 
 | out: | 
 | 	/* | 
 | 	 * It has shown to be needed to turn off the GPADC if an error occurs, | 
 | 	 * otherwise we might have problem when waiting for the busy bit in the | 
 | 	 * GPADC status register to go low. In V1.1 there wait_for_completion | 
 | 	 * seems to timeout when waiting for an interrupt.. Not seen in V2.0 | 
 | 	 */ | 
 | 	(void) abx500_set_register_interruptible(gpadc->dev, AB8500_GPADC, | 
 | 		AB8500_GPADC_CTRL1_REG, DIS_GPADC); | 
 | 	pm_runtime_put(gpadc->dev); | 
 | 	mutex_unlock(&gpadc->ab8500_gpadc_lock); | 
 | 	dev_err(gpadc->dev, | 
 | 		"gpadc_conversion: Failed to AD convert channel %d\n", channel); | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(ab8500_gpadc_read_raw); | 
 |  | 
 | /** | 
 |  * ab8500_bm_gpadcconvend_handler() - isr for gpadc conversion completion | 
 |  * @irq:	irq number | 
 |  * @data:	pointer to the data passed during request irq | 
 |  * | 
 |  * This is a interrupt service routine for gpadc conversion completion. | 
 |  * Notifies the gpadc completion is completed and the converted raw value | 
 |  * can be read from the registers. | 
 |  * Returns IRQ status(IRQ_HANDLED) | 
 |  */ | 
 | static irqreturn_t ab8500_bm_gpadcconvend_handler(int irq, void *_gpadc) | 
 | { | 
 | 	struct ab8500_gpadc *gpadc = _gpadc; | 
 |  | 
 | 	complete(&gpadc->ab8500_gpadc_complete); | 
 |  | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | static int otp_cal_regs[] = { | 
 | 	AB8500_GPADC_CAL_1, | 
 | 	AB8500_GPADC_CAL_2, | 
 | 	AB8500_GPADC_CAL_3, | 
 | 	AB8500_GPADC_CAL_4, | 
 | 	AB8500_GPADC_CAL_5, | 
 | 	AB8500_GPADC_CAL_6, | 
 | 	AB8500_GPADC_CAL_7, | 
 | }; | 
 |  | 
 | static int otp4_cal_regs[] = { | 
 | 	AB8540_GPADC_OTP4_REG_7, | 
 | 	AB8540_GPADC_OTP4_REG_6, | 
 | 	AB8540_GPADC_OTP4_REG_5, | 
 | }; | 
 |  | 
 | static void ab8500_gpadc_read_calibration_data(struct ab8500_gpadc *gpadc) | 
 | { | 
 | 	int i; | 
 | 	int ret[ARRAY_SIZE(otp_cal_regs)]; | 
 | 	u8 gpadc_cal[ARRAY_SIZE(otp_cal_regs)]; | 
 | 	int ret_otp4[ARRAY_SIZE(otp4_cal_regs)]; | 
 | 	u8 gpadc_otp4[ARRAY_SIZE(otp4_cal_regs)]; | 
 | 	int vmain_high, vmain_low; | 
 | 	int btemp_high, btemp_low; | 
 | 	int vbat_high, vbat_low; | 
 | 	int ibat_high, ibat_low; | 
 | 	s64 V_gain, V_offset, V2A_gain, V2A_offset; | 
 | 	struct ab8500 *ab8500; | 
 |  | 
 | 	ab8500 = gpadc->parent; | 
 |  | 
 | 	/* First we read all OTP registers and store the error code */ | 
 | 	for (i = 0; i < ARRAY_SIZE(otp_cal_regs); i++) { | 
 | 		ret[i] = abx500_get_register_interruptible(gpadc->dev, | 
 | 			AB8500_OTP_EMUL, otp_cal_regs[i],  &gpadc_cal[i]); | 
 | 		if (ret[i] < 0) | 
 | 			dev_err(gpadc->dev, "%s: read otp reg 0x%02x failed\n", | 
