| /* |
| * Copyright 2012 Red Hat Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| * |
| * Authors: Ben Skeggs |
| */ |
| |
| #include <subdev/bios.h> |
| #include <subdev/bios/pll.h> |
| |
| #include "nv50.h" |
| #include "pll.h" |
| #include "seq.h" |
| |
| static u32 |
| read_div(struct nv50_clock_priv *priv) |
| { |
| switch (nv_device(priv)->chipset) { |
| case 0x50: /* it exists, but only has bit 31, not the dividers.. */ |
| case 0x84: |
| case 0x86: |
| case 0x98: |
| case 0xa0: |
| return nv_rd32(priv, 0x004700); |
| case 0x92: |
| case 0x94: |
| case 0x96: |
| return nv_rd32(priv, 0x004800); |
| default: |
| return 0x00000000; |
| } |
| } |
| |
| static u32 |
| read_pll_src(struct nv50_clock_priv *priv, u32 base) |
| { |
| struct nouveau_clock *clk = &priv->base; |
| u32 coef, ref = clk->read(clk, nv_clk_src_crystal); |
| u32 rsel = nv_rd32(priv, 0x00e18c); |
| int P, N, M, id; |
| |
| switch (nv_device(priv)->chipset) { |
| case 0x50: |
| case 0xa0: |
| switch (base) { |
| case 0x4020: |
| case 0x4028: id = !!(rsel & 0x00000004); break; |
| case 0x4008: id = !!(rsel & 0x00000008); break; |
| case 0x4030: id = 0; break; |
| default: |
| nv_error(priv, "ref: bad pll 0x%06x\n", base); |
| return 0; |
| } |
| |
| coef = nv_rd32(priv, 0x00e81c + (id * 0x0c)); |
| ref *= (coef & 0x01000000) ? 2 : 4; |
| P = (coef & 0x00070000) >> 16; |
| N = ((coef & 0x0000ff00) >> 8) + 1; |
| M = ((coef & 0x000000ff) >> 0) + 1; |
| break; |
| case 0x84: |
| case 0x86: |
| case 0x92: |
| coef = nv_rd32(priv, 0x00e81c); |
| P = (coef & 0x00070000) >> 16; |
| N = (coef & 0x0000ff00) >> 8; |
| M = (coef & 0x000000ff) >> 0; |
| break; |
| case 0x94: |
| case 0x96: |
| case 0x98: |
| rsel = nv_rd32(priv, 0x00c050); |
| switch (base) { |
| case 0x4020: rsel = (rsel & 0x00000003) >> 0; break; |
| case 0x4008: rsel = (rsel & 0x0000000c) >> 2; break; |
| case 0x4028: rsel = (rsel & 0x00001800) >> 11; break; |
| case 0x4030: rsel = 3; break; |
| default: |
| nv_error(priv, "ref: bad pll 0x%06x\n", base); |
| return 0; |
| } |
| |
| switch (rsel) { |
| case 0: id = 1; break; |
| case 1: return clk->read(clk, nv_clk_src_crystal); |
| case 2: return clk->read(clk, nv_clk_src_href); |
| case 3: id = 0; break; |
| } |
| |
| coef = nv_rd32(priv, 0x00e81c + (id * 0x28)); |
| P = (nv_rd32(priv, 0x00e824 + (id * 0x28)) >> 16) & 7; |
| P += (coef & 0x00070000) >> 16; |
| N = (coef & 0x0000ff00) >> 8; |
| M = (coef & 0x000000ff) >> 0; |
| break; |
| default: |
| BUG_ON(1); |
| } |
| |
| if (M) |
| return (ref * N / M) >> P; |
| return 0; |
| } |
| |
| static u32 |
| read_pll_ref(struct nv50_clock_priv *priv, u32 base) |
| { |
| struct nouveau_clock *clk = &priv->base; |
| u32 src, mast = nv_rd32(priv, 0x00c040); |
| |
| switch (base) { |
| case 0x004028: |
| src = !!(mast & 0x00200000); |
| break; |
| case 0x004020: |
| src = !!(mast & 0x00400000); |
| break; |
| case 0x004008: |
| src = !!(mast & 0x00010000); |
| break; |
| case 0x004030: |
| src = !!(mast & 0x02000000); |
