| /* |
| * Copyright 2013 Red Hat Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| * |
| * Authors: Ben Skeggs |
| */ |
| |
| #include <subdev/clock.h> |
| #include <subdev/timer.h> |
| #include <subdev/bios.h> |
| #include <subdev/bios/pll.h> |
| |
| #include "pll.h" |
| |
| struct nve0_clock_info { |
| u32 freq; |
| u32 ssel; |
| u32 mdiv; |
| u32 dsrc; |
| u32 ddiv; |
| u32 coef; |
| }; |
| |
| struct nve0_clock_priv { |
| struct nouveau_clock base; |
| struct nve0_clock_info eng[16]; |
| }; |
| |
| static u32 read_div(struct nve0_clock_priv *, int, u32, u32); |
| static u32 read_pll(struct nve0_clock_priv *, u32); |
| |
| static u32 |
| read_vco(struct nve0_clock_priv *priv, u32 dsrc) |
| { |
| u32 ssrc = nv_rd32(priv, dsrc); |
| if (!(ssrc & 0x00000100)) |
| return read_pll(priv, 0x00e800); |
| return read_pll(priv, 0x00e820); |
| } |
| |
| static u32 |
| read_pll(struct nve0_clock_priv *priv, u32 pll) |
| { |
| u32 ctrl = nv_rd32(priv, pll + 0x00); |
| u32 coef = nv_rd32(priv, pll + 0x04); |
| u32 P = (coef & 0x003f0000) >> 16; |
| u32 N = (coef & 0x0000ff00) >> 8; |
| u32 M = (coef & 0x000000ff) >> 0; |
| u32 sclk; |
| u16 fN = 0xf000; |
| |
| if (!(ctrl & 0x00000001)) |
| return 0; |
| |
| switch (pll) { |
| case 0x00e800: |
| case 0x00e820: |
| sclk = nv_device(priv)->crystal; |
| P = 1; |
| break; |
| case 0x132000: |
| sclk = read_pll(priv, 0x132020); |
| P = (coef & 0x10000000) ? 2 : 1; |
| break; |
| case 0x132020: |
| sclk = read_div(priv, 0, 0x137320, 0x137330); |
| fN = nv_rd32(priv, pll + 0x10) >> 16; |
| break; |
| case 0x137000: |
| case 0x137020: |
| case 0x137040: |
| case 0x1370e0: |
| sclk = read_div(priv, (pll & 0xff) / 0x20, 0x137120, 0x137140); |
| break; |
| default: |
| return 0; |
| } |
| |
| if (P == 0) |
| P = 1; |
| |
| sclk = (sclk * N) + (((u16)(fN + 4096) * sclk) >> 13); |
| return sclk / (M * P); |
| } |
| |
| static u32 |
| read_div(struct nve0_clock_priv *priv, int doff, u32 dsrc, u32 dctl) |
| { |
| u32 ssrc = nv_rd32(priv, dsrc + (doff * 4)); |
| u32 sctl = nv_rd32(priv, dctl + (doff * 4)); |
| |
| switch (ssrc & 0x00000003) { |
| case 0: |
| if ((ssrc & 0x00030000) != 0x00030000) |
| return nv_device(priv)->crystal; |
| return 108000; |
| case 2: |
| return 100000; |
| case 3: |
| if (sctl & 0x80000000) { |
| u32 sclk = read_vco(priv, dsrc + (doff * 4)); |
| u32 sdiv = (sctl & 0x0000003f) + 2; |
| return (sclk * 2) / sdiv; |
| } |
| |
| return read_vco(priv, dsrc + (doff * 4)); |
| default: |
| return 0; |
| } |
| } |
| |
| static u32 |
| read_mem(struct nve0_clock_priv *priv) |
| { |
| switch (nv_rd32(priv, 0x1373f4) & 0x0000000f) { |
| case 1: return read_pll(priv, 0x132020); |
| case 2: return read_pll(priv, 0x132000); |
| default: |
| return 0; |
| } |
| } |
| |
| static u32 |
| read_clk(struct nve0_clock_priv *priv, int clk) |
| { |
| u32 sctl = nv_rd32(priv, 0x137250 + (clk * 4)); |
| u32 sclk, sdiv; |
| |
| if (clk < 7) { |
| u32 ssel = nv_rd32(priv, 0x137100); |
| if (ssel & (1 << clk)) { |
| sclk = read_pll(priv, 0x137000 + (clk * 0x20)); |
| sdiv = 1; |
| } else { |
| sclk = read_div(priv, clk, 0x137160, 0x1371d0); |
| sdiv = 0; |
| } |
| } else { |
