| /* |
| * Performance counter support - powerpc architecture code |
| * |
| * Copyright 2008-2009 Paul Mackerras, IBM Corporation. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| #include <linux/kernel.h> |
| #include <linux/sched.h> |
| #include <linux/perf_counter.h> |
| #include <linux/percpu.h> |
| #include <linux/hardirq.h> |
| #include <asm/reg.h> |
| #include <asm/pmc.h> |
| #include <asm/machdep.h> |
| |
| struct cpu_hw_counters { |
| int n_counters; |
| int n_percpu; |
| int disabled; |
| int n_added; |
| struct perf_counter *counter[MAX_HWCOUNTERS]; |
| unsigned int events[MAX_HWCOUNTERS]; |
| u64 mmcr[3]; |
| u8 pmcs_enabled; |
| }; |
| DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters); |
| |
| struct power_pmu *ppmu; |
| |
| void perf_counter_print_debug(void) |
| { |
| } |
| |
| /* |
| * Read one performance monitor counter (PMC). |
| */ |
| static unsigned long read_pmc(int idx) |
| { |
| unsigned long val; |
| |
| switch (idx) { |
| case 1: |
| val = mfspr(SPRN_PMC1); |
| break; |
| case 2: |
| val = mfspr(SPRN_PMC2); |
| break; |
| case 3: |
| val = mfspr(SPRN_PMC3); |
| break; |
| case 4: |
| val = mfspr(SPRN_PMC4); |
| break; |
| case 5: |
| val = mfspr(SPRN_PMC5); |
| break; |
| case 6: |
| val = mfspr(SPRN_PMC6); |
| break; |
| case 7: |
| val = mfspr(SPRN_PMC7); |
| break; |
| case 8: |
| val = mfspr(SPRN_PMC8); |
| break; |
| default: |
| printk(KERN_ERR "oops trying to read PMC%d\n", idx); |
| val = 0; |
| } |
| return val; |
| } |
| |
| /* |
| * Write one PMC. |
| */ |
| static void write_pmc(int idx, unsigned long val) |
| { |
| switch (idx) { |
| case 1: |
| mtspr(SPRN_PMC1, val); |
| break; |
| case 2: |
| mtspr(SPRN_PMC2, val); |
| break; |
| case 3: |
| mtspr(SPRN_PMC3, val); |
| break; |
| case 4: |
| mtspr(SPRN_PMC4, val); |
| break; |
| case 5: |
| mtspr(SPRN_PMC5, val); |
| break; |
| case 6: |
| mtspr(SPRN_PMC6, val); |
| break; |
| case 7: |
| mtspr(SPRN_PMC7, val); |
| break; |
| case 8: |
| mtspr(SPRN_PMC8, val); |
| break; |
| default: |
| printk(KERN_ERR "oops trying to write PMC%d\n", idx); |
| } |
| } |
| |
| /* |
| * Check if a set of events can all go on the PMU at once. |
| * If they can't, this will look at alternative codes for the events |
| * and see if any combination of alternative codes is feasible. |
| * The feasible set is returned in event[]. |
| */ |
| static int power_check_constraints(unsigned int event[], int n_ev) |
| { |
| u64 mask, value, nv; |
| unsigned int alternatives[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES]; |
| u64 amasks[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES]; |
| u64 avalues[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES]; |
| u64 smasks[MAX_HWCOUNTERS], svalues[MAX_HWCOUNTERS]; |
| int n_alt[MAX_HWCOUNTERS], choice[MAX_HWCOUNTERS]; |
| int i, j; |
| u64 addf = ppmu->add_fields; |
| u64 tadd = ppmu->test_adder; |
| |
| if (n_ev > ppmu->n_counter) |
| return -1; |
| |
| /* First see if the events will go on as-is */ |
| for (i = 0; i < n_ev; ++i) { |
| alternatives[i][0] = event[i]; |
| if (ppmu->get_constraint(event[i], &amasks[i][0], |
| &avalues[i][0])) |
| return -1; |
| choice[i] = 0; |
| } |
| value = mask = 0; |
| for (i = 0; i < n_ev; ++i) { |
| nv = (value | avalues[i][0]) + (value & avalues[i][0] & addf); |
| if ((((nv + tadd) ^ value) & mask) != 0 || |
| (((nv + tadd) ^ avalues[i][0]) & amasks[i][0]) != 0) |
| break; |
| value = nv; |
