blob: 734fd87cd99093e0d30899006cb12cacd10a027c [file] [log] [blame]
/* bnx2x_sp.c: Broadcom Everest network driver.
*
* Copyright (c) 2011-2012 Broadcom Corporation
*
* Unless you and Broadcom execute a separate written software license
* agreement governing use of this software, this software is licensed to you
* under the terms of the GNU General Public License version 2, available
* at http://www.gnu.org/licenses/old-licenses/gpl-2.0.html (the "GPL").
*
* Notwithstanding the above, under no circumstances may you combine this
* software in any way with any other Broadcom software provided under a
* license other than the GPL, without Broadcom's express prior written
* consent.
*
* Maintained by: Eilon Greenstein <eilong@broadcom.com>
* Written by: Vladislav Zolotarov
*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/crc32.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/crc32c.h>
#include "bnx2x.h"
#include "bnx2x_cmn.h"
#include "bnx2x_sp.h"
#define BNX2X_MAX_EMUL_MULTI 16
#define MAC_LEADING_ZERO_CNT (ALIGN(ETH_ALEN, sizeof(u32)) - ETH_ALEN)
/**** Exe Queue interfaces ****/
/**
* bnx2x_exe_queue_init - init the Exe Queue object
*
* @o: poiter to the object
* @exe_len: length
* @owner: poiter to the owner
* @validate: validate function pointer
* @optimize: optimize function pointer
* @exec: execute function pointer
* @get: get function pointer
*/
static inline void bnx2x_exe_queue_init(struct bnx2x *bp,
struct bnx2x_exe_queue_obj *o,
int exe_len,
union bnx2x_qable_obj *owner,
exe_q_validate validate,
exe_q_remove remove,
exe_q_optimize optimize,
exe_q_execute exec,
exe_q_get get)
{
memset(o, 0, sizeof(*o));
INIT_LIST_HEAD(&o->exe_queue);
INIT_LIST_HEAD(&o->pending_comp);
spin_lock_init(&o->lock);
o->exe_chunk_len = exe_len;
o->owner = owner;
/* Owner specific callbacks */
o->validate = validate;
o->remove = remove;
o->optimize = optimize;
o->execute = exec;
o->get = get;
DP(BNX2X_MSG_SP, "Setup the execution queue with the chunk length of %d\n",
exe_len);
}
static inline void bnx2x_exe_queue_free_elem(struct bnx2x *bp,
struct bnx2x_exeq_elem *elem)
{
DP(BNX2X_MSG_SP, "Deleting an exe_queue element\n");
kfree(elem);
}
static inline int bnx2x_exe_queue_length(struct bnx2x_exe_queue_obj *o)
{
struct bnx2x_exeq_elem *elem;
int cnt = 0;
spin_lock_bh(&o->lock);
list_for_each_entry(elem, &o->exe_queue, link)
cnt++;
spin_unlock_bh(&o->lock);
return cnt;
}
/**
* bnx2x_exe_queue_add - add a new element to the execution queue
*
* @bp: driver handle
* @o: queue
* @cmd: new command to add
* @restore: true - do not optimize the command
*
* If the element is optimized or is illegal, frees it.
*/
static inline int bnx2x_exe_queue_add(struct bnx2x *bp,
struct bnx2x_exe_queue_obj *o,
struct bnx2x_exeq_elem *elem,
bool restore)
{
int rc;
spin_lock_bh(&o->lock);
if (!restore) {
/* Try to cancel this element queue */
rc = o->optimize(bp, o->owner, elem);
if (rc)
goto free_and_exit;
/* Check if this request is ok */
rc = o->validate(bp, o->owner, elem);
if (rc) {
BNX2X_ERR("Preamble failed: %d\n", rc);
goto free_and_exit;
}
}
/* If so, add it to the execution queue */
list_add_tail(&elem->link, &o->exe_queue);
spin_unlock_bh(&o->lock);
return 0;
free_and_exit:
bnx2x_exe_queue_free_elem(bp, elem);
spin_unlock_bh(&o->lock);
return rc;
}
static inline void __bnx2x_exe_queue_reset_pending(
struct bnx2x *bp,
struct bnx2x_exe_queue_obj *o)
{
struct bnx2x_exeq_elem *elem;
while (!list_empty(&o->pending_comp)) {
elem = list_first_entry(&o->pending_comp,
struct bnx2x_exeq_elem, link);
list_del(&elem->link);
bnx2x_exe_queue_free_elem(bp, elem);
}
}
static inline void bnx2x_exe_queue_reset_pending(struct bnx2x *bp,
struct bnx2x_exe_queue_obj *o)
{
spin_lock_bh(&o->lock);
__bnx2x_exe_queue_reset_pending(bp, o);
spin_unlock_bh(&o->lock);
}
/**
* bnx2x_exe_queue_step - execute one execution chunk atomically
*
* @bp: driver handle
* @o: queue
* @ramrod_flags: flags
*
* (Atomicy is ensured using the exe_queue->lock).
*/
static inline int bnx2x_exe_queue_step(struct bnx2x *bp,
struct bnx2x_exe_queue_obj *o,
unsigned long *ramrod_flags)
{
struct bnx2x_exeq_elem *elem, spacer;
int cur_len = 0, rc;
memset(&spacer, 0, sizeof(spacer));
spin_lock_bh(&o->lock);
/*
* Next step should not be performed until the current is finished,
* unless a DRV_CLEAR_ONLY bit is set. In this case we just want to
* properly clear object internals without sending any command to the FW
* which also implies there won't be any completion to clear the
* 'pending' list.
*/
if (!list_empty(&o->pending_comp)) {
if (test_bit(RAMROD_DRV_CLR_ONLY, ramrod_flags)) {
DP(BNX2X_MSG_SP, "RAMROD_DRV_CLR_ONLY requested: resetting a pending_comp list\n");
__bnx2x_exe_queue_reset_pending(bp, o);
} else {
spin_unlock_bh(&o->lock);
return 1;
}
}
/*
* Run through the pending commands list and create a next
* execution chunk.
*/
while (!list_empty(&o->exe_queue)) {
elem = list_first_entry(&o->exe_queue, struct bnx2x_exeq_elem,
link);
WARN_ON(!elem->cmd_len);
if (cur_len + elem->cmd_len <= o->exe_chunk_len) {
cur_len += elem->cmd_len;
/*
* Prevent from both lists being empty when moving an
* element. This will allow the call of
* bnx2x_exe_queue_empty() without locking.
*/
list_add_tail(&spacer.link, &o->pending_comp);
mb();
list_del(&elem->link);
list_add_tail(&elem->link, &o->pending_comp);
list_del(&spacer.link);
} else
break;
}
/* Sanity check */
if (!cur_len) {
spin_unlock_bh(&o->lock);
return 0;
}
rc = o->execute(bp, o->owner, &o->pending_comp, ramrod_flags);
if (rc < 0)
/*
* In case of an error return the commands back to the queue
* and reset the pending_comp.
*/
list_splice_init(&o->pending_comp, &o->exe_queue);
else if (!rc)
/*
* If zero is returned, means there are no outstanding pending
* completions and we may dismiss the pending list.
*/
__bnx2x_exe_queue_reset_pending(bp, o);
spin_unlock_bh(&o->lock);
return rc;
}
static inline bool bnx2x_exe_queue_empty(struct bnx2x_exe_queue_obj *o)
{
bool empty = list_empty(&o->exe_queue);
/* Don't reorder!!! */
mb();
return empty && list_empty(&o->pending_comp);
}
static inline struct bnx2x_exeq_elem *bnx2x_exe_queue_alloc_elem(
struct bnx2x *bp)
{
DP(BNX2X_MSG_SP, "Allocating a new exe_queue element\n");
return kzalloc(sizeof(struct bnx2x_exeq_elem), GFP_ATOMIC);
}
/************************ raw_obj functions ***********************************/
static bool bnx2x_raw_check_pending(struct bnx2x_raw_obj *o)
{
return !!test_bit(o->state, o->pstate);
}
static void bnx2x_raw_clear_pending(struct bnx2x_raw_obj *o)
{
smp_mb__before_clear_bit();
clear_bit(o->state, o->pstate);
smp_mb__after_clear_bit();
}
static void bnx2x_raw_set_pending(struct bnx2x_raw_obj *o)
{
smp_mb__before_clear_bit();
set_bit(o->state, o->pstate);
smp_mb__after_clear_bit();
}
/**
* bnx2x_state_wait - wait until the given bit(state) is cleared
*
* @bp: device handle
* @state: state which is to be cleared
* @state_p: state buffer
*
*/
static inline int bnx2x_state_wait(struct bnx2x *bp, int state,
unsigned long *pstate)
{
/* can take a while if any port is running */
int cnt = 5000;
if (CHIP_REV_IS_EMUL(bp))
cnt *= 20;
DP(BNX2X_MSG_SP, "waiting for state to become %d\n", state);
might_sleep();
while (cnt--) {
if (!test_bit(state, pstate)) {
#ifdef BNX2X_STOP_ON_ERROR
DP(BNX2X_MSG_SP, "exit (cnt %d)\n", 5000 - cnt);
#endif
return 0;
}
usleep_range(1000, 1000);
if (bp->panic)
return -EIO;
}
/* timeout! */
BNX2X_ERR("timeout waiting for state %d\n", state);
#ifdef BNX2X_STOP_ON_ERROR
bnx2x_panic();
#endif
return -EBUSY;
}
static int bnx2x_raw_wait(struct bnx2x *bp, struct bnx2x_raw_obj *raw)
{
return bnx2x_state_wait(bp, raw->state, raw->pstate);
}
/***************** Classification verbs: Set/Del MAC/VLAN/VLAN-MAC ************/
/* credit handling callbacks */
static bool bnx2x_get_cam_offset_mac(struct bnx2x_vlan_mac_obj *o, int *offset)
{
struct bnx2x_credit_pool_obj *mp = o->macs_pool;
WARN_ON(!mp);
return mp->get_entry(mp, offset);
}
static bool bnx2x_get_credit_mac(struct bnx2x_vlan_mac_obj *o)
{
struct bnx2x_credit_pool_obj *mp = o->macs_pool;
WARN_ON(!mp);
return mp->get(mp, 1);
}
static bool bnx2x_get_cam_offset_vlan(struct bnx2x_vlan_mac_obj *o, int *offset)
{
struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
WARN_ON(!vp);
return vp->get_entry(vp, offset);
}
static bool bnx2x_get_credit_vlan(struct bnx2x_vlan_mac_obj *o)
{
struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
WARN_ON(!vp);
return vp->get(vp, 1);
}
static bool bnx2x_get_credit_vlan_mac(struct bnx2x_vlan_mac_obj *o)
{
struct bnx2x_credit_pool_obj *mp = o->macs_pool;
struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
if (!mp->get(mp, 1))
return false;
if (!vp->get(vp, 1)) {
mp->put(mp, 1);
return false;
}
return true;
}
static bool bnx2x_put_cam_offset_mac(struct bnx2x_vlan_mac_obj *o, int offset)
{
struct bnx2x_credit_pool_obj *mp = o->macs_pool;
return mp->put_entry(mp, offset);
}
static bool bnx2x_put_credit_mac(struct bnx2x_vlan_mac_obj *o)
{
struct bnx2x_credit_pool_obj *mp = o->macs_pool;
return mp->put(mp, 1);
}
static bool bnx2x_put_cam_offset_vlan(struct bnx2x_vlan_mac_obj *o, int offset)
{
struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
return vp->put_entry(vp, offset);
}
static bool bnx2x_put_credit_vlan(struct bnx2x_vlan_mac_obj *o)
{
struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
return vp->put(vp, 1);
}
static bool bnx2x_put_credit_vlan_mac(struct bnx2x_vlan_mac_obj *o)
{
struct bnx2x_credit_pool_obj *mp = o->macs_pool;
struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
if (!mp->put(mp, 1))
return false;
if (!vp->put(vp, 1)) {
mp->get(mp, 1);
return false;
}
return true;
}
static int bnx2x_get_n_elements(struct bnx2x *bp, struct bnx2x_vlan_mac_obj *o,
int n, u8 *buf)
{
struct bnx2x_vlan_mac_registry_elem *pos;
u8 *next = buf;
int counter = 0;
/* traverse list */
list_for_each_entry(pos, &o->head, link) {
if (counter < n) {
/* place leading zeroes in buffer */
memset(next, 0, MAC_LEADING_ZERO_CNT);
/* place mac after leading zeroes*/
memcpy(next + MAC_LEADING_ZERO_CNT, pos->u.mac.mac,
ETH_ALEN);
/* calculate address of next element and
* advance counter
*/
counter++;
next = buf + counter * ALIGN(ETH_ALEN, sizeof(u32));
DP(BNX2X_MSG_SP, "copied element number %d to address %p element was %pM\n",
counter, next, pos->u.mac.mac);
}
}
return counter * ETH_ALEN;
}
/* check_add() callbacks */
static int bnx2x_check_mac_add(struct bnx2x *bp,
struct bnx2x_vlan_mac_obj *o,
union bnx2x_classification_ramrod_data *data)
{
struct bnx2x_vlan_mac_registry_elem *pos;
DP(BNX2X_MSG_SP, "Checking MAC %pM for ADD command\n", data->mac.mac);
if (!is_valid_ether_addr(data->mac.mac))
return -EINVAL;
/* Check if a requested MAC already exists */
list_for_each_entry(pos, &o->head, link)
if (!memcmp(data->mac.mac, pos->u.mac.mac, ETH_ALEN))
return -EEXIST;
return 0;
}
static int bnx2x_check_vlan_add(struct bnx2x *bp,
struct bnx2x_vlan_mac_obj *o,
union bnx2x_classification_ramrod_data *data)
{
struct bnx2x_vlan_mac_registry_elem *pos;
DP(BNX2X_MSG_SP, "Checking VLAN %d for ADD command\n", data->vlan.vlan);
list_for_each_entry(pos, &o->head, link)
if (data->vlan.vlan == pos->u.vlan.vlan)
return -EEXIST;
return 0;
}
static int bnx2x_check_vlan_mac_add(struct bnx2x *bp,
struct bnx2x_vlan_mac_obj *o,
union bnx2x_classification_ramrod_data *data)
{
struct bnx2x_vlan_mac_registry_elem *pos;
DP(BNX2X_MSG_SP, "Checking VLAN_MAC (%pM, %d) for ADD command\n",
data->vlan_mac.mac, data->vlan_mac.vlan);
list_for_each_entry(pos, &o->head, link)
if ((data->vlan_mac.vlan == pos->u.vlan_mac.vlan) &&
(!memcmp(data->vlan_mac.mac, pos->u.vlan_mac.mac,
ETH_ALEN)))
return -EEXIST;
return 0;
}
/* check_del() callbacks */
static struct bnx2x_vlan_mac_registry_elem *
bnx2x_check_mac_del(struct bnx2x *bp,
struct bnx2x_vlan_mac_obj *o,
union bnx2x_classification_ramrod_data *data)
{
struct bnx2x_vlan_mac_registry_elem *pos;
DP(BNX2X_MSG_SP, "Checking MAC %pM for DEL command\n", data->mac.mac);
list_for_each_entry(pos, &o->head, link)
if (!memcmp(data->mac.mac, pos->u.mac.mac, ETH_ALEN))
return pos;
return NULL;
}
static struct bnx2x_vlan_mac_registry_elem *
bnx2x_check_vlan_del(struct bnx2x *bp,
struct bnx2x_vlan_mac_obj *o,
union bnx2x_classification_ramrod_data *data)
{
struct bnx2x_vlan_mac_registry_elem *pos;
DP(BNX2X_MSG_SP, "Checking VLAN %d for DEL command\n", data->vlan.vlan);
list_for_each_entry(pos, &o->head, link)
if (data->vlan.vlan == pos->u.vlan.vlan)
return pos;
return NULL;
}
static struct bnx2x_vlan_mac_registry_elem *
bnx2x_check_vlan_mac_del(struct bnx2x *bp,
struct bnx2x_vlan_mac_obj *o,
union bnx2x_classification_ramrod_data *data)
{
struct bnx2x_vlan_mac_registry_elem *pos;
DP(BNX2X_MSG_SP, "Checking VLAN_MAC (%pM, %d) for DEL command\n",
data->vlan_mac.mac, data->vlan_mac.vlan);
list_for_each_entry(pos, &o->head, link)
if ((data->vlan_mac.vlan == pos->u.vlan_mac.vlan) &&
(!memcmp(data->vlan_mac.mac, pos->u.vlan_mac.mac,
ETH_ALEN)))
return pos;
return NULL;
}
/* check_move() callback */
static bool bnx2x_check_move(struct bnx2x *bp,
struct bnx2x_vlan_mac_obj *src_o,
struct bnx2x_vlan_mac_obj *dst_o,
union bnx2x_classification_ramrod_data *data)
{
struct bnx2x_vlan_mac_registry_elem *pos;
int rc;
/* Check if we can delete the requested configuration from the first
* object.
*/
pos = src_o->check_del(bp, src_o, data);
/* check if configuration can be added */
rc = dst_o->check_add(bp, dst_o, data);
/* If this classification can not be added (is already set)
* or can't be deleted - return an error.
*/
if (rc || !pos)
return false;
return true;
}
static bool bnx2x_check_move_always_err(
struct bnx2x *bp,
struct bnx2x_vlan_mac_obj *src_o,
struct bnx2x_vlan_mac_obj *dst_o,
union bnx2x_classification_ramrod_data *data)
{
return false;
}
static inline u8 bnx2x_vlan_mac_get_rx_tx_flag(struct bnx2x_vlan_mac_obj *o)
{
struct bnx2x_raw_obj *raw = &o->raw;
u8 rx_tx_flag = 0;
if ((raw->obj_type == BNX2X_OBJ_TYPE_TX) ||
(raw->obj_type == BNX2X_OBJ_TYPE_RX_TX))
rx_tx_flag |= ETH_CLASSIFY_CMD_HEADER_TX_CMD;
if ((raw->obj_type == BNX2X_OBJ_TYPE_RX) ||
(raw->obj_type == BNX2X_OBJ_TYPE_RX_TX))
rx_tx_flag |= ETH_CLASSIFY_CMD_HEADER_RX_CMD;
return rx_tx_flag;
}
void bnx2x_set_mac_in_nig(struct bnx2x *bp,
bool add, unsigned char *dev_addr, int index)
{
u32 wb_data[2];
u32 reg_offset = BP_PORT(bp) ? NIG_REG_LLH1_FUNC_MEM :
NIG_REG_LLH0_FUNC_MEM;
if (!IS_MF_SI(bp) && !IS_MF_AFEX(bp))
return;
if (index > BNX2X_LLH_CAM_MAX_PF_LINE)
return;
DP(BNX2X_MSG_SP, "Going to %s LLH configuration at entry %d\n",
(add ? "ADD" : "DELETE"), index);
if (add) {
/* LLH_FUNC_MEM is a u64 WB register */
reg_offset += 8*index;
wb_data[0] = ((dev_addr[2] << 24) | (dev_addr[3] << 16) |
(dev_addr[4] << 8) | dev_addr[5]);
wb_data[1] = ((dev_addr[0] << 8) | dev_addr[1]);
REG_WR_DMAE(bp, reg_offset, wb_data, 2);
}
REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_FUNC_MEM_ENABLE :
NIG_REG_LLH0_FUNC_MEM_ENABLE) + 4*index, add);
}
/**
* bnx2x_vlan_mac_set_cmd_hdr_e2 - set a header in a single classify ramrod
*
* @bp: device handle
* @o: queue for which we want to configure this rule
* @add: if true the command is an ADD command, DEL otherwise
* @opcode: CLASSIFY_RULE_OPCODE_XXX
* @hdr: pointer to a header to setup
*
*/
static inline void bnx2x_vlan_mac_set_cmd_hdr_e2(struct bnx2x *bp,
struct bnx2x_vlan_mac_obj *o, bool add, int opcode,
struct eth_classify_cmd_header *hdr)
{
struct bnx2x_raw_obj *raw = &o->raw;
hdr->client_id = raw->cl_id;
hdr->func_id = raw->func_id;
/* Rx or/and Tx (internal switching) configuration ? */
hdr->cmd_general_data |=
bnx2x_vlan_mac_get_rx_tx_flag(o);
if (add)
hdr->cmd_general_data |= ETH_CLASSIFY_CMD_HEADER_IS_ADD;
hdr->cmd_general_data |=
(opcode << ETH_CLASSIFY_CMD_HEADER_OPCODE_SHIFT);
}
/**
* bnx2x_vlan_mac_set_rdata_hdr_e2 - set the classify ramrod data header
*
* @cid: connection id
* @type: BNX2X_FILTER_XXX_PENDING
* @hdr: poiter to header to setup
* @rule_cnt:
*
* currently we always configure one rule and echo field to contain a CID and an
* opcode type.
*/
static inline void bnx2x_vlan_mac_set_rdata_hdr_e2(u32 cid, int type,
struct eth_classify_header *hdr, int rule_cnt)
{
hdr->echo = (cid & BNX2X_SWCID_MASK) | (type << BNX2X_SWCID_SHIFT);
hdr->rule_cnt = (u8)rule_cnt;
}
/* hw_config() callbacks */
static void bnx2x_set_one_mac_e2(struct bnx2x *bp,
struct bnx2x_vlan_mac_obj *o,
struct bnx2x_exeq_elem *elem, int rule_idx,
int cam_offset)
{
struct bnx2x_raw_obj *raw = &o->raw;
struct eth_classify_rules_ramrod_data *data =
(struct eth_classify_rules_ramrod_data *)(raw->rdata);
int rule_cnt = rule_idx + 1, cmd = elem->cmd_data.vlan_mac.cmd;
union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx];
bool add = (cmd == BNX2X_VLAN_MAC_ADD) ? true : false;
unsigned long *vlan_mac_flags = &elem->cmd_data.vlan_mac.vlan_mac_flags;
u8 *mac = elem->cmd_data.vlan_mac.u.mac.mac;
/*
* Set LLH CAM entry: currently only iSCSI and ETH macs are
* relevant. In addition, current implementation is tuned for a
* single ETH MAC.
*
* When multiple unicast ETH MACs PF configuration in switch
* independent mode is required (NetQ, multiple netdev MACs,
* etc.), consider better utilisation of 8 per function MAC
* entries in the LLH register. There is also
* NIG_REG_P[01]_LLH_FUNC_MEM2 registers that complete the
* total number of CAM entries to 16.
*
* Currently we won't configure NIG for MACs other than a primary ETH
* MAC and iSCSI L2 MAC.
*
* If this MAC is moving from one Queue to another, no need to change
* NIG configuration.
