| /**************************************************************************** |
| * Driver for Solarflare network controllers and boards |
| * Copyright 2005-2006 Fen Systems Ltd. |
| * Copyright 2005-2013 Solarflare Communications Inc. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License version 2 as published |
| * by the Free Software Foundation, incorporated herein by reference. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/pci.h> |
| #include <linux/netdevice.h> |
| #include <linux/etherdevice.h> |
| #include <linux/delay.h> |
| #include <linux/notifier.h> |
| #include <linux/ip.h> |
| #include <linux/tcp.h> |
| #include <linux/in.h> |
| #include <linux/ethtool.h> |
| #include <linux/topology.h> |
| #include <linux/gfp.h> |
| #include <linux/aer.h> |
| #include <linux/interrupt.h> |
| #include "net_driver.h" |
| #include "efx.h" |
| #include "nic.h" |
| #include "selftest.h" |
| |
| #include "mcdi.h" |
| #include "workarounds.h" |
| |
| /************************************************************************** |
| * |
| * Type name strings |
| * |
| ************************************************************************** |
| */ |
| |
| /* Loopback mode names (see LOOPBACK_MODE()) */ |
| const unsigned int efx_loopback_mode_max = LOOPBACK_MAX; |
| const char *const efx_loopback_mode_names[] = { |
| [LOOPBACK_NONE] = "NONE", |
| [LOOPBACK_DATA] = "DATAPATH", |
| [LOOPBACK_GMAC] = "GMAC", |
| [LOOPBACK_XGMII] = "XGMII", |
| [LOOPBACK_XGXS] = "XGXS", |
| [LOOPBACK_XAUI] = "XAUI", |
| [LOOPBACK_GMII] = "GMII", |
| [LOOPBACK_SGMII] = "SGMII", |
| [LOOPBACK_XGBR] = "XGBR", |
| [LOOPBACK_XFI] = "XFI", |
| [LOOPBACK_XAUI_FAR] = "XAUI_FAR", |
| [LOOPBACK_GMII_FAR] = "GMII_FAR", |
| [LOOPBACK_SGMII_FAR] = "SGMII_FAR", |
| [LOOPBACK_XFI_FAR] = "XFI_FAR", |
| [LOOPBACK_GPHY] = "GPHY", |
| [LOOPBACK_PHYXS] = "PHYXS", |
| [LOOPBACK_PCS] = "PCS", |
| [LOOPBACK_PMAPMD] = "PMA/PMD", |
| [LOOPBACK_XPORT] = "XPORT", |
| [LOOPBACK_XGMII_WS] = "XGMII_WS", |
| [LOOPBACK_XAUI_WS] = "XAUI_WS", |
| [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR", |
| [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR", |
| [LOOPBACK_GMII_WS] = "GMII_WS", |
| [LOOPBACK_XFI_WS] = "XFI_WS", |
| [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR", |
| [LOOPBACK_PHYXS_WS] = "PHYXS_WS", |
| }; |
| |
| const unsigned int efx_reset_type_max = RESET_TYPE_MAX; |
| const char *const efx_reset_type_names[] = { |
| [RESET_TYPE_INVISIBLE] = "INVISIBLE", |
| [RESET_TYPE_ALL] = "ALL", |
| [RESET_TYPE_RECOVER_OR_ALL] = "RECOVER_OR_ALL", |
| [RESET_TYPE_WORLD] = "WORLD", |
| [RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE", |
| [RESET_TYPE_MC_BIST] = "MC_BIST", |
| [RESET_TYPE_DISABLE] = "DISABLE", |
| [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG", |
| [RESET_TYPE_INT_ERROR] = "INT_ERROR", |
| [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY", |
| [RESET_TYPE_DMA_ERROR] = "DMA_ERROR", |
| [RESET_TYPE_TX_SKIP] = "TX_SKIP", |
| [RESET_TYPE_MC_FAILURE] = "MC_FAILURE", |
| [RESET_TYPE_MCDI_TIMEOUT] = "MCDI_TIMEOUT (FLR)", |
| }; |
| |
| /* Reset workqueue. If any NIC has a hardware failure then a reset will be |
| * queued onto this work queue. This is not a per-nic work queue, because |
| * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised. |
| */ |
| static struct workqueue_struct *reset_workqueue; |