| mask |= amasks[i][0]; |
| } |
| if (i == n_ev) |
| return 0; /* all OK */ |
| |
| /* doesn't work, gather alternatives... */ |
| if (!ppmu->get_alternatives) |
| return -1; |
| for (i = 0; i < n_ev; ++i) { |
| n_alt[i] = ppmu->get_alternatives(event[i], alternatives[i]); |
| for (j = 1; j < n_alt[i]; ++j) |
| ppmu->get_constraint(alternatives[i][j], |
| &amasks[i][j], &avalues[i][j]); |
| } |
| |
| /* enumerate all possibilities and see if any will work */ |
| i = 0; |
| j = -1; |
| value = mask = nv = 0; |
| while (i < n_ev) { |
| if (j >= 0) { |
| /* we're backtracking, restore context */ |
| value = svalues[i]; |
| mask = smasks[i]; |
| j = choice[i]; |
| } |
| /* |
| * See if any alternative k for event i, |
| * where k > j, will satisfy the constraints. |
| */ |
| while (++j < n_alt[i]) { |
| nv = (value | avalues[i][j]) + |
| (value & avalues[i][j] & addf); |
| if ((((nv + tadd) ^ value) & mask) == 0 && |
| (((nv + tadd) ^ avalues[i][j]) |
| & amasks[i][j]) == 0) |
| break; |
| } |
| if (j >= n_alt[i]) { |
| /* |
| * No feasible alternative, backtrack |
| * to event i-1 and continue enumerating its |
| * alternatives from where we got up to. |
| */ |
| if (--i < 0) |
| return -1; |
| } else { |
| /* |
| * Found a feasible alternative for event i, |
| * remember where we got up to with this event, |
| * go on to the next event, and start with |
| * the first alternative for it. |
| */ |
| choice[i] = j; |
| svalues[i] = value; |
| smasks[i] = mask; |
| value = nv; |
| mask |= amasks[i][j]; |
| ++i; |
| j = -1; |
| } |
| } |
| |
| /* OK, we have a feasible combination, tell the caller the solution */ |
| for (i = 0; i < n_ev; ++i) |
| event[i] = alternatives[i][choice[i]]; |
| return 0; |
| } |
| |
| static void power_perf_read(struct perf_counter *counter) |
| { |
| long val, delta, prev; |
| |
| if (!counter->hw.idx) |
| return; |
| /* |
| * Performance monitor interrupts come even when interrupts |
| * are soft-disabled, as long as interrupts are hard-enabled. |
| * Therefore we treat them like NMIs. |
| */ |
| do { |
| prev = atomic64_read(&counter->hw.prev_count); |
| barrier(); |
| val = read_pmc(counter->hw.idx); |
| } while (atomic64_cmpxchg(&counter->hw.prev_count, prev, val) != prev); |
| |
| /* The counters are only 32 bits wide */ |
| delta = (val - prev) & 0xfffffffful; |
| atomic64_add(delta, &counter->count); |
| atomic64_sub(delta, &counter->hw.period_left); |
| } |
| |
| /* |
| * Disable all counters to prevent PMU interrupts and to allow |
| * counters to be added or removed. |
| */ |
| u64 hw_perf_save_disable(void) |
| { |
| struct cpu_hw_counters *cpuhw; |
| unsigned long ret; |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| cpuhw = &__get_cpu_var(cpu_hw_counters); |
| |
| ret = cpuhw->disabled; |
| if (!ret) { |
| cpuhw->disabled = 1; |
| cpuhw->n_added = 0; |
| |
| /* |
| * Check if we ever enabled the PMU on this cpu. |
| */ |
| if (!cpuhw->pmcs_enabled) { |
| if (ppc_md.enable_pmcs) |
| ppc_md.enable_pmcs(); |
| cpuhw->pmcs_enabled = 1; |
| } |
| |
| /* |
| * Set the 'freeze counters' bit. |
| * The barrier is to make sure the mtspr has been |
| * executed and the PMU has frozen the counters |
| * before we return. |
| */ |
| mtspr(SPRN_MMCR0, mfspr(SPRN_MMCR0) | MMCR0_FC); |
| mb(); |
| } |
| local_irq_restore(flags); |
| return ret; |
| } |
| |
| /* |
| * Re-enable all counters if disable == 0. |