*/
if (cmd != BNX2X_VLAN_MAC_MOVE) {
if (test_bit(BNX2X_ISCSI_ETH_MAC, vlan_mac_flags))
bnx2x_set_mac_in_nig(bp, add, mac,
BNX2X_LLH_CAM_ISCSI_ETH_LINE);
else if (test_bit(BNX2X_ETH_MAC, vlan_mac_flags))
bnx2x_set_mac_in_nig(bp, add, mac,
BNX2X_LLH_CAM_ETH_LINE);
}
/* Reset the ramrod data buffer for the first rule */
if (rule_idx == 0)
memset(data, 0, sizeof(*data));
/* Setup a command header */
bnx2x_vlan_mac_set_cmd_hdr_e2(bp, o, add, CLASSIFY_RULE_OPCODE_MAC,
&rule_entry->mac.header);
DP(BNX2X_MSG_SP, "About to %s MAC %pM for Queue %d\n",
(add ? "add" : "delete"), mac, raw->cl_id);
/* Set a MAC itself */
bnx2x_set_fw_mac_addr(&rule_entry->mac.mac_msb,
&rule_entry->mac.mac_mid,
&rule_entry->mac.mac_lsb, mac);
/* MOVE: Add a rule that will add this MAC to the target Queue */
if (cmd == BNX2X_VLAN_MAC_MOVE) {
rule_entry++;
rule_cnt++;
/* Setup ramrod data */
bnx2x_vlan_mac_set_cmd_hdr_e2(bp,
elem->cmd_data.vlan_mac.target_obj,
true, CLASSIFY_RULE_OPCODE_MAC,
&rule_entry->mac.header);
/* Set a MAC itself */
bnx2x_set_fw_mac_addr(&rule_entry->mac.mac_msb,
&rule_entry->mac.mac_mid,
&rule_entry->mac.mac_lsb, mac);
}
/* Set the ramrod data header */
/* TODO: take this to the higher level in order to prevent multiple
writing */
bnx2x_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header,
rule_cnt);
}
/**
* bnx2x_vlan_mac_set_rdata_hdr_e1x - set a header in a single classify ramrod
*
* @bp: device handle
* @o: queue
* @type:
* @cam_offset: offset in cam memory
* @hdr: pointer to a header to setup
*
* E1/E1H
*/
static inline void bnx2x_vlan_mac_set_rdata_hdr_e1x(struct bnx2x *bp,
struct bnx2x_vlan_mac_obj *o, int type, int cam_offset,
struct mac_configuration_hdr *hdr)
{
struct bnx2x_raw_obj *r = &o->raw;
hdr->length = 1;
hdr->offset = (u8)cam_offset;
hdr->client_id = 0xff;
hdr->echo = ((r->cid & BNX2X_SWCID_MASK) | (type << BNX2X_SWCID_SHIFT));
}
static inline void bnx2x_vlan_mac_set_cfg_entry_e1x(struct bnx2x *bp,
struct bnx2x_vlan_mac_obj *o, bool add, int opcode, u8 *mac,
u16 vlan_id, struct mac_configuration_entry *cfg_entry)
{
struct bnx2x_raw_obj *r = &o->raw;
u32 cl_bit_vec = (1 << r->cl_id);
cfg_entry->clients_bit_vector = cpu_to_le32(cl_bit_vec);
cfg_entry->pf_id = r->func_id;
cfg_entry->vlan_id = cpu_to_le16(vlan_id);
if (add) {
SET_FLAG(cfg_entry->flags, MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
T_ETH_MAC_COMMAND_SET);
SET_FLAG(cfg_entry->flags,
MAC_CONFIGURATION_ENTRY_VLAN_FILTERING_MODE, opcode);
/* Set a MAC in a ramrod data */
bnx2x_set_fw_mac_addr(&cfg_entry->msb_mac_addr,
&cfg_entry->middle_mac_addr,
&cfg_entry->lsb_mac_addr, mac);
} else
SET_FLAG(cfg_entry->flags, MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
T_ETH_MAC_COMMAND_INVALIDATE);
}
static inline void bnx2x_vlan_mac_set_rdata_e1x(struct bnx2x *bp,
struct bnx2x_vlan_mac_obj *o, int type, int cam_offset, bool add,
u8 *mac, u16 vlan_id, int opcode, struct mac_configuration_cmd *config)
{
struct mac_configuration_entry *cfg_entry = &config->config_table[0];
struct bnx2x_raw_obj *raw = &o->raw;
bnx2x_vlan_mac_set_rdata_hdr_e1x(bp, o, type, cam_offset,
&config->hdr);
bnx2x_vlan_mac_set_cfg_entry_e1x(bp, o, add, opcode, mac, vlan_id,
cfg_entry);
DP(BNX2X_MSG_SP, "%s MAC %pM CLID %d CAM offset %d\n",
(add ? "setting" : "clearing"),
mac, raw->cl_id, cam_offset);
}
/**
* bnx2x_set_one_mac_e1x - fill a single MAC rule ramrod data
*
* @bp: device handle
* @o: bnx2x_vlan_mac_obj
* @elem: bnx2x_exeq_elem
* @rule_idx: rule_idx
* @cam_offset: cam_offset
*/
static void bnx2x_set_one_mac_e1x(struct bnx2x *bp,
struct bnx2x_vlan_mac_obj *o,
struct bnx2x_exeq_elem *elem, int rule_idx,
int cam_offset)
{
struct bnx2x_raw_obj *raw = &o->raw;
struct mac_configuration_cmd *config =
(struct mac_configuration_cmd *)(raw->rdata);
/*
* 57710 and 57711 do not support MOVE command,
* so it's either ADD or DEL
*/
bool add = (elem->cmd_data.vlan_mac.cmd == BNX2X_VLAN_MAC_ADD) ?
true : false;
/* Reset the ramrod data buffer */
memset(config, 0, sizeof(*config));
bnx2x_vlan_mac_set_rdata_e1x(bp, o, raw->state,
cam_offset, add,
elem->cmd_data.vlan_mac.u.mac.mac, 0,
ETH_VLAN_FILTER_ANY_VLAN, config);
}
static void bnx2x_set_one_vlan_e2(struct bnx2x *bp,
struct bnx2x_vlan_mac_obj *o,
struct bnx2x_exeq_elem *elem, int rule_idx,
int cam_offset)
{
struct bnx2x_raw_obj *raw = &o->raw;
struct eth_classify_rules_ramrod_data *data =
(struct eth_classify_rules_ramrod_data *)(raw->rdata);
int rule_cnt = rule_idx + 1;
union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx];
int cmd = elem->cmd_data.vlan_mac.cmd;
bool add = (cmd == BNX2X_VLAN_MAC_ADD) ? true : false;
u16 vlan = elem->cmd_data.vlan_mac.u.vlan.vlan;
/* Reset the ramrod data buffer for the first rule */
if (rule_idx == 0)
memset(data, 0, sizeof(*data));
/* Set a rule header */
bnx2x_vlan_mac_set_cmd_hdr_e2(bp, o, add, CLASSIFY_RULE_OPCODE_VLAN,
&rule_entry->vlan.header);
DP(BNX2X_MSG_SP, "About to %s VLAN %d\n", (add ? "add" : "delete"),
vlan);
/* Set a VLAN itself */
rule_entry->vlan.vlan = cpu_to_le16(vlan);
/* MOVE: Add a rule that will add this MAC to the target Queue */
if (cmd == BNX2X_VLAN_MAC_MOVE) {
rule_entry++;
rule_cnt++;
/* Setup ramrod data */
bnx2x_vlan_mac_set_cmd_hdr_e2(bp,
elem->cmd_data.vlan_mac.target_obj,
true, CLASSIFY_RULE_OPCODE_VLAN,
&rule_entry->vlan.header);
/* Set a VLAN itself */
rule_entry->vlan.vlan = cpu_to_le16(vlan);
}
/* Set the ramrod data header */
/* TODO: take this to the higher level in order to prevent multiple
writing */
bnx2x_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header,
rule_cnt);
}
static void bnx2x_set_one_vlan_mac_e2(struct bnx2x *bp,
struct bnx2x_vlan_mac_obj *o,
struct bnx2x_exeq_elem *elem,
int rule_idx, int cam_offset)
{
struct bnx2x_raw_obj *raw = &o->raw;
struct eth_classify_rules_ramrod_data *data =
(struct eth_classify_rules_ramrod_data *)(raw->rdata);
int rule_cnt = rule_idx + 1;
union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx];
int cmd = elem->cmd_data.vlan_mac.cmd;
bool add = (cmd == BNX2X_VLAN_MAC_ADD) ? true : false;
u16 vlan = elem->cmd_data.vlan_mac.u.vlan_mac.vlan;
u8 *mac = elem->cmd_data.vlan_mac.u.vlan_mac.mac;
/* Reset the ramrod data buffer for the first rule */
if (rule_idx == 0)
memset(data, 0, sizeof(*data));
/* Set a rule header */
bnx2x_vlan_mac_set_cmd_hdr_e2(bp, o, add, CLASSIFY_RULE_OPCODE_PAIR,
&rule_entry->pair.header);
/* Set VLAN and MAC themselvs */
rule_entry->pair.vlan = cpu_to_le16(vlan);
bnx2x_set_fw_mac_addr(&rule_entry->pair.mac_msb,
&rule_entry->pair.mac_mid,
&rule_entry->pair.mac_lsb, mac);
/* MOVE: Add a rule that will add this MAC to the target Queue */
if (cmd == BNX2X_VLAN_MAC_MOVE) {
rule_entry++;
rule_cnt++;
/* Setup ramrod data */
bnx2x_vlan_mac_set_cmd_hdr_e2(bp,
elem->cmd_data.vlan_mac.target_obj,
true, CLASSIFY_RULE_OPCODE_PAIR,
&rule_entry->pair.header);
/* Set a VLAN itself */
rule_entry->pair.vlan = cpu_to_le16(vlan);
bnx2x_set_fw_mac_addr(&rule_entry->pair.mac_msb,
&rule_entry->pair.mac_mid,
&rule_entry->pair.mac_lsb, mac);
}
/* Set the ramrod data header */
/* TODO: take this to the higher level in order to prevent multiple
writing */
bnx2x_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header,
rule_cnt);
}
/**
* bnx2x_set_one_vlan_mac_e1h -
*
* @bp: device handle
* @o: bnx2x_vlan_mac_obj
* @elem: bnx2x_exeq_elem
* @rule_idx: rule_idx
* @cam_offset: cam_offset
*/
static void bnx2x_set_one_vlan_mac_e1h(struct bnx2x *bp,
struct bnx2x_vlan_mac_obj *o,
struct bnx2x_exeq_elem *elem,
int rule_idx, int cam_offset)
{
struct bnx2x_raw_obj *raw = &o->raw;
struct mac_configuration_cmd *config =
(struct mac_configuration_cmd *)(raw->rdata);
/*
* 57710 and 57711 do not support MOVE command,
* so it's either ADD or DEL
*/
bool add = (elem->cmd_data.vlan_mac.cmd == BNX2X_VLAN_MAC_ADD) ?
true : false;
/* Reset the ramrod data buffer */
memset(config, 0, sizeof(*config));
bnx2x_vlan_mac_set_rdata_e1x(bp, o, BNX2X_FILTER_VLAN_MAC_PENDING,
cam_offset, add,
elem->cmd_data.vlan_mac.u.vlan_mac.mac,
elem->cmd_data.vlan_mac.u.vlan_mac.vlan,
ETH_VLAN_FILTER_CLASSIFY, config);
}
#define list_next_entry(pos, member) \
list_entry((pos)->member.next, typeof(*(pos)), member)
/**
* bnx2x_vlan_mac_restore - reconfigure next MAC/VLAN/VLAN-MAC element
*
* @bp: device handle
* @p: command parameters
* @ppos: pointer to the cooky
*
* reconfigure next MAC/VLAN/VLAN-MAC element from the
* previously configured elements list.
*
* from command parameters only RAMROD_COMP_WAIT bit in ramrod_flags is taken
* into an account
*
* pointer to the cooky - that should be given back in the next call to make
* function handle the next element. If *ppos is set to NULL it will restart the
* iterator. If returned *ppos == NULL this means that the last element has been
* handled.
*
*/
static int bnx2x_vlan_mac_restore(struct bnx2x *bp,
struct bnx2x_vlan_mac_ramrod_params *p,
struct bnx2x_vlan_mac_registry_elem **ppos)
{
struct bnx2x_vlan_mac_registry_elem *pos;
struct bnx2x_vlan_mac_obj *o = p->vlan_mac_obj;
/* If list is empty - there is nothing to do here */
if (list_empty(&o->head)) {
*ppos = NULL;
return 0;
}
/* make a step... */
if (*ppos == NULL)
*ppos = list_first_entry(&o->head,
struct bnx2x_vlan_mac_registry_elem,
link);
else
*ppos = list_next_entry(*ppos, link);
pos = *ppos;
/* If it's the last step - return NULL */
if (list_is_last(&pos->link, &o->head))
*ppos = NULL;
/* Prepare a 'user_req' */
memcpy(&p->user_req.u, &pos->u, sizeof(pos->u));
/* Set the command */
p->user_req.cmd = BNX2X_VLAN_MAC_ADD;
/* Set vlan_mac_flags */
p->user_req.vlan_mac_flags = pos->vlan_mac_flags;
/* Set a restore bit */
__set_bit(RAMROD_RESTORE, &p->ramrod_flags);
return bnx2x_config_vlan_mac(bp, p);
}
/*
* bnx2x_exeq_get_mac/bnx2x_exeq_get_vlan/bnx2x_exeq_get_vlan_mac return a
* pointer to an element with a specific criteria and NULL if such an element
* hasn't been found.
*/
static struct bnx2x_exeq_elem *bnx2x_exeq_get_mac(
struct bnx2x_exe_queue_obj *o,
struct bnx2x_exeq_elem *elem)
{
struct bnx2x_exeq_elem *pos;
struct bnx2x_mac_ramrod_data *data = &elem->cmd_data.vlan_mac.u.mac;
/* Check pending for execution commands */
list_for_each_entry(pos, &o->exe_queue, link)
if (!memcmp(&pos->cmd_data.vlan_mac.u.mac, data,
sizeof(*data)) &&
(pos->cmd_data.vlan_mac.cmd == elem->cmd_data.vlan_mac.cmd))
return pos;
return NULL;
}
static struct bnx2x_exeq_elem *bnx2x_exeq_get_vlan(
struct bnx2x_exe_queue_obj *o,
struct bnx2x_exeq_elem *elem)
{
struct bnx2x_exeq_elem *pos;
struct bnx2x_vlan_ramrod_data *data = &elem->cmd_data.vlan_mac.u.vlan;
/* Check pending for execution commands */
list_for_each_entry(pos, &o->exe_queue, link)
if (!memcmp(&pos->cmd_data.vlan_mac.u.vlan, data,
sizeof(*data)) &&
(pos->cmd_data.vlan_mac.cmd == elem->cmd_data.vlan_mac.cmd))
return pos;
return NULL;
}
static struct bnx2x_exeq_elem *bnx2x_exeq_get_vlan_mac(
struct bnx2x_exe_queue_obj *o,
struct bnx2x_exeq_elem *elem)
{
struct bnx2x_exeq_elem *pos;
struct bnx2x_vlan_mac_ramrod_data *data =
&elem->cmd_data.vlan_mac.u.vlan_mac;
/* Check pending for execution commands */
list_for_each_entry(pos, &o->exe_queue, link)
if (!memcmp(&pos->cmd_data.vlan_mac.u.vlan_mac, data,
sizeof(*data)) &&
(pos->cmd_data.vlan_mac.cmd == elem->cmd_data.vlan_mac.cmd))
return pos;
return NULL;
}
/**
* bnx2x_validate_vlan_mac_add - check if an ADD command can be executed
*
* @bp: device handle
* @qo: bnx2x_qable_obj
* @elem: bnx2x_exeq_elem
*
* Checks that the requested configuration can be added. If yes and if
* requested, consume CAM credit.
*
* The 'validate' is run after the 'optimize'.
*
*/
static inline int bnx2x_validate_vlan_mac_add(struct bnx2x *bp,
union bnx2x_qable_obj *qo,
struct bnx2x_exeq_elem *elem)
{
struct bnx2x_vlan_mac_obj *o = &qo->vlan_mac;
struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
int rc;
/* Check the registry */
rc = o->check_add(bp, o, &elem->cmd_data.vlan_mac.u);
if (rc) {
DP(BNX2X_MSG_SP, "ADD command is not allowed considering current registry state.\n");
return rc;
}
/*
* Check if there is a pending ADD command for this
* MAC/VLAN/VLAN-MAC. Return an error if there is.
*/
if (exeq->get(exeq, elem)) {
DP(BNX2X_MSG_SP, "There is a pending ADD command already\n");
return -EEXIST;
}
/*
* TODO: Check the pending MOVE from other objects where this
* object is a destination object.
*/
/* Consume the credit if not requested not to */
if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
&elem->cmd_data.vlan_mac.vlan_mac_flags) ||
o->get_credit(o)))
return -EINVAL;
return 0;
}
/**
* bnx2x_validate_vlan_mac_del - check if the DEL command can be executed
*
* @bp: device handle
* @qo: quable object to check
* @elem: element that needs to be deleted
*
* Checks that the requested configuration can be deleted. If yes and if
* requested, returns a CAM credit.
*
* The 'validate' is run after the 'optimize'.
*/
static inline int bnx2x_validate_vlan_mac_del(struct bnx2x *bp,
union bnx2x_qable_obj *qo,
struct bnx2x_exeq_elem *elem)
{
struct bnx2x_vlan_mac_obj *o = &qo->vlan_mac;
struct bnx2x_vlan_mac_registry_elem *pos;
struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
struct bnx2x_exeq_elem query_elem;
/* If this classification can not be deleted (doesn't exist)
* - return a BNX2X_EXIST.
*/
pos = o->check_del(bp, o, &elem->cmd_data.vlan_mac.u);
if (!pos) {
DP(BNX2X_MSG_SP, "DEL command is not allowed considering current registry state\n");
return -EEXIST;
}
/*
* Check if there are pending DEL or MOVE commands for this
* MAC/VLAN/VLAN-MAC. Return an error if so.
*/
memcpy(&query_elem, elem, sizeof(query_elem));
/* Check for MOVE commands */
query_elem.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_MOVE;
if (exeq->get(exeq, &query_elem)) {
BNX2X_ERR("There is a pending MOVE command already\n");
return -EINVAL;
}
/* Check for DEL commands */
if (exeq->get(exeq, elem)) {
DP(BNX2X_MSG_SP, "There is a pending DEL command already\n");
return -EEXIST;
}
/* Return the credit to the credit pool if not requested not to */
if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
&elem->cmd_data.vlan_mac.vlan_mac_flags) ||
o->put_credit(o))) {
BNX2X_ERR("Failed to return a credit\n");
return -EINVAL;
}
return 0;
}
/**
* bnx2x_validate_vlan_mac_move - check if the MOVE command can be executed
*
* @bp: device handle
* @qo: quable object to check (source)
* @elem: element that needs to be moved
*
* Checks that the requested configuration can be moved. If yes and if
* requested, returns a CAM credit.
*
* The 'validate' is run after the 'optimize'.
*/
static inline int bnx2x_validate_vlan_mac_move(struct bnx2x *bp,
union bnx2x_qable_obj *qo,
struct bnx2x_exeq_elem *elem)
{
struct bnx2x_vlan_mac_obj *src_o = &qo->vlan_mac;
struct bnx2x_vlan_mac_obj *dest_o = elem->cmd_data.vlan_mac.target_obj;
struct bnx2x_exeq_elem query_elem;
struct bnx2x_exe_queue_obj *src_exeq = &src_o->exe_queue;
struct bnx2x_exe_queue_obj *dest_exeq = &dest_o->exe_queue;
/*
* Check if we can perform this operation based on the current registry
* state.
*/
if (!src_o->check_move(bp, src_o, dest_o,
&elem->cmd_data.vlan_mac.u)) {
DP(BNX2X_MSG_SP, "MOVE command is not allowed considering current registry state\n");
return -EINVAL;
}
/*
* Check if there is an already pending DEL or MOVE command for the
* source object or ADD command for a destination object. Return an
* error if so.
*/
memcpy(&query_elem, elem, sizeof(query_elem));
/* Check DEL on source */
query_elem.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_DEL;
if (src_exeq->get(src_exeq, &query_elem)) {
BNX2X_ERR("There is a pending DEL command on the source queue already\n");
return -EINVAL;
}
/* Check MOVE on source */
if (src_exeq->get(src_exeq, elem)) {
DP(BNX2X_MSG_SP, "There is a pending MOVE command already\n");
return -EEXIST;
}
/* Check ADD on destination */
query_elem.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_ADD;
if (dest_exeq->get(dest_exeq, &query_elem)) {
BNX2X_ERR("There is a pending ADD command on the destination queue already\n");
return -EINVAL;
}
/* Consume the credit if not requested not to */
if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT_DEST,
&elem->cmd_data.vlan_mac.vlan_mac_flags) ||
dest_o->get_credit(dest_o)))
return -EINVAL;
if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
&elem->cmd_data.vlan_mac.vlan_mac_flags) ||
src_o->put_credit(src_o))) {
/* return the credit taken from dest... */
dest_o->put_credit(dest_o);
return -EINVAL;
}
return 0;
}
static int bnx2x_validate_vlan_mac(struct bnx2x *bp,
union bnx2x_qable_obj *qo,
struct bnx2x_exeq_elem *elem)
{
switch (elem->cmd_data.vlan_mac.cmd) {
case BNX2X_VLAN_MAC_ADD:
return bnx2x_validate_vlan_mac_add(bp, qo, elem);
case BNX2X_VLAN_MAC_DEL:
return bnx2x_validate_vlan_mac_del(bp, qo, elem);
case BNX2X_VLAN_MAC_MOVE:
return bnx2x_validate_vlan_mac_move(bp, qo, elem);
default:
return -EINVAL;
}
}
static int bnx2x_remove_vlan_mac(struct bnx2x *bp,
union bnx2x_qable_obj *qo,
struct bnx2x_exeq_elem *elem)
{
int rc = 0;
/* If consumption wasn't required, nothing to do */
if (test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
&elem->cmd_data.vlan_mac.vlan_mac_flags))
return 0;
switch (elem->cmd_data.vlan_mac.cmd) {
case BNX2X_VLAN_MAC_ADD:
case BNX2X_VLAN_MAC_MOVE:
rc = qo->vlan_mac.put_credit(&qo->vlan_mac);
break;
case BNX2X_VLAN_MAC_DEL:
rc = qo->vlan_mac.get_credit(&qo->vlan_mac);
break;
default:
return -EINVAL;
}
if (rc != true)
return -EINVAL;
return 0;
}
/**
* bnx2x_wait_vlan_mac - passivly wait for 5 seconds until all work completes.
*
* @bp: device handle
* @o: bnx2x_vlan_mac_obj
*
*/
static int bnx2x_wait_vlan_mac(struct bnx2x *bp,
struct bnx2x_vlan_mac_obj *o)
{
int cnt = 5000, rc;
struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
struct bnx2x_raw_obj *raw = &o->raw;
while (cnt--) {
/* Wait for the current command to complete */
rc = raw->wait_comp(bp, raw);
if (rc)
return rc;
/* Wait until there are no pending commands */
if (!bnx2x_exe_queue_empty(exeq))
usleep_range(1000, 1000);
else
return 0;
}
return -EBUSY;
}
/**
* bnx2x_complete_vlan_mac - complete one VLAN-MAC ramrod
*
* @bp: device handle
* @o: bnx2x_vlan_mac_obj
* @cqe:
* @cont: if true schedule next execution chunk
*
*/
static int bnx2x_complete_vlan_mac(struct bnx2x *bp,
struct bnx2x_vlan_mac_obj *o,
union event_ring_elem *cqe,
unsigned long *ramrod_flags)
{
struct bnx2x_raw_obj *r = &o->raw;
int rc;
/* Reset pending list */
bnx2x_exe_queue_reset_pending(bp, &o->exe_queue);
/* Clear pending */
r->clear_pending(r);
/* If ramrod failed this is most likely a SW bug */
if (cqe->message.error)
return -EINVAL;
/* Run the next bulk of pending commands if requeted */
if (test_bit(RAMROD_CONT, ramrod_flags)) {
rc = bnx2x_exe_queue_step(bp, &o->exe_queue, ramrod_flags);
if (rc < 0)
return rc;
}
/* If there is more work to do return PENDING */
if (!bnx2x_exe_queue_empty(&o->exe_queue))
return 1;
return 0;
}
/**
* bnx2x_optimize_vlan_mac - optimize ADD and DEL commands.
*
* @bp: device handle
* @o: bnx2x_qable_obj
* @elem: bnx2x_exeq_elem
*/
static int bnx2x_optimize_vlan_mac(struct bnx2x *bp,
union bnx2x_qable_obj *qo,
struct bnx2x_exeq_elem *elem)
{
struct bnx2x_exeq_elem query, *pos;
struct bnx2x_vlan_mac_obj *o = &qo->vlan_mac;
struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
memcpy(&query, elem, sizeof(query));
switch (elem->cmd_data.vlan_mac.cmd) {
case BNX2X_VLAN_MAC_ADD:
query.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_DEL;
break;
case BNX2X_VLAN_MAC_DEL:
query.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_ADD;
break;
default:
/* Don't handle anything other than ADD or DEL */
return 0;
}
/* If we found the appropriate element - delete it */
pos = exeq->get(exeq, &query);
if (pos) {
/* Return the credit of the optimized command */
if (!test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
&pos->cmd_data.vlan_mac.vlan_mac_flags)) {
if ((query.cmd_data.vlan_mac.cmd ==
BNX2X_VLAN_MAC_ADD) && !o->put_credit(o)) {
BNX2X_ERR("Failed to return the credit for the optimized ADD command\n");
return -EINVAL;
} else if (!o->get_credit(o)) { /* VLAN_MAC_DEL */
BNX2X_ERR("Failed to recover the credit from the optimized DEL command\n");
return -EINVAL;
}
}
DP(BNX2X_MSG_SP, "Optimizing %s command\n",
(elem->cmd_data.vlan_mac.cmd == BNX2X_VLAN_MAC_ADD) ?
"ADD" : "DEL");
list_del(&pos->link);
bnx2x_exe_queue_free_elem(bp, pos);
return 1;
}
return 0;
}
/**
* bnx2x_vlan_mac_get_registry_elem - prepare a registry element
*
* @bp: device handle
* @o:
* @elem:
* @restore:
* @re:
*
* prepare a registry element according to the current command request.