| break; |
| case 0x00e810: |
| return clk->read(clk, nv_clk_src_crystal); |
| default: |
| nv_error(priv, "bad pll 0x%06x\n", base); |
| return 0; |
| } |
| |
| if (src) |
| return clk->read(clk, nv_clk_src_href); |
| return read_pll_src(priv, base); |
| } |
| |
| static u32 |
| read_pll(struct nv50_clock_priv *priv, u32 base) |
| { |
| struct nouveau_clock *clk = &priv->base; |
| u32 mast = nv_rd32(priv, 0x00c040); |
| u32 ctrl = nv_rd32(priv, base + 0); |
| u32 coef = nv_rd32(priv, base + 4); |
| u32 ref = read_pll_ref(priv, base); |
| u32 freq = 0; |
| int N1, N2, M1, M2; |
| |
| if (base == 0x004028 && (mast & 0x00100000)) { |
| /* wtf, appears to only disable post-divider on nva0 */ |
| if (nv_device(priv)->chipset != 0xa0) |
| return clk->read(clk, nv_clk_src_dom6); |
| } |
| |
| N2 = (coef & 0xff000000) >> 24; |
| M2 = (coef & 0x00ff0000) >> 16; |
| N1 = (coef & 0x0000ff00) >> 8; |
| M1 = (coef & 0x000000ff); |
| if ((ctrl & 0x80000000) && M1) { |
| freq = ref * N1 / M1; |
| if ((ctrl & 0x40000100) == 0x40000000) { |
| if (M2) |
| freq = freq * N2 / M2; |
| else |
| freq = 0; |
| } |
| } |
| |
| return freq; |
| } |
| |
| static int |
| nv50_clock_read(struct nouveau_clock *clk, enum nv_clk_src src) |
| { |
| struct nv50_clock_priv *priv = (void *)clk; |
| u32 mast = nv_rd32(priv, 0x00c040); |
| u32 P = 0; |
| |
| switch (src) { |
| case nv_clk_src_crystal: |
| return nv_device(priv)->crystal; |
| case nv_clk_src_href: |
| return 100000; /* PCIE reference clock */ |
| case nv_clk_src_hclk: |
| return div_u64((u64)clk->read(clk, nv_clk_src_href) * 27778, 10000); |
| case nv_clk_src_hclkm3: |
| return clk->read(clk, nv_clk_src_hclk) * 3; |
| case nv_clk_src_hclkm3d2: |
| return clk->read(clk, nv_clk_src_hclk) * 3 / 2; |
| case nv_clk_src_host: |
| switch (mast & 0x30000000) { |
| case 0x00000000: return clk->read(clk, nv_clk_src_href); |
| case 0x10000000: break; |
| case 0x20000000: /* !0x50 */ |
| case 0x30000000: return clk->read(clk, nv_clk_src_hclk); |
| } |
| break; |
| case nv_clk_src_core: |
| if (!(mast & 0x00100000)) |
| P = (nv_rd32(priv, 0x004028) & 0x00070000) >> 16; |
| switch (mast & 0x00000003) { |
| case 0x00000000: return clk->read(clk, nv_clk_src_crystal) >> P; |
| case 0x00000001: return clk->read(clk, nv_clk_src_dom6); |
| case 0x00000002: return read_pll(priv, 0x004020) >> P; |
| case 0x00000003: return read_pll(priv, 0x004028) >> P; |
| } |
| break; |
| case nv_clk_src_shader: |
| P = (nv_rd32(priv, 0x004020) & 0x00070000) >> 16; |
| switch (mast & 0x00000030) { |
| case 0x00000000: |
| if (mast & 0x00000080) |
| return clk->read(clk, nv_clk_src_host) >> P; |
| return clk->read(clk, nv_clk_src_crystal) >> P; |
| case 0x00000010: break; |
| case 0x00000020: return read_pll(priv, 0x004028) >> P; |
| case 0x00000030: return read_pll(priv, 0x004020) >> P; |
| } |
| break; |
| case nv_clk_src_mem: |
| P = (nv_rd32(priv, 0x004008) & 0x00070000) >> 16; |
| if (nv_rd32(priv, 0x004008) & 0x00000200) { |
| switch (mast & 0x0000c000) { |