| * If we were previously disabled and counters were added, then |
| * put the new config on the PMU. |
| */ |
| void hw_perf_restore(u64 disable) |
| { |
| struct perf_counter *counter; |
| struct cpu_hw_counters *cpuhw; |
| unsigned long flags; |
| long i; |
| unsigned long val; |
| s64 left; |
| unsigned int hwc_index[MAX_HWCOUNTERS]; |
| |
| if (disable) |
| return; |
| local_irq_save(flags); |
| cpuhw = &__get_cpu_var(cpu_hw_counters); |
| cpuhw->disabled = 0; |
| |
| /* |
| * If we didn't change anything, or only removed counters, |
| * no need to recalculate MMCR* settings and reset the PMCs. |
| * Just reenable the PMU with the current MMCR* settings |
| * (possibly updated for removal of counters). |
| */ |
| if (!cpuhw->n_added) { |
| mtspr(SPRN_MMCRA, cpuhw->mmcr[2]); |
| mtspr(SPRN_MMCR1, cpuhw->mmcr[1]); |
| mtspr(SPRN_MMCR0, cpuhw->mmcr[0]); |
| if (cpuhw->n_counters == 0) |
| get_lppaca()->pmcregs_in_use = 0; |
| goto out; |
| } |
| |
| /* |
| * Compute MMCR* values for the new set of counters |
| */ |
| if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_counters, hwc_index, |
| cpuhw->mmcr)) { |
| /* shouldn't ever get here */ |
| printk(KERN_ERR "oops compute_mmcr failed\n"); |
| goto out; |
| } |
| |
| /* |
| * Write the new configuration to MMCR* with the freeze |
| * bit set and set the hardware counters to their initial values. |
| * Then unfreeze the counters. |
| */ |
| get_lppaca()->pmcregs_in_use = 1; |
| mtspr(SPRN_MMCRA, cpuhw->mmcr[2]); |
| mtspr(SPRN_MMCR1, cpuhw->mmcr[1]); |
| mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)) |
| | MMCR0_FC); |
| |
| /* |
| * Read off any pre-existing counters that need to move |
| * to another PMC. |
| */ |
| for (i = 0; i < cpuhw->n_counters; ++i) { |
| counter = cpuhw->counter[i]; |
| if (counter->hw.idx && counter->hw.idx != hwc_index[i] + 1) { |
| power_perf_read(counter); |
| write_pmc(counter->hw.idx, 0); |
| counter->hw.idx = 0; |
| } |
| } |
| |
| /* |
| * Initialize the PMCs for all the new and moved counters. |
| */ |
| for (i = 0; i < cpuhw->n_counters; ++i) { |
| counter = cpuhw->counter[i]; |
| if (counter->hw.idx) |
| continue; |
| val = 0; |
| if (counter->hw_event.irq_period) { |
| left = atomic64_read(&counter->hw.period_left); |
| if (left < 0x80000000L) |
| val = 0x80000000L - left; |
| } |
| atomic64_set(&counter->hw.prev_count, val); |
| counter->hw.idx = hwc_index[i] + 1; |
| write_pmc(counter->hw.idx, val); |
| } |
| mb(); |
| cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE; |
| mtspr(SPRN_MMCR0, cpuhw->mmcr[0]); |
| |
| out: |
| local_irq_restore(flags); |
| } |
| |
| static int collect_events(struct perf_counter *group, int max_count, |
| struct perf_counter *ctrs[], unsigned int *events) |
| { |
| int n = 0; |
| struct perf_counter *counter; |
| |
| if (!is_software_counter(group)) { |
| if (n >= max_count) |
| return -1; |
| ctrs[n] = group; |
| events[n++] = group->hw.config; |
| } |
| list_for_each_entry(counter, &group->sibling_list, list_entry) { |
| if (!is_software_counter(counter) && |
| counter->state != PERF_COUNTER_STATE_OFF) { |
| if (n >= max_count) |
| return -1; |
| ctrs[n] = counter; |
| events[n++] = counter->hw.config; |
| } |
| } |
| return n; |
| } |
| |
| static void counter_sched_in(struct perf_counter *counter, int cpu) |
| { |
| counter->state = PERF_COUNTER_STATE_ACTIVE; |
| counter->oncpu = cpu; |
| if (is_software_counter(counter)) |