*/
static inline int bnx2x_vlan_mac_get_registry_elem(
struct bnx2x *bp,
struct bnx2x_vlan_mac_obj *o,
struct bnx2x_exeq_elem *elem,
bool restore,
struct bnx2x_vlan_mac_registry_elem **re)
{
int cmd = elem->cmd_data.vlan_mac.cmd;
struct bnx2x_vlan_mac_registry_elem *reg_elem;
/* Allocate a new registry element if needed. */
if (!restore &&
((cmd == BNX2X_VLAN_MAC_ADD) || (cmd == BNX2X_VLAN_MAC_MOVE))) {
reg_elem = kzalloc(sizeof(*reg_elem), GFP_ATOMIC);
if (!reg_elem)
return -ENOMEM;
/* Get a new CAM offset */
if (!o->get_cam_offset(o, &reg_elem->cam_offset)) {
/*
* This shell never happen, because we have checked the
* CAM availiability in the 'validate'.
*/
WARN_ON(1);
kfree(reg_elem);
return -EINVAL;
}
DP(BNX2X_MSG_SP, "Got cam offset %d\n", reg_elem->cam_offset);
/* Set a VLAN-MAC data */
memcpy(&reg_elem->u, &elem->cmd_data.vlan_mac.u,
sizeof(reg_elem->u));
/* Copy the flags (needed for DEL and RESTORE flows) */
reg_elem->vlan_mac_flags =
elem->cmd_data.vlan_mac.vlan_mac_flags;
} else /* DEL, RESTORE */
reg_elem = o->check_del(bp, o, &elem->cmd_data.vlan_mac.u);
*re = reg_elem;
return 0;
}
/**
* bnx2x_execute_vlan_mac - execute vlan mac command
*
* @bp: device handle
* @qo:
* @exe_chunk:
* @ramrod_flags:
*
* go and send a ramrod!
*/
static int bnx2x_execute_vlan_mac(struct bnx2x *bp,
union bnx2x_qable_obj *qo,
struct list_head *exe_chunk,
unsigned long *ramrod_flags)
{
struct bnx2x_exeq_elem *elem;
struct bnx2x_vlan_mac_obj *o = &qo->vlan_mac, *cam_obj;
struct bnx2x_raw_obj *r = &o->raw;
int rc, idx = 0;
bool restore = test_bit(RAMROD_RESTORE, ramrod_flags);
bool drv_only = test_bit(RAMROD_DRV_CLR_ONLY, ramrod_flags);
struct bnx2x_vlan_mac_registry_elem *reg_elem;
int cmd;
/*
* If DRIVER_ONLY execution is requested, cleanup a registry
* and exit. Otherwise send a ramrod to FW.
*/
if (!drv_only) {
WARN_ON(r->check_pending(r));
/* Set pending */
r->set_pending(r);
/* Fill tha ramrod data */
list_for_each_entry(elem, exe_chunk, link) {
cmd = elem->cmd_data.vlan_mac.cmd;
/*
* We will add to the target object in MOVE command, so
* change the object for a CAM search.
*/
if (cmd == BNX2X_VLAN_MAC_MOVE)
cam_obj = elem->cmd_data.vlan_mac.target_obj;
else
cam_obj = o;
rc = bnx2x_vlan_mac_get_registry_elem(bp, cam_obj,
elem, restore,
&reg_elem);
if (rc)
goto error_exit;
WARN_ON(!reg_elem);
/* Push a new entry into the registry */
if (!restore &&
((cmd == BNX2X_VLAN_MAC_ADD) ||
(cmd == BNX2X_VLAN_MAC_MOVE)))
list_add(&reg_elem->link, &cam_obj->head);
/* Configure a single command in a ramrod data buffer */
o->set_one_rule(bp, o, elem, idx,
reg_elem->cam_offset);
/* MOVE command consumes 2 entries in the ramrod data */
if (cmd == BNX2X_VLAN_MAC_MOVE)
idx += 2;
else
idx++;
}
/*
* No need for an explicit memory barrier here as long we would
* need to ensure the ordering of writing to the SPQ element
* and updating of the SPQ producer which involves a memory
* read and we will have to put a full memory barrier there
* (inside bnx2x_sp_post()).
*/
rc = bnx2x_sp_post(bp, o->ramrod_cmd, r->cid,
U64_HI(r->rdata_mapping),
U64_LO(r->rdata_mapping),
ETH_CONNECTION_TYPE);
if (rc)
goto error_exit;
}
/* Now, when we are done with the ramrod - clean up the registry */
list_for_each_entry(elem, exe_chunk, link) {
cmd = elem->cmd_data.vlan_mac.cmd;
if ((cmd == BNX2X_VLAN_MAC_DEL) ||
(cmd == BNX2X_VLAN_MAC_MOVE)) {
reg_elem = o->check_del(bp, o,
&elem->cmd_data.vlan_mac.u);
WARN_ON(!reg_elem);
o->put_cam_offset(o, reg_elem->cam_offset);
list_del(&reg_elem->link);
kfree(reg_elem);
}
}
if (!drv_only)
return 1;
else
return 0;
error_exit:
r->clear_pending(r);
/* Cleanup a registry in case of a failure */
list_for_each_entry(elem, exe_chunk, link) {
cmd = elem->cmd_data.vlan_mac.cmd;
if (cmd == BNX2X_VLAN_MAC_MOVE)
cam_obj = elem->cmd_data.vlan_mac.target_obj;
else
cam_obj = o;
/* Delete all newly added above entries */
if (!restore &&
((cmd == BNX2X_VLAN_MAC_ADD) ||
(cmd == BNX2X_VLAN_MAC_MOVE))) {
reg_elem = o->check_del(bp, cam_obj,
&elem->cmd_data.vlan_mac.u);
if (reg_elem) {
list_del(&reg_elem->link);
kfree(reg_elem);
}
}
}
return rc;
}
static inline int bnx2x_vlan_mac_push_new_cmd(
struct bnx2x *bp,
struct bnx2x_vlan_mac_ramrod_params *p)
{
struct bnx2x_exeq_elem *elem;
struct bnx2x_vlan_mac_obj *o = p->vlan_mac_obj;
bool restore = test_bit(RAMROD_RESTORE, &p->ramrod_flags);
/* Allocate the execution queue element */
elem = bnx2x_exe_queue_alloc_elem(bp);
if (!elem)
return -ENOMEM;
/* Set the command 'length' */
switch (p->user_req.cmd) {
case BNX2X_VLAN_MAC_MOVE:
elem->cmd_len = 2;
break;
default:
elem->cmd_len = 1;
}
/* Fill the object specific info */
memcpy(&elem->cmd_data.vlan_mac, &p->user_req, sizeof(p->user_req));
/* Try to add a new command to the pending list */
return bnx2x_exe_queue_add(bp, &o->exe_queue, elem, restore);
}
/**
* bnx2x_config_vlan_mac - configure VLAN/MAC/VLAN_MAC filtering rules.
*
* @bp: device handle
* @p:
*
*/
int bnx2x_config_vlan_mac(
struct bnx2x *bp,
struct bnx2x_vlan_mac_ramrod_params *p)
{
int rc = 0;
struct bnx2x_vlan_mac_obj *o = p->vlan_mac_obj;
unsigned long *ramrod_flags = &p->ramrod_flags;
bool cont = test_bit(RAMROD_CONT, ramrod_flags);
struct bnx2x_raw_obj *raw = &o->raw;
/*
* Add new elements to the execution list for commands that require it.
*/
if (!cont) {
rc = bnx2x_vlan_mac_push_new_cmd(bp, p);
if (rc)
return rc;
}
/*
* If nothing will be executed further in this iteration we want to
* return PENDING if there are pending commands
*/
if (!bnx2x_exe_queue_empty(&o->exe_queue))
rc = 1;
if (test_bit(RAMROD_DRV_CLR_ONLY, ramrod_flags)) {
DP(BNX2X_MSG_SP, "RAMROD_DRV_CLR_ONLY requested: clearing a pending bit.\n");
raw->clear_pending(raw);
}
/* Execute commands if required */
if (cont || test_bit(RAMROD_EXEC, ramrod_flags) ||
test_bit(RAMROD_COMP_WAIT, ramrod_flags)) {
rc = bnx2x_exe_queue_step(bp, &o->exe_queue, ramrod_flags);
if (rc < 0)
return rc;
}
/*
* RAMROD_COMP_WAIT is a superset of RAMROD_EXEC. If it was set
* then user want to wait until the last command is done.
*/
if (test_bit(RAMROD_COMP_WAIT, &p->ramrod_flags)) {
/*
* Wait maximum for the current exe_queue length iterations plus
* one (for the current pending command).
*/
int max_iterations = bnx2x_exe_queue_length(&o->exe_queue) + 1;
while (!bnx2x_exe_queue_empty(&o->exe_queue) &&
max_iterations--) {
/* Wait for the current command to complete */
rc = raw->wait_comp(bp, raw);
if (rc)
return rc;
/* Make a next step */
rc = bnx2x_exe_queue_step(bp, &o->exe_queue,
ramrod_flags);
if (rc < 0)
return rc;
}
return 0;
}
return rc;
}
/**
* bnx2x_vlan_mac_del_all - delete elements with given vlan_mac_flags spec
*
* @bp: device handle
* @o:
* @vlan_mac_flags:
* @ramrod_flags: execution flags to be used for this deletion
*
* if the last operation has completed successfully and there are no
* moreelements left, positive value if the last operation has completed
* successfully and there are more previously configured elements, negative
* value is current operation has failed.
*/
static int bnx2x_vlan_mac_del_all(struct bnx2x *bp,
struct bnx2x_vlan_mac_obj *o,
unsigned long *vlan_mac_flags,
unsigned long *ramrod_flags)
{
struct bnx2x_vlan_mac_registry_elem *pos = NULL;
int rc = 0;
struct bnx2x_vlan_mac_ramrod_params p;
struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
struct bnx2x_exeq_elem *exeq_pos, *exeq_pos_n;
/* Clear pending commands first */
spin_lock_bh(&exeq->lock);
list_for_each_entry_safe(exeq_pos, exeq_pos_n, &exeq->exe_queue, link) {
if (exeq_pos->cmd_data.vlan_mac.vlan_mac_flags ==
*vlan_mac_flags) {
rc = exeq->remove(bp, exeq->owner, exeq_pos);
if (rc) {
BNX2X_ERR("Failed to remove command\n");
spin_unlock_bh(&exeq->lock);
return rc;
}
list_del(&exeq_pos->link);
}
}
spin_unlock_bh(&exeq->lock);
/* Prepare a command request */
memset(&p, 0, sizeof(p));
p.vlan_mac_obj = o;
p.ramrod_flags = *ramrod_flags;
p.user_req.cmd = BNX2X_VLAN_MAC_DEL;
/*
* Add all but the last VLAN-MAC to the execution queue without actually
* execution anything.
*/
__clear_bit(RAMROD_COMP_WAIT, &p.ramrod_flags);
__clear_bit(RAMROD_EXEC, &p.ramrod_flags);
__clear_bit(RAMROD_CONT, &p.ramrod_flags);
list_for_each_entry(pos, &o->head, link) {
if (pos->vlan_mac_flags == *vlan_mac_flags) {
p.user_req.vlan_mac_flags = pos->vlan_mac_flags;
memcpy(&p.user_req.u, &pos->u, sizeof(pos->u));
rc = bnx2x_config_vlan_mac(bp, &p);
if (rc < 0) {
BNX2X_ERR("Failed to add a new DEL command\n");
return rc;
}
}
}
p.ramrod_flags = *ramrod_flags;
__set_bit(RAMROD_CONT, &p.ramrod_flags);
return bnx2x_config_vlan_mac(bp, &p);
}
static inline void bnx2x_init_raw_obj(struct bnx2x_raw_obj *raw, u8 cl_id,
u32 cid, u8 func_id, void *rdata, dma_addr_t rdata_mapping, int state,
unsigned long *pstate, bnx2x_obj_type type)
{
raw->func_id = func_id;
raw->cid = cid;
raw->cl_id = cl_id;
raw->rdata = rdata;
raw->rdata_mapping = rdata_mapping;
raw->state = state;
raw->pstate = pstate;
raw->obj_type = type;
raw->check_pending = bnx2x_raw_check_pending;
raw->clear_pending = bnx2x_raw_clear_pending;
raw->set_pending = bnx2x_raw_set_pending;
raw->wait_comp = bnx2x_raw_wait;
}
static inline void bnx2x_init_vlan_mac_common(struct bnx2x_vlan_mac_obj *o,
u8 cl_id, u32 cid, u8 func_id, void *rdata, dma_addr_t rdata_mapping,
int state, unsigned long *pstate, bnx2x_obj_type type,
struct bnx2x_credit_pool_obj *macs_pool,
struct bnx2x_credit_pool_obj *vlans_pool)
{
INIT_LIST_HEAD(&o->head);
o->macs_pool = macs_pool;
o->vlans_pool = vlans_pool;
o->delete_all = bnx2x_vlan_mac_del_all;
o->restore = bnx2x_vlan_mac_restore;
o->complete = bnx2x_complete_vlan_mac;
o->wait = bnx2x_wait_vlan_mac;
bnx2x_init_raw_obj(&o->raw, cl_id, cid, func_id, rdata, rdata_mapping,
state, pstate, type);
}
void bnx2x_init_mac_obj(struct bnx2x *bp,
struct bnx2x_vlan_mac_obj *mac_obj,
u8 cl_id, u32 cid, u8 func_id, void *rdata,
dma_addr_t rdata_mapping, int state,
unsigned long *pstate, bnx2x_obj_type type,
struct bnx2x_credit_pool_obj *macs_pool)
{
union bnx2x_qable_obj *qable_obj = (union bnx2x_qable_obj *)mac_obj;
bnx2x_init_vlan_mac_common(mac_obj, cl_id, cid, func_id, rdata,
rdata_mapping, state, pstate, type,
macs_pool, NULL);
/* CAM credit pool handling */
mac_obj->get_credit = bnx2x_get_credit_mac;
mac_obj->put_credit = bnx2x_put_credit_mac;
mac_obj->get_cam_offset = bnx2x_get_cam_offset_mac;
mac_obj->put_cam_offset = bnx2x_put_cam_offset_mac;
if (CHIP_IS_E1x(bp)) {
mac_obj->set_one_rule = bnx2x_set_one_mac_e1x;
mac_obj->check_del = bnx2x_check_mac_del;
mac_obj->check_add = bnx2x_check_mac_add;
mac_obj->check_move = bnx2x_check_move_always_err;
mac_obj->ramrod_cmd = RAMROD_CMD_ID_ETH_SET_MAC;
/* Exe Queue */
bnx2x_exe_queue_init(bp,
&mac_obj->exe_queue, 1, qable_obj,
bnx2x_validate_vlan_mac,
bnx2x_remove_vlan_mac,
bnx2x_optimize_vlan_mac,
bnx2x_execute_vlan_mac,
bnx2x_exeq_get_mac);
} else {
mac_obj->set_one_rule = bnx2x_set_one_mac_e2;
mac_obj->check_del = bnx2x_check_mac_del;
mac_obj->check_add = bnx2x_check_mac_add;
mac_obj->check_move = bnx2x_check_move;
mac_obj->ramrod_cmd =
RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES;
mac_obj->get_n_elements = bnx2x_get_n_elements;
/* Exe Queue */
bnx2x_exe_queue_init(bp,
&mac_obj->exe_queue, CLASSIFY_RULES_COUNT,
qable_obj, bnx2x_validate_vlan_mac,
bnx2x_remove_vlan_mac,
bnx2x_optimize_vlan_mac,
bnx2x_execute_vlan_mac,
bnx2x_exeq_get_mac);
}
}
void bnx2x_init_vlan_obj(struct bnx2x *bp,
struct bnx2x_vlan_mac_obj *vlan_obj,
u8 cl_id, u32 cid, u8 func_id, void *rdata,
dma_addr_t rdata_mapping, int state,
unsigned long *pstate, bnx2x_obj_type type,
struct bnx2x_credit_pool_obj *vlans_pool)
{
union bnx2x_qable_obj *qable_obj = (union bnx2x_qable_obj *)vlan_obj;
bnx2x_init_vlan_mac_common(vlan_obj, cl_id, cid, func_id, rdata,
rdata_mapping, state, pstate, type, NULL,
vlans_pool);
vlan_obj->get_credit = bnx2x_get_credit_vlan;
vlan_obj->put_credit = bnx2x_put_credit_vlan;
vlan_obj->get_cam_offset = bnx2x_get_cam_offset_vlan;
vlan_obj->put_cam_offset = bnx2x_put_cam_offset_vlan;
if (CHIP_IS_E1x(bp)) {
BNX2X_ERR("Do not support chips others than E2 and newer\n");
BUG();
} else {
vlan_obj->set_one_rule = bnx2x_set_one_vlan_e2;
vlan_obj->check_del = bnx2x_check_vlan_del;
vlan_obj->check_add = bnx2x_check_vlan_add;
vlan_obj->check_move = bnx2x_check_move;
vlan_obj->ramrod_cmd =
RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES;
/* Exe Queue */
bnx2x_exe_queue_init(bp,
&vlan_obj->exe_queue, CLASSIFY_RULES_COUNT,
qable_obj, bnx2x_validate_vlan_mac,
bnx2x_remove_vlan_mac,
bnx2x_optimize_vlan_mac,
bnx2x_execute_vlan_mac,
bnx2x_exeq_get_vlan);
}
}
void bnx2x_init_vlan_mac_obj(struct bnx2x *bp,
struct bnx2x_vlan_mac_obj *vlan_mac_obj,
u8 cl_id, u32 cid, u8 func_id, void *rdata,
dma_addr_t rdata_mapping, int state,
unsigned long *pstate, bnx2x_obj_type type,
struct bnx2x_credit_pool_obj *macs_pool,
struct bnx2x_credit_pool_obj *vlans_pool)
{
union bnx2x_qable_obj *qable_obj =
(union bnx2x_qable_obj *)vlan_mac_obj;
bnx2x_init_vlan_mac_common(vlan_mac_obj, cl_id, cid, func_id, rdata,
rdata_mapping, state, pstate, type,
macs_pool, vlans_pool);
/* CAM pool handling */
vlan_mac_obj->get_credit = bnx2x_get_credit_vlan_mac;
vlan_mac_obj->put_credit = bnx2x_put_credit_vlan_mac;
/*
* CAM offset is relevant for 57710 and 57711 chips only which have a
* single CAM for both MACs and VLAN-MAC pairs. So the offset
* will be taken from MACs' pool object only.
*/
vlan_mac_obj->get_cam_offset = bnx2x_get_cam_offset_mac;
vlan_mac_obj->put_cam_offset = bnx2x_put_cam_offset_mac;
if (CHIP_IS_E1(bp)) {
BNX2X_ERR("Do not support chips others than E2\n");
BUG();
} else if (CHIP_IS_E1H(bp)) {
vlan_mac_obj->set_one_rule = bnx2x_set_one_vlan_mac_e1h;
vlan_mac_obj->check_del = bnx2x_check_vlan_mac_del;
vlan_mac_obj->check_add = bnx2x_check_vlan_mac_add;
vlan_mac_obj->check_move = bnx2x_check_move_always_err;
vlan_mac_obj->ramrod_cmd = RAMROD_CMD_ID_ETH_SET_MAC;
/* Exe Queue */
bnx2x_exe_queue_init(bp,
&vlan_mac_obj->exe_queue, 1, qable_obj,
bnx2x_validate_vlan_mac,
bnx2x_remove_vlan_mac,
bnx2x_optimize_vlan_mac,
bnx2x_execute_vlan_mac,
bnx2x_exeq_get_vlan_mac);
} else {
vlan_mac_obj->set_one_rule = bnx2x_set_one_vlan_mac_e2;
vlan_mac_obj->check_del = bnx2x_check_vlan_mac_del;
vlan_mac_obj->check_add = bnx2x_check_vlan_mac_add;
vlan_mac_obj->check_move = bnx2x_check_move;
vlan_mac_obj->ramrod_cmd =
RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES;
/* Exe Queue */
bnx2x_exe_queue_init(bp,
&vlan_mac_obj->exe_queue,
CLASSIFY_RULES_COUNT,
qable_obj, bnx2x_validate_vlan_mac,
bnx2x_remove_vlan_mac,
bnx2x_optimize_vlan_mac,
bnx2x_execute_vlan_mac,
bnx2x_exeq_get_vlan_mac);
}
}
/* RX_MODE verbs: DROP_ALL/ACCEPT_ALL/ACCEPT_ALL_MULTI/ACCEPT_ALL_VLAN/NORMAL */
static inline void __storm_memset_mac_filters(struct bnx2x *bp,
struct tstorm_eth_mac_filter_config *mac_filters,
u16 pf_id)
{
size_t size = sizeof(struct tstorm_eth_mac_filter_config);
u32 addr = BAR_TSTRORM_INTMEM +
TSTORM_MAC_FILTER_CONFIG_OFFSET(pf_id);
__storm_memset_struct(bp, addr, size, (u32 *)mac_filters);
}
static int bnx2x_set_rx_mode_e1x(struct bnx2x *bp,
struct bnx2x_rx_mode_ramrod_params *p)
{
/* update the bp MAC filter structure */
u32 mask = (1 << p->cl_id);
struct tstorm_eth_mac_filter_config *mac_filters =
(struct tstorm_eth_mac_filter_config *)p->rdata;
/* initial seeting is drop-all */
u8 drop_all_ucast = 1, drop_all_mcast = 1;
u8 accp_all_ucast = 0, accp_all_bcast = 0, accp_all_mcast = 0;
u8 unmatched_unicast = 0;
/* In e1x there we only take into account rx acceot flag since tx switching
* isn't enabled. */
if (test_bit(BNX2X_ACCEPT_UNICAST, &p->rx_accept_flags))
/* accept matched ucast */
drop_all_ucast = 0;
if (test_bit(BNX2X_ACCEPT_MULTICAST, &p->rx_accept_flags))
/* accept matched mcast */
drop_all_mcast = 0;
if (test_bit(BNX2X_ACCEPT_ALL_UNICAST, &p->rx_accept_flags)) {
/* accept all mcast */
drop_all_ucast = 0;
accp_all_ucast = 1;
}
if (test_bit(BNX2X_ACCEPT_ALL_MULTICAST, &p->rx_accept_flags)) {
/* accept all mcast */
drop_all_mcast = 0;
accp_all_mcast = 1;
}
if (test_bit(BNX2X_ACCEPT_BROADCAST, &p->rx_accept_flags))
/* accept (all) bcast */
accp_all_bcast = 1;
if (test_bit(BNX2X_ACCEPT_UNMATCHED, &p->rx_accept_flags))
/* accept unmatched unicasts */
unmatched_unicast = 1;
mac_filters->ucast_drop_all = drop_all_ucast ?
mac_filters->ucast_drop_all | mask :
mac_filters->ucast_drop_all & ~mask;
mac_filters->mcast_drop_all = drop_all_mcast ?
mac_filters->mcast_drop_all | mask :
mac_filters->mcast_drop_all & ~mask;
mac_filters->ucast_accept_all = accp_all_ucast ?
mac_filters->ucast_accept_all | mask :
mac_filters->ucast_accept_all & ~mask;
mac_filters->mcast_accept_all = accp_all_mcast ?
mac_filters->mcast_accept_all | mask :
mac_filters->mcast_accept_all & ~mask;
mac_filters->bcast_accept_all = accp_all_bcast ?
mac_filters->bcast_accept_all | mask :
mac_filters->bcast_accept_all & ~mask;
mac_filters->unmatched_unicast = unmatched_unicast ?
mac_filters->unmatched_unicast | mask :
mac_filters->unmatched_unicast & ~mask;
DP(BNX2X_MSG_SP, "drop_ucast 0x%x\ndrop_mcast 0x%x\n accp_ucast 0x%x\n"
"accp_mcast 0x%x\naccp_bcast 0x%x\n",
mac_filters->ucast_drop_all, mac_filters->mcast_drop_all,
mac_filters->ucast_accept_all, mac_filters->mcast_accept_all,
mac_filters->bcast_accept_all);
/* write the MAC filter structure*/
__storm_memset_mac_filters(bp, mac_filters, p->func_id);
/* The operation is completed */
clear_bit(p->state, p->pstate);
smp_mb__after_clear_bit();
return 0;
}
/* Setup ramrod data */
static inline void bnx2x_rx_mode_set_rdata_hdr_e2(u32 cid,
struct eth_classify_header *hdr,
u8 rule_cnt)
{
hdr->echo = cid;
hdr->rule_cnt = rule_cnt;
}
static inline void bnx2x_rx_mode_set_cmd_state_e2(struct bnx2x *bp,
unsigned long accept_flags,
struct eth_filter_rules_cmd *cmd,
bool clear_accept_all)
{
u16 state;
/* start with 'drop-all' */
state = ETH_FILTER_RULES_CMD_UCAST_DROP_ALL |
ETH_FILTER_RULES_CMD_MCAST_DROP_ALL;
if (accept_flags) {
if (test_bit(BNX2X_ACCEPT_UNICAST, &accept_flags))
state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL;
if (test_bit(BNX2X_ACCEPT_MULTICAST, &accept_flags))
state &= ~ETH_FILTER_RULES_CMD_MCAST_DROP_ALL;
if (test_bit(BNX2X_ACCEPT_ALL_UNICAST, &accept_flags)) {
state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL;
state |= ETH_FILTER_RULES_CMD_UCAST_ACCEPT_ALL;
}
if (test_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags)) {
state |= ETH_FILTER_RULES_CMD_MCAST_ACCEPT_ALL;
state &= ~ETH_FILTER_RULES_CMD_MCAST_DROP_ALL;
}
if (test_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags))
state |= ETH_FILTER_RULES_CMD_BCAST_ACCEPT_ALL;
if (test_bit(BNX2X_ACCEPT_UNMATCHED, &accept_flags)) {
state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL;
state |= ETH_FILTER_RULES_CMD_UCAST_ACCEPT_UNMATCHED;
}
if (test_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags))
state |= ETH_FILTER_RULES_CMD_ACCEPT_ANY_VLAN;
}
/* Clear ACCEPT_ALL_XXX flags for FCoE L2 Queue */
if (clear_accept_all) {
state &= ~ETH_FILTER_RULES_CMD_MCAST_ACCEPT_ALL;
state &= ~ETH_FILTER_RULES_CMD_BCAST_ACCEPT_ALL;
state &= ~ETH_FILTER_RULES_CMD_UCAST_ACCEPT_ALL;
state &= ~ETH_FILTER_RULES_CMD_UCAST_ACCEPT_UNMATCHED;
}
cmd->state = cpu_to_le16(state);
}
static int bnx2x_set_rx_mode_e2(struct bnx2x *bp,
struct bnx2x_rx_mode_ramrod_params *p)
{
struct eth_filter_rules_ramrod_data *data = p->rdata;
int rc;
u8 rule_idx = 0;
/* Reset the ramrod data buffer */
memset(data, 0, sizeof(*data));
/* Setup ramrod data */
/* Tx (internal switching) */
if (test_bit(RAMROD_TX, &p->ramrod_flags)) {
data->rules[rule_idx].client_id = p->cl_id;
data->rules[rule_idx].func_id = p->func_id;
data->rules[rule_idx].cmd_general_data =
ETH_FILTER_RULES_CMD_TX_CMD;
bnx2x_rx_mode_set_cmd_state_e2(bp, p->tx_accept_flags,
&(data->rules[rule_idx++]), false);
}
/* Rx */
if (test_bit(RAMROD_RX, &p->ramrod_flags)) {
data->rules[rule_idx].client_id = p->cl_id;
data->rules[rule_idx].func_id = p->func_id;
data->rules[rule_idx].cmd_general_data =
ETH_FILTER_RULES_CMD_RX_CMD;
bnx2x_rx_mode_set_cmd_state_e2(bp, p->rx_accept_flags,
&(data->rules[rule_idx++]), false);
}
/*
* If FCoE Queue configuration has been requested configure the Rx and
* internal switching modes for this queue in separate rules.