| u32 ssrc = nv_rd32(priv, 0x137160 + (clk * 0x04)); |
| if ((ssrc & 0x00000003) == 0x00000003) { |
| sclk = read_div(priv, clk, 0x137160, 0x1371d0); |
| if (ssrc & 0x00000100) { |
| if (ssrc & 0x40000000) |
| sclk = read_pll(priv, 0x1370e0); |
| sdiv = 1; |
| } else { |
| sdiv = 0; |
| } |
| } else { |
| sclk = read_div(priv, clk, 0x137160, 0x1371d0); |
| sdiv = 0; |
| } |
| } |
| |
| if (sctl & 0x80000000) { |
| if (sdiv) |
| sdiv = ((sctl & 0x00003f00) >> 8) + 2; |
| else |
| sdiv = ((sctl & 0x0000003f) >> 0) + 2; |
| return (sclk * 2) / sdiv; |
| } |
| |
| return sclk; |
| } |
| |
| static int |
| nve0_clock_read(struct nouveau_clock *clk, enum nv_clk_src src) |
| { |
| struct nouveau_device *device = nv_device(clk); |
| struct nve0_clock_priv *priv = (void *)clk; |
| |
| switch (src) { |
| case nv_clk_src_crystal: |
| return device->crystal; |
| case nv_clk_src_href: |
| return 100000; |
| case nv_clk_src_mem: |
| return read_mem(priv); |
| case nv_clk_src_gpc: |
| return read_clk(priv, 0x00); |
| case nv_clk_src_rop: |
| return read_clk(priv, 0x01); |
| case nv_clk_src_hubk07: |
| return read_clk(priv, 0x02); |
| case nv_clk_src_hubk06: |
| return read_clk(priv, 0x07); |
| case nv_clk_src_hubk01: |
| return read_clk(priv, 0x08); |
| case nv_clk_src_daemon: |
| return read_clk(priv, 0x0c); |
| case nv_clk_src_vdec: |
| return read_clk(priv, 0x0e); |
| default: |
| nv_error(clk, "invalid clock source %d\n", src); |
| return -EINVAL; |
| } |
| } |
| |
| static u32 |
| calc_div(struct nve0_clock_priv *priv, int clk, u32 ref, u32 freq, u32 *ddiv) |
| { |
| u32 div = min((ref * 2) / freq, (u32)65); |
| if (div < 2) |
| div = 2; |
| |
| *ddiv = div - 2; |
| return (ref * 2) / div; |
| } |
| |
| static u32 |
| calc_src(struct nve0_clock_priv *priv, int clk, u32 freq, u32 *dsrc, u32 *ddiv) |
| { |
| u32 sclk; |
| |
| /* use one of the fixed frequencies if possible */ |
| *ddiv = 0x00000000; |
| switch (freq) { |
| case 27000: |
| case 108000: |
| *dsrc = 0x00000000; |
| if (freq == 108000) |
| *dsrc |= 0x00030000; |
| return freq; |
| case 100000: |
| *dsrc = 0x00000002; |
| return freq; |
| default: |
| *dsrc = 0x00000003; |
| break; |
| } |
| |
| /* otherwise, calculate the closest divider */ |
| sclk = read_vco(priv, 0x137160 + (clk * 4)); |
| if (clk < 7) |
| sclk = calc_div(priv, clk, sclk, freq, ddiv); |
| return sclk; |
| } |
| |
| static u32 |
| calc_pll(struct nve0_clock_priv *priv, int clk, u32 freq, u32 *coef) |
| { |
| struct nouveau_bios *bios = nouveau_bios(priv); |
| struct nvbios_pll limits; |
| int N, M, P, ret; |
| |
| ret = nvbios_pll_parse(bios, 0x137000 + (clk * 0x20), &limits); |
| if (ret) |
| return 0; |
| |
| limits.refclk = read_div(priv, clk, 0x137120, 0x137140); |
| if (!limits.refclk) |
| return 0; |
| |
| ret = nva3_pll_calc(nv_subdev(priv), &limits, freq, &N, NULL, &M, &P); |
| if (ret <= 0) |
| return 0; |
| |
| *coef = (P << 16) | (N << 8) | M; |
| return ret; |
| } |
| |
| static int |
| calc_clk(struct nve0_clock_priv *priv, |
| struct nouveau_cstate *cstate, int clk, int dom) |
| { |
| struct nve0_clock_info *info = &priv->eng[clk]; |
| u32 freq = cstate->domain[dom]; |