 | 				__func__, otp_cal_regs[i]); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The ADC calibration data is stored in OTP registers. | 
 | 	 * The layout of the calibration data is outlined below and a more | 
 | 	 * detailed description can be found in UM0836 | 
 | 	 * | 
 | 	 * vm_h/l = vmain_high/low | 
 | 	 * bt_h/l = btemp_high/low | 
 | 	 * vb_h/l = vbat_high/low | 
 | 	 * | 
 | 	 * Data bits 8500/9540: | 
 | 	 * | 7	   | 6	   | 5	   | 4	   | 3	   | 2	   | 1	   | 0 | 
 | 	 * |.......|.......|.......|.......|.......|.......|.......|....... | 
 | 	 * |						   | vm_h9 | vm_h8 | 
 | 	 * |.......|.......|.......|.......|.......|.......|.......|....... | 
 | 	 * |		   | vm_h7 | vm_h6 | vm_h5 | vm_h4 | vm_h3 | vm_h2 | 
 | 	 * |.......|.......|.......|.......|.......|.......|.......|....... | 
 | 	 * | vm_h1 | vm_h0 | vm_l4 | vm_l3 | vm_l2 | vm_l1 | vm_l0 | bt_h9 | 
 | 	 * |.......|.......|.......|.......|.......|.......|.......|....... | 
 | 	 * | bt_h8 | bt_h7 | bt_h6 | bt_h5 | bt_h4 | bt_h3 | bt_h2 | bt_h1 | 
 | 	 * |.......|.......|.......|.......|.......|.......|.......|....... | 
 | 	 * | bt_h0 | bt_l4 | bt_l3 | bt_l2 | bt_l1 | bt_l0 | vb_h9 | vb_h8 | 
 | 	 * |.......|.......|.......|.......|.......|.......|.......|....... | 
 | 	 * | vb_h7 | vb_h6 | vb_h5 | vb_h4 | vb_h3 | vb_h2 | vb_h1 | vb_h0 | 
 | 	 * |.......|.......|.......|.......|.......|.......|.......|....... | 
 | 	 * | vb_l5 | vb_l4 | vb_l3 | vb_l2 | vb_l1 | vb_l0 | | 
 | 	 * |.......|.......|.......|.......|.......|.......|.......|....... | 
 | 	 * | 
 | 	 * Data bits 8540: | 
 | 	 * OTP2 | 
 | 	 * | 7	   | 6	   | 5	   | 4	   | 3	   | 2	   | 1	   | 0 | 
 | 	 * |.......|.......|.......|.......|.......|.......|.......|....... | 
 | 	 * | | 
 | 	 * |.......|.......|.......|.......|.......|.......|.......|....... | 
 | 	 * | vm_h9 | vm_h8 | vm_h7 | vm_h6 | vm_h5 | vm_h4 | vm_h3 | vm_h2 | 
 | 	 * |.......|.......|.......|.......|.......|.......|.......|....... | 
 | 	 * | vm_h1 | vm_h0 | vm_l4 | vm_l3 | vm_l2 | vm_l1 | vm_l0 | bt_h9 | 
 | 	 * |.......|.......|.......|.......|.......|.......|.......|....... | 
 | 	 * | bt_h8 | bt_h7 | bt_h6 | bt_h5 | bt_h4 | bt_h3 | bt_h2 | bt_h1 | 
 | 	 * |.......|.......|.......|.......|.......|.......|.......|....... | 
 | 	 * | bt_h0 | bt_l4 | bt_l3 | bt_l2 | bt_l1 | bt_l0 | vb_h9 | vb_h8 | 
 | 	 * |.......|.......|.......|.......|.......|.......|.......|....... | 
 | 	 * | vb_h7 | vb_h6 | vb_h5 | vb_h4 | vb_h3 | vb_h2 | vb_h1 | vb_h0 | 
 | 	 * |.......|.......|.......|.......|.......|.......|.......|....... | 
 | 	 * | vb_l5 | vb_l4 | vb_l3 | vb_l2 | vb_l1 | vb_l0 | | 
 | 	 * |.......|.......|.......|.......|.......|.......|.......|....... | 
 | 	 * | 
 | 	 * Data bits 8540: | 
 | 	 * OTP4 | 
 | 	 * | 7	   | 6	   | 5	   | 4	   | 3	   | 2	   | 1	   | 0 | 