*
* FCoE queue shell never be set to ACCEPT_ALL packets of any sort:
* MCAST_ALL, UCAST_ALL, BCAST_ALL and UNMATCHED.
*/
if (test_bit(BNX2X_RX_MODE_FCOE_ETH, &p->rx_mode_flags)) {
/* Tx (internal switching) */
if (test_bit(RAMROD_TX, &p->ramrod_flags)) {
data->rules[rule_idx].client_id = bnx2x_fcoe(bp, cl_id);
data->rules[rule_idx].func_id = p->func_id;
data->rules[rule_idx].cmd_general_data =
ETH_FILTER_RULES_CMD_TX_CMD;
bnx2x_rx_mode_set_cmd_state_e2(bp, p->tx_accept_flags,
&(data->rules[rule_idx++]),
true);
}
/* Rx */
if (test_bit(RAMROD_RX, &p->ramrod_flags)) {
data->rules[rule_idx].client_id = bnx2x_fcoe(bp, cl_id);
data->rules[rule_idx].func_id = p->func_id;
data->rules[rule_idx].cmd_general_data =
ETH_FILTER_RULES_CMD_RX_CMD;
bnx2x_rx_mode_set_cmd_state_e2(bp, p->rx_accept_flags,
&(data->rules[rule_idx++]),
true);
}
}
/*
* Set the ramrod header (most importantly - number of rules to
* configure).
*/
bnx2x_rx_mode_set_rdata_hdr_e2(p->cid, &data->header, rule_idx);
DP(BNX2X_MSG_SP, "About to configure %d rules, rx_accept_flags 0x%lx, tx_accept_flags 0x%lx\n",
data->header.rule_cnt, p->rx_accept_flags,
p->tx_accept_flags);
/*
* No need for an explicit memory barrier here as long we would
* need to ensure the ordering of writing to the SPQ element
* and updating of the SPQ producer which involves a memory
* read and we will have to put a full memory barrier there
* (inside bnx2x_sp_post()).
*/
/* Send a ramrod */
rc = bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_FILTER_RULES, p->cid,
U64_HI(p->rdata_mapping),
U64_LO(p->rdata_mapping),
ETH_CONNECTION_TYPE);
if (rc)
return rc;
/* Ramrod completion is pending */
return 1;
}
static int bnx2x_wait_rx_mode_comp_e2(struct bnx2x *bp,
struct bnx2x_rx_mode_ramrod_params *p)
{
return bnx2x_state_wait(bp, p->state, p->pstate);
}
static int bnx2x_empty_rx_mode_wait(struct bnx2x *bp,
struct bnx2x_rx_mode_ramrod_params *p)
{
/* Do nothing */
return 0;
}
int bnx2x_config_rx_mode(struct bnx2x *bp,
struct bnx2x_rx_mode_ramrod_params *p)
{
int rc;
/* Configure the new classification in the chip */
rc = p->rx_mode_obj->config_rx_mode(bp, p);
if (rc < 0)
return rc;
/* Wait for a ramrod completion if was requested */
if (test_bit(RAMROD_COMP_WAIT, &p->ramrod_flags)) {
rc = p->rx_mode_obj->wait_comp(bp, p);
if (rc)
return rc;
}
return rc;
}
void bnx2x_init_rx_mode_obj(struct bnx2x *bp,
struct bnx2x_rx_mode_obj *o)
{
if (CHIP_IS_E1x(bp)) {
o->wait_comp = bnx2x_empty_rx_mode_wait;
o->config_rx_mode = bnx2x_set_rx_mode_e1x;
} else {
o->wait_comp = bnx2x_wait_rx_mode_comp_e2;
o->config_rx_mode = bnx2x_set_rx_mode_e2;
}
}
/********************* Multicast verbs: SET, CLEAR ****************************/
static inline u8 bnx2x_mcast_bin_from_mac(u8 *mac)
{
return (crc32c_le(0, mac, ETH_ALEN) >> 24) & 0xff;
}
struct bnx2x_mcast_mac_elem {
struct list_head link;
u8 mac[ETH_ALEN];
u8 pad[2]; /* For a natural alignment of the following buffer */
};
struct bnx2x_pending_mcast_cmd {
struct list_head link;
int type; /* BNX2X_MCAST_CMD_X */
union {
struct list_head macs_head;
u32 macs_num; /* Needed for DEL command */
int next_bin; /* Needed for RESTORE flow with aprox match */
} data;
bool done; /* set to true, when the command has been handled,
* practically used in 57712 handling only, where one pending
* command may be handled in a few operations. As long as for
* other chips every operation handling is completed in a
* single ramrod, there is no need to utilize this field.
*/
};
static int bnx2x_mcast_wait(struct bnx2x *bp,
struct bnx2x_mcast_obj *o)
{
if (bnx2x_state_wait(bp, o->sched_state, o->raw.pstate) ||
o->raw.wait_comp(bp, &o->raw))
return -EBUSY;
return 0;
}
static int bnx2x_mcast_enqueue_cmd(struct bnx2x *bp,
struct bnx2x_mcast_obj *o,
struct bnx2x_mcast_ramrod_params *p,
int cmd)
{
int total_sz;
struct bnx2x_pending_mcast_cmd *new_cmd;
struct bnx2x_mcast_mac_elem *cur_mac = NULL;
struct bnx2x_mcast_list_elem *pos;
int macs_list_len = ((cmd == BNX2X_MCAST_CMD_ADD) ?
p->mcast_list_len : 0);
/* If the command is empty ("handle pending commands only"), break */
if (!p->mcast_list_len)
return 0;
total_sz = sizeof(*new_cmd) +
macs_list_len * sizeof(struct bnx2x_mcast_mac_elem);
/* Add mcast is called under spin_lock, thus calling with GFP_ATOMIC */
new_cmd = kzalloc(total_sz, GFP_ATOMIC);
if (!new_cmd)
return -ENOMEM;
DP(BNX2X_MSG_SP, "About to enqueue a new %d command. macs_list_len=%d\n",
cmd, macs_list_len);
INIT_LIST_HEAD(&new_cmd->data.macs_head);
new_cmd->type = cmd;
new_cmd->done = false;
switch (cmd) {
case BNX2X_MCAST_CMD_ADD:
cur_mac = (struct bnx2x_mcast_mac_elem *)
((u8 *)new_cmd + sizeof(*new_cmd));
/* Push the MACs of the current command into the pendig command
* MACs list: FIFO
*/
list_for_each_entry(pos, &p->mcast_list, link) {
memcpy(cur_mac->mac, pos->mac, ETH_ALEN);
list_add_tail(&cur_mac->link, &new_cmd->data.macs_head);
cur_mac++;
}
break;
case BNX2X_MCAST_CMD_DEL:
new_cmd->data.macs_num = p->mcast_list_len;
break;
case BNX2X_MCAST_CMD_RESTORE:
new_cmd->data.next_bin = 0;
break;
default:
BNX2X_ERR("Unknown command: %d\n", cmd);
return -EINVAL;
}
/* Push the new pending command to the tail of the pending list: FIFO */
list_add_tail(&new_cmd->link, &o->pending_cmds_head);
o->set_sched(o);
return 1;
}
/**
* bnx2x_mcast_get_next_bin - get the next set bin (index)
*
* @o:
* @last: index to start looking from (including)
*
* returns the next found (set) bin or a negative value if none is found.
*/
static inline int bnx2x_mcast_get_next_bin(struct bnx2x_mcast_obj *o, int last)
{
int i, j, inner_start = last % BIT_VEC64_ELEM_SZ;
for (i = last / BIT_VEC64_ELEM_SZ; i < BNX2X_MCAST_VEC_SZ; i++) {
if (o->registry.aprox_match.vec[i])
for (j = inner_start; j < BIT_VEC64_ELEM_SZ; j++) {
int cur_bit = j + BIT_VEC64_ELEM_SZ * i;
if (BIT_VEC64_TEST_BIT(o->registry.aprox_match.
vec, cur_bit)) {
return cur_bit;
}
}
inner_start = 0;
}
/* None found */
return -1;
}
/**
* bnx2x_mcast_clear_first_bin - find the first set bin and clear it
*
* @o:
*
* returns the index of the found bin or -1 if none is found
*/
static inline int bnx2x_mcast_clear_first_bin(struct bnx2x_mcast_obj *o)
{
int cur_bit = bnx2x_mcast_get_next_bin(o, 0);
if (cur_bit >= 0)
BIT_VEC64_CLEAR_BIT(o->registry.aprox_match.vec, cur_bit);
return cur_bit;
}
static inline u8 bnx2x_mcast_get_rx_tx_flag(struct bnx2x_mcast_obj *o)
{
struct bnx2x_raw_obj *raw = &o->raw;
u8 rx_tx_flag = 0;
if ((raw->obj_type == BNX2X_OBJ_TYPE_TX) ||
(raw->obj_type == BNX2X_OBJ_TYPE_RX_TX))
rx_tx_flag |= ETH_MULTICAST_RULES_CMD_TX_CMD;
if ((raw->obj_type == BNX2X_OBJ_TYPE_RX) ||
(raw->obj_type == BNX2X_OBJ_TYPE_RX_TX))
rx_tx_flag |= ETH_MULTICAST_RULES_CMD_RX_CMD;
return rx_tx_flag;
}
static void bnx2x_mcast_set_one_rule_e2(struct bnx2x *bp,
struct bnx2x_mcast_obj *o, int idx,
union bnx2x_mcast_config_data *cfg_data,
int cmd)
{
struct bnx2x_raw_obj *r = &o->raw;
struct eth_multicast_rules_ramrod_data *data =
(struct eth_multicast_rules_ramrod_data *)(r->rdata);
u8 func_id = r->func_id;
u8 rx_tx_add_flag = bnx2x_mcast_get_rx_tx_flag(o);
int bin;
if ((cmd == BNX2X_MCAST_CMD_ADD) || (cmd == BNX2X_MCAST_CMD_RESTORE))
rx_tx_add_flag |= ETH_MULTICAST_RULES_CMD_IS_ADD;
data->rules[idx].cmd_general_data |= rx_tx_add_flag;
/* Get a bin and update a bins' vector */
switch (cmd) {
case BNX2X_MCAST_CMD_ADD:
bin = bnx2x_mcast_bin_from_mac(cfg_data->mac);
BIT_VEC64_SET_BIT(o->registry.aprox_match.vec, bin);
break;
case BNX2X_MCAST_CMD_DEL:
/* If there were no more bins to clear
* (bnx2x_mcast_clear_first_bin() returns -1) then we would
* clear any (0xff) bin.
* See bnx2x_mcast_validate_e2() for explanation when it may
* happen.
*/
bin = bnx2x_mcast_clear_first_bin(o);
break;
case BNX2X_MCAST_CMD_RESTORE:
bin = cfg_data->bin;
break;
default:
BNX2X_ERR("Unknown command: %d\n", cmd);
return;
}
DP(BNX2X_MSG_SP, "%s bin %d\n",
((rx_tx_add_flag & ETH_MULTICAST_RULES_CMD_IS_ADD) ?
"Setting" : "Clearing"), bin);
data->rules[idx].bin_id = (u8)bin;
data->rules[idx].func_id = func_id;
data->rules[idx].engine_id = o->engine_id;
}
/**
* bnx2x_mcast_handle_restore_cmd_e2 - restore configuration from the registry
*
* @bp: device handle
* @o:
* @start_bin: index in the registry to start from (including)
* @rdata_idx: index in the ramrod data to start from
*
* returns last handled bin index or -1 if all bins have been handled
*/
static inline int bnx2x_mcast_handle_restore_cmd_e2(
struct bnx2x *bp, struct bnx2x_mcast_obj *o , int start_bin,
int *rdata_idx)
{
int cur_bin, cnt = *rdata_idx;
union bnx2x_mcast_config_data cfg_data = {0};
/* go through the registry and configure the bins from it */
for (cur_bin = bnx2x_mcast_get_next_bin(o, start_bin); cur_bin >= 0;
cur_bin = bnx2x_mcast_get_next_bin(o, cur_bin + 1)) {
cfg_data.bin = (u8)cur_bin;
o->set_one_rule(bp, o, cnt, &cfg_data,
BNX2X_MCAST_CMD_RESTORE);
cnt++;
DP(BNX2X_MSG_SP, "About to configure a bin %d\n", cur_bin);
/* Break if we reached the maximum number
* of rules.
*/
if (cnt >= o->max_cmd_len)
break;
}
*rdata_idx = cnt;
return cur_bin;
}
static inline void bnx2x_mcast_hdl_pending_add_e2(struct bnx2x *bp,
struct bnx2x_mcast_obj *o, struct bnx2x_pending_mcast_cmd *cmd_pos,
int *line_idx)
{
struct bnx2x_mcast_mac_elem *pmac_pos, *pmac_pos_n;
int cnt = *line_idx;
union bnx2x_mcast_config_data cfg_data = {0};
list_for_each_entry_safe(pmac_pos, pmac_pos_n, &cmd_pos->data.macs_head,
link) {
cfg_data.mac = &pmac_pos->mac[0];
o->set_one_rule(bp, o, cnt, &cfg_data, cmd_pos->type);
cnt++;
DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC\n",
pmac_pos->mac);
list_del(&pmac_pos->link);
/* Break if we reached the maximum number
* of rules.
*/
if (cnt >= o->max_cmd_len)
break;
}
*line_idx = cnt;
/* if no more MACs to configure - we are done */
if (list_empty(&cmd_pos->data.macs_head))
cmd_pos->done = true;
}
static inline void bnx2x_mcast_hdl_pending_del_e2(struct bnx2x *bp,
struct bnx2x_mcast_obj *o, struct bnx2x_pending_mcast_cmd *cmd_pos,
int *line_idx)
{
int cnt = *line_idx;
while (cmd_pos->data.macs_num) {
o->set_one_rule(bp, o, cnt, NULL, cmd_pos->type);
cnt++;
cmd_pos->data.macs_num--;
DP(BNX2X_MSG_SP, "Deleting MAC. %d left,cnt is %d\n",
cmd_pos->data.macs_num, cnt);
/* Break if we reached the maximum
* number of rules.
*/
if (cnt >= o->max_cmd_len)
break;
}
*line_idx = cnt;
/* If we cleared all bins - we are done */
if (!cmd_pos->data.macs_num)
cmd_pos->done = true;
}
static inline void bnx2x_mcast_hdl_pending_restore_e2(struct bnx2x *bp,
struct bnx2x_mcast_obj *o, struct bnx2x_pending_mcast_cmd *cmd_pos,
int *line_idx)
{
cmd_pos->data.next_bin = o->hdl_restore(bp, o, cmd_pos->data.next_bin,
line_idx);
if (cmd_pos->data.next_bin < 0)
/* If o->set_restore returned -1 we are done */
cmd_pos->done = true;
else
/* Start from the next bin next time */
cmd_pos->data.next_bin++;
}
static inline int bnx2x_mcast_handle_pending_cmds_e2(struct bnx2x *bp,
struct bnx2x_mcast_ramrod_params *p)
{
struct bnx2x_pending_mcast_cmd *cmd_pos, *cmd_pos_n;
int cnt = 0;
struct bnx2x_mcast_obj *o = p->mcast_obj;
list_for_each_entry_safe(cmd_pos, cmd_pos_n, &o->pending_cmds_head,
link) {
switch (cmd_pos->type) {
case BNX2X_MCAST_CMD_ADD:
bnx2x_mcast_hdl_pending_add_e2(bp, o, cmd_pos, &cnt);
break;
case BNX2X_MCAST_CMD_DEL:
bnx2x_mcast_hdl_pending_del_e2(bp, o, cmd_pos, &cnt);
break;
case BNX2X_MCAST_CMD_RESTORE:
bnx2x_mcast_hdl_pending_restore_e2(bp, o, cmd_pos,
&cnt);
break;
default:
BNX2X_ERR("Unknown command: %d\n", cmd_pos->type);
return -EINVAL;
}
/* If the command has been completed - remove it from the list
* and free the memory
*/
if (cmd_pos->done) {
list_del(&cmd_pos->link);
kfree(cmd_pos);
}
/* Break if we reached the maximum number of rules */
if (cnt >= o->max_cmd_len)
break;
}
return cnt;
}
static inline void bnx2x_mcast_hdl_add(struct bnx2x *bp,
struct bnx2x_mcast_obj *o, struct bnx2x_mcast_ramrod_params *p,
int *line_idx)
{
struct bnx2x_mcast_list_elem *mlist_pos;
union bnx2x_mcast_config_data cfg_data = {0};
int cnt = *line_idx;
list_for_each_entry(mlist_pos, &p->mcast_list, link) {
cfg_data.mac = mlist_pos->mac;
o->set_one_rule(bp, o, cnt, &cfg_data, BNX2X_MCAST_CMD_ADD);
cnt++;
DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC\n",
mlist_pos->mac);
}
*line_idx = cnt;
}
static inline void bnx2x_mcast_hdl_del(struct bnx2x *bp,
struct bnx2x_mcast_obj *o, struct bnx2x_mcast_ramrod_params *p,
int *line_idx)
{
int cnt = *line_idx, i;
for (i = 0; i < p->mcast_list_len; i++) {
o->set_one_rule(bp, o, cnt, NULL, BNX2X_MCAST_CMD_DEL);
cnt++;
DP(BNX2X_MSG_SP, "Deleting MAC. %d left\n",
p->mcast_list_len - i - 1);
}
*line_idx = cnt;
}
/**
* bnx2x_mcast_handle_current_cmd -
*
* @bp: device handle
* @p:
* @cmd:
* @start_cnt: first line in the ramrod data that may be used
*
* This function is called iff there is enough place for the current command in
* the ramrod data.
* Returns number of lines filled in the ramrod data in total.
*/
static inline int bnx2x_mcast_handle_current_cmd(struct bnx2x *bp,
struct bnx2x_mcast_ramrod_params *p, int cmd,
int start_cnt)
{
struct bnx2x_mcast_obj *o = p->mcast_obj;
int cnt = start_cnt;
DP(BNX2X_MSG_SP, "p->mcast_list_len=%d\n", p->mcast_list_len);
switch (cmd) {
case BNX2X_MCAST_CMD_ADD:
bnx2x_mcast_hdl_add(bp, o, p, &cnt);
break;
case BNX2X_MCAST_CMD_DEL:
bnx2x_mcast_hdl_del(bp, o, p, &cnt);
break;
case BNX2X_MCAST_CMD_RESTORE:
o->hdl_restore(bp, o, 0, &cnt);
break;
default:
BNX2X_ERR("Unknown command: %d\n", cmd);
return -EINVAL;
}
/* The current command has been handled */
p->mcast_list_len = 0;
return cnt;
}
static int bnx2x_mcast_validate_e2(struct bnx2x *bp,
struct bnx2x_mcast_ramrod_params *p,
int cmd)
{
struct bnx2x_mcast_obj *o = p->mcast_obj;
int reg_sz = o->get_registry_size(o);
switch (cmd) {
/* DEL command deletes all currently configured MACs */
case BNX2X_MCAST_CMD_DEL:
o->set_registry_size(o, 0);
/* Don't break */
/* RESTORE command will restore the entire multicast configuration */
case BNX2X_MCAST_CMD_RESTORE:
/* Here we set the approximate amount of work to do, which in
* fact may be only less as some MACs in postponed ADD
* command(s) scheduled before this command may fall into
* the same bin and the actual number of bins set in the
* registry would be less than we estimated here. See
* bnx2x_mcast_set_one_rule_e2() for further details.
*/
p->mcast_list_len = reg_sz;
break;
case BNX2X_MCAST_CMD_ADD:
case BNX2X_MCAST_CMD_CONT:
/* Here we assume that all new MACs will fall into new bins.
* However we will correct the real registry size after we
* handle all pending commands.
*/
o->set_registry_size(o, reg_sz + p->mcast_list_len);
break;
default:
BNX2X_ERR("Unknown command: %d\n", cmd);
return -EINVAL;
}
/* Increase the total number of MACs pending to be configured */
o->total_pending_num += p->mcast_list_len;
return 0;
}
static void bnx2x_mcast_revert_e2(struct bnx2x *bp,
struct bnx2x_mcast_ramrod_params *p,
int old_num_bins)
{
struct bnx2x_mcast_obj *o = p->mcast_obj;
o->set_registry_size(o, old_num_bins);
o->total_pending_num -= p->mcast_list_len;
}
/**
* bnx2x_mcast_set_rdata_hdr_e2 - sets a header values
*
* @bp: device handle
* @p:
* @len: number of rules to handle
*/
static inline void bnx2x_mcast_set_rdata_hdr_e2(struct bnx2x *bp,
struct bnx2x_mcast_ramrod_params *p,
u8 len)
{
struct bnx2x_raw_obj *r = &p->mcast_obj->raw;
struct eth_multicast_rules_ramrod_data *data =
(struct eth_multicast_rules_ramrod_data *)(r->rdata);
data->header.echo = ((r->cid & BNX2X_SWCID_MASK) |
(BNX2X_FILTER_MCAST_PENDING << BNX2X_SWCID_SHIFT));
data->header.rule_cnt = len;
}
/**
* bnx2x_mcast_refresh_registry_e2 - recalculate the actual number of set bins
*
* @bp: device handle
* @o:
*
* Recalculate the actual number of set bins in the registry using Brian
* Kernighan's algorithm: it's execution complexity is as a number of set bins.