| |
| /* How often and how many times to poll for a reset while waiting for a |
| * BIST that another function started to complete. |
| */ |
| #define BIST_WAIT_DELAY_MS 100 |
| #define BIST_WAIT_DELAY_COUNT 100 |
| |
| /************************************************************************** |
| * |
| * Configurable values |
| * |
| *************************************************************************/ |
| |
| /* |
| * Use separate channels for TX and RX events |
| * |
| * Set this to 1 to use separate channels for TX and RX. It allows us |
| * to control interrupt affinity separately for TX and RX. |
| * |
| * This is only used in MSI-X interrupt mode |
| */ |
| static bool separate_tx_channels; |
| module_param(separate_tx_channels, bool, 0444); |
| MODULE_PARM_DESC(separate_tx_channels, |
| "Use separate channels for TX and RX"); |
| |
| /* This is the weight assigned to each of the (per-channel) virtual |
| * NAPI devices. |
| */ |
| static int napi_weight = 64; |
| |
| /* This is the time (in jiffies) between invocations of the hardware |
| * monitor. |
| * On Falcon-based NICs, this will: |
| * - Check the on-board hardware monitor; |
| * - Poll the link state and reconfigure the hardware as necessary. |
| * On Siena-based NICs for power systems with EEH support, this will give EEH a |
| * chance to start. |
| */ |
| static unsigned int efx_monitor_interval = 1 * HZ; |
| |
| /* Initial interrupt moderation settings. They can be modified after |
| * module load with ethtool. |
| * |
| * The default for RX should strike a balance between increasing the |
| * round-trip latency and reducing overhead. |
| */ |
| static unsigned int rx_irq_mod_usec = 60; |
| |
| /* Initial interrupt moderation settings. They can be modified after |
| * module load with ethtool. |
| * |
| * This default is chosen to ensure that a 10G link does not go idle |
| * while a TX queue is stopped after it has become full. A queue is |
| * restarted when it drops below half full. The time this takes (assuming |
| * worst case 3 descriptors per packet and 1024 descriptors) is |
| * 512 / 3 * 1.2 = 205 usec. |
| */ |
| static unsigned int tx_irq_mod_usec = 150; |
| |
| /* This is the first interrupt mode to try out of: |
| * 0 => MSI-X |
| * 1 => MSI |
| * 2 => legacy |
| */ |
| static unsigned int interrupt_mode; |
| |
| /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS), |
| * i.e. the number of CPUs among which we may distribute simultaneous |
| * interrupt handling. |
| * |
| * Cards without MSI-X will only target one CPU via legacy or MSI interrupt. |
| * The default (0) means to assign an interrupt to each core. |
| */ |
| static unsigned int rss_cpus; |
| module_param(rss_cpus, uint, 0444); |
| MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling"); |
| |
| static bool phy_flash_cfg; |
| module_param(phy_flash_cfg, bool, 0644); |
| MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially"); |
| |
| static unsigned irq_adapt_low_thresh = 8000; |
| module_param(irq_adapt_low_thresh, uint, 0644); |
| MODULE_PARM_DESC(irq_adapt_low_thresh, |
| "Threshold score for reducing IRQ moderation"); |
| |
| static unsigned irq_adapt_high_thresh = 16000; |
| module_param(irq_adapt_high_thresh, uint, 0644); |
| MODULE_PARM_DESC(irq_adapt_high_thresh, |
| "Threshold score for increasing IRQ moderation"); |
| |