| counter->hw_ops->enable(counter); |
| } |
| |
| /* |
| * Called to enable a whole group of counters. |
| * Returns 1 if the group was enabled, or -EAGAIN if it could not be. |
| * Assumes the caller has disabled interrupts and has |
| * frozen the PMU with hw_perf_save_disable. |
| */ |
| int hw_perf_group_sched_in(struct perf_counter *group_leader, |
| struct perf_cpu_context *cpuctx, |
| struct perf_counter_context *ctx, int cpu) |
| { |
| struct cpu_hw_counters *cpuhw; |
| long i, n, n0; |
| struct perf_counter *sub; |
| |
| cpuhw = &__get_cpu_var(cpu_hw_counters); |
| n0 = cpuhw->n_counters; |
| n = collect_events(group_leader, ppmu->n_counter - n0, |
| &cpuhw->counter[n0], &cpuhw->events[n0]); |
| if (n < 0) |
| return -EAGAIN; |
| if (power_check_constraints(cpuhw->events, n + n0)) |
| return -EAGAIN; |
| cpuhw->n_counters = n0 + n; |
| cpuhw->n_added += n; |
| |
| /* |
| * OK, this group can go on; update counter states etc., |
| * and enable any software counters |
| */ |
| for (i = n0; i < n0 + n; ++i) |
| cpuhw->counter[i]->hw.config = cpuhw->events[i]; |
| cpuctx->active_oncpu += n; |
| n = 1; |
| counter_sched_in(group_leader, cpu); |
| list_for_each_entry(sub, &group_leader->sibling_list, list_entry) { |
| if (sub->state != PERF_COUNTER_STATE_OFF) { |
| counter_sched_in(sub, cpu); |
| ++n; |
| } |
| } |
| ctx->nr_active += n; |
| |
| return 1; |
| } |
| |
| /* |
| * Add a counter to the PMU. |
| * If all counters are not already frozen, then we disable and |
| * re-enable the PMU in order to get hw_perf_restore to do the |
| * actual work of reconfiguring the PMU. |
| */ |
| static int power_perf_enable(struct perf_counter *counter) |
| { |
| struct cpu_hw_counters *cpuhw; |
| unsigned long flags; |
| u64 pmudis; |
| int n0; |
| int ret = -EAGAIN; |
| |
| local_irq_save(flags); |
| pmudis = hw_perf_save_disable(); |
| |
| /* |
| * Add the counter to the list (if there is room) |
| * and check whether the total set is still feasible. |
| */ |
| cpuhw = &__get_cpu_var(cpu_hw_counters); |
| n0 = cpuhw->n_counters; |
| if (n0 >= ppmu->n_counter) |
| goto out; |
| cpuhw->counter[n0] = counter; |
| cpuhw->events[n0] = counter->hw.config; |
| if (power_check_constraints(cpuhw->events, n0 + 1)) |
| goto out; |
| |
| counter->hw.config = cpuhw->events[n0]; |
| ++cpuhw->n_counters; |
| ++cpuhw->n_added; |
| |
| ret = 0; |
| out: |
| hw_perf_restore(pmudis); |
| local_irq_restore(flags); |
| return ret; |
| } |
| |
| /* |
| * Remove a counter from the PMU. |
| */ |
| static void power_perf_disable(struct perf_counter *counter) |
| { |
| struct cpu_hw_counters *cpuhw; |
| long i; |
| u64 pmudis; |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| pmudis = hw_perf_save_disable(); |
| |
| power_perf_read(counter); |
| |
| cpuhw = &__get_cpu_var(cpu_hw_counters); |
| for (i = 0; i < cpuhw->n_counters; ++i) { |
| if (counter == cpuhw->counter[i]) { |
| while (++i < cpuhw->n_counters) |
| cpuhw->counter[i-1] = cpuhw->counter[i]; |
| --cpuhw->n_counters; |
| ppmu->disable_pmc(counter->hw.idx - 1, cpuhw->mmcr); |
| write_pmc(counter->hw.idx, 0); |
| counter->hw.idx = 0; |
| break; |
| } |
| } |
| if (cpuhw->n_counters == 0) { |
| /* disable exceptions if no counters are running */ |
| cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE); |
| } |
| |
| hw_perf_restore(pmudis); |
| local_irq_restore(flags); |
| } |
| |
| struct hw_perf_counter_ops power_perf_ops = { |