*
* returns 0 for the compliance with bnx2x_mcast_refresh_registry_e1().
*/
static inline int bnx2x_mcast_refresh_registry_e2(struct bnx2x *bp,
struct bnx2x_mcast_obj *o)
{
int i, cnt = 0;
u64 elem;
for (i = 0; i < BNX2X_MCAST_VEC_SZ; i++) {
elem = o->registry.aprox_match.vec[i];
for (; elem; cnt++)
elem &= elem - 1;
}
o->set_registry_size(o, cnt);
return 0;
}
static int bnx2x_mcast_setup_e2(struct bnx2x *bp,
struct bnx2x_mcast_ramrod_params *p,
int cmd)
{
struct bnx2x_raw_obj *raw = &p->mcast_obj->raw;
struct bnx2x_mcast_obj *o = p->mcast_obj;
struct eth_multicast_rules_ramrod_data *data =
(struct eth_multicast_rules_ramrod_data *)(raw->rdata);
int cnt = 0, rc;
/* Reset the ramrod data buffer */
memset(data, 0, sizeof(*data));
cnt = bnx2x_mcast_handle_pending_cmds_e2(bp, p);
/* If there are no more pending commands - clear SCHEDULED state */
if (list_empty(&o->pending_cmds_head))
o->clear_sched(o);
/* The below may be true iff there was enough room in ramrod
* data for all pending commands and for the current
* command. Otherwise the current command would have been added
* to the pending commands and p->mcast_list_len would have been
* zeroed.
*/
if (p->mcast_list_len > 0)
cnt = bnx2x_mcast_handle_current_cmd(bp, p, cmd, cnt);
/* We've pulled out some MACs - update the total number of
* outstanding.
*/
o->total_pending_num -= cnt;
/* send a ramrod */
WARN_ON(o->total_pending_num < 0);
WARN_ON(cnt > o->max_cmd_len);
bnx2x_mcast_set_rdata_hdr_e2(bp, p, (u8)cnt);
/* Update a registry size if there are no more pending operations.
*
* We don't want to change the value of the registry size if there are
* pending operations because we want it to always be equal to the
* exact or the approximate number (see bnx2x_mcast_validate_e2()) of
* set bins after the last requested operation in order to properly
* evaluate the size of the next DEL/RESTORE operation.
*
* Note that we update the registry itself during command(s) handling
* - see bnx2x_mcast_set_one_rule_e2(). That's because for 57712 we
* aggregate multiple commands (ADD/DEL/RESTORE) into one ramrod but
* with a limited amount of update commands (per MAC/bin) and we don't
* know in this scope what the actual state of bins configuration is
* going to be after this ramrod.
*/
if (!o->total_pending_num)
bnx2x_mcast_refresh_registry_e2(bp, o);
/*
* If CLEAR_ONLY was requested - don't send a ramrod and clear
* RAMROD_PENDING status immediately.
*/
if (test_bit(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
raw->clear_pending(raw);
return 0;
} else {
/*
* No need for an explicit memory barrier here as long we would
* need to ensure the ordering of writing to the SPQ element
* and updating of the SPQ producer which involves a memory
* read and we will have to put a full memory barrier there
* (inside bnx2x_sp_post()).
*/
/* Send a ramrod */
rc = bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_MULTICAST_RULES,
raw->cid, U64_HI(raw->rdata_mapping),
U64_LO(raw->rdata_mapping),
ETH_CONNECTION_TYPE);
if (rc)
return rc;
/* Ramrod completion is pending */
return 1;
}
}
static int bnx2x_mcast_validate_e1h(struct bnx2x *bp,
struct bnx2x_mcast_ramrod_params *p,
int cmd)
{
/* Mark, that there is a work to do */
if ((cmd == BNX2X_MCAST_CMD_DEL) || (cmd == BNX2X_MCAST_CMD_RESTORE))
p->mcast_list_len = 1;
return 0;
}
static void bnx2x_mcast_revert_e1h(struct bnx2x *bp,
struct bnx2x_mcast_ramrod_params *p,
int old_num_bins)
{
/* Do nothing */
}
#define BNX2X_57711_SET_MC_FILTER(filter, bit) \
do { \
(filter)[(bit) >> 5] |= (1 << ((bit) & 0x1f)); \
} while (0)
static inline void bnx2x_mcast_hdl_add_e1h(struct bnx2x *bp,
struct bnx2x_mcast_obj *o,
struct bnx2x_mcast_ramrod_params *p,
u32 *mc_filter)
{
struct bnx2x_mcast_list_elem *mlist_pos;
int bit;
list_for_each_entry(mlist_pos, &p->mcast_list, link) {
bit = bnx2x_mcast_bin_from_mac(mlist_pos->mac);
BNX2X_57711_SET_MC_FILTER(mc_filter, bit);
DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC, bin %d\n",
mlist_pos->mac, bit);
/* bookkeeping... */
BIT_VEC64_SET_BIT(o->registry.aprox_match.vec,
bit);
}
}
static inline void bnx2x_mcast_hdl_restore_e1h(struct bnx2x *bp,
struct bnx2x_mcast_obj *o, struct bnx2x_mcast_ramrod_params *p,
u32 *mc_filter)
{
int bit;
for (bit = bnx2x_mcast_get_next_bin(o, 0);
bit >= 0;
bit = bnx2x_mcast_get_next_bin(o, bit + 1)) {
BNX2X_57711_SET_MC_FILTER(mc_filter, bit);
DP(BNX2X_MSG_SP, "About to set bin %d\n", bit);
}
}
/* On 57711 we write the multicast MACs' aproximate match
* table by directly into the TSTORM's internal RAM. So we don't
* really need to handle any tricks to make it work.
*/
static int bnx2x_mcast_setup_e1h(struct bnx2x *bp,
struct bnx2x_mcast_ramrod_params *p,
int cmd)
{
int i;
struct bnx2x_mcast_obj *o = p->mcast_obj;
struct bnx2x_raw_obj *r = &o->raw;
/* If CLEAR_ONLY has been requested - clear the registry
* and clear a pending bit.
*/
if (!test_bit(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
u32 mc_filter[MC_HASH_SIZE] = {0};
/* Set the multicast filter bits before writing it into
* the internal memory.
*/
switch (cmd) {
case BNX2X_MCAST_CMD_ADD:
bnx2x_mcast_hdl_add_e1h(bp, o, p, mc_filter);
break;
case BNX2X_MCAST_CMD_DEL:
DP(BNX2X_MSG_SP,
"Invalidating multicast MACs configuration\n");
/* clear the registry */
memset(o->registry.aprox_match.vec, 0,
sizeof(o->registry.aprox_match.vec));
break;
case BNX2X_MCAST_CMD_RESTORE:
bnx2x_mcast_hdl_restore_e1h(bp, o, p, mc_filter);
break;
default:
BNX2X_ERR("Unknown command: %d\n", cmd);
return -EINVAL;
}
/* Set the mcast filter in the internal memory */
for (i = 0; i < MC_HASH_SIZE; i++)
REG_WR(bp, MC_HASH_OFFSET(bp, i), mc_filter[i]);
} else
/* clear the registry */
memset(o->registry.aprox_match.vec, 0,
sizeof(o->registry.aprox_match.vec));
/* We are done */
r->clear_pending(r);
return 0;
}
static int bnx2x_mcast_validate_e1(struct bnx2x *bp,
struct bnx2x_mcast_ramrod_params *p,
int cmd)
{
struct bnx2x_mcast_obj *o = p->mcast_obj;
int reg_sz = o->get_registry_size(o);
switch (cmd) {
/* DEL command deletes all currently configured MACs */
case BNX2X_MCAST_CMD_DEL:
o->set_registry_size(o, 0);
/* Don't break */
/* RESTORE command will restore the entire multicast configuration */
case BNX2X_MCAST_CMD_RESTORE:
p->mcast_list_len = reg_sz;
DP(BNX2X_MSG_SP, "Command %d, p->mcast_list_len=%d\n",
cmd, p->mcast_list_len);
break;
case BNX2X_MCAST_CMD_ADD:
case BNX2X_MCAST_CMD_CONT:
/* Multicast MACs on 57710 are configured as unicast MACs and
* there is only a limited number of CAM entries for that
* matter.
*/
if (p->mcast_list_len > o->max_cmd_len) {
BNX2X_ERR("Can't configure more than %d multicast MACs on 57710\n",
o->max_cmd_len);
return -EINVAL;
}
/* Every configured MAC should be cleared if DEL command is
* called. Only the last ADD command is relevant as long as
* every ADD commands overrides the previous configuration.
*/
DP(BNX2X_MSG_SP, "p->mcast_list_len=%d\n", p->mcast_list_len);
if (p->mcast_list_len > 0)
o->set_registry_size(o, p->mcast_list_len);
break;
default:
BNX2X_ERR("Unknown command: %d\n", cmd);
return -EINVAL;
}
/* We want to ensure that commands are executed one by one for 57710.
* Therefore each none-empty command will consume o->max_cmd_len.
*/
if (p->mcast_list_len)
o->total_pending_num += o->max_cmd_len;
return 0;
}
static void bnx2x_mcast_revert_e1(struct bnx2x *bp,
struct bnx2x_mcast_ramrod_params *p,
int old_num_macs)
{
struct bnx2x_mcast_obj *o = p->mcast_obj;
o->set_registry_size(o, old_num_macs);
/* If current command hasn't been handled yet and we are
* here means that it's meant to be dropped and we have to
* update the number of outstandling MACs accordingly.
*/
if (p->mcast_list_len)
o->total_pending_num -= o->max_cmd_len;
}
static void bnx2x_mcast_set_one_rule_e1(struct bnx2x *bp,
struct bnx2x_mcast_obj *o, int idx,
union bnx2x_mcast_config_data *cfg_data,
int cmd)
{
struct bnx2x_raw_obj *r = &o->raw;
struct mac_configuration_cmd *data =
(struct mac_configuration_cmd *)(r->rdata);
/* copy mac */
if ((cmd == BNX2X_MCAST_CMD_ADD) || (cmd == BNX2X_MCAST_CMD_RESTORE)) {
bnx2x_set_fw_mac_addr(&data->config_table[idx].msb_mac_addr,
&data->config_table[idx].middle_mac_addr,
&data->config_table[idx].lsb_mac_addr,
cfg_data->mac);
data->config_table[idx].vlan_id = 0;
data->config_table[idx].pf_id = r->func_id;
data->config_table[idx].clients_bit_vector =
cpu_to_le32(1 << r->cl_id);
SET_FLAG(data->config_table[idx].flags,
MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
T_ETH_MAC_COMMAND_SET);
}
}
/**
* bnx2x_mcast_set_rdata_hdr_e1 - set header values in mac_configuration_cmd
*
* @bp: device handle
* @p:
* @len: number of rules to handle
*/
static inline void bnx2x_mcast_set_rdata_hdr_e1(struct bnx2x *bp,
struct bnx2x_mcast_ramrod_params *p,
u8 len)
{
struct bnx2x_raw_obj *r = &p->mcast_obj->raw;
struct mac_configuration_cmd *data =
(struct mac_configuration_cmd *)(r->rdata);
u8 offset = (CHIP_REV_IS_SLOW(bp) ?
BNX2X_MAX_EMUL_MULTI*(1 + r->func_id) :
BNX2X_MAX_MULTICAST*(1 + r->func_id));
data->hdr.offset = offset;
data->hdr.client_id = 0xff;
data->hdr.echo = ((r->cid & BNX2X_SWCID_MASK) |
(BNX2X_FILTER_MCAST_PENDING << BNX2X_SWCID_SHIFT));
data->hdr.length = len;
}
/**
* bnx2x_mcast_handle_restore_cmd_e1 - restore command for 57710
*
* @bp: device handle
* @o:
* @start_idx: index in the registry to start from
* @rdata_idx: index in the ramrod data to start from
*
* restore command for 57710 is like all other commands - always a stand alone
* command - start_idx and rdata_idx will always be 0. This function will always
* succeed.
* returns -1 to comply with 57712 variant.
*/
static inline int bnx2x_mcast_handle_restore_cmd_e1(
struct bnx2x *bp, struct bnx2x_mcast_obj *o , int start_idx,
int *rdata_idx)
{
struct bnx2x_mcast_mac_elem *elem;
int i = 0;
union bnx2x_mcast_config_data cfg_data = {0};
/* go through the registry and configure the MACs from it. */
list_for_each_entry(elem, &o->registry.exact_match.macs, link) {
cfg_data.mac = &elem->mac[0];
o->set_one_rule(bp, o, i, &cfg_data, BNX2X_MCAST_CMD_RESTORE);
i++;
DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC\n",
cfg_data.mac);
}
*rdata_idx = i;
return -1;
}
static inline int bnx2x_mcast_handle_pending_cmds_e1(
struct bnx2x *bp, struct bnx2x_mcast_ramrod_params *p)
{
struct bnx2x_pending_mcast_cmd *cmd_pos;
struct bnx2x_mcast_mac_elem *pmac_pos;
struct bnx2x_mcast_obj *o = p->mcast_obj;
union bnx2x_mcast_config_data cfg_data = {0};
int cnt = 0;
/* If nothing to be done - return */
if (list_empty(&o->pending_cmds_head))
return 0;
/* Handle the first command */
cmd_pos = list_first_entry(&o->pending_cmds_head,
struct bnx2x_pending_mcast_cmd, link);
switch (cmd_pos->type) {
case BNX2X_MCAST_CMD_ADD:
list_for_each_entry(pmac_pos, &cmd_pos->data.macs_head, link) {
cfg_data.mac = &pmac_pos->mac[0];
o->set_one_rule(bp, o, cnt, &cfg_data, cmd_pos->type);
cnt++;
DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC\n",
pmac_pos->mac);
}
break;
case BNX2X_MCAST_CMD_DEL:
cnt = cmd_pos->data.macs_num;
DP(BNX2X_MSG_SP, "About to delete %d multicast MACs\n", cnt);
break;
case BNX2X_MCAST_CMD_RESTORE:
o->hdl_restore(bp, o, 0, &cnt);
break;
default:
BNX2X_ERR("Unknown command: %d\n", cmd_pos->type);
return -EINVAL;
}
list_del(&cmd_pos->link);
kfree(cmd_pos);
return cnt;
}
/**
* bnx2x_get_fw_mac_addr - revert the bnx2x_set_fw_mac_addr().
*
* @fw_hi:
* @fw_mid:
* @fw_lo:
* @mac:
*/
static inline void bnx2x_get_fw_mac_addr(__le16 *fw_hi, __le16 *fw_mid,
__le16 *fw_lo, u8 *mac)
{
mac[1] = ((u8 *)fw_hi)[0];
mac[0] = ((u8 *)fw_hi)[1];
mac[3] = ((u8 *)fw_mid)[0];
mac[2] = ((u8 *)fw_mid)[1];
mac[5] = ((u8 *)fw_lo)[0];
mac[4] = ((u8 *)fw_lo)[1];
}
/**
* bnx2x_mcast_refresh_registry_e1 -
*
* @bp: device handle
* @cnt:
*
* Check the ramrod data first entry flag to see if it's a DELETE or ADD command
* and update the registry correspondingly: if ADD - allocate a memory and add
* the entries to the registry (list), if DELETE - clear the registry and free
* the memory.
*/
static inline int bnx2x_mcast_refresh_registry_e1(struct bnx2x *bp,
struct bnx2x_mcast_obj *o)
{
struct bnx2x_raw_obj *raw = &o->raw;
struct bnx2x_mcast_mac_elem *elem;
struct mac_configuration_cmd *data =
(struct mac_configuration_cmd *)(raw->rdata);
/* If first entry contains a SET bit - the command was ADD,
* otherwise - DEL_ALL
*/
if (GET_FLAG(data->config_table[0].flags,
MAC_CONFIGURATION_ENTRY_ACTION_TYPE)) {
int i, len = data->hdr.length;
/* Break if it was a RESTORE command */
if (!list_empty(&o->registry.exact_match.macs))
return 0;
elem = kcalloc(len, sizeof(*elem), GFP_ATOMIC);
if (!elem) {
BNX2X_ERR("Failed to allocate registry memory\n");
return -ENOMEM;
}
for (i = 0; i < len; i++, elem++) {
bnx2x_get_fw_mac_addr(
&data->config_table[i].msb_mac_addr,
&data->config_table[i].middle_mac_addr,
&data->config_table[i].lsb_mac_addr,
elem->mac);
DP(BNX2X_MSG_SP, "Adding registry entry for [%pM]\n",
elem->mac);
list_add_tail(&elem->link,
&o->registry.exact_match.macs);
}
} else {
elem = list_first_entry(&o->registry.exact_match.macs,
struct bnx2x_mcast_mac_elem, link);
DP(BNX2X_MSG_SP, "Deleting a registry\n");
kfree(elem);
INIT_LIST_HEAD(&o->registry.exact_match.macs);
}
return 0;
}
static int bnx2x_mcast_setup_e1(struct bnx2x *bp,
struct bnx2x_mcast_ramrod_params *p,
int cmd)
{
struct bnx2x_mcast_obj *o = p->mcast_obj;
struct bnx2x_raw_obj *raw = &o->raw;
struct mac_configuration_cmd *data =
(struct mac_configuration_cmd *)(raw->rdata);
int cnt = 0, i, rc;
/* Reset the ramrod data buffer */
memset(data, 0, sizeof(*data));
/* First set all entries as invalid */
for (i = 0; i < o->max_cmd_len ; i++)
SET_FLAG(data->config_table[i].flags,
MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
T_ETH_MAC_COMMAND_INVALIDATE);
/* Handle pending commands first */
cnt = bnx2x_mcast_handle_pending_cmds_e1(bp, p);
/* If there are no more pending commands - clear SCHEDULED state */
if (list_empty(&o->pending_cmds_head))
o->clear_sched(o);
/* The below may be true iff there were no pending commands */
if (!cnt)
cnt = bnx2x_mcast_handle_current_cmd(bp, p, cmd, 0);
/* For 57710 every command has o->max_cmd_len length to ensure that
* commands are done one at a time.
*/
o->total_pending_num -= o->max_cmd_len;
/* send a ramrod */
WARN_ON(cnt > o->max_cmd_len);
/* Set ramrod header (in particular, a number of entries to update) */
bnx2x_mcast_set_rdata_hdr_e1(bp, p, (u8)cnt);
/* update a registry: we need the registry contents to be always up
* to date in order to be able to execute a RESTORE opcode. Here
* we use the fact that for 57710 we sent one command at a time
* hence we may take the registry update out of the command handling
* and do it in a simpler way here.
*/
rc = bnx2x_mcast_refresh_registry_e1(bp, o);
if (rc)
return rc;
/*
* If CLEAR_ONLY was requested - don't send a ramrod and clear
* RAMROD_PENDING status immediately.
*/
if (test_bit(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
raw->clear_pending(raw);
return 0;
} else {
/*
* No need for an explicit memory barrier here as long we would
* need to ensure the ordering of writing to the SPQ element
* and updating of the SPQ producer which involves a memory
* read and we will have to put a full memory barrier there
* (inside bnx2x_sp_post()).
*/
/* Send a ramrod */
rc = bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_SET_MAC, raw->cid,
U64_HI(raw->rdata_mapping),
U64_LO(raw->rdata_mapping),
ETH_CONNECTION_TYPE);
if (rc)
return rc;
/* Ramrod completion is pending */
return 1;
}
}
static int bnx2x_mcast_get_registry_size_exact(struct bnx2x_mcast_obj *o)
{
return o->registry.exact_match.num_macs_set;
}
static int bnx2x_mcast_get_registry_size_aprox(struct bnx2x_mcast_obj *o)
{
return o->registry.aprox_match.num_bins_set;
}
static void bnx2x_mcast_set_registry_size_exact(struct bnx2x_mcast_obj *o,
int n)
{
o->registry.exact_match.num_macs_set = n;
}
static void bnx2x_mcast_set_registry_size_aprox(struct bnx2x_mcast_obj *o,
int n)
{
o->registry.aprox_match.num_bins_set = n;
}
int bnx2x_config_mcast(struct bnx2x *bp,
struct bnx2x_mcast_ramrod_params *p,
int cmd)
{
struct bnx2x_mcast_obj *o = p->mcast_obj;
struct bnx2x_raw_obj *r = &o->raw;
int rc = 0, old_reg_size;
/* This is needed to recover number of currently configured mcast macs
* in case of failure.
*/
old_reg_size = o->get_registry_size(o);
/* Do some calculations and checks */
rc = o->validate(bp, p, cmd);
if (rc)
return rc;
/* Return if there is no work to do */
if ((!p->mcast_list_len) && (!o->check_sched(o)))
return 0;
DP(BNX2X_MSG_SP, "o->total_pending_num=%d p->mcast_list_len=%d o->max_cmd_len=%d\n",
o->total_pending_num, p->mcast_list_len, o->max_cmd_len);
/* Enqueue the current command to the pending list if we can't complete
* it in the current iteration
*/
if (r->check_pending(r) ||
((o->max_cmd_len > 0) && (o->total_pending_num > o->max_cmd_len))) {
rc = o->enqueue_cmd(bp, p->mcast_obj, p, cmd);
if (rc < 0)
goto error_exit1;
/* As long as the current command is in a command list we
* don't need to handle it separately.
*/
p->mcast_list_len = 0;
}
if (!r->check_pending(r)) {
/* Set 'pending' state */
r->set_pending(r);
/* Configure the new classification in the chip */
rc = o->config_mcast(bp, p, cmd);
if (rc < 0)
goto error_exit2;
/* Wait for a ramrod completion if was requested */
if (test_bit(RAMROD_COMP_WAIT, &p->ramrod_flags))
rc = o->wait_comp(bp, o);
}
return rc;
error_exit2:
r->clear_pending(r);
error_exit1:
o->revert(bp, p, old_reg_size);
return rc;
}
static void bnx2x_mcast_clear_sched(struct bnx2x_mcast_obj *o)
{
smp_mb__before_clear_bit();
clear_bit(o->sched_state, o->raw.pstate);
smp_mb__after_clear_bit();
}
static void bnx2x_mcast_set_sched(struct bnx2x_mcast_obj *o)
{
smp_mb__before_clear_bit();
set_bit(o->sched_state, o->raw.pstate);
smp_mb__after_clear_bit();
}
static bool bnx2x_mcast_check_sched(struct bnx2x_mcast_obj *o)
{
return !!test_bit(o->sched_state, o->raw.pstate);
}
static bool bnx2x_mcast_check_pending(struct bnx2x_mcast_obj *o)
{
return o->raw.check_pending(&o->raw) || o->check_sched(o);
}
void bnx2x_init_mcast_obj(struct bnx2x *bp,
struct bnx2x_mcast_obj *mcast_obj,
u8 mcast_cl_id, u32 mcast_cid, u8 func_id,
u8 engine_id, void *rdata, dma_addr_t rdata_mapping,
int state, unsigned long *pstate, bnx2x_obj_type type)
{
memset(mcast_obj, 0, sizeof(*mcast_obj));
bnx2x_init_raw_obj(&mcast_obj->raw, mcast_cl_id, mcast_cid, func_id,
rdata, rdata_mapping, state, pstate, type);
mcast_obj->engine_id = engine_id;
INIT_LIST_HEAD(&mcast_obj->pending_cmds_head);
mcast_obj->sched_state = BNX2X_FILTER_MCAST_SCHED;
mcast_obj->check_sched = bnx2x_mcast_check_sched;
mcast_obj->set_sched = bnx2x_mcast_set_sched;
mcast_obj->clear_sched = bnx2x_mcast_clear_sched;
if (CHIP_IS_E1(bp)) {
mcast_obj->config_mcast = bnx2x_mcast_setup_e1;
mcast_obj->enqueue_cmd = bnx2x_mcast_enqueue_cmd;
mcast_obj->hdl_restore =
bnx2x_mcast_handle_restore_cmd_e1;
mcast_obj->check_pending = bnx2x_mcast_check_pending;
if (CHIP_REV_IS_SLOW(bp))
mcast_obj->max_cmd_len = BNX2X_MAX_EMUL_MULTI;
else
mcast_obj->max_cmd_len = BNX2X_MAX_MULTICAST;
mcast_obj->wait_comp = bnx2x_mcast_wait;
mcast_obj->set_one_rule = bnx2x_mcast_set_one_rule_e1;
mcast_obj->validate = bnx2x_mcast_validate_e1;
mcast_obj->revert = bnx2x_mcast_revert_e1;
mcast_obj->get_registry_size =
bnx2x_mcast_get_registry_size_exact;
mcast_obj->set_registry_size =
bnx2x_mcast_set_registry_size_exact;
/* 57710 is the only chip that uses the exact match for mcast
* at the moment.