| static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE | |
| NETIF_MSG_LINK | NETIF_MSG_IFDOWN | |
| NETIF_MSG_IFUP | NETIF_MSG_RX_ERR | |
| NETIF_MSG_TX_ERR | NETIF_MSG_HW); |
| module_param(debug, uint, 0); |
| MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value"); |
| |
| /************************************************************************** |
| * |
| * Utility functions and prototypes |
| * |
| *************************************************************************/ |
| |
| static int efx_soft_enable_interrupts(struct efx_nic *efx); |
| static void efx_soft_disable_interrupts(struct efx_nic *efx); |
| static void efx_remove_channel(struct efx_channel *channel); |
| static void efx_remove_channels(struct efx_nic *efx); |
| static const struct efx_channel_type efx_default_channel_type; |
| static void efx_remove_port(struct efx_nic *efx); |
| static void efx_init_napi_channel(struct efx_channel *channel); |
| static void efx_fini_napi(struct efx_nic *efx); |
| static void efx_fini_napi_channel(struct efx_channel *channel); |
| static void efx_fini_struct(struct efx_nic *efx); |
| static void efx_start_all(struct efx_nic *efx); |
| static void efx_stop_all(struct efx_nic *efx); |
| |
| #define EFX_ASSERT_RESET_SERIALISED(efx) \ |
| do { \ |
| if ((efx->state == STATE_READY) || \ |
| (efx->state == STATE_RECOVERY) || \ |
| (efx->state == STATE_DISABLED)) \ |
| ASSERT_RTNL(); \ |
| } while (0) |
| |
| static int efx_check_disabled(struct efx_nic *efx) |
| { |
| if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) { |
| netif_err(efx, drv, efx->net_dev, |
| "device is disabled due to earlier errors\n"); |
| return -EIO; |
| } |
| return 0; |
| } |
| |
| /************************************************************************** |
| * |
| * Event queue processing |
| * |
| *************************************************************************/ |
| |
| /* Process channel's event queue |
| * |
| * This function is responsible for processing the event queue of a |
| * single channel. The caller must guarantee that this function will |
| * never be concurrently called more than once on the same channel, |
| * though different channels may be being processed concurrently. |
| */ |
| static int efx_process_channel(struct efx_channel *channel, int budget) |
| { |
| int spent; |
| |
| if (unlikely(!channel->enabled)) |
| return 0; |
| |
| spent = efx_nic_process_eventq(channel, budget); |
| if (spent && efx_channel_has_rx_queue(channel)) { |
| struct efx_rx_queue *rx_queue = |
| efx_channel_get_rx_queue(channel); |
| |
| efx_rx_flush_packet(channel); |
| efx_fast_push_rx_descriptors(rx_queue, true); |
| } |
| |
| return spent; |
| } |
| |
| /* NAPI poll handler |
| * |
| * NAPI guarantees serialisation of polls of the same device, which |
| * provides the guarantee required by efx_process_channel(). |
| */ |
| static int efx_poll(struct napi_struct *napi, int budget) |
| { |
| struct efx_channel *channel = |
| container_of(napi, struct efx_channel, napi_str); |
| struct efx_nic *efx = channel->efx; |
| int spent; |
| |
| if (!efx_channel_lock_napi(channel)) |
| return budget; |
| |
| netif_vdbg(efx, intr, efx->net_dev, |
| "channel %d NAPI poll executing on CPU %d\n", |
| channel->channel, raw_smp_processor_id()); |
| |
| spent = efx_process_channel(channel, budget); |
| |
| if (spent < budget) { |