| .enable = power_perf_enable, |
| .disable = power_perf_disable, |
| .read = power_perf_read |
| }; |
| |
| const struct hw_perf_counter_ops * |
| hw_perf_counter_init(struct perf_counter *counter) |
| { |
| unsigned long ev; |
| struct perf_counter *ctrs[MAX_HWCOUNTERS]; |
| unsigned int events[MAX_HWCOUNTERS]; |
| int n; |
| |
| if (!ppmu) |
| return NULL; |
| if ((s64)counter->hw_event.irq_period < 0) |
| return NULL; |
| ev = counter->hw_event.type; |
| if (!counter->hw_event.raw) { |
| if (ev >= ppmu->n_generic || |
| ppmu->generic_events[ev] == 0) |
| return NULL; |
| ev = ppmu->generic_events[ev]; |
| } |
| counter->hw.config_base = ev; |
| counter->hw.idx = 0; |
| |
| /* |
| * If this is in a group, check if it can go on with all the |
| * other hardware counters in the group. We assume the counter |
| * hasn't been linked into its leader's sibling list at this point. |
| */ |
| n = 0; |
| if (counter->group_leader != counter) { |
| n = collect_events(counter->group_leader, ppmu->n_counter - 1, |
| ctrs, events); |
| if (n < 0) |
| return NULL; |
| } |
| events[n++] = ev; |
| if (power_check_constraints(events, n)) |
| return NULL; |
| |
| counter->hw.config = events[n - 1]; |
| atomic64_set(&counter->hw.period_left, counter->hw_event.irq_period); |
| return &power_perf_ops; |
| } |
| |
| /* |
| * Handle wakeups. |
| */ |
| void perf_counter_do_pending(void) |
| { |
| int i; |
| struct cpu_hw_counters *cpuhw = &__get_cpu_var(cpu_hw_counters); |
| struct perf_counter *counter; |
| |
| set_perf_counter_pending(0); |
| for (i = 0; i < cpuhw->n_counters; ++i) { |
| counter = cpuhw->counter[i]; |
| if (counter && counter->wakeup_pending) { |
| counter->wakeup_pending = 0; |
| wake_up(&counter->waitq); |
| } |
| } |
| } |
| |
| /* |
| * Record data for an irq counter. |
| * This function was lifted from the x86 code; maybe it should |
| * go in the core? |
| */ |
| static void perf_store_irq_data(struct perf_counter *counter, u64 data) |
| { |
| struct perf_data *irqdata = counter->irqdata; |
| |
| if (irqdata->len > PERF_DATA_BUFLEN - sizeof(u64)) { |
| irqdata->overrun++; |
| } else { |
| u64 *p = (u64 *) &irqdata->data[irqdata->len]; |
| |
| *p = data; |
| irqdata->len += sizeof(u64); |
| } |
| } |
| |
| /* |
| * Record all the values of the counters in a group |
| */ |
| static void perf_handle_group(struct perf_counter *counter) |
| { |
| struct perf_counter *leader, *sub; |
| |
| leader = counter->group_leader; |
| list_for_each_entry(sub, &leader->sibling_list, list_entry) { |
| if (sub != counter) |
| sub->hw_ops->read(sub); |
| perf_store_irq_data(counter, sub->hw_event.type); |
| perf_store_irq_data(counter, atomic64_read(&sub->count)); |
| } |
| } |
| |
| /* |
| * A counter has overflowed; update its count and record |
| * things if requested. Note that interrupts are hard-disabled |
| * here so there is no possibility of being interrupted. |
| */ |
| static void record_and_restart(struct perf_counter *counter, long val, |
| struct pt_regs *regs) |
| { |
| s64 prev, delta, left; |
| int record = 0; |
| |
| /* we don't have to worry about interrupts here */ |
| prev = atomic64_read(&counter->hw.prev_count); |
| delta = (val - prev) & 0xfffffffful; |
| atomic64_add(delta, &counter->count); |
| |
| /* |
| * See if the total period for this counter has expired, |
| * and update for the next period. |
| */ |
| val = 0; |
| left = atomic64_read(&counter->hw.period_left) - delta; |