*/
INIT_LIST_HEAD(&mcast_obj->registry.exact_match.macs);
} else if (CHIP_IS_E1H(bp)) {
mcast_obj->config_mcast = bnx2x_mcast_setup_e1h;
mcast_obj->enqueue_cmd = NULL;
mcast_obj->hdl_restore = NULL;
mcast_obj->check_pending = bnx2x_mcast_check_pending;
/* 57711 doesn't send a ramrod, so it has unlimited credit
* for one command.
*/
mcast_obj->max_cmd_len = -1;
mcast_obj->wait_comp = bnx2x_mcast_wait;
mcast_obj->set_one_rule = NULL;
mcast_obj->validate = bnx2x_mcast_validate_e1h;
mcast_obj->revert = bnx2x_mcast_revert_e1h;
mcast_obj->get_registry_size =
bnx2x_mcast_get_registry_size_aprox;
mcast_obj->set_registry_size =
bnx2x_mcast_set_registry_size_aprox;
} else {
mcast_obj->config_mcast = bnx2x_mcast_setup_e2;
mcast_obj->enqueue_cmd = bnx2x_mcast_enqueue_cmd;
mcast_obj->hdl_restore =
bnx2x_mcast_handle_restore_cmd_e2;
mcast_obj->check_pending = bnx2x_mcast_check_pending;
/* TODO: There should be a proper HSI define for this number!!!
*/
mcast_obj->max_cmd_len = 16;
mcast_obj->wait_comp = bnx2x_mcast_wait;
mcast_obj->set_one_rule = bnx2x_mcast_set_one_rule_e2;
mcast_obj->validate = bnx2x_mcast_validate_e2;
mcast_obj->revert = bnx2x_mcast_revert_e2;
mcast_obj->get_registry_size =
bnx2x_mcast_get_registry_size_aprox;
mcast_obj->set_registry_size =
bnx2x_mcast_set_registry_size_aprox;
}
}
/*************************** Credit handling **********************************/
/**
* atomic_add_ifless - add if the result is less than a given value.
*
* @v: pointer of type atomic_t
* @a: the amount to add to v...
* @u: ...if (v + a) is less than u.
*
* returns true if (v + a) was less than u, and false otherwise.
*
*/
static inline bool __atomic_add_ifless(atomic_t *v, int a, int u)
{
int c, old;
c = atomic_read(v);
for (;;) {
if (unlikely(c + a >= u))
return false;
old = atomic_cmpxchg((v), c, c + a);
if (likely(old == c))
break;
c = old;
}
return true;
}
/**
* atomic_dec_ifmoe - dec if the result is more or equal than a given value.
*
* @v: pointer of type atomic_t
* @a: the amount to dec from v...
* @u: ...if (v - a) is more or equal than u.
*
* returns true if (v - a) was more or equal than u, and false
* otherwise.
*/
static inline bool __atomic_dec_ifmoe(atomic_t *v, int a, int u)
{
int c, old;
c = atomic_read(v);
for (;;) {
if (unlikely(c - a < u))
return false;
old = atomic_cmpxchg((v), c, c - a);
if (likely(old == c))
break;
c = old;
}
return true;
}
static bool bnx2x_credit_pool_get(struct bnx2x_credit_pool_obj *o, int cnt)
{
bool rc;
smp_mb();
rc = __atomic_dec_ifmoe(&o->credit, cnt, 0);
smp_mb();
return rc;
}
static bool bnx2x_credit_pool_put(struct bnx2x_credit_pool_obj *o, int cnt)
{
bool rc;
smp_mb();
/* Don't let to refill if credit + cnt > pool_sz */
rc = __atomic_add_ifless(&o->credit, cnt, o->pool_sz + 1);
smp_mb();
return rc;
}
static int bnx2x_credit_pool_check(struct bnx2x_credit_pool_obj *o)
{
int cur_credit;
smp_mb();
cur_credit = atomic_read(&o->credit);
return cur_credit;
}
static bool bnx2x_credit_pool_always_true(struct bnx2x_credit_pool_obj *o,
int cnt)
{
return true;
}
static bool bnx2x_credit_pool_get_entry(
struct bnx2x_credit_pool_obj *o,
int *offset)
{
int idx, vec, i;
*offset = -1;
/* Find "internal cam-offset" then add to base for this object... */
for (vec = 0; vec < BNX2X_POOL_VEC_SIZE; vec++) {
/* Skip the current vector if there are no free entries in it */
if (!o->pool_mirror[vec])
continue;
/* If we've got here we are going to find a free entry */
for (idx = vec * BIT_VEC64_ELEM_SZ, i = 0;
i < BIT_VEC64_ELEM_SZ; idx++, i++)
if (BIT_VEC64_TEST_BIT(o->pool_mirror, idx)) {
/* Got one!! */
BIT_VEC64_CLEAR_BIT(o->pool_mirror, idx);
*offset = o->base_pool_offset + idx;
return true;
}
}
return false;
}
static bool bnx2x_credit_pool_put_entry(
struct bnx2x_credit_pool_obj *o,
int offset)
{
if (offset < o->base_pool_offset)
return false;
offset -= o->base_pool_offset;
if (offset >= o->pool_sz)
return false;
/* Return the entry to the pool */
BIT_VEC64_SET_BIT(o->pool_mirror, offset);
return true;
}
static bool bnx2x_credit_pool_put_entry_always_true(
struct bnx2x_credit_pool_obj *o,
int offset)
{
return true;
}
static bool bnx2x_credit_pool_get_entry_always_true(
struct bnx2x_credit_pool_obj *o,
int *offset)
{
*offset = -1;
return true;
}
/**
* bnx2x_init_credit_pool - initialize credit pool internals.
*
* @p:
* @base: Base entry in the CAM to use.
* @credit: pool size.
*
* If base is negative no CAM entries handling will be performed.
* If credit is negative pool operations will always succeed (unlimited pool).
*
*/
static inline void bnx2x_init_credit_pool(struct bnx2x_credit_pool_obj *p,
int base, int credit)
{
/* Zero the object first */
memset(p, 0, sizeof(*p));
/* Set the table to all 1s */
memset(&p->pool_mirror, 0xff, sizeof(p->pool_mirror));
/* Init a pool as full */
atomic_set(&p->credit, credit);
/* The total poll size */
p->pool_sz = credit;
p->base_pool_offset = base;
/* Commit the change */
smp_mb();
p->check = bnx2x_credit_pool_check;
/* if pool credit is negative - disable the checks */
if (credit >= 0) {
p->put = bnx2x_credit_pool_put;
p->get = bnx2x_credit_pool_get;
p->put_entry = bnx2x_credit_pool_put_entry;
p->get_entry = bnx2x_credit_pool_get_entry;
} else {
p->put = bnx2x_credit_pool_always_true;
p->get = bnx2x_credit_pool_always_true;
p->put_entry = bnx2x_credit_pool_put_entry_always_true;
p->get_entry = bnx2x_credit_pool_get_entry_always_true;
}
/* If base is negative - disable entries handling */
if (base < 0) {
p->put_entry = bnx2x_credit_pool_put_entry_always_true;
p->get_entry = bnx2x_credit_pool_get_entry_always_true;
}
}
void bnx2x_init_mac_credit_pool(struct bnx2x *bp,
struct bnx2x_credit_pool_obj *p, u8 func_id,
u8 func_num)
{
/* TODO: this will be defined in consts as well... */
#define BNX2X_CAM_SIZE_EMUL 5
int cam_sz;
if (CHIP_IS_E1(bp)) {
/* In E1, Multicast is saved in cam... */
if (!CHIP_REV_IS_SLOW(bp))
cam_sz = (MAX_MAC_CREDIT_E1 / 2) - BNX2X_MAX_MULTICAST;
else
cam_sz = BNX2X_CAM_SIZE_EMUL - BNX2X_MAX_EMUL_MULTI;
bnx2x_init_credit_pool(p, func_id * cam_sz, cam_sz);
} else if (CHIP_IS_E1H(bp)) {
/* CAM credit is equaly divided between all active functions
* on the PORT!.
*/
if ((func_num > 0)) {
if (!CHIP_REV_IS_SLOW(bp))
cam_sz = (MAX_MAC_CREDIT_E1H / (2*func_num));
else
cam_sz = BNX2X_CAM_SIZE_EMUL;
bnx2x_init_credit_pool(p, func_id * cam_sz, cam_sz);
} else {
/* this should never happen! Block MAC operations. */
bnx2x_init_credit_pool(p, 0, 0);
}
} else {
/*
* CAM credit is equaly divided between all active functions
* on the PATH.
*/
if ((func_num > 0)) {
if (!CHIP_REV_IS_SLOW(bp))
cam_sz = (MAX_MAC_CREDIT_E2 / func_num);
else
cam_sz = BNX2X_CAM_SIZE_EMUL;
/*
* No need for CAM entries handling for 57712 and
* newer.
*/
bnx2x_init_credit_pool(p, -1, cam_sz);
} else {
/* this should never happen! Block MAC operations. */
bnx2x_init_credit_pool(p, 0, 0);
}
}
}
void bnx2x_init_vlan_credit_pool(struct bnx2x *bp,
struct bnx2x_credit_pool_obj *p,
u8 func_id,
u8 func_num)
{
if (CHIP_IS_E1x(bp)) {
/*
* There is no VLAN credit in HW on 57710 and 57711 only
* MAC / MAC-VLAN can be set
*/
bnx2x_init_credit_pool(p, 0, -1);
} else {
/*
* CAM credit is equaly divided between all active functions
* on the PATH.
*/
if (func_num > 0) {
int credit = MAX_VLAN_CREDIT_E2 / func_num;
bnx2x_init_credit_pool(p, func_id * credit, credit);
} else
/* this should never happen! Block VLAN operations. */
bnx2x_init_credit_pool(p, 0, 0);
}
}
/****************** RSS Configuration ******************/
/**
* bnx2x_debug_print_ind_table - prints the indirection table configuration.
*
* @bp: driver hanlde
* @p: pointer to rss configuration
*
* Prints it when NETIF_MSG_IFUP debug level is configured.
*/
static inline void bnx2x_debug_print_ind_table(struct bnx2x *bp,
struct bnx2x_config_rss_params *p)
{
int i;
DP(BNX2X_MSG_SP, "Setting indirection table to:\n");
DP(BNX2X_MSG_SP, "0x0000: ");
for (i = 0; i < T_ETH_INDIRECTION_TABLE_SIZE; i++) {
DP_CONT(BNX2X_MSG_SP, "0x%02x ", p->ind_table[i]);
/* Print 4 bytes in a line */
if ((i + 1 < T_ETH_INDIRECTION_TABLE_SIZE) &&
(((i + 1) & 0x3) == 0)) {
DP_CONT(BNX2X_MSG_SP, "\n");
DP(BNX2X_MSG_SP, "0x%04x: ", i + 1);
}
}
DP_CONT(BNX2X_MSG_SP, "\n");
}
/**
* bnx2x_setup_rss - configure RSS
*
* @bp: device handle
* @p: rss configuration
*
* sends on UPDATE ramrod for that matter.
*/
static int bnx2x_setup_rss(struct bnx2x *bp,
struct bnx2x_config_rss_params *p)
{
struct bnx2x_rss_config_obj *o = p->rss_obj;
struct bnx2x_raw_obj *r = &o->raw;
struct eth_rss_update_ramrod_data *data =
(struct eth_rss_update_ramrod_data *)(r->rdata);
u8 rss_mode = 0;
int rc;
memset(data, 0, sizeof(*data));
DP(BNX2X_MSG_SP, "Configuring RSS\n");
/* Set an echo field */
data->echo = (r->cid & BNX2X_SWCID_MASK) |
(r->state << BNX2X_SWCID_SHIFT);
/* RSS mode */
if (test_bit(BNX2X_RSS_MODE_DISABLED, &p->rss_flags))
rss_mode = ETH_RSS_MODE_DISABLED;
else if (test_bit(BNX2X_RSS_MODE_REGULAR, &p->rss_flags))
rss_mode = ETH_RSS_MODE_REGULAR;
data->rss_mode = rss_mode;
DP(BNX2X_MSG_SP, "rss_mode=%d\n", rss_mode);
/* RSS capabilities */
if (test_bit(BNX2X_RSS_IPV4, &p->rss_flags))
data->capabilities |=
ETH_RSS_UPDATE_RAMROD_DATA_IPV4_CAPABILITY;
if (test_bit(BNX2X_RSS_IPV4_TCP, &p->rss_flags))
data->capabilities |=
ETH_RSS_UPDATE_RAMROD_DATA_IPV4_TCP_CAPABILITY;
if (test_bit(BNX2X_RSS_IPV4_UDP, &p->rss_flags))
data->capabilities |=
ETH_RSS_UPDATE_RAMROD_DATA_IPV4_UDP_CAPABILITY;
if (test_bit(BNX2X_RSS_IPV6, &p->rss_flags))
data->capabilities |=
ETH_RSS_UPDATE_RAMROD_DATA_IPV6_CAPABILITY;
if (test_bit(BNX2X_RSS_IPV6_TCP, &p->rss_flags))
data->capabilities |=
ETH_RSS_UPDATE_RAMROD_DATA_IPV6_TCP_CAPABILITY;
if (test_bit(BNX2X_RSS_IPV6_UDP, &p->rss_flags))
data->capabilities |=
ETH_RSS_UPDATE_RAMROD_DATA_IPV6_UDP_CAPABILITY;
/* Hashing mask */
data->rss_result_mask = p->rss_result_mask;
/* RSS engine ID */
data->rss_engine_id = o->engine_id;
DP(BNX2X_MSG_SP, "rss_engine_id=%d\n", data->rss_engine_id);
/* Indirection table */
memcpy(data->indirection_table, p->ind_table,
T_ETH_INDIRECTION_TABLE_SIZE);
/* Remember the last configuration */
memcpy(o->ind_table, p->ind_table, T_ETH_INDIRECTION_TABLE_SIZE);
/* Print the indirection table */
if (netif_msg_ifup(bp))
bnx2x_debug_print_ind_table(bp, p);
/* RSS keys */
if (test_bit(BNX2X_RSS_SET_SRCH, &p->rss_flags)) {
memcpy(&data->rss_key[0], &p->rss_key[0],
sizeof(data->rss_key));
data->capabilities |= ETH_RSS_UPDATE_RAMROD_DATA_UPDATE_RSS_KEY;
}
/*
* No need for an explicit memory barrier here as long we would
* need to ensure the ordering of writing to the SPQ element
* and updating of the SPQ producer which involves a memory
* read and we will have to put a full memory barrier there
* (inside bnx2x_sp_post()).
*/
/* Send a ramrod */
rc = bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_RSS_UPDATE, r->cid,
U64_HI(r->rdata_mapping),
U64_LO(r->rdata_mapping),
ETH_CONNECTION_TYPE);
if (rc < 0)
return rc;
return 1;
}
void bnx2x_get_rss_ind_table(struct bnx2x_rss_config_obj *rss_obj,
u8 *ind_table)
{
memcpy(ind_table, rss_obj->ind_table, sizeof(rss_obj->ind_table));
}
int bnx2x_config_rss(struct bnx2x *bp,
struct bnx2x_config_rss_params *p)
{
int rc;
struct bnx2x_rss_config_obj *o = p->rss_obj;
struct bnx2x_raw_obj *r = &o->raw;
/* Do nothing if only driver cleanup was requested */
if (test_bit(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags))
return 0;
r->set_pending(r);
rc = o->config_rss(bp, p);
if (rc < 0) {
r->clear_pending(r);
return rc;
}
if (test_bit(RAMROD_COMP_WAIT, &p->ramrod_flags))
rc = r->wait_comp(bp, r);
return rc;
}
void bnx2x_init_rss_config_obj(struct bnx2x *bp,
struct bnx2x_rss_config_obj *rss_obj,
u8 cl_id, u32 cid, u8 func_id, u8 engine_id,
void *rdata, dma_addr_t rdata_mapping,
int state, unsigned long *pstate,
bnx2x_obj_type type)
{
bnx2x_init_raw_obj(&rss_obj->raw, cl_id, cid, func_id, rdata,
rdata_mapping, state, pstate, type);
rss_obj->engine_id = engine_id;
rss_obj->config_rss = bnx2x_setup_rss;
}
/********************** Queue state object ***********************************/
/**
* bnx2x_queue_state_change - perform Queue state change transition
*
* @bp: device handle
* @params: parameters to perform the transition
*
* returns 0 in case of successfully completed transition, negative error
* code in case of failure, positive (EBUSY) value if there is a completion
* to that is still pending (possible only if RAMROD_COMP_WAIT is
* not set in params->ramrod_flags for asynchronous commands).
*
*/
int bnx2x_queue_state_change(struct bnx2x *bp,
struct bnx2x_queue_state_params *params)
{
struct bnx2x_queue_sp_obj *o = params->q_obj;
int rc, pending_bit;
unsigned long *pending = &o->pending;
/* Check that the requested transition is legal */
if (o->check_transition(bp, o, params))
return -EINVAL;
/* Set "pending" bit */
pending_bit = o->set_pending(o, params);
/* Don't send a command if only driver cleanup was requested */
if (test_bit(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags))
o->complete_cmd(bp, o, pending_bit);
else {
/* Send a ramrod */
rc = o->send_cmd(bp, params);
if (rc) {
o->next_state = BNX2X_Q_STATE_MAX;
clear_bit(pending_bit, pending);
smp_mb__after_clear_bit();
return rc;
}
if (test_bit(RAMROD_COMP_WAIT, &params->ramrod_flags)) {
rc = o->wait_comp(bp, o, pending_bit);
if (rc)
return rc;
return 0;
}
}
return !!test_bit(pending_bit, pending);
}
static int bnx2x_queue_set_pending(struct bnx2x_queue_sp_obj *obj,
struct bnx2x_queue_state_params *params)
{
enum bnx2x_queue_cmd cmd = params->cmd, bit;
/* ACTIVATE and DEACTIVATE commands are implemented on top of
* UPDATE command.
*/
if ((cmd == BNX2X_Q_CMD_ACTIVATE) ||
(cmd == BNX2X_Q_CMD_DEACTIVATE))
bit = BNX2X_Q_CMD_UPDATE;
else
bit = cmd;
set_bit(bit, &obj->pending);
return bit;
}
static int bnx2x_queue_wait_comp(struct bnx2x *bp,
struct bnx2x_queue_sp_obj *o,
enum bnx2x_queue_cmd cmd)
{
return bnx2x_state_wait(bp, cmd, &o->pending);
}
/**
* bnx2x_queue_comp_cmd - complete the state change command.
*
* @bp: device handle
* @o:
* @cmd:
*
* Checks that the arrived completion is expected.
*/
static int bnx2x_queue_comp_cmd(struct bnx2x *bp,
struct bnx2x_queue_sp_obj *o,
enum bnx2x_queue_cmd cmd)
{
unsigned long cur_pending = o->pending;
if (!test_and_clear_bit(cmd, &cur_pending)) {
BNX2X_ERR("Bad MC reply %d for queue %d in state %d pending 0x%lx, next_state %d\n",
cmd, o->cids[BNX2X_PRIMARY_CID_INDEX],
o->state, cur_pending, o->next_state);
return -EINVAL;
}
if (o->next_tx_only >= o->max_cos)
/* >= becuase tx only must always be smaller than cos since the
* primary connection suports COS 0
*/
BNX2X_ERR("illegal value for next tx_only: %d. max cos was %d",
o->next_tx_only, o->max_cos);
DP(BNX2X_MSG_SP,
"Completing command %d for queue %d, setting state to %d\n",
cmd, o->cids[BNX2X_PRIMARY_CID_INDEX], o->next_state);
if (o->next_tx_only) /* print num tx-only if any exist */
DP(BNX2X_MSG_SP, "primary cid %d: num tx-only cons %d\n",
o->cids[BNX2X_PRIMARY_CID_INDEX], o->next_tx_only);
o->state = o->next_state;
o->num_tx_only = o->next_tx_only;
o->next_state = BNX2X_Q_STATE_MAX;
/* It's important that o->state and o->next_state are
* updated before o->pending.
*/
wmb();
clear_bit(cmd, &o->pending);
smp_mb__after_clear_bit();
return 0;
}
static void bnx2x_q_fill_setup_data_e2(struct bnx2x *bp,
struct bnx2x_queue_state_params *cmd_params,
struct client_init_ramrod_data *data)
{
struct bnx2x_queue_setup_params *params = &cmd_params->params.setup;
/* Rx data */
/* IPv6 TPA supported for E2 and above only */
data->rx.tpa_en |= test_bit(BNX2X_Q_FLG_TPA_IPV6, &params->flags) *
CLIENT_INIT_RX_DATA_TPA_EN_IPV6;
}
static void bnx2x_q_fill_init_general_data(struct bnx2x *bp,
struct bnx2x_queue_sp_obj *o,
struct bnx2x_general_setup_params *params,
struct client_init_general_data *gen_data,
unsigned long *flags)
{
gen_data->client_id = o->cl_id;
if (test_bit(BNX2X_Q_FLG_STATS, flags)) {
gen_data->statistics_counter_id =
params->stat_id;
gen_data->statistics_en_flg = 1;
gen_data->statistics_zero_flg =
test_bit(BNX2X_Q_FLG_ZERO_STATS, flags);
} else
gen_data->statistics_counter_id =
DISABLE_STATISTIC_COUNTER_ID_VALUE;
gen_data->is_fcoe_flg = test_bit(BNX2X_Q_FLG_FCOE, flags);
gen_data->activate_flg = test_bit(BNX2X_Q_FLG_ACTIVE, flags);
gen_data->sp_client_id = params->spcl_id;
gen_data->mtu = cpu_to_le16(params->mtu);
gen_data->func_id = o->func_id;
gen_data->cos = params->cos;
gen_data->traffic_type =
test_bit(BNX2X_Q_FLG_FCOE, flags) ?