| if (efx_channel_has_rx_queue(channel) && |
| efx->irq_rx_adaptive && |
| unlikely(++channel->irq_count == 1000)) { |
| if (unlikely(channel->irq_mod_score < |
| irq_adapt_low_thresh)) { |
| if (channel->irq_moderation > 1) { |
| channel->irq_moderation -= 1; |
| efx->type->push_irq_moderation(channel); |
| } |
| } else if (unlikely(channel->irq_mod_score > |
| irq_adapt_high_thresh)) { |
| if (channel->irq_moderation < |
| efx->irq_rx_moderation) { |
| channel->irq_moderation += 1; |
| efx->type->push_irq_moderation(channel); |
| } |
| } |
| channel->irq_count = 0; |
| channel->irq_mod_score = 0; |
| } |
| |
| efx_filter_rfs_expire(channel); |
| |
| /* There is no race here; although napi_disable() will |
| * only wait for napi_complete(), this isn't a problem |
| * since efx_nic_eventq_read_ack() will have no effect if |
| * interrupts have already been disabled. |
| */ |
| napi_complete(napi); |
| efx_nic_eventq_read_ack(channel); |
| } |
| |
| efx_channel_unlock_napi(channel); |
| return spent; |
| } |
| |
| /* Create event queue |
| * Event queue memory allocations are done only once. If the channel |
| * is reset, the memory buffer will be reused; this guards against |
| * errors during channel reset and also simplifies interrupt handling. |
| */ |
| static int efx_probe_eventq(struct efx_channel *channel) |
| { |
| struct efx_nic *efx = channel->efx; |
| unsigned long entries; |
| |
| netif_dbg(efx, probe, efx->net_dev, |
| "chan %d create event queue\n", channel->channel); |
| |
| /* Build an event queue with room for one event per tx and rx buffer, |
| * plus some extra for link state events and MCDI completions. */ |
| entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128); |
| EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE); |
| channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1; |
| |
| return efx_nic_probe_eventq(channel); |
| } |
| |
| /* Prepare channel's event queue */ |
| static int efx_init_eventq(struct efx_channel *channel) |
| { |
| struct efx_nic *efx = channel->efx; |
| int rc; |
| |
| EFX_WARN_ON_PARANOID(channel->eventq_init); |
| |
| netif_dbg(efx, drv, efx->net_dev, |
| "chan %d init event queue\n", channel->channel); |
| |
| rc = efx_nic_init_eventq(channel); |
| if (rc == 0) { |
| efx->type->push_irq_moderation(channel); |
| channel->eventq_read_ptr = 0; |
| channel->eventq_init = true; |
| } |
| return rc; |
| } |
| |
| /* Enable event queue processing and NAPI */ |
| void efx_start_eventq(struct efx_channel *channel) |
| { |
| netif_dbg(channel->efx, ifup, channel->efx->net_dev, |
| "chan %d start event queue\n", channel->channel); |
| |
| /* Make sure the NAPI handler sees the enabled flag set */ |
| channel->enabled = true; |
| smp_wmb(); |
| |
| efx_channel_enable(channel); |
| napi_enable(&channel->napi_str); |
| efx_nic_eventq_read_ack(channel); |
| } |
| |
| /* Disable event queue processing and NAPI */ |
| void efx_stop_eventq(struct efx_channel *channel) |
| { |
| if (!channel->enabled) |
| return; |
| |
| napi_disable(&channel->napi_str); |
| while (!efx_channel_disable(channel)) |
| usleep_range(1000, 20000); |
| channel->enabled = false; |
| } |
| |
| static void efx_fini_eventq(struct efx_channel *channel) |
| { |
| if (!channel->eventq_init) |
| return; |
| |
| netif_dbg(channel->efx, drv, channel->efx->net_dev, |