| case 0x00000000: |
| return clk->read(clk, nv_clk_src_crystal) >> P; |
| case 0x00008000: |
| case 0x0000c000: |
| return clk->read(clk, nv_clk_src_href) >> P; |
| } |
| } else { |
| return read_pll(priv, 0x004008) >> P; |
| } |
| break; |
| case nv_clk_src_vdec: |
| P = (read_div(priv) & 0x00000700) >> 8; |
| switch (nv_device(priv)->chipset) { |
| case 0x84: |
| case 0x86: |
| case 0x92: |
| case 0x94: |
| case 0x96: |
| case 0xa0: |
| switch (mast & 0x00000c00) { |
| case 0x00000000: |
| if (nv_device(priv)->chipset == 0xa0) /* wtf?? */ |
| return clk->read(clk, nv_clk_src_core) >> P; |
| return clk->read(clk, nv_clk_src_crystal) >> P; |
| case 0x00000400: |
| return 0; |
| case 0x00000800: |
| if (mast & 0x01000000) |
| return read_pll(priv, 0x004028) >> P; |
| return read_pll(priv, 0x004030) >> P; |
| case 0x00000c00: |
| return clk->read(clk, nv_clk_src_core) >> P; |
| } |
| break; |
| case 0x98: |
| switch (mast & 0x00000c00) { |
| case 0x00000000: |
| return clk->read(clk, nv_clk_src_core) >> P; |
| case 0x00000400: |
| return 0; |
| case 0x00000800: |
| return clk->read(clk, nv_clk_src_hclkm3d2) >> P; |
| case 0x00000c00: |
| return clk->read(clk, nv_clk_src_mem) >> P; |
| } |
| break; |
| } |
| break; |
| case nv_clk_src_dom6: |
| switch (nv_device(priv)->chipset) { |
| case 0x50: |
| case 0xa0: |
| return read_pll(priv, 0x00e810) >> 2; |
| case 0x84: |
| case 0x86: |
| case 0x92: |
| case 0x94: |
| case 0x96: |
| case 0x98: |
| P = (read_div(priv) & 0x00000007) >> 0; |
| switch (mast & 0x0c000000) { |
| case 0x00000000: return clk->read(clk, nv_clk_src_href); |
| case 0x04000000: break; |
| case 0x08000000: return clk->read(clk, nv_clk_src_hclk); |
| case 0x0c000000: |
| return clk->read(clk, nv_clk_src_hclkm3) >> P; |
| } |
| break; |
| default: |
| break; |
| } |
| default: |
| break; |
| } |
| |
| nv_debug(priv, "unknown clock source %d 0x%08x\n", src, mast); |
| return -EINVAL; |
| } |
| |
| static u32 |
| calc_pll(struct nv50_clock_priv *priv, u32 reg, u32 clk, int *N, int *M, int *P) |
| { |
| struct nouveau_bios *bios = nouveau_bios(priv); |
| struct nvbios_pll pll; |
| int ret; |
| |
| ret = nvbios_pll_parse(bios, reg, &pll); |
| if (ret) |
| return 0; |
| |
| pll.vco2.max_freq = 0; |
| pll.refclk = read_pll_ref(priv, reg); |
| if (!pll.refclk) |
| return 0; |
| |
| return nv04_pll_calc(nv_subdev(priv), &pll, clk, N, M, NULL, NULL, P); |
| } |
| |
| static inline u32 |
| calc_div(u32 src, u32 target, int *div) |
| { |
| u32 clk0 = src, clk1 = src; |
| for (*div = 0; *div <= 7; (*div)++) { |
| if (clk0 <= target) { |
| clk1 = clk0 << (*div ? 1 : 0); |
| break; |
| } |
| clk0 >>= 1; |
| } |
| |
| if (target - clk0 <= clk1 - target) |
| return clk0; |
| (*div)--; |
| return clk1; |
| } |
| |
| static inline u32 |
| clk_same(u32 a, u32 b) |
| { |
| return ((a / 1000) == (b / 1000)); |
| } |
| |
| static int |
| nv50_clock_calc(struct nouveau_clock *clk, struct nouveau_cstate *cstate) |
| { |
| struct nv50_clock_priv *priv = (void *)clk; |