 | 	 * |.......|.......|.......|.......|.......|.......|.......|....... | 
 | 	 * |					   | ib_h9 | ib_h8 | ib_h7 | 
 | 	 * |.......|.......|.......|.......|.......|.......|.......|....... | 
 | 	 * | ib_h6 | ib_h5 | ib_h4 | ib_h3 | ib_h2 | ib_h1 | ib_h0 | ib_l5 | 
 | 	 * |.......|.......|.......|.......|.......|.......|.......|....... | 
 | 	 * | ib_l4 | ib_l3 | ib_l2 | ib_l1 | ib_l0 | | 
 | 	 * | 
 | 	 * | 
 | 	 * Ideal output ADC codes corresponding to injected input voltages | 
 | 	 * during manufacturing is: | 
 | 	 * | 
 | 	 * vmain_high: Vin = 19500mV / ADC ideal code = 997 | 
 | 	 * vmain_low:  Vin = 315mV   / ADC ideal code = 16 | 
 | 	 * btemp_high: Vin = 1300mV  / ADC ideal code = 985 | 
 | 	 * btemp_low:  Vin = 21mV    / ADC ideal code = 16 | 
 | 	 * vbat_high:  Vin = 4700mV  / ADC ideal code = 982 | 
 | 	 * vbat_low:   Vin = 2380mV  / ADC ideal code = 33 | 
 | 	 */ | 
 |  | 
 | 	if (is_ab8540(ab8500)) { | 
 | 		/* Calculate gain and offset for VMAIN if all reads succeeded*/ | 
 | 		if (!(ret[1] < 0 || ret[2] < 0)) { | 
 | 			vmain_high = (((gpadc_cal[1] & 0xFF) << 2) | | 
 | 				((gpadc_cal[2] & 0xC0) >> 6)); | 
 | 			vmain_low = ((gpadc_cal[2] & 0x3E) >> 1); | 
 |  | 
 | 			gpadc->cal_data[ADC_INPUT_VMAIN].otp_calib_hi = | 
 | 				(u16)vmain_high; | 
 | 			gpadc->cal_data[ADC_INPUT_VMAIN].otp_calib_lo = | 
 | 				(u16)vmain_low; | 
 |  | 
 | 			gpadc->cal_data[ADC_INPUT_VMAIN].gain = CALIB_SCALE * | 
 | 				(19500 - 315) / (vmain_high - vmain_low); | 
 | 			gpadc->cal_data[ADC_INPUT_VMAIN].offset = CALIB_SCALE * | 
 | 				19500 - (CALIB_SCALE * (19500 - 315) / | 
 | 				(vmain_high - vmain_low)) * vmain_high; | 
 | 		} else { | 
 | 		gpadc->cal_data[ADC_INPUT_VMAIN].gain = 0; | 
 | 		} | 
 |  | 
 | 		/* Read IBAT calibration Data */ | 
 | 		for (i = 0; i < ARRAY_SIZE(otp4_cal_regs); i++) { | 
 | 			ret_otp4[i] = abx500_get_register_interruptible( | 
 | 					gpadc->dev, AB8500_OTP_EMUL, | 
 | 					otp4_cal_regs[i],  &gpadc_otp4[i]); | 
 | 			if (ret_otp4[i] < 0) | 
 | 				dev_err(gpadc->dev, | 
 | 					"%s: read otp4 reg 0x%02x failed\n", | 
 | 					__func__, otp4_cal_regs[i]); | 
 | 		} | 
 |  | 
 | 		/* Calculate gain and offset for IBAT if all reads succeeded */ | 
 | 		if (!(ret_otp4[0] < 0 || ret_otp4[1] < 0 || ret_otp4[2] < 0)) { | 
 | 			ibat_high = (((gpadc_otp4[0] & 0x07) << 7) | | 
 | 				((gpadc_otp4[1] & 0xFE) >> 1)); | 
 | 			ibat_low = (((gpadc_otp4[1] & 0x01) << 5) | | 
 | 				((gpadc_otp4[2] & 0xF8) >> 3)); | 
 |  | 
 | 			gpadc->cal_data[ADC_INPUT_IBAT].otp_calib_hi = | 
 | 				(u16)ibat_high; | 
 | 			gpadc->cal_data[ADC_INPUT_IBAT].otp_calib_lo = | 
 | 				(u16)ibat_low; | 
 |  | 
 | 			V_gain = ((IBAT_VDROP_H - IBAT_VDROP_L) | 