| "chan %d fini event queue\n", channel->channel); |
| |
| efx_nic_fini_eventq(channel); |
| channel->eventq_init = false; |
| } |
| |
| static void efx_remove_eventq(struct efx_channel *channel) |
| { |
| netif_dbg(channel->efx, drv, channel->efx->net_dev, |
| "chan %d remove event queue\n", channel->channel); |
| |
| efx_nic_remove_eventq(channel); |
| } |
| |
| /************************************************************************** |
| * |
| * Channel handling |
| * |
| *************************************************************************/ |
| |
| /* Allocate and initialise a channel structure. */ |
| static struct efx_channel * |
| efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel) |
| { |
| struct efx_channel *channel; |
| struct efx_rx_queue *rx_queue; |
| struct efx_tx_queue *tx_queue; |
| int j; |
| |
| channel = kzalloc(sizeof(*channel), GFP_KERNEL); |
| if (!channel) |
| return NULL; |
| |
| channel->efx = efx; |
| channel->channel = i; |
| channel->type = &efx_default_channel_type; |
| |
| for (j = 0; j < EFX_TXQ_TYPES; j++) { |
| tx_queue = &channel->tx_queue[j]; |
| tx_queue->efx = efx; |
| tx_queue->queue = i * EFX_TXQ_TYPES + j; |
| tx_queue->channel = channel; |
| } |
| |
| rx_queue = &channel->rx_queue; |
| rx_queue->efx = efx; |
| setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill, |
| (unsigned long)rx_queue); |
| |
| return channel; |
| } |
| |
| /* Allocate and initialise a channel structure, copying parameters |
| * (but not resources) from an old channel structure. |
| */ |
| static struct efx_channel * |
| efx_copy_channel(const struct efx_channel *old_channel) |
| { |
| struct efx_channel *channel; |
| struct efx_rx_queue *rx_queue; |
| struct efx_tx_queue *tx_queue; |
| int j; |
| |
| channel = kmalloc(sizeof(*channel), GFP_KERNEL); |
| if (!channel) |
| return NULL; |
| |
| *channel = *old_channel; |
| |
| channel->napi_dev = NULL; |
| memset(&channel->eventq, 0, sizeof(channel->eventq)); |
| |
| for (j = 0; j < EFX_TXQ_TYPES; j++) { |
| tx_queue = &channel->tx_queue[j]; |
| if (tx_queue->channel) |
| tx_queue->channel = channel; |
| tx_queue->buffer = NULL; |
| memset(&tx_queue->txd, 0, sizeof(tx_queue->txd)); |
| } |
| |
| rx_queue = &channel->rx_queue; |
| rx_queue->buffer = NULL; |
| memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd)); |
| setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill, |
| (unsigned long)rx_queue); |
| |
| return channel; |
| } |
| |
| static int efx_probe_channel(struct efx_channel *channel) |
| { |
| struct efx_tx_queue *tx_queue; |
| struct efx_rx_queue *rx_queue; |
| int rc; |
| |
| netif_dbg(channel->efx, probe, channel->efx->net_dev, |
| "creating channel %d\n", channel->channel); |
| |
| rc = channel->type->pre_probe(channel); |
| if (rc) |
| goto fail; |
| |
| rc = efx_probe_eventq(channel); |
| if (rc) |
| goto fail; |
| |
| efx_for_each_channel_tx_queue(tx_queue, channel) { |
| rc = efx_probe_tx_queue(tx_queue); |
| if (rc) |
| goto fail; |
| } |
| |
| efx_for_each_channel_rx_queue(rx_queue, channel) { |
| rc = efx_probe_rx_queue(rx_queue); |
| if (rc) |
| goto fail; |
| } |
| |
| return 0; |
| |
| fail: |
| efx_remove_channel(channel); |
| return rc; |
| } |
| |
| static void |
| efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len) |
| { |
| struct efx_nic *efx = channel->efx; |
| const char *type; |
| int number; |