LLFC_TRAFFIC_TYPE_FCOE : LLFC_TRAFFIC_TYPE_NW;
DP(BNX2X_MSG_SP, "flags: active %d, cos %d, stats en %d\n",
gen_data->activate_flg, gen_data->cos, gen_data->statistics_en_flg);
}
static void bnx2x_q_fill_init_tx_data(struct bnx2x_queue_sp_obj *o,
struct bnx2x_txq_setup_params *params,
struct client_init_tx_data *tx_data,
unsigned long *flags)
{
tx_data->enforce_security_flg =
test_bit(BNX2X_Q_FLG_TX_SEC, flags);
tx_data->default_vlan =
cpu_to_le16(params->default_vlan);
tx_data->default_vlan_flg =
test_bit(BNX2X_Q_FLG_DEF_VLAN, flags);
tx_data->tx_switching_flg =
test_bit(BNX2X_Q_FLG_TX_SWITCH, flags);
tx_data->anti_spoofing_flg =
test_bit(BNX2X_Q_FLG_ANTI_SPOOF, flags);
tx_data->force_default_pri_flg =
test_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, flags);
tx_data->tx_status_block_id = params->fw_sb_id;
tx_data->tx_sb_index_number = params->sb_cq_index;
tx_data->tss_leading_client_id = params->tss_leading_cl_id;
tx_data->tx_bd_page_base.lo =
cpu_to_le32(U64_LO(params->dscr_map));
tx_data->tx_bd_page_base.hi =
cpu_to_le32(U64_HI(params->dscr_map));
/* Don't configure any Tx switching mode during queue SETUP */
tx_data->state = 0;
}
static void bnx2x_q_fill_init_pause_data(struct bnx2x_queue_sp_obj *o,
struct rxq_pause_params *params,
struct client_init_rx_data *rx_data)
{
/* flow control data */
rx_data->cqe_pause_thr_low = cpu_to_le16(params->rcq_th_lo);
rx_data->cqe_pause_thr_high = cpu_to_le16(params->rcq_th_hi);
rx_data->bd_pause_thr_low = cpu_to_le16(params->bd_th_lo);
rx_data->bd_pause_thr_high = cpu_to_le16(params->bd_th_hi);
rx_data->sge_pause_thr_low = cpu_to_le16(params->sge_th_lo);
rx_data->sge_pause_thr_high = cpu_to_le16(params->sge_th_hi);
rx_data->rx_cos_mask = cpu_to_le16(params->pri_map);
}
static void bnx2x_q_fill_init_rx_data(struct bnx2x_queue_sp_obj *o,
struct bnx2x_rxq_setup_params *params,
struct client_init_rx_data *rx_data,
unsigned long *flags)
{
rx_data->tpa_en = test_bit(BNX2X_Q_FLG_TPA, flags) *
CLIENT_INIT_RX_DATA_TPA_EN_IPV4;
rx_data->tpa_en |= test_bit(BNX2X_Q_FLG_TPA_GRO, flags) *
CLIENT_INIT_RX_DATA_TPA_MODE;
rx_data->vmqueue_mode_en_flg = 0;
rx_data->cache_line_alignment_log_size =
params->cache_line_log;
rx_data->enable_dynamic_hc =
test_bit(BNX2X_Q_FLG_DHC, flags);
rx_data->max_sges_for_packet = params->max_sges_pkt;
rx_data->client_qzone_id = params->cl_qzone_id;
rx_data->max_agg_size = cpu_to_le16(params->tpa_agg_sz);
/* Always start in DROP_ALL mode */
rx_data->state = cpu_to_le16(CLIENT_INIT_RX_DATA_UCAST_DROP_ALL |
CLIENT_INIT_RX_DATA_MCAST_DROP_ALL);
/* We don't set drop flags */
rx_data->drop_ip_cs_err_flg = 0;
rx_data->drop_tcp_cs_err_flg = 0;
rx_data->drop_ttl0_flg = 0;
rx_data->drop_udp_cs_err_flg = 0;
rx_data->inner_vlan_removal_enable_flg =
test_bit(BNX2X_Q_FLG_VLAN, flags);
rx_data->outer_vlan_removal_enable_flg =
test_bit(BNX2X_Q_FLG_OV, flags);
rx_data->status_block_id = params->fw_sb_id;
rx_data->rx_sb_index_number = params->sb_cq_index;
rx_data->max_tpa_queues = params->max_tpa_queues;
rx_data->max_bytes_on_bd = cpu_to_le16(params->buf_sz);
rx_data->sge_buff_size = cpu_to_le16(params->sge_buf_sz);
rx_data->bd_page_base.lo =
cpu_to_le32(U64_LO(params->dscr_map));
rx_data->bd_page_base.hi =
cpu_to_le32(U64_HI(params->dscr_map));
rx_data->sge_page_base.lo =
cpu_to_le32(U64_LO(params->sge_map));
rx_data->sge_page_base.hi =
cpu_to_le32(U64_HI(params->sge_map));
rx_data->cqe_page_base.lo =
cpu_to_le32(U64_LO(params->rcq_map));
rx_data->cqe_page_base.hi =
cpu_to_le32(U64_HI(params->rcq_map));
rx_data->is_leading_rss = test_bit(BNX2X_Q_FLG_LEADING_RSS, flags);
if (test_bit(BNX2X_Q_FLG_MCAST, flags)) {
rx_data->approx_mcast_engine_id = params->mcast_engine_id;
rx_data->is_approx_mcast = 1;
}
rx_data->rss_engine_id = params->rss_engine_id;
/* silent vlan removal */
rx_data->silent_vlan_removal_flg =
test_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, flags);
rx_data->silent_vlan_value =
cpu_to_le16(params->silent_removal_value);
rx_data->silent_vlan_mask =
cpu_to_le16(params->silent_removal_mask);
}
/* initialize the general, tx and rx parts of a queue object */
static void bnx2x_q_fill_setup_data_cmn(struct bnx2x *bp,
struct bnx2x_queue_state_params *cmd_params,
struct client_init_ramrod_data *data)
{
bnx2x_q_fill_init_general_data(bp, cmd_params->q_obj,
&cmd_params->params.setup.gen_params,
&data->general,
&cmd_params->params.setup.flags);
bnx2x_q_fill_init_tx_data(cmd_params->q_obj,
&cmd_params->params.setup.txq_params,
&data->tx,
&cmd_params->params.setup.flags);
bnx2x_q_fill_init_rx_data(cmd_params->q_obj,
&cmd_params->params.setup.rxq_params,
&data->rx,
&cmd_params->params.setup.flags);
bnx2x_q_fill_init_pause_data(cmd_params->q_obj,
&cmd_params->params.setup.pause_params,
&data->rx);
}
/* initialize the general and tx parts of a tx-only queue object */
static void bnx2x_q_fill_setup_tx_only(struct bnx2x *bp,
struct bnx2x_queue_state_params *cmd_params,
struct tx_queue_init_ramrod_data *data)
{
bnx2x_q_fill_init_general_data(bp, cmd_params->q_obj,
&cmd_params->params.tx_only.gen_params,
&data->general,
&cmd_params->params.tx_only.flags);
bnx2x_q_fill_init_tx_data(cmd_params->q_obj,
&cmd_params->params.tx_only.txq_params,
&data->tx,
&cmd_params->params.tx_only.flags);
DP(BNX2X_MSG_SP, "cid %d, tx bd page lo %x hi %x",
cmd_params->q_obj->cids[0],
data->tx.tx_bd_page_base.lo,
data->tx.tx_bd_page_base.hi);
}
/**
* bnx2x_q_init - init HW/FW queue
*
* @bp: device handle
* @params:
*
* HW/FW initial Queue configuration:
* - HC: Rx and Tx
* - CDU context validation
*
*/
static inline int bnx2x_q_init(struct bnx2x *bp,
struct bnx2x_queue_state_params *params)
{
struct bnx2x_queue_sp_obj *o = params->q_obj;
struct bnx2x_queue_init_params *init = &params->params.init;
u16 hc_usec;
u8 cos;
/* Tx HC configuration */
if (test_bit(BNX2X_Q_TYPE_HAS_TX, &o->type) &&
test_bit(BNX2X_Q_FLG_HC, &init->tx.flags)) {
hc_usec = init->tx.hc_rate ? 1000000 / init->tx.hc_rate : 0;
bnx2x_update_coalesce_sb_index(bp, init->tx.fw_sb_id,
init->tx.sb_cq_index,
!test_bit(BNX2X_Q_FLG_HC_EN, &init->tx.flags),
hc_usec);
}
/* Rx HC configuration */
if (test_bit(BNX2X_Q_TYPE_HAS_RX, &o->type) &&
test_bit(BNX2X_Q_FLG_HC, &init->rx.flags)) {
hc_usec = init->rx.hc_rate ? 1000000 / init->rx.hc_rate : 0;
bnx2x_update_coalesce_sb_index(bp, init->rx.fw_sb_id,
init->rx.sb_cq_index,
!test_bit(BNX2X_Q_FLG_HC_EN, &init->rx.flags),
hc_usec);
}
/* Set CDU context validation values */
for (cos = 0; cos < o->max_cos; cos++) {
DP(BNX2X_MSG_SP, "setting context validation. cid %d, cos %d\n",
o->cids[cos], cos);
DP(BNX2X_MSG_SP, "context pointer %p\n", init->cxts[cos]);
bnx2x_set_ctx_validation(bp, init->cxts[cos], o->cids[cos]);
}
/* As no ramrod is sent, complete the command immediately */
o->complete_cmd(bp, o, BNX2X_Q_CMD_INIT);
mmiowb();
smp_mb();
return 0;
}
static inline int bnx2x_q_send_setup_e1x(struct bnx2x *bp,
struct bnx2x_queue_state_params *params)
{
struct bnx2x_queue_sp_obj *o = params->q_obj;
struct client_init_ramrod_data *rdata =
(struct client_init_ramrod_data *)o->rdata;
dma_addr_t data_mapping = o->rdata_mapping;
int ramrod = RAMROD_CMD_ID_ETH_CLIENT_SETUP;
/* Clear the ramrod data */
memset(rdata, 0, sizeof(*rdata));
/* Fill the ramrod data */
bnx2x_q_fill_setup_data_cmn(bp, params, rdata);
/*
* No need for an explicit memory barrier here as long we would
* need to ensure the ordering of writing to the SPQ element
* and updating of the SPQ producer which involves a memory
* read and we will have to put a full memory barrier there
* (inside bnx2x_sp_post()).
*/
return bnx2x_sp_post(bp, ramrod, o->cids[BNX2X_PRIMARY_CID_INDEX],
U64_HI(data_mapping),
U64_LO(data_mapping), ETH_CONNECTION_TYPE);
}
static inline int bnx2x_q_send_setup_e2(struct bnx2x *bp,
struct bnx2x_queue_state_params *params)
{
struct bnx2x_queue_sp_obj *o = params->q_obj;
struct client_init_ramrod_data *rdata =
(struct client_init_ramrod_data *)o->rdata;
dma_addr_t data_mapping = o->rdata_mapping;
int ramrod = RAMROD_CMD_ID_ETH_CLIENT_SETUP;
/* Clear the ramrod data */
memset(rdata, 0, sizeof(*rdata));
/* Fill the ramrod data */
bnx2x_q_fill_setup_data_cmn(bp, params, rdata);
bnx2x_q_fill_setup_data_e2(bp, params, rdata);
/*
* No need for an explicit memory barrier here as long we would
* need to ensure the ordering of writing to the SPQ element
* and updating of the SPQ producer which involves a memory
* read and we will have to put a full memory barrier there
* (inside bnx2x_sp_post()).
*/
return bnx2x_sp_post(bp, ramrod, o->cids[BNX2X_PRIMARY_CID_INDEX],
U64_HI(data_mapping),
U64_LO(data_mapping), ETH_CONNECTION_TYPE);
}
static inline int bnx2x_q_send_setup_tx_only(struct bnx2x *bp,
struct bnx2x_queue_state_params *params)
{
struct bnx2x_queue_sp_obj *o = params->q_obj;
struct tx_queue_init_ramrod_data *rdata =
(struct tx_queue_init_ramrod_data *)o->rdata;
dma_addr_t data_mapping = o->rdata_mapping;
int ramrod = RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP;
struct bnx2x_queue_setup_tx_only_params *tx_only_params =
&params->params.tx_only;
u8 cid_index = tx_only_params->cid_index;
if (cid_index >= o->max_cos) {
BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n",
o->cl_id, cid_index);
return -EINVAL;
}
DP(BNX2X_MSG_SP, "parameters received: cos: %d sp-id: %d\n",
tx_only_params->gen_params.cos,
tx_only_params->gen_params.spcl_id);
/* Clear the ramrod data */
memset(rdata, 0, sizeof(*rdata));
/* Fill the ramrod data */
bnx2x_q_fill_setup_tx_only(bp, params, rdata);
DP(BNX2X_MSG_SP, "sending tx-only ramrod: cid %d, client-id %d, sp-client id %d, cos %d\n",
o->cids[cid_index], rdata->general.client_id,
rdata->general.sp_client_id, rdata->general.cos);
/*
* No need for an explicit memory barrier here as long we would
* need to ensure the ordering of writing to the SPQ element
* and updating of the SPQ producer which involves a memory
* read and we will have to put a full memory barrier there
* (inside bnx2x_sp_post()).
*/
return bnx2x_sp_post(bp, ramrod, o->cids[cid_index],
U64_HI(data_mapping),
U64_LO(data_mapping), ETH_CONNECTION_TYPE);
}
static void bnx2x_q_fill_update_data(struct bnx2x *bp,
struct bnx2x_queue_sp_obj *obj,
struct bnx2x_queue_update_params *params,
struct client_update_ramrod_data *data)
{
/* Client ID of the client to update */
data->client_id = obj->cl_id;
/* Function ID of the client to update */
data->func_id = obj->func_id;
/* Default VLAN value */
data->default_vlan = cpu_to_le16(params->def_vlan);
/* Inner VLAN stripping */
data->inner_vlan_removal_enable_flg =
test_bit(BNX2X_Q_UPDATE_IN_VLAN_REM, &params->update_flags);
data->inner_vlan_removal_change_flg =
test_bit(BNX2X_Q_UPDATE_IN_VLAN_REM_CHNG,
&params->update_flags);
/* Outer VLAN sripping */
data->outer_vlan_removal_enable_flg =
test_bit(BNX2X_Q_UPDATE_OUT_VLAN_REM, &params->update_flags);
data->outer_vlan_removal_change_flg =
test_bit(BNX2X_Q_UPDATE_OUT_VLAN_REM_CHNG,
&params->update_flags);
/* Drop packets that have source MAC that doesn't belong to this
* Queue.
*/
data->anti_spoofing_enable_flg =
test_bit(BNX2X_Q_UPDATE_ANTI_SPOOF, &params->update_flags);
data->anti_spoofing_change_flg =
test_bit(BNX2X_Q_UPDATE_ANTI_SPOOF_CHNG, &params->update_flags);
/* Activate/Deactivate */
data->activate_flg =
test_bit(BNX2X_Q_UPDATE_ACTIVATE, &params->update_flags);
data->activate_change_flg =
test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG, &params->update_flags);
/* Enable default VLAN */
data->default_vlan_enable_flg =
test_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN, &params->update_flags);
data->default_vlan_change_flg =
test_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN_CHNG,
&params->update_flags);
/* silent vlan removal */
data->silent_vlan_change_flg =
test_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
&params->update_flags);
data->silent_vlan_removal_flg =
test_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM, &params->update_flags);
data->silent_vlan_value = cpu_to_le16(params->silent_removal_value);
data->silent_vlan_mask = cpu_to_le16(params->silent_removal_mask);
}
static inline int bnx2x_q_send_update(struct bnx2x *bp,
struct bnx2x_queue_state_params *params)
{
struct bnx2x_queue_sp_obj *o = params->q_obj;
struct client_update_ramrod_data *rdata =
(struct client_update_ramrod_data *)o->rdata;
dma_addr_t data_mapping = o->rdata_mapping;
struct bnx2x_queue_update_params *update_params =
&params->params.update;
u8 cid_index = update_params->cid_index;
if (cid_index >= o->max_cos) {
BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n",
o->cl_id, cid_index);
return -EINVAL;
}
/* Clear the ramrod data */
memset(rdata, 0, sizeof(*rdata));
/* Fill the ramrod data */
bnx2x_q_fill_update_data(bp, o, update_params, rdata);
/*
* No need for an explicit memory barrier here as long we would
* need to ensure the ordering of writing to the SPQ element
* and updating of the SPQ producer which involves a memory
* read and we will have to put a full memory barrier there
* (inside bnx2x_sp_post()).
*/
return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_CLIENT_UPDATE,
o->cids[cid_index], U64_HI(data_mapping),
U64_LO(data_mapping), ETH_CONNECTION_TYPE);
}
/**
* bnx2x_q_send_deactivate - send DEACTIVATE command
*
* @bp: device handle
* @params:
*
* implemented using the UPDATE command.
*/
static inline int bnx2x_q_send_deactivate(struct bnx2x *bp,
struct bnx2x_queue_state_params *params)
{
struct bnx2x_queue_update_params *update = &params->params.update;
memset(update, 0, sizeof(*update));
__set_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG, &update->update_flags);
return bnx2x_q_send_update(bp, params);
}
/**
* bnx2x_q_send_activate - send ACTIVATE command
*
* @bp: device handle
* @params:
*
* implemented using the UPDATE command.
*/
static inline int bnx2x_q_send_activate(struct bnx2x *bp,
struct bnx2x_queue_state_params *params)
{
struct bnx2x_queue_update_params *update = &params->params.update;
memset(update, 0, sizeof(*update));
__set_bit(BNX2X_Q_UPDATE_ACTIVATE, &update->update_flags);
__set_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG, &update->update_flags);
return bnx2x_q_send_update(bp, params);
}
static inline int bnx2x_q_send_update_tpa(struct bnx2x *bp,
struct bnx2x_queue_state_params *params)
{
/* TODO: Not implemented yet. */
return -1;
}
static inline int bnx2x_q_send_halt(struct bnx2x *bp,
struct bnx2x_queue_state_params *params)
{
struct bnx2x_queue_sp_obj *o = params->q_obj;
return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_HALT,
o->cids[BNX2X_PRIMARY_CID_INDEX], 0, o->cl_id,
ETH_CONNECTION_TYPE);
}
static inline int bnx2x_q_send_cfc_del(struct bnx2x *bp,
struct bnx2x_queue_state_params *params)
{
struct bnx2x_queue_sp_obj *o = params->q_obj;
u8 cid_idx = params->params.cfc_del.cid_index;
if (cid_idx >= o->max_cos) {
BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n",
o->cl_id, cid_idx);
return -EINVAL;
}
return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_CFC_DEL,
o->cids[cid_idx], 0, 0, NONE_CONNECTION_TYPE);
}
static inline int bnx2x_q_send_terminate(struct bnx2x *bp,
struct bnx2x_queue_state_params *params)
{
struct bnx2x_queue_sp_obj *o = params->q_obj;
u8 cid_index = params->params.terminate.cid_index;
if (cid_index >= o->max_cos) {
BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n",
o->cl_id, cid_index);
return -EINVAL;
}
return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_TERMINATE,
o->cids[cid_index], 0, 0, ETH_CONNECTION_TYPE);
}
static inline int bnx2x_q_send_empty(struct bnx2x *bp,
struct bnx2x_queue_state_params *params)
{
struct bnx2x_queue_sp_obj *o = params->q_obj;
return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_EMPTY,
o->cids[BNX2X_PRIMARY_CID_INDEX], 0, 0,
ETH_CONNECTION_TYPE);
}
static inline int bnx2x_queue_send_cmd_cmn(struct bnx2x *bp,
struct bnx2x_queue_state_params *params)
{
switch (params->cmd) {
case BNX2X_Q_CMD_INIT:
return bnx2x_q_init(bp, params);
case BNX2X_Q_CMD_SETUP_TX_ONLY:
return bnx2x_q_send_setup_tx_only(bp, params);
case BNX2X_Q_CMD_DEACTIVATE:
return bnx2x_q_send_deactivate(bp, params);
case BNX2X_Q_CMD_ACTIVATE:
return bnx2x_q_send_activate(bp, params);
case BNX2X_Q_CMD_UPDATE:
return bnx2x_q_send_update(bp, params);
case BNX2X_Q_CMD_UPDATE_TPA:
return bnx2x_q_send_update_tpa(bp, params);
case BNX2X_Q_CMD_HALT:
return bnx2x_q_send_halt(bp, params);
case BNX2X_Q_CMD_CFC_DEL:
return bnx2x_q_send_cfc_del(bp, params);
case BNX2X_Q_CMD_TERMINATE:
return bnx2x_q_send_terminate(bp, params);
case BNX2X_Q_CMD_EMPTY:
return bnx2x_q_send_empty(bp, params);
default:
BNX2X_ERR("Unknown command: %d\n", params->cmd);
return -EINVAL;
}
}
static int bnx2x_queue_send_cmd_e1x(struct bnx2x *bp,
struct bnx2x_queue_state_params *params)
{
switch (params->cmd) {
case BNX2X_Q_CMD_SETUP:
return bnx2x_q_send_setup_e1x(bp, params);
case BNX2X_Q_CMD_INIT:
case BNX2X_Q_CMD_SETUP_TX_ONLY:
case BNX2X_Q_CMD_DEACTIVATE:
case BNX2X_Q_CMD_ACTIVATE:
case BNX2X_Q_CMD_UPDATE:
case BNX2X_Q_CMD_UPDATE_TPA:
case BNX2X_Q_CMD_HALT:
case BNX2X_Q_CMD_CFC_DEL:
case BNX2X_Q_CMD_TERMINATE:
case BNX2X_Q_CMD_EMPTY:
return bnx2x_queue_send_cmd_cmn(bp, params);
default:
BNX2X_ERR("Unknown command: %d\n", params->cmd);
return -EINVAL;
}
}
static int bnx2x_queue_send_cmd_e2(struct bnx2x *bp,
struct bnx2x_queue_state_params *params)
{
switch (params->cmd) {
case BNX2X_Q_CMD_SETUP:
return bnx2x_q_send_setup_e2(bp, params);
case BNX2X_Q_CMD_INIT:
case BNX2X_Q_CMD_SETUP_TX_ONLY:
case BNX2X_Q_CMD_DEACTIVATE:
case BNX2X_Q_CMD_ACTIVATE:
case BNX2X_Q_CMD_UPDATE:
case BNX2X_Q_CMD_UPDATE_TPA:
case BNX2X_Q_CMD_HALT:
case BNX2X_Q_CMD_CFC_DEL:
case BNX2X_Q_CMD_TERMINATE:
case BNX2X_Q_CMD_EMPTY:
return bnx2x_queue_send_cmd_cmn(bp, params);
default:
BNX2X_ERR("Unknown command: %d\n", params->cmd);
return -EINVAL;
}
}
/**
* bnx2x_queue_chk_transition - check state machine of a regular Queue
*
* @bp: device handle
* @o:
* @params:
*
* (not Forwarding)
* It both checks if the requested command is legal in a current
* state and, if it's legal, sets a `next_state' in the object
* that will be used in the completion flow to set the `state'
* of the object.
*
* returns 0 if a requested command is a legal transition,
* -EINVAL otherwise.
*/
static int bnx2x_queue_chk_transition(struct bnx2x *bp,
struct bnx2x_queue_sp_obj *o,
struct bnx2x_queue_state_params *params)
{
enum bnx2x_q_state state = o->state, next_state = BNX2X_Q_STATE_MAX;
enum bnx2x_queue_cmd cmd = params->cmd;
struct bnx2x_queue_update_params *update_params =
&params->params.update;
u8 next_tx_only = o->num_tx_only;
/*
* Forget all pending for completion commands if a driver only state
* transition has been requested.
*/
if (test_bit(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags)) {
o->pending = 0;
o->next_state = BNX2X_Q_STATE_MAX;
}
/*
* Don't allow a next state transition if we are in the middle of
* the previous one.
*/
if (o->pending)
return -EBUSY;
switch (state) {
case BNX2X_Q_STATE_RESET:
if (cmd == BNX2X_Q_CMD_INIT)
next_state = BNX2X_Q_STATE_INITIALIZED;
break;
case BNX2X_Q_STATE_INITIALIZED:
if (cmd == BNX2X_Q_CMD_SETUP) {
if (test_bit(BNX2X_Q_FLG_ACTIVE,
&params->params.setup.flags))
next_state = BNX2X_Q_STATE_ACTIVE;
else
next_state = BNX2X_Q_STATE_INACTIVE;
}
break;
case BNX2X_Q_STATE_ACTIVE:
if (cmd == BNX2X_Q_CMD_DEACTIVATE)
next_state = BNX2X_Q_STATE_INACTIVE;
else if ((cmd == BNX2X_Q_CMD_EMPTY) ||
(cmd == BNX2X_Q_CMD_UPDATE_TPA))
next_state = BNX2X_Q_STATE_ACTIVE;
else if (cmd == BNX2X_Q_CMD_SETUP_TX_ONLY) {
next_state = BNX2X_Q_STATE_MULTI_COS;
next_tx_only = 1;
}
else if (cmd == BNX2X_Q_CMD_HALT)
next_state = BNX2X_Q_STATE_STOPPED;
else if (cmd == BNX2X_Q_CMD_UPDATE) {
/* If "active" state change is requested, update the
* state accordingly.
*/
if (test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG,
&update_params->update_flags) &&
!test_bit(BNX2X_Q_UPDATE_ACTIVATE,
&update_params->update_flags))
next_state = BNX2X_Q_STATE_INACTIVE;
else
next_state = BNX2X_Q_STATE_ACTIVE;
}
break;
case BNX2X_Q_STATE_MULTI_COS:
if (cmd == BNX2X_Q_CMD_TERMINATE)
next_state = BNX2X_Q_STATE_MCOS_TERMINATED;
else if (cmd == BNX2X_Q_CMD_SETUP_TX_ONLY) {
next_state = BNX2X_Q_STATE_MULTI_COS;
next_tx_only = o->num_tx_only + 1;
}
else if ((cmd == BNX2X_Q_CMD_EMPTY) ||
(cmd == BNX2X_Q_CMD_UPDATE_TPA))
next_state = BNX2X_Q_STATE_MULTI_COS;
else if (cmd == BNX2X_Q_CMD_UPDATE) {
/* If "active" state change is requested, update the
* state accordingly.