 | 				<< CALIB_SHIFT_IBAT) / (ibat_high - ibat_low); | 
 |  | 
 | 			V_offset = (IBAT_VDROP_H << CALIB_SHIFT_IBAT) - | 
 | 				(((IBAT_VDROP_H - IBAT_VDROP_L) << | 
 | 				CALIB_SHIFT_IBAT) / (ibat_high - ibat_low)) | 
 | 				* ibat_high; | 
 | 			/* | 
 | 			 * Result obtained is in mV (at a scale factor), | 
 | 			 * we need to calculate gain and offset to get mA | 
 | 			 */ | 
 | 			V2A_gain = (ADC_CH_IBAT_MAX - ADC_CH_IBAT_MIN)/ | 
 | 				(ADC_CH_IBAT_MAX_V - ADC_CH_IBAT_MIN_V); | 
 | 			V2A_offset = ((ADC_CH_IBAT_MAX_V * ADC_CH_IBAT_MIN - | 
 | 				ADC_CH_IBAT_MAX * ADC_CH_IBAT_MIN_V) | 
 | 				<< CALIB_SHIFT_IBAT) | 
 | 				/ (ADC_CH_IBAT_MAX_V - ADC_CH_IBAT_MIN_V); | 
 |  | 
 | 			gpadc->cal_data[ADC_INPUT_IBAT].gain = V_gain * V2A_gain; | 
 | 			gpadc->cal_data[ADC_INPUT_IBAT].offset = V_offset * | 
 | 				V2A_gain + V2A_offset; | 
 | 		} else { | 
 | 			gpadc->cal_data[ADC_INPUT_IBAT].gain = 0; | 
 | 		} | 
 |  | 
 | 		dev_dbg(gpadc->dev, "IBAT gain %llu offset %llu\n", | 
 | 			gpadc->cal_data[ADC_INPUT_IBAT].gain, | 
 | 			gpadc->cal_data[ADC_INPUT_IBAT].offset); | 
 | 	} else { | 
 | 		/* Calculate gain and offset for VMAIN if all reads succeeded */ | 
 | 		if (!(ret[0] < 0 || ret[1] < 0 || ret[2] < 0)) { | 
 | 			vmain_high = (((gpadc_cal[0] & 0x03) << 8) | | 
 | 				((gpadc_cal[1] & 0x3F) << 2) | | 
 | 				((gpadc_cal[2] & 0xC0) >> 6)); | 
 | 			vmain_low = ((gpadc_cal[2] & 0x3E) >> 1); | 
 |  | 
 | 			gpadc->cal_data[ADC_INPUT_VMAIN].otp_calib_hi = | 
 | 				(u16)vmain_high; | 
 | 			gpadc->cal_data[ADC_INPUT_VMAIN].otp_calib_lo = | 
 | 				(u16)vmain_low; | 
 |  | 
 | 			gpadc->cal_data[ADC_INPUT_VMAIN].gain = CALIB_SCALE * | 
 | 				(19500 - 315) / (vmain_high - vmain_low); | 
 |  | 
 | 			gpadc->cal_data[ADC_INPUT_VMAIN].offset = CALIB_SCALE * | 
 | 				19500 - (CALIB_SCALE * (19500 - 315) / | 
 | 				(vmain_high - vmain_low)) * vmain_high; | 
 | 		} else { | 
 | 			gpadc->cal_data[ADC_INPUT_VMAIN].gain = 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Calculate gain and offset for BTEMP if all reads succeeded */ | 
 | 	if (!(ret[2] < 0 || ret[3] < 0 || ret[4] < 0)) { | 
 | 		btemp_high = (((gpadc_cal[2] & 0x01) << 9) | | 
 | 			(gpadc_cal[3] << 1) | ((gpadc_cal[4] & 0x80) >> 7)); | 
 | 		btemp_low = ((gpadc_cal[4] & 0x7C) >> 2); | 
 |  | 
 | 		gpadc->cal_data[ADC_INPUT_BTEMP].otp_calib_hi = (u16)btemp_high; | 
 | 		gpadc->cal_data[ADC_INPUT_BTEMP].otp_calib_lo = (u16)btemp_low; | 
 |  | 
 | 		gpadc->cal_data[ADC_INPUT_BTEMP].gain = | 
 | 			CALIB_SCALE * (1300 - 21) / (btemp_high - btemp_low); | 
 | 		gpadc->cal_data[ADC_INPUT_BTEMP].offset = CALIB_SCALE * 1300 - | 
 | 			(CALIB_SCALE * (1300 - 21) / (btemp_high - btemp_low)) | 
 | 			* btemp_high; | 
 | 	} else { | 