| |
| number = channel->channel; |
| if (efx->tx_channel_offset == 0) { |
| type = ""; |
| } else if (channel->channel < efx->tx_channel_offset) { |
| type = "-rx"; |
| } else { |
| type = "-tx"; |
| number -= efx->tx_channel_offset; |
| } |
| snprintf(buf, len, "%s%s-%d", efx->name, type, number); |
| } |
| |
| static void efx_set_channel_names(struct efx_nic *efx) |
| { |
| struct efx_channel *channel; |
| |
| efx_for_each_channel(channel, efx) |
| channel->type->get_name(channel, |
| efx->msi_context[channel->channel].name, |
| sizeof(efx->msi_context[0].name)); |
| } |
| |
| static int efx_probe_channels(struct efx_nic *efx) |
| { |
| struct efx_channel *channel; |
| int rc; |
| |
| /* Restart special buffer allocation */ |
| efx->next_buffer_table = 0; |
| |
| /* Probe channels in reverse, so that any 'extra' channels |
| * use the start of the buffer table. This allows the traffic |
| * channels to be resized without moving them or wasting the |
| * entries before them. |
| */ |
| efx_for_each_channel_rev(channel, efx) { |
| rc = efx_probe_channel(channel); |
| if (rc) { |
| netif_err(efx, probe, efx->net_dev, |
| "failed to create channel %d\n", |
| channel->channel); |
| goto fail; |
| } |
| } |
| efx_set_channel_names(efx); |
| |
| return 0; |
| |
| fail: |
| efx_remove_channels(efx); |
| return rc; |
| } |
| |
| /* Channels are shutdown and reinitialised whilst the NIC is running |
| * to propagate configuration changes (mtu, checksum offload), or |
| * to clear hardware error conditions |
| */ |
| static void efx_start_datapath(struct efx_nic *efx) |
| { |
| bool old_rx_scatter = efx->rx_scatter; |
| struct efx_tx_queue *tx_queue; |
| struct efx_rx_queue *rx_queue; |
| struct efx_channel *channel; |
| size_t rx_buf_len; |
| |
| /* Calculate the rx buffer allocation parameters required to |
| * support the current MTU, including padding for header |
| * alignment and overruns. |
| */ |
| efx->rx_dma_len = (efx->rx_prefix_size + |
| EFX_MAX_FRAME_LEN(efx->net_dev->mtu) + |
| efx->type->rx_buffer_padding); |
| rx_buf_len = (sizeof(struct efx_rx_page_state) + |
| efx->rx_ip_align + efx->rx_dma_len); |
| if (rx_buf_len <= PAGE_SIZE) { |
| efx->rx_scatter = efx->type->always_rx_scatter; |
| efx->rx_buffer_order = 0; |
| } else if (efx->type->can_rx_scatter) { |
| BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES); |
| BUILD_BUG_ON(sizeof(struct efx_rx_page_state) + |
| 2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE, |
| EFX_RX_BUF_ALIGNMENT) > |
| PAGE_SIZE); |
| efx->rx_scatter = true; |
| efx->rx_dma_len = EFX_RX_USR_BUF_SIZE; |
| efx->rx_buffer_order = 0; |
| } else { |
| efx->rx_scatter = false; |
| efx->rx_buffer_order = get_order(rx_buf_len); |
| } |
| |
| efx_rx_config_page_split(efx); |
| if (efx->rx_buffer_order) |
| netif_dbg(efx, drv, efx->net_dev, |
| "RX buf len=%u; page order=%u batch=%u\n", |
| efx->rx_dma_len, efx->rx_buffer_order, |
| efx->rx_pages_per_batch); |
| else |
| netif_dbg(efx, drv, efx->net_dev, |
| "RX buf len=%u step=%u bpp=%u; page batch=%u\n", |
| efx->rx_dma_len, efx->rx_page_buf_step, |
| efx->rx_bufs_per_page, efx->rx_pages_per_batch); |
| |
| /* RX filters may also have scatter-enabled flags */ |
| if (efx->rx_scatter != old_rx_scatter) |
| efx->type->filter_update_rx_scatter(efx); |
| |
| /* We must keep at least one descriptor in a TX ring empty. |