| u32 src0, div0, div1D, div1P = 0; |
| u32 clk0, clk1 = 0; |
| |
| /* invalid clock domain */ |
| if (!freq) |
| return 0; |
| |
| /* first possible path, using only dividers */ |
| clk0 = calc_src(priv, clk, freq, &src0, &div0); |
| clk0 = calc_div(priv, clk, clk0, freq, &div1D); |
| |
| /* see if we can get any closer using PLLs */ |
| if (clk0 != freq && (0x0000ff87 & (1 << clk))) { |
| if (clk <= 7) |
| clk1 = calc_pll(priv, clk, freq, &info->coef); |
| else |
| clk1 = cstate->domain[nv_clk_src_hubk06]; |
| clk1 = calc_div(priv, clk, clk1, freq, &div1P); |
| } |
| |
| /* select the method which gets closest to target freq */ |
| if (abs((int)freq - clk0) <= abs((int)freq - clk1)) { |
| info->dsrc = src0; |
| if (div0) { |
| info->ddiv |= 0x80000000; |
| info->ddiv |= div0; |
| } |
| if (div1D) { |
| info->mdiv |= 0x80000000; |
| info->mdiv |= div1D; |
| } |
| info->ssel = 0; |
| info->freq = clk0; |
| } else { |
| if (div1P) { |
| info->mdiv |= 0x80000000; |
| info->mdiv |= div1P << 8; |
| } |
| info->ssel = (1 << clk); |
| info->dsrc = 0x40000100; |
| info->freq = clk1; |
| } |
| |
| return 0; |
| } |
| |
| static int |
| nve0_clock_calc(struct nouveau_clock *clk, struct nouveau_cstate *cstate) |
| { |
| struct nve0_clock_priv *priv = (void *)clk; |
| int ret; |
| |
| if ((ret = calc_clk(priv, cstate, 0x00, nv_clk_src_gpc)) || |
| (ret = calc_clk(priv, cstate, 0x01, nv_clk_src_rop)) || |
| (ret = calc_clk(priv, cstate, 0x02, nv_clk_src_hubk07)) || |
| (ret = calc_clk(priv, cstate, 0x07, nv_clk_src_hubk06)) || |
| (ret = calc_clk(priv, cstate, 0x08, nv_clk_src_hubk01)) || |
| (ret = calc_clk(priv, cstate, 0x0c, nv_clk_src_daemon)) || |
| (ret = calc_clk(priv, cstate, 0x0e, nv_clk_src_vdec))) |
| return ret; |
| |
| return 0; |
| } |
| |
| static void |
| nve0_clock_prog_0(struct nve0_clock_priv *priv, int clk) |
| { |
| struct nve0_clock_info *info = &priv->eng[clk]; |
| if (!info->ssel) { |
| nv_mask(priv, 0x1371d0 + (clk * 0x04), 0x8000003f, info->ddiv); |
| nv_wr32(priv, 0x137160 + (clk * 0x04), info->dsrc); |
| } |
| } |
| |
| static void |
| nve0_clock_prog_1_0(struct nve0_clock_priv *priv, int clk) |
| { |
| nv_mask(priv, 0x137100, (1 << clk), 0x00000000); |
| nv_wait(priv, 0x137100, (1 << clk), 0x00000000); |
| } |
| |
| static void |
| nve0_clock_prog_1_1(struct nve0_clock_priv *priv, int clk) |
| { |
| nv_mask(priv, 0x137160 + (clk * 0x04), 0x00000100, 0x00000000); |
| } |
| |
| static void |
| nve0_clock_prog_2(struct nve0_clock_priv *priv, int clk) |
| { |
| struct nve0_clock_info *info = &priv->eng[clk]; |
| const u32 addr = 0x137000 + (clk * 0x20); |
| nv_mask(priv, addr + 0x00, 0x00000004, 0x00000000); |
| nv_mask(priv, addr + 0x00, 0x00000001, 0x00000000); |
| if (info->coef) { |
| nv_wr32(priv, addr + 0x04, info->coef); |
| nv_mask(priv, addr + 0x00, 0x00000001, 0x00000001); |
| nv_wait(priv, addr + 0x00, 0x00020000, 0x00020000); |
| nv_mask(priv, addr + 0x00, 0x00020004, 0x00000004); |
| } |
| } |
| |
| static void |
| nve0_clock_prog_3(struct nve0_clock_priv *priv, int clk) |
| { |
| struct nve0_clock_info *info = &priv->eng[clk]; |
| if (info->ssel) |