 | 		gpadc->cal_data[ADC_INPUT_BTEMP].gain = 0; | 
 | 	} | 
 |  | 
 | 	/* Calculate gain and offset for VBAT if all reads succeeded */ | 
 | 	if (!(ret[4] < 0 || ret[5] < 0 || ret[6] < 0)) { | 
 | 		vbat_high = (((gpadc_cal[4] & 0x03) << 8) | gpadc_cal[5]); | 
 | 		vbat_low = ((gpadc_cal[6] & 0xFC) >> 2); | 
 |  | 
 | 		gpadc->cal_data[ADC_INPUT_VBAT].otp_calib_hi = (u16)vbat_high; | 
 | 		gpadc->cal_data[ADC_INPUT_VBAT].otp_calib_lo = (u16)vbat_low; | 
 |  | 
 | 		gpadc->cal_data[ADC_INPUT_VBAT].gain = CALIB_SCALE * | 
 | 			(4700 - 2380) /	(vbat_high - vbat_low); | 
 | 		gpadc->cal_data[ADC_INPUT_VBAT].offset = CALIB_SCALE * 4700 - | 
 | 			(CALIB_SCALE * (4700 - 2380) / | 
 | 			(vbat_high - vbat_low)) * vbat_high; | 
 | 	} else { | 
 | 		gpadc->cal_data[ADC_INPUT_VBAT].gain = 0; | 
 | 	} | 
 |  | 
 | 	dev_dbg(gpadc->dev, "VMAIN gain %llu offset %llu\n", | 
 | 		gpadc->cal_data[ADC_INPUT_VMAIN].gain, | 
 | 		gpadc->cal_data[ADC_INPUT_VMAIN].offset); | 
 |  | 
 | 	dev_dbg(gpadc->dev, "BTEMP gain %llu offset %llu\n", | 
 | 		gpadc->cal_data[ADC_INPUT_BTEMP].gain, | 
 | 		gpadc->cal_data[ADC_INPUT_BTEMP].offset); | 
 |  | 
 | 	dev_dbg(gpadc->dev, "VBAT gain %llu offset %llu\n", | 
 | 		gpadc->cal_data[ADC_INPUT_VBAT].gain, | 
 | 		gpadc->cal_data[ADC_INPUT_VBAT].offset); | 
 | } | 
 |  | 
 | #ifdef CONFIG_PM_RUNTIME | 
 | static int ab8500_gpadc_runtime_suspend(struct device *dev) | 
 | { | 
 | 	struct ab8500_gpadc *gpadc = dev_get_drvdata(dev); | 
 |  | 
 | 	regulator_disable(gpadc->regu); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int ab8500_gpadc_runtime_resume(struct device *dev) | 
 | { | 
 | 	struct ab8500_gpadc *gpadc = dev_get_drvdata(dev); | 
 | 	int ret; | 
 |  | 
 | 	ret = regulator_enable(gpadc->regu); | 
 | 	if (ret) | 
 | 		dev_err(dev, "Failed to enable vtvout LDO: %d\n", ret); | 
 | 	return ret; | 
 | } | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_PM_SLEEP | 
 | static int ab8500_gpadc_suspend(struct device *dev) | 
 | { | 
 | 	struct ab8500_gpadc *gpadc = dev_get_drvdata(dev); | 
 |  | 
 | 	mutex_lock(&gpadc->ab8500_gpadc_lock); | 
 |  | 
 | 	pm_runtime_get_sync(dev); | 
 |  | 
 | 	regulator_disable(gpadc->regu); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int ab8500_gpadc_resume(struct device *dev) | 
 | { | 
 | 	struct ab8500_gpadc *gpadc = dev_get_drvdata(dev); | 
 | 	int ret; | 
 |  | 
 | 	ret = regulator_enable(gpadc->regu); | 
 | 	if (ret) | 
 | 		dev_err(dev, "Failed to enable vtvout LDO: %d\n", ret); | 
 |  | 
 | 	pm_runtime_mark_last_busy(gpadc->dev); | 
 | 	pm_runtime_put_autosuspend(gpadc->dev); | 
 |  | 
 | 	mutex_unlock(&gpadc->ab8500_gpadc_lock); | 
 | 	return ret; | 
 | } | 
 | #endif | 
 |  | 
 | static int ab8500_gpadc_probe(struct platform_device *pdev) | 