| * We could avoid this when the queue size does not exactly |
| * match the hardware ring size, but it's not that important. |
| * Therefore we stop the queue when one more skb might fill |
| * the ring completely. We wake it when half way back to |
| * empty. |
| */ |
| efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx); |
| efx->txq_wake_thresh = efx->txq_stop_thresh / 2; |
| |
| /* Initialise the channels */ |
| efx_for_each_channel(channel, efx) { |
| efx_for_each_channel_tx_queue(tx_queue, channel) { |
| efx_init_tx_queue(tx_queue); |
| atomic_inc(&efx->active_queues); |
| } |
| |
| efx_for_each_channel_rx_queue(rx_queue, channel) { |
| efx_init_rx_queue(rx_queue); |
| atomic_inc(&efx->active_queues); |
| efx_stop_eventq(channel); |
| efx_fast_push_rx_descriptors(rx_queue, false); |
| efx_start_eventq(channel); |
| } |
| |
| WARN_ON(channel->rx_pkt_n_frags); |
| } |
| |
| efx_ptp_start_datapath(efx); |
| |
| if (netif_device_present(efx->net_dev)) |
| netif_tx_wake_all_queues(efx->net_dev); |
| } |
| |
| static void efx_stop_datapath(struct efx_nic *efx) |
| { |
| struct efx_channel *channel; |
| struct efx_tx_queue *tx_queue; |
| struct efx_rx_queue *rx_queue; |
| int rc; |
| |
| EFX_ASSERT_RESET_SERIALISED(efx); |
| BUG_ON(efx->port_enabled); |
| |
| efx_ptp_stop_datapath(efx); |
| |
| /* Stop RX refill */ |
| efx_for_each_channel(channel, efx) { |
| efx_for_each_channel_rx_queue(rx_queue, channel) |
| rx_queue->refill_enabled = false; |
| } |
| |
| efx_for_each_channel(channel, efx) { |
| /* RX packet processing is pipelined, so wait for the |
| * NAPI handler to complete. At least event queue 0 |
| * might be kept active by non-data events, so don't |
| * use napi_synchronize() but actually disable NAPI |
| * temporarily. |
| */ |
| if (efx_channel_has_rx_queue(channel)) { |
| efx_stop_eventq(channel); |
| efx_start_eventq(channel); |
| } |
| } |
| |
| rc = efx->type->fini_dmaq(efx); |
| if (rc && EFX_WORKAROUND_7803(efx)) { |
| /* Schedule a reset to recover from the flush failure. The |
| * descriptor caches reference memory we're about to free, |
| * but falcon_reconfigure_mac_wrapper() won't reconnect |
| * the MACs because of the pending reset. |
| */ |
| netif_err(efx, drv, efx->net_dev, |
| "Resetting to recover from flush failure\n"); |
| efx_schedule_reset(efx, RESET_TYPE_ALL); |
| } else if (rc) { |
| netif_err(efx, drv, efx->net_dev, "failed to flush queues\n"); |
| } else { |
| netif_dbg(efx, drv, efx->net_dev, |
| "successfully flushed all queues\n"); |
| } |
| |
| efx_for_each_channel(channel, efx) { |
| efx_for_each_channel_rx_queue(rx_queue, channel) |
| efx_fini_rx_queue(rx_queue); |
| efx_for_each_possible_channel_tx_queue(tx_queue, channel) |
| efx_fini_tx_queue(tx_queue); |
| } |
| } |
| |
| static void efx_remove_channel(struct efx_channel *channel) |
| { |
| struct efx_tx_queue *tx_queue; |
| struct efx_rx_queue *rx_queue; |
| |
| netif_dbg(channel->efx, drv, channel->efx->net_dev, |
| "destroy chan %d\n", channel->channel); |
| |
| efx_for_each_channel_rx_queue(rx_queue, channel) |
| efx_remove_rx_queue(rx_queue); |
| efx_for_each_possible_channel_tx_queue(tx_queue, channel) |
| efx_remove_tx_queue(tx_queue); |
| efx_remove_eventq(channel); |
| channel->type->post_remove(channel); |
| } |
| |
| static void efx_remove_channels(struct efx_nic *efx) |
| { |