| struct nv50_clock_hwsq *hwsq = &priv->hwsq; |
| const int shader = cstate->domain[nv_clk_src_shader]; |
| const int core = cstate->domain[nv_clk_src_core]; |
| const int vdec = cstate->domain[nv_clk_src_vdec]; |
| const int dom6 = cstate->domain[nv_clk_src_dom6]; |
| u32 mastm = 0, mastv = 0; |
| u32 divsm = 0, divsv = 0; |
| int N, M, P1, P2; |
| int freq, out; |
| |
| /* prepare a hwsq script from which we'll perform the reclock */ |
| out = clk_init(hwsq, nv_subdev(clk)); |
| if (out) |
| return out; |
| |
| clk_wr32(hwsq, fifo, 0x00000001); /* block fifo */ |
| clk_nsec(hwsq, 8000); |
| clk_setf(hwsq, 0x10, 0x00); /* disable fb */ |
| clk_wait(hwsq, 0x00, 0x01); /* wait for fb disabled */ |
| |
| /* vdec: avoid modifying xpll until we know exactly how the other |
| * clock domains work, i suspect at least some of them can also be |
| * tied to xpll... |
| */ |
| if (vdec) { |
| /* see how close we can get using nvclk as a source */ |
| freq = calc_div(core, vdec, &P1); |
| |
| /* see how close we can get using xpll/hclk as a source */ |
| if (nv_device(priv)->chipset != 0x98) |
| out = read_pll(priv, 0x004030); |
| else |
| out = clk->read(clk, nv_clk_src_hclkm3d2); |
| out = calc_div(out, vdec, &P2); |
| |
| /* select whichever gets us closest */ |
| if (abs(vdec - freq) <= abs(vdec - out)) { |
| if (nv_device(priv)->chipset != 0x98) |
| mastv |= 0x00000c00; |
| divsv |= P1 << 8; |
| } else { |
| mastv |= 0x00000800; |
| divsv |= P2 << 8; |
| } |
| |
| mastm |= 0x00000c00; |
| divsm |= 0x00000700; |
| } |
| |
| /* dom6: nfi what this is, but we're limited to various combinations |
| * of the host clock frequency |
| */ |
| if (dom6) { |
| if (clk_same(dom6, clk->read(clk, nv_clk_src_href))) { |
| mastv |= 0x00000000; |
| } else |
| if (clk_same(dom6, clk->read(clk, nv_clk_src_hclk))) { |
| mastv |= 0x08000000; |
| } else { |
| freq = clk->read(clk, nv_clk_src_hclk) * 3; |
| freq = calc_div(freq, dom6, &P1); |
| |
| mastv |= 0x0c000000; |
| divsv |= P1; |
| } |
| |
| mastm |= 0x0c000000; |
| divsm |= 0x00000007; |
| } |
| |
| /* vdec/dom6: switch to "safe" clocks temporarily, update dividers |
| * and then switch to target clocks |
| */ |
| clk_mask(hwsq, mast, mastm, 0x00000000); |
| clk_mask(hwsq, divs, divsm, divsv); |
| clk_mask(hwsq, mast, mastm, mastv); |
| |
| /* core/shader: disconnect nvclk/sclk from their PLLs (nvclk to dom6, |
| * sclk to hclk) before reprogramming |
| */ |
| if (nv_device(priv)->chipset < 0x92) |
| clk_mask(hwsq, mast, 0x001000b0, 0x00100080); |
| else |
| clk_mask(hwsq, mast, 0x000000b3, 0x00000081); |
| |
| /* core: for the moment at least, always use nvpll */ |
| freq = calc_pll(priv, 0x4028, core, &N, &M, &P1); |
| if (freq == 0) |
| return -ERANGE; |
| |
| clk_mask(hwsq, nvpll[0], 0xc03f0100, |
| 0x80000000 | (P1 << 19) | (P1 << 16)); |
| clk_mask(hwsq, nvpll[1], 0x0000ffff, (N << 8) | M); |
| |
| /* shader: tie to nvclk if possible, otherwise use spll. have to be |
| * very careful that the shader clock is at least twice the core, or |