 | { | 
 | 	int ret = 0; | 
 | 	struct ab8500_gpadc *gpadc; | 
 |  | 
 | 	gpadc = devm_kzalloc(&pdev->dev, sizeof(struct ab8500_gpadc), GFP_KERNEL); | 
 | 	if (!gpadc) { | 
 | 		dev_err(&pdev->dev, "Error: No memory\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	gpadc->irq_sw = platform_get_irq_byname(pdev, "SW_CONV_END"); | 
 | 	if (gpadc->irq_sw < 0) | 
 | 		dev_err(gpadc->dev, "failed to get platform sw_conv_end irq\n"); | 
 |  | 
 | 	gpadc->irq_hw = platform_get_irq_byname(pdev, "HW_CONV_END"); | 
 | 	if (gpadc->irq_hw < 0) | 
 | 		dev_err(gpadc->dev, "failed to get platform hw_conv_end irq\n"); | 
 |  | 
 | 	gpadc->dev = &pdev->dev; | 
 | 	gpadc->parent = dev_get_drvdata(pdev->dev.parent); | 
 | 	mutex_init(&gpadc->ab8500_gpadc_lock); | 
 |  | 
 | 	/* Initialize completion used to notify completion of conversion */ | 
 | 	init_completion(&gpadc->ab8500_gpadc_complete); | 
 |  | 
 | 	/* Register interrupts */ | 
 | 	if (gpadc->irq_sw >= 0) { | 
 | 		ret = request_threaded_irq(gpadc->irq_sw, NULL, | 
 | 			ab8500_bm_gpadcconvend_handler, | 
 | 			IRQF_NO_SUSPEND | IRQF_SHARED, "ab8500-gpadc-sw", | 
 | 			gpadc); | 
 | 		if (ret < 0) { | 
 | 			dev_err(gpadc->dev, | 
 | 				"Failed to register interrupt irq: %d\n", | 
 | 				gpadc->irq_sw); | 
 | 			goto fail; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (gpadc->irq_hw >= 0) { | 
 | 		ret = request_threaded_irq(gpadc->irq_hw, NULL, | 
 | 			ab8500_bm_gpadcconvend_handler, | 
 | 			IRQF_NO_SUSPEND | IRQF_SHARED, "ab8500-gpadc-hw", | 
 | 			gpadc); | 
 | 		if (ret < 0) { | 
 | 			dev_err(gpadc->dev, | 
 | 				"Failed to register interrupt irq: %d\n", | 
 | 				gpadc->irq_hw); | 
 | 			goto fail_irq; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* VTVout LDO used to power up ab8500-GPADC */ | 
 | 	gpadc->regu = devm_regulator_get(&pdev->dev, "vddadc"); | 
 | 	if (IS_ERR(gpadc->regu)) { | 
 | 		ret = PTR_ERR(gpadc->regu); | 
 | 		dev_err(gpadc->dev, "failed to get vtvout LDO\n"); | 
 | 		goto fail_irq; | 
 | 	} | 
 |  | 
 | 	platform_set_drvdata(pdev, gpadc); | 
 |  | 
 | 	ret = regulator_enable(gpadc->regu); | 
 | 	if (ret) { | 
 | 		dev_err(gpadc->dev, "Failed to enable vtvout LDO: %d\n", ret); | 
 | 		goto fail_enable; | 
 | 	} | 
 |  | 
 | 	pm_runtime_set_autosuspend_delay(gpadc->dev, GPADC_AUDOSUSPEND_DELAY); | 
 | 	pm_runtime_use_autosuspend(gpadc->dev); | 
 | 	pm_runtime_set_active(gpadc->dev); | 
 | 	pm_runtime_enable(gpadc->dev); | 
 |  | 
 | 	ab8500_gpadc_read_calibration_data(gpadc); | 
 | 	list_add_tail(&gpadc->node, &ab8500_gpadc_list); | 
 | 	dev_dbg(gpadc->dev, "probe success\n"); | 
 |  | 
 | 	return 0; | 
 |  | 
 | fail_enable: | 
 | fail_irq: | 
 | 	free_irq(gpadc->irq_sw, gpadc); | 