| if (counter->hw_event.irq_period) { |
| if (left <= 0) { |
| left += counter->hw_event.irq_period; |
| if (left <= 0) |
| left = counter->hw_event.irq_period; |
| record = 1; |
| } |
| if (left < 0x80000000L) |
| val = 0x80000000L - left; |
| } |
| write_pmc(counter->hw.idx, val); |
| atomic64_set(&counter->hw.prev_count, val); |
| atomic64_set(&counter->hw.period_left, left); |
| |
| /* |
| * Finally record data if requested. |
| */ |
| if (record) { |
| switch (counter->hw_event.record_type) { |
| case PERF_RECORD_SIMPLE: |
| break; |
| case PERF_RECORD_IRQ: |
| perf_store_irq_data(counter, instruction_pointer(regs)); |
| counter->wakeup_pending = 1; |
| break; |
| case PERF_RECORD_GROUP: |
| perf_handle_group(counter); |
| counter->wakeup_pending = 1; |
| break; |
| } |
| } |
| } |
| |
| /* |
| * Performance monitor interrupt stuff |
| */ |
| static void perf_counter_interrupt(struct pt_regs *regs) |
| { |
| int i; |
| struct cpu_hw_counters *cpuhw = &__get_cpu_var(cpu_hw_counters); |
| struct perf_counter *counter; |
| long val; |
| int need_wakeup = 0, found = 0; |
| |
| for (i = 0; i < cpuhw->n_counters; ++i) { |
| counter = cpuhw->counter[i]; |
| val = read_pmc(counter->hw.idx); |
| if ((int)val < 0) { |
| /* counter has overflowed */ |
| found = 1; |
| record_and_restart(counter, val, regs); |
| if (counter->wakeup_pending) |
| need_wakeup = 1; |
| } |
| } |
| |
| /* |
| * In case we didn't find and reset the counter that caused |
| * the interrupt, scan all counters and reset any that are |
| * negative, to avoid getting continual interrupts. |
| * Any that we processed in the previous loop will not be negative. |
| */ |
| if (!found) { |
| for (i = 0; i < ppmu->n_counter; ++i) { |
| val = read_pmc(i + 1); |
| if ((int)val < 0) |
| write_pmc(i + 1, 0); |
| } |
| } |
| |
| /* |
| * Reset MMCR0 to its normal value. This will set PMXE and |
| * clear FC (freeze counters) and PMAO (perf mon alert occurred) |
| * and thus allow interrupts to occur again. |
| * XXX might want to use MSR.PM to keep the counters frozen until |
| * we get back out of this interrupt. |
| */ |
| mtspr(SPRN_MMCR0, cpuhw->mmcr[0]); |
| |
| /* |
| * If we need a wakeup, check whether interrupts were soft-enabled |
| * when we took the interrupt. If they were, we can wake stuff up |
| * immediately; otherwise we'll have to set a flag and do the |
| * wakeup when interrupts get soft-enabled. |
| */ |
| if (need_wakeup) { |
| if (regs->softe) { |
| irq_enter(); |
| perf_counter_do_pending(); |
| irq_exit(); |
| } else { |
| set_perf_counter_pending(1); |
| } |
| } |
| } |
| |
| void hw_perf_counter_setup(int cpu) |
| { |
| struct cpu_hw_counters *cpuhw = &per_cpu(cpu_hw_counters, cpu); |
| |
| memset(cpuhw, 0, sizeof(*cpuhw)); |
| cpuhw->mmcr[0] = MMCR0_FC; |
| } |
| |
| extern struct power_pmu ppc970_pmu; |
| extern struct power_pmu power6_pmu; |
| |
| static int init_perf_counters(void) |
| { |
| unsigned long pvr; |
| |
| if (reserve_pmc_hardware(perf_counter_interrupt)) { |
| printk(KERN_ERR "Couldn't init performance monitor subsystem\n"); |
| return -EBUSY; |
| } |
| |
| /* XXX should get this from cputable */ |
| pvr = mfspr(SPRN_PVR); |
| switch (PVR_VER(pvr)) { |
| case PV_970: |
| case PV_970FX: |
| case PV_970MP: |
| ppmu = &ppc970_pmu; |
| break; |
| case 0x3e: |
| ppmu = &power6_pmu; |
| break; |
| } |
| return 0; |
| } |
| |
| arch_initcall(init_perf_counters); |