*/
if (test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG,
&update_params->update_flags) &&
!test_bit(BNX2X_Q_UPDATE_ACTIVATE,
&update_params->update_flags))
next_state = BNX2X_Q_STATE_INACTIVE;
else
next_state = BNX2X_Q_STATE_MULTI_COS;
}
break;
case BNX2X_Q_STATE_MCOS_TERMINATED:
if (cmd == BNX2X_Q_CMD_CFC_DEL) {
next_tx_only = o->num_tx_only - 1;
if (next_tx_only == 0)
next_state = BNX2X_Q_STATE_ACTIVE;
else
next_state = BNX2X_Q_STATE_MULTI_COS;
}
break;
case BNX2X_Q_STATE_INACTIVE:
if (cmd == BNX2X_Q_CMD_ACTIVATE)
next_state = BNX2X_Q_STATE_ACTIVE;
else if ((cmd == BNX2X_Q_CMD_EMPTY) ||
(cmd == BNX2X_Q_CMD_UPDATE_TPA))
next_state = BNX2X_Q_STATE_INACTIVE;
else if (cmd == BNX2X_Q_CMD_HALT)
next_state = BNX2X_Q_STATE_STOPPED;
else if (cmd == BNX2X_Q_CMD_UPDATE) {
/* If "active" state change is requested, update the
* state accordingly.
*/
if (test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG,
&update_params->update_flags) &&
test_bit(BNX2X_Q_UPDATE_ACTIVATE,
&update_params->update_flags)){
if (o->num_tx_only == 0)
next_state = BNX2X_Q_STATE_ACTIVE;
else /* tx only queues exist for this queue */
next_state = BNX2X_Q_STATE_MULTI_COS;
} else
next_state = BNX2X_Q_STATE_INACTIVE;
}
break;
case BNX2X_Q_STATE_STOPPED:
if (cmd == BNX2X_Q_CMD_TERMINATE)
next_state = BNX2X_Q_STATE_TERMINATED;
break;
case BNX2X_Q_STATE_TERMINATED:
if (cmd == BNX2X_Q_CMD_CFC_DEL)
next_state = BNX2X_Q_STATE_RESET;
break;
default:
BNX2X_ERR("Illegal state: %d\n", state);
}
/* Transition is assured */
if (next_state != BNX2X_Q_STATE_MAX) {
DP(BNX2X_MSG_SP, "Good state transition: %d(%d)->%d\n",
state, cmd, next_state);
o->next_state = next_state;
o->next_tx_only = next_tx_only;
return 0;
}
DP(BNX2X_MSG_SP, "Bad state transition request: %d %d\n", state, cmd);
return -EINVAL;
}
void bnx2x_init_queue_obj(struct bnx2x *bp,
struct bnx2x_queue_sp_obj *obj,
u8 cl_id, u32 *cids, u8 cid_cnt, u8 func_id,
void *rdata,
dma_addr_t rdata_mapping, unsigned long type)
{
memset(obj, 0, sizeof(*obj));
/* We support only BNX2X_MULTI_TX_COS Tx CoS at the moment */
BUG_ON(BNX2X_MULTI_TX_COS < cid_cnt);
memcpy(obj->cids, cids, sizeof(obj->cids[0]) * cid_cnt);
obj->max_cos = cid_cnt;
obj->cl_id = cl_id;
obj->func_id = func_id;
obj->rdata = rdata;
obj->rdata_mapping = rdata_mapping;
obj->type = type;
obj->next_state = BNX2X_Q_STATE_MAX;
if (CHIP_IS_E1x(bp))
obj->send_cmd = bnx2x_queue_send_cmd_e1x;
else
obj->send_cmd = bnx2x_queue_send_cmd_e2;
obj->check_transition = bnx2x_queue_chk_transition;
obj->complete_cmd = bnx2x_queue_comp_cmd;
obj->wait_comp = bnx2x_queue_wait_comp;
obj->set_pending = bnx2x_queue_set_pending;
}
/********************** Function state object *********************************/
enum bnx2x_func_state bnx2x_func_get_state(struct bnx2x *bp,
struct bnx2x_func_sp_obj *o)
{
/* in the middle of transaction - return INVALID state */
if (o->pending)
return BNX2X_F_STATE_MAX;
/*
* unsure the order of reading of o->pending and o->state
* o->pending should be read first
*/
rmb();
return o->state;
}
static int bnx2x_func_wait_comp(struct bnx2x *bp,
struct bnx2x_func_sp_obj *o,
enum bnx2x_func_cmd cmd)
{
return bnx2x_state_wait(bp, cmd, &o->pending);
}
/**
* bnx2x_func_state_change_comp - complete the state machine transition
*
* @bp: device handle
* @o:
* @cmd:
*
* Called on state change transition. Completes the state
* machine transition only - no HW interaction.
*/
static inline int bnx2x_func_state_change_comp(struct bnx2x *bp,
struct bnx2x_func_sp_obj *o,
enum bnx2x_func_cmd cmd)
{
unsigned long cur_pending = o->pending;
if (!test_and_clear_bit(cmd, &cur_pending)) {
BNX2X_ERR("Bad MC reply %d for func %d in state %d pending 0x%lx, next_state %d\n",
cmd, BP_FUNC(bp), o->state,
cur_pending, o->next_state);
return -EINVAL;
}
DP(BNX2X_MSG_SP,
"Completing command %d for func %d, setting state to %d\n",
cmd, BP_FUNC(bp), o->next_state);
o->state = o->next_state;
o->next_state = BNX2X_F_STATE_MAX;
/* It's important that o->state and o->next_state are
* updated before o->pending.
*/
wmb();
clear_bit(cmd, &o->pending);
smp_mb__after_clear_bit();
return 0;
}
/**
* bnx2x_func_comp_cmd - complete the state change command
*
* @bp: device handle
* @o:
* @cmd:
*
* Checks that the arrived completion is expected.
*/
static int bnx2x_func_comp_cmd(struct bnx2x *bp,
struct bnx2x_func_sp_obj *o,
enum bnx2x_func_cmd cmd)
{
/* Complete the state machine part first, check if it's a
* legal completion.
*/
int rc = bnx2x_func_state_change_comp(bp, o, cmd);
return rc;
}
/**
* bnx2x_func_chk_transition - perform function state machine transition
*
* @bp: device handle
* @o:
* @params:
*
* It both checks if the requested command is legal in a current
* state and, if it's legal, sets a `next_state' in the object
* that will be used in the completion flow to set the `state'
* of the object.
*
* returns 0 if a requested command is a legal transition,
* -EINVAL otherwise.
*/
static int bnx2x_func_chk_transition(struct bnx2x *bp,
struct bnx2x_func_sp_obj *o,
struct bnx2x_func_state_params *params)
{
enum bnx2x_func_state state = o->state, next_state = BNX2X_F_STATE_MAX;
enum bnx2x_func_cmd cmd = params->cmd;
/*
* Forget all pending for completion commands if a driver only state
* transition has been requested.
*/
if (test_bit(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags)) {
o->pending = 0;
o->next_state = BNX2X_F_STATE_MAX;
}
/*
* Don't allow a next state transition if we are in the middle of
* the previous one.
*/
if (o->pending)
return -EBUSY;
switch (state) {
case BNX2X_F_STATE_RESET:
if (cmd == BNX2X_F_CMD_HW_INIT)
next_state = BNX2X_F_STATE_INITIALIZED;
break;
case BNX2X_F_STATE_INITIALIZED:
if (cmd == BNX2X_F_CMD_START)
next_state = BNX2X_F_STATE_STARTED;
else if (cmd == BNX2X_F_CMD_HW_RESET)
next_state = BNX2X_F_STATE_RESET;
break;
case BNX2X_F_STATE_STARTED:
if (cmd == BNX2X_F_CMD_STOP)
next_state = BNX2X_F_STATE_INITIALIZED;
/* afex ramrods can be sent only in started mode, and only
* if not pending for function_stop ramrod completion
* for these events - next state remained STARTED.
*/
else if ((cmd == BNX2X_F_CMD_AFEX_UPDATE) &&
(!test_bit(BNX2X_F_CMD_STOP, &o->pending)))
next_state = BNX2X_F_STATE_STARTED;
else if ((cmd == BNX2X_F_CMD_AFEX_VIFLISTS) &&
(!test_bit(BNX2X_F_CMD_STOP, &o->pending)))
next_state = BNX2X_F_STATE_STARTED;
else if (cmd == BNX2X_F_CMD_TX_STOP)
next_state = BNX2X_F_STATE_TX_STOPPED;
break;
case BNX2X_F_STATE_TX_STOPPED:
if (cmd == BNX2X_F_CMD_TX_START)
next_state = BNX2X_F_STATE_STARTED;
break;
default:
BNX2X_ERR("Unknown state: %d\n", state);
}
/* Transition is assured */
if (next_state != BNX2X_F_STATE_MAX) {
DP(BNX2X_MSG_SP, "Good function state transition: %d(%d)->%d\n",
state, cmd, next_state);
o->next_state = next_state;
return 0;
}
DP(BNX2X_MSG_SP, "Bad function state transition request: %d %d\n",
state, cmd);
return -EINVAL;
}
/**
* bnx2x_func_init_func - performs HW init at function stage
*
* @bp: device handle
* @drv:
*
* Init HW when the current phase is
* FW_MSG_CODE_DRV_LOAD_FUNCTION: initialize only FUNCTION-only
* HW blocks.
*/
static inline int bnx2x_func_init_func(struct bnx2x *bp,
const struct bnx2x_func_sp_drv_ops *drv)
{
return drv->init_hw_func(bp);
}
/**
* bnx2x_func_init_port - performs HW init at port stage
*
* @bp: device handle
* @drv:
*
* Init HW when the current phase is
* FW_MSG_CODE_DRV_LOAD_PORT: initialize PORT-only and
* FUNCTION-only HW blocks.
*
*/
static inline int bnx2x_func_init_port(struct bnx2x *bp,
const struct bnx2x_func_sp_drv_ops *drv)
{
int rc = drv->init_hw_port(bp);
if (rc)
return rc;
return bnx2x_func_init_func(bp, drv);
}
/**
* bnx2x_func_init_cmn_chip - performs HW init at chip-common stage
*
* @bp: device handle
* @drv:
*
* Init HW when the current phase is
* FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: initialize COMMON_CHIP,
* PORT-only and FUNCTION-only HW blocks.
*/
static inline int bnx2x_func_init_cmn_chip(struct bnx2x *bp,
const struct bnx2x_func_sp_drv_ops *drv)
{
int rc = drv->init_hw_cmn_chip(bp);
if (rc)
return rc;
return bnx2x_func_init_port(bp, drv);
}
/**
* bnx2x_func_init_cmn - performs HW init at common stage
*
* @bp: device handle
* @drv:
*
* Init HW when the current phase is
* FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: initialize COMMON,
* PORT-only and FUNCTION-only HW blocks.
*/
static inline int bnx2x_func_init_cmn(struct bnx2x *bp,
const struct bnx2x_func_sp_drv_ops *drv)
{
int rc = drv->init_hw_cmn(bp);
if (rc)
return rc;
return bnx2x_func_init_port(bp, drv);
}
static int bnx2x_func_hw_init(struct bnx2x *bp,
struct bnx2x_func_state_params *params)
{
u32 load_code = params->params.hw_init.load_phase;
struct bnx2x_func_sp_obj *o = params->f_obj;
const struct bnx2x_func_sp_drv_ops *drv = o->drv;
int rc = 0;
DP(BNX2X_MSG_SP, "function %d load_code %x\n",
BP_ABS_FUNC(bp), load_code);
/* Prepare buffers for unzipping the FW */
rc = drv->gunzip_init(bp);
if (rc)
return rc;
/* Prepare FW */
rc = drv->init_fw(bp);
if (rc) {
BNX2X_ERR("Error loading firmware\n");
goto init_err;
}
/* Handle the beginning of COMMON_XXX pases separatelly... */
switch (load_code) {
case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
rc = bnx2x_func_init_cmn_chip(bp, drv);
if (rc)
goto init_err;
break;
case FW_MSG_CODE_DRV_LOAD_COMMON:
rc = bnx2x_func_init_cmn(bp, drv);
if (rc)
goto init_err;
break;
case FW_MSG_CODE_DRV_LOAD_PORT:
rc = bnx2x_func_init_port(bp, drv);
if (rc)
goto init_err;
break;
case FW_MSG_CODE_DRV_LOAD_FUNCTION:
rc = bnx2x_func_init_func(bp, drv);
if (rc)
goto init_err;
break;
default:
BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
rc = -EINVAL;
}
init_err:
drv->gunzip_end(bp);
/* In case of success, complete the comand immediatelly: no ramrods
* have been sent.
*/
if (!rc)
o->complete_cmd(bp, o, BNX2X_F_CMD_HW_INIT);
return rc;
}
/**
* bnx2x_func_reset_func - reset HW at function stage
*
* @bp: device handle
* @drv:
*
* Reset HW at FW_MSG_CODE_DRV_UNLOAD_FUNCTION stage: reset only
* FUNCTION-only HW blocks.
*/
static inline void bnx2x_func_reset_func(struct bnx2x *bp,
const struct bnx2x_func_sp_drv_ops *drv)
{
drv->reset_hw_func(bp);
}
/**
* bnx2x_func_reset_port - reser HW at port stage
*
* @bp: device handle
* @drv:
*
* Reset HW at FW_MSG_CODE_DRV_UNLOAD_PORT stage: reset
* FUNCTION-only and PORT-only HW blocks.
*
* !!!IMPORTANT!!!
*
* It's important to call reset_port before reset_func() as the last thing
* reset_func does is pf_disable() thus disabling PGLUE_B, which
* makes impossible any DMAE transactions.
*/
static inline void bnx2x_func_reset_port(struct bnx2x *bp,
const struct bnx2x_func_sp_drv_ops *drv)
{
drv->reset_hw_port(bp);
bnx2x_func_reset_func(bp, drv);
}
/**
* bnx2x_func_reset_cmn - reser HW at common stage
*
* @bp: device handle
* @drv:
*
* Reset HW at FW_MSG_CODE_DRV_UNLOAD_COMMON and
* FW_MSG_CODE_DRV_UNLOAD_COMMON_CHIP stages: reset COMMON,
* COMMON_CHIP, FUNCTION-only and PORT-only HW blocks.
*/
static inline void bnx2x_func_reset_cmn(struct bnx2x *bp,
const struct bnx2x_func_sp_drv_ops *drv)
{
bnx2x_func_reset_port(bp, drv);
drv->reset_hw_cmn(bp);
}
static inline int bnx2x_func_hw_reset(struct bnx2x *bp,
struct bnx2x_func_state_params *params)
{
u32 reset_phase = params->params.hw_reset.reset_phase;
struct bnx2x_func_sp_obj *o = params->f_obj;
const struct bnx2x_func_sp_drv_ops *drv = o->drv;
DP(BNX2X_MSG_SP, "function %d reset_phase %x\n", BP_ABS_FUNC(bp),
reset_phase);
switch (reset_phase) {
case FW_MSG_CODE_DRV_UNLOAD_COMMON:
bnx2x_func_reset_cmn(bp, drv);
break;
case FW_MSG_CODE_DRV_UNLOAD_PORT:
bnx2x_func_reset_port(bp, drv);
break;
case FW_MSG_CODE_DRV_UNLOAD_FUNCTION:
bnx2x_func_reset_func(bp, drv);
break;
default:
BNX2X_ERR("Unknown reset_phase (0x%x) from MCP\n",
reset_phase);
break;
}
/* Complete the comand immediatelly: no ramrods have been sent. */
o->complete_cmd(bp, o, BNX2X_F_CMD_HW_RESET);
return 0;
}
static inline int bnx2x_func_send_start(struct bnx2x *bp,
struct bnx2x_func_state_params *params)
{
struct bnx2x_func_sp_obj *o = params->f_obj;
struct function_start_data *rdata =
(struct function_start_data *)o->rdata;
dma_addr_t data_mapping = o->rdata_mapping;
struct bnx2x_func_start_params *start_params = &params->params.start;
memset(rdata, 0, sizeof(*rdata));
/* Fill the ramrod data with provided parameters */
rdata->function_mode = cpu_to_le16(start_params->mf_mode);
rdata->sd_vlan_tag = cpu_to_le16(start_params->sd_vlan_tag);
rdata->path_id = BP_PATH(bp);
rdata->network_cos_mode = start_params->network_cos_mode;
/*
* No need for an explicit memory barrier here as long we would
* need to ensure the ordering of writing to the SPQ element
* and updating of the SPQ producer which involves a memory
* read and we will have to put a full memory barrier there
* (inside bnx2x_sp_post()).
*/
return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_FUNCTION_START, 0,
U64_HI(data_mapping),
U64_LO(data_mapping), NONE_CONNECTION_TYPE);
}
static inline int bnx2x_func_send_afex_update(struct bnx2x *bp,
struct bnx2x_func_state_params *params)
{
struct bnx2x_func_sp_obj *o = params->f_obj;
struct function_update_data *rdata =
(struct function_update_data *)o->afex_rdata;
dma_addr_t data_mapping = o->afex_rdata_mapping;
struct bnx2x_func_afex_update_params *afex_update_params =
&params->params.afex_update;
memset(rdata, 0, sizeof(*rdata));
/* Fill the ramrod data with provided parameters */
rdata->vif_id_change_flg = 1;
rdata->vif_id = cpu_to_le16(afex_update_params->vif_id);
rdata->afex_default_vlan_change_flg = 1;
rdata->afex_default_vlan =
cpu_to_le16(afex_update_params->afex_default_vlan);
rdata->allowed_priorities_change_flg = 1;
rdata->allowed_priorities = afex_update_params->allowed_priorities;
/* No need for an explicit memory barrier here as long we would
* need to ensure the ordering of writing to the SPQ element
* and updating of the SPQ producer which involves a memory
* read and we will have to put a full memory barrier there
* (inside bnx2x_sp_post()).
*/
DP(BNX2X_MSG_SP,
"afex: sending func_update vif_id 0x%x dvlan 0x%x prio 0x%x\n",
rdata->vif_id,
rdata->afex_default_vlan, rdata->allowed_priorities);
return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_FUNCTION_UPDATE, 0,
U64_HI(data_mapping),
U64_LO(data_mapping), NONE_CONNECTION_TYPE);
}
static
inline int bnx2x_func_send_afex_viflists(struct bnx2x *bp,
struct bnx2x_func_state_params *params)
{
struct bnx2x_func_sp_obj *o = params->f_obj;
struct afex_vif_list_ramrod_data *rdata =
(struct afex_vif_list_ramrod_data *)o->afex_rdata;
struct bnx2x_func_afex_viflists_params *afex_viflist_params =
&params->params.afex_viflists;
u64 *p_rdata = (u64 *)rdata;
memset(rdata, 0, sizeof(*rdata));
/* Fill the ramrod data with provided parameters */
rdata->vif_list_index = afex_viflist_params->vif_list_index;
rdata->func_bit_map = afex_viflist_params->func_bit_map;
rdata->afex_vif_list_command =
afex_viflist_params->afex_vif_list_command;
rdata->func_to_clear = afex_viflist_params->func_to_clear;
/* send in echo type of sub command */
rdata->echo = afex_viflist_params->afex_vif_list_command;
/* No need for an explicit memory barrier here as long we would
* need to ensure the ordering of writing to the SPQ element
* and updating of the SPQ producer which involves a memory
* read and we will have to put a full memory barrier there
* (inside bnx2x_sp_post()).
*/
DP(BNX2X_MSG_SP, "afex: ramrod lists, cmd 0x%x index 0x%x func_bit_map 0x%x func_to_clr 0x%x\n",
rdata->afex_vif_list_command, rdata->vif_list_index,
rdata->func_bit_map, rdata->func_to_clear);
/* this ramrod sends data directly and not through DMA mapping */
return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_AFEX_VIF_LISTS, 0,
U64_HI(*p_rdata), U64_LO(*p_rdata),
NONE_CONNECTION_TYPE);
}
static inline int bnx2x_func_send_stop(struct bnx2x *bp,
struct bnx2x_func_state_params *params)
{
return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_FUNCTION_STOP, 0, 0, 0,
NONE_CONNECTION_TYPE);
}
static inline int bnx2x_func_send_tx_stop(struct bnx2x *bp,
struct bnx2x_func_state_params *params)
{
return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_STOP_TRAFFIC, 0, 0, 0,
NONE_CONNECTION_TYPE);
}
static inline int bnx2x_func_send_tx_start(struct bnx2x *bp,
struct bnx2x_func_state_params *params)
{
struct bnx2x_func_sp_obj *o = params->f_obj;
struct flow_control_configuration *rdata =
(struct flow_control_configuration *)o->rdata;
dma_addr_t data_mapping = o->rdata_mapping;
struct bnx2x_func_tx_start_params *tx_start_params =
&params->params.tx_start;
int i;
memset(rdata, 0, sizeof(*rdata));
rdata->dcb_enabled = tx_start_params->dcb_enabled;
rdata->dcb_version = tx_start_params->dcb_version;
rdata->dont_add_pri_0_en = tx_start_params->dont_add_pri_0_en;
for (i = 0; i < ARRAY_SIZE(rdata->traffic_type_to_priority_cos); i++)
rdata->traffic_type_to_priority_cos[i] =
tx_start_params->traffic_type_to_priority_cos[i];
return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_START_TRAFFIC, 0,
U64_HI(data_mapping),
U64_LO(data_mapping), NONE_CONNECTION_TYPE);
}
static int bnx2x_func_send_cmd(struct bnx2x *bp,
struct bnx2x_func_state_params *params)
{
switch (params->cmd) {
case BNX2X_F_CMD_HW_INIT:
return bnx2x_func_hw_init(bp, params);
case BNX2X_F_CMD_START:
return bnx2x_func_send_start(bp, params);
case BNX2X_F_CMD_STOP:
return bnx2x_func_send_stop(bp, params);
case BNX2X_F_CMD_HW_RESET:
return bnx2x_func_hw_reset(bp, params);
case BNX2X_F_CMD_AFEX_UPDATE:
return bnx2x_func_send_afex_update(bp, params);
case BNX2X_F_CMD_AFEX_VIFLISTS:
return bnx2x_func_send_afex_viflists(bp, params);
case BNX2X_F_CMD_TX_STOP:
return bnx2x_func_send_tx_stop(bp, params);
case BNX2X_F_CMD_TX_START:
return bnx2x_func_send_tx_start(bp, params);
default:
BNX2X_ERR("Unknown command: %d\n", params->cmd);
return -EINVAL;
}
}
void bnx2x_init_func_obj(struct bnx2x *bp,
struct bnx2x_func_sp_obj *obj,
void *rdata, dma_addr_t rdata_mapping,
void *afex_rdata, dma_addr_t afex_rdata_mapping,
struct bnx2x_func_sp_drv_ops *drv_iface)
{
memset(obj, 0, sizeof(*obj));
mutex_init(&obj->one_pending_mutex);
obj->rdata = rdata;
obj->rdata_mapping = rdata_mapping;
obj->afex_rdata = afex_rdata;
obj->afex_rdata_mapping = afex_rdata_mapping;
obj->send_cmd = bnx2x_func_send_cmd;
obj->check_transition = bnx2x_func_chk_transition;
obj->complete_cmd = bnx2x_func_comp_cmd;
obj->wait_comp = bnx2x_func_wait_comp;
obj->drv = drv_iface;
}
/**
* bnx2x_func_state_change - perform Function state change transition
*
* @bp: device handle
* @params: parameters to perform the transaction
*
* returns 0 in case of successfully completed transition,
* negative error code in case of failure, positive
* (EBUSY) value if there is a completion to that is
* still pending (possible only if RAMROD_COMP_WAIT is
* not set in params->ramrod_flags for asynchronous
* commands).
*/
int bnx2x_func_state_change(struct bnx2x *bp,
struct bnx2x_func_state_params *params)
{
struct bnx2x_func_sp_obj *o = params->f_obj;
int rc;
enum bnx2x_func_cmd cmd = params->cmd;
unsigned long *pending = &o->pending;
mutex_lock(&o->one_pending_mutex);
/* Check that the requested transition is legal */
if (o->check_transition(bp, o, params)) {
mutex_unlock(&o->one_pending_mutex);
return -EINVAL;
}
/* Set "pending" bit */
set_bit(cmd, pending);
/* Don't send a command if only driver cleanup was requested */
if (test_bit(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags)) {
bnx2x_func_state_change_comp(bp, o, cmd);
mutex_unlock(&o->one_pending_mutex);
} else {
/* Send a ramrod */
rc = o->send_cmd(bp, params);
mutex_unlock(&o->one_pending_mutex);
if (rc) {
o->next_state = BNX2X_F_STATE_MAX;
clear_bit(cmd, pending);
smp_mb__after_clear_bit();
return rc;
}
if (test_bit(RAMROD_COMP_WAIT, &params->ramrod_flags)) {
rc = o->wait_comp(bp, o, cmd);
if (rc)
return rc;
return 0;
}
}
return !!test_bit(cmd, pending);
}