 | 	free_irq(gpadc->irq_hw, gpadc); | 
 | fail: | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int ab8500_gpadc_remove(struct platform_device *pdev) | 
 | { | 
 | 	struct ab8500_gpadc *gpadc = platform_get_drvdata(pdev); | 
 |  | 
 | 	/* remove this gpadc entry from the list */ | 
 | 	list_del(&gpadc->node); | 
 | 	/* remove interrupt  - completion of Sw ADC conversion */ | 
 | 	if (gpadc->irq_sw >= 0) | 
 | 		free_irq(gpadc->irq_sw, gpadc); | 
 | 	if (gpadc->irq_hw >= 0) | 
 | 		free_irq(gpadc->irq_hw, gpadc); | 
 |  | 
 | 	pm_runtime_get_sync(gpadc->dev); | 
 | 	pm_runtime_disable(gpadc->dev); | 
 |  | 
 | 	regulator_disable(gpadc->regu); | 
 |  | 
 | 	pm_runtime_set_suspended(gpadc->dev); | 
 |  | 
 | 	pm_runtime_put_noidle(gpadc->dev); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct dev_pm_ops ab8500_gpadc_pm_ops = { | 
 | 	SET_RUNTIME_PM_OPS(ab8500_gpadc_runtime_suspend, | 
 | 			   ab8500_gpadc_runtime_resume, | 
 | 			   NULL) | 
 | 	SET_SYSTEM_SLEEP_PM_OPS(ab8500_gpadc_suspend, | 
 | 				ab8500_gpadc_resume) | 
 |  | 
 | }; | 
 |  | 
 | static struct platform_driver ab8500_gpadc_driver = { | 
 | 	.probe = ab8500_gpadc_probe, | 
 | 	.remove = ab8500_gpadc_remove, | 
 | 	.driver = { | 
 | 		.name = "ab8500-gpadc", | 
 | 		.owner = THIS_MODULE, | 
 | 		.pm = &ab8500_gpadc_pm_ops, | 
 | 	}, | 
 | }; | 
 |  | 
 | static int __init ab8500_gpadc_init(void) | 
 | { | 
 | 	return platform_driver_register(&ab8500_gpadc_driver); | 
 | } | 
 |  | 
 | static void __exit ab8500_gpadc_exit(void) | 
 | { | 
 | 	platform_driver_unregister(&ab8500_gpadc_driver); | 
 | } | 
 |  | 
 | /** | 
 |  * ab8540_gpadc_get_otp() - returns OTP values | 
 |  * | 
 |  */ | 
 | void ab8540_gpadc_get_otp(struct ab8500_gpadc *gpadc, | 
 | 			u16 *vmain_l, u16 *vmain_h, u16 *btemp_l, u16 *btemp_h, | 
 | 			u16 *vbat_l, u16 *vbat_h, u16 *ibat_l, u16 *ibat_h) | 
 | { | 
 | 	*vmain_l = gpadc->cal_data[ADC_INPUT_VMAIN].otp_calib_lo; | 
 | 	*vmain_h = gpadc->cal_data[ADC_INPUT_VMAIN].otp_calib_hi; | 
 | 	*btemp_l = gpadc->cal_data[ADC_INPUT_BTEMP].otp_calib_lo; | 
 | 	*btemp_h = gpadc->cal_data[ADC_INPUT_BTEMP].otp_calib_hi; | 
 | 	*vbat_l = gpadc->cal_data[ADC_INPUT_VBAT].otp_calib_lo; | 
 | 	*vbat_h = gpadc->cal_data[ADC_INPUT_VBAT].otp_calib_hi; | 
 | 	*ibat_l = gpadc->cal_data[ADC_INPUT_IBAT].otp_calib_lo; | 
 | 	*ibat_h = gpadc->cal_data[ADC_INPUT_IBAT].otp_calib_hi; | 
 | 	return ; | 
 | } | 
 |  | 
 | subsys_initcall_sync(ab8500_gpadc_init); | 
 | module_exit(ab8500_gpadc_exit); | 
 |  | 
 | MODULE_LICENSE("GPL v2"); | 
 | MODULE_AUTHOR("Arun R Murthy, Daniel Willerud, Johan Palsson," | 
 | 		"M'boumba Cedric Madianga"); | 
 | MODULE_ALIAS("platform:ab8500_gpadc"); | 
 | MODULE_DESCRIPTION("AB8500 GPADC driver"); |