| nv_mask(priv, 0x137250 + (clk * 0x04), 0x00003f00, info->mdiv); |
| else |
| nv_mask(priv, 0x137250 + (clk * 0x04), 0x0000003f, info->mdiv); |
| } |
| |
| static void |
| nve0_clock_prog_4_0(struct nve0_clock_priv *priv, int clk) |
| { |
| struct nve0_clock_info *info = &priv->eng[clk]; |
| if (info->ssel) { |
| nv_mask(priv, 0x137100, (1 << clk), info->ssel); |
| nv_wait(priv, 0x137100, (1 << clk), info->ssel); |
| } |
| } |
| |
| static void |
| nve0_clock_prog_4_1(struct nve0_clock_priv *priv, int clk) |
| { |
| struct nve0_clock_info *info = &priv->eng[clk]; |
| if (info->ssel) { |
| nv_mask(priv, 0x137160 + (clk * 0x04), 0x40000000, 0x40000000); |
| nv_mask(priv, 0x137160 + (clk * 0x04), 0x00000100, 0x00000100); |
| } |
| } |
| |
| static int |
| nve0_clock_prog(struct nouveau_clock *clk) |
| { |
| struct nve0_clock_priv *priv = (void *)clk; |
| struct { |
| u32 mask; |
| void (*exec)(struct nve0_clock_priv *, int); |
| } stage[] = { |
| { 0x007f, nve0_clock_prog_0 }, /* div programming */ |
| { 0x007f, nve0_clock_prog_1_0 }, /* select div mode */ |
| { 0xff80, nve0_clock_prog_1_1 }, |
| { 0x00ff, nve0_clock_prog_2 }, /* (maybe) program pll */ |
| { 0xff80, nve0_clock_prog_3 }, /* final divider */ |
| { 0x007f, nve0_clock_prog_4_0 }, /* (maybe) select pll mode */ |
| { 0xff80, nve0_clock_prog_4_1 }, |
| }; |
| int i, j; |
| |
| for (i = 0; i < ARRAY_SIZE(stage); i++) { |
| for (j = 0; j < ARRAY_SIZE(priv->eng); j++) { |
| if (!(stage[i].mask & (1 << j))) |
| continue; |
| if (!priv->eng[j].freq) |
| continue; |
| stage[i].exec(priv, j); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void |
| nve0_clock_tidy(struct nouveau_clock *clk) |
| { |
| struct nve0_clock_priv *priv = (void *)clk; |
| memset(priv->eng, 0x00, sizeof(priv->eng)); |
| } |
| |
| static struct nouveau_clocks |
| nve0_domain[] = { |
| { nv_clk_src_crystal, 0xff }, |
| { nv_clk_src_href , 0xff }, |
| { nv_clk_src_gpc , 0x00, NVKM_CLK_DOM_FLAG_CORE, "core", 2000 }, |
| { nv_clk_src_hubk07 , 0x01, NVKM_CLK_DOM_FLAG_CORE }, |
| { nv_clk_src_rop , 0x02, NVKM_CLK_DOM_FLAG_CORE }, |
| { nv_clk_src_mem , 0x03, 0, "memory", 500 }, |
| { nv_clk_src_hubk06 , 0x04, NVKM_CLK_DOM_FLAG_CORE }, |
| { nv_clk_src_hubk01 , 0x05 }, |
| { nv_clk_src_vdec , 0x06 }, |
| { nv_clk_src_daemon , 0x07 }, |
| { nv_clk_src_max } |
| }; |
| |
| static int |
| nve0_clock_ctor(struct nouveau_object *parent, struct nouveau_object *engine, |
| struct nouveau_oclass *oclass, void *data, u32 size, |
| struct nouveau_object **pobject) |
| { |
| struct nve0_clock_priv *priv; |
| int ret; |
| |
| ret = nouveau_clock_create(parent, engine, oclass, nve0_domain, NULL, 0, |
| true, &priv); |
| *pobject = nv_object(priv); |
| if (ret) |
| return ret; |
| |
| priv->base.read = nve0_clock_read; |
| priv->base.calc = nve0_clock_calc; |
| priv->base.prog = nve0_clock_prog; |
| priv->base.tidy = nve0_clock_tidy; |
| return 0; |
| } |
| |
| struct nouveau_oclass |
| nve0_clock_oclass = { |
| .handle = NV_SUBDEV(CLOCK, 0xe0), |
| .ofuncs = &(struct nouveau_ofuncs) { |
| .ctor = nve0_clock_ctor, |
| .dtor = _nouveau_clock_dtor, |
| .init = _nouveau_clock_init, |
| .fini = _nouveau_clock_fini, |
| }, |
| }; |