| * some chipsets will be very unhappy. i expect most or all of these |
| * cases will be handled by tying to nvclk, but it's possible there's |
| * corners |
| */ |
| if (P1-- && shader == (core << 1)) { |
| clk_mask(hwsq, spll[0], 0xc03f0100, (P1 << 19) | (P1 << 16)); |
| clk_mask(hwsq, mast, 0x00100033, 0x00000023); |
| } else { |
| freq = calc_pll(priv, 0x4020, shader, &N, &M, &P1); |
| if (freq == 0) |
| return -ERANGE; |
| |
| clk_mask(hwsq, spll[0], 0xc03f0100, |
| 0x80000000 | (P1 << 19) | (P1 << 16)); |
| clk_mask(hwsq, spll[1], 0x0000ffff, (N << 8) | M); |
| clk_mask(hwsq, mast, 0x00100033, 0x00000033); |
| } |
| |
| /* restore normal operation */ |
| clk_setf(hwsq, 0x10, 0x01); /* enable fb */ |
| clk_wait(hwsq, 0x00, 0x00); /* wait for fb enabled */ |
| clk_wr32(hwsq, fifo, 0x00000000); /* un-block fifo */ |
| return 0; |
| } |
| |
| static int |
| nv50_clock_prog(struct nouveau_clock *clk) |
| { |
| struct nv50_clock_priv *priv = (void *)clk; |
| return clk_exec(&priv->hwsq, true); |
| } |
| |
| static void |
| nv50_clock_tidy(struct nouveau_clock *clk) |
| { |
| struct nv50_clock_priv *priv = (void *)clk; |
| clk_exec(&priv->hwsq, false); |
| } |
| |
| int |
| nv50_clock_ctor(struct nouveau_object *parent, struct nouveau_object *engine, |
| struct nouveau_oclass *oclass, void *data, u32 size, |
| struct nouveau_object **pobject) |
| { |
| struct nv50_clock_oclass *pclass = (void *)oclass; |
| struct nv50_clock_priv *priv; |
| int ret; |
| |
| ret = nouveau_clock_create(parent, engine, oclass, pclass->domains, |
| NULL, 0, false, &priv); |
| *pobject = nv_object(priv); |
| if (ret) |
| return ret; |
| |
| priv->hwsq.r_fifo = hwsq_reg(0x002504); |
| priv->hwsq.r_spll[0] = hwsq_reg(0x004020); |
| priv->hwsq.r_spll[1] = hwsq_reg(0x004024); |
| priv->hwsq.r_nvpll[0] = hwsq_reg(0x004028); |
| priv->hwsq.r_nvpll[1] = hwsq_reg(0x00402c); |
| switch (nv_device(priv)->chipset) { |
| case 0x92: |
| case 0x94: |
| case 0x96: |
| priv->hwsq.r_divs = hwsq_reg(0x004800); |
| break; |
| default: |
| priv->hwsq.r_divs = hwsq_reg(0x004700); |
| break; |
| } |
| priv->hwsq.r_mast = hwsq_reg(0x00c040); |
| |
| priv->base.read = nv50_clock_read; |
| priv->base.calc = nv50_clock_calc; |
| priv->base.prog = nv50_clock_prog; |
| priv->base.tidy = nv50_clock_tidy; |
| return 0; |
| } |
| |
| static struct nouveau_clocks |
| nv50_domains[] = { |
| { nv_clk_src_crystal, 0xff }, |
| { nv_clk_src_href , 0xff }, |
| { nv_clk_src_core , 0xff, 0, "core", 1000 }, |
| { nv_clk_src_shader , 0xff, 0, "shader", 1000 }, |
| { nv_clk_src_mem , 0xff, 0, "memory", 1000 }, |
| { nv_clk_src_max } |
| }; |
| |
| struct nouveau_oclass * |
| nv50_clock_oclass = &(struct nv50_clock_oclass) { |
| .base.handle = NV_SUBDEV(CLOCK, 0x50), |
| .base.ofuncs = &(struct nouveau_ofuncs) { |
| .ctor = nv50_clock_ctor, |
| .dtor = _nouveau_clock_dtor, |
| .init = _nouveau_clock_init, |
| .fini = _nouveau_clock_fini, |
| }, |
| .domains = nv50_domains, |
| }.base; |