| struct efx_channel *channel; |
| |
| efx_for_each_channel(channel, efx) |
| efx_remove_channel(channel); |
| } |
| |
| int |
| efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries) |
| { |
| struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel; |
| u32 old_rxq_entries, old_txq_entries; |
| unsigned i, next_buffer_table = 0; |
| int rc, rc2; |
| |
| rc = efx_check_disabled(efx); |
| if (rc) |
| return rc; |
| |
| /* Not all channels should be reallocated. We must avoid |
| * reallocating their buffer table entries. |
| */ |
| efx_for_each_channel(channel, efx) { |
| struct efx_rx_queue *rx_queue; |
| struct efx_tx_queue *tx_queue; |
| |
| if (channel->type->copy) |
| continue; |
| next_buffer_table = max(next_buffer_table, |
| channel->eventq.index + |
| channel->eventq.entries); |
| efx_for_each_channel_rx_queue(rx_queue, channel) |
| next_buffer_table = max(next_buffer_table, |
| rx_queue->rxd.index + |
| rx_queue->rxd.entries); |
| efx_for_each_channel_tx_queue(tx_queue, channel) |
| next_buffer_table = max(next_buffer_table, |
| tx_queue->txd.index + |
| tx_queue->txd.entries); |
| } |
| |
| efx_device_detach_sync(efx); |
| efx_stop_all(efx); |
| efx_soft_disable_interrupts(efx); |
| |
| /* Clone channels (where possible) */ |
| memset(other_channel, 0, sizeof(other_channel)); |
| for (i = 0; i < efx->n_channels; i++) { |
| channel = efx->channel[i]; |
| if (channel->type->copy) |
| channel = channel->type->copy(channel); |
| if (!channel) { |
| rc = -ENOMEM; |
| goto out; |
| } |
| other_channel[i] = channel; |
| } |
| |
| /* Swap entry counts and channel pointers */ |
| old_rxq_entries = efx->rxq_entries; |
| old_txq_entries = efx->txq_entries; |
| efx->rxq_entries = rxq_entries; |
| efx->txq_entries = txq_entries; |
| for (i = 0; i < efx->n_channels; i++) { |
| channel = efx->channel[i]; |
| efx->channel[i] = other_channel[i]; |
| other_channel[i] = channel; |
| } |
| |
| /* Restart buffer table allocation */ |
| efx->next_buffer_table = next_buffer_table; |
| |
| for (i = 0; i < efx->n_channels; i++) { |
| channel = efx->channel[i]; |
| if (!channel->type->copy) |
| continue; |
| rc = efx_probe_channel(channel); |
| if (rc) |
| goto rollback; |
| efx_init_napi_channel(efx->channel[i]); |
| } |
| |
| out: |
| /* Destroy unused channel structures */ |
| for (i = 0; i < efx->n_channels; i++) { |
| channel = other_channel[i]; |
| if (channel && channel->type->copy) { |
| efx_fini_napi_channel(channel); |
| efx_remove_channel(channel); |
| kfree(channel); |
| } |
| } |
| |
| rc2 = efx_soft_enable_interrupts(efx); |
| if (rc2) { |
| rc = rc ? rc : rc2; |
| netif_err(efx, drv, efx->net_dev, |
| "unable to restart interrupts on channel reallocation\n"); |
| efx_schedule_reset(efx, RESET_TYPE_DISABLE); |
| } else { |
| efx_start_all(efx); |
| netif_device_attach(efx->net_dev); |
| } |
| return rc; |
| |
| rollback: |
| /* Swap back */ |
| efx->rxq_entries = old_rxq_entries; |
| efx->txq_entries = old_txq_entries; |
| for (i = 0; i < efx->n_channels; i++) { |
| channel = efx->channel[i]; |
| efx->channel[i] = other_channel[i]; |
| other_channel[i] = channel; |
| } |
| goto out; |
| } |
| |
| void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue) |
| { |
| mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100)); |
| } |
| |
| static const struct efx_channel_type efx_default_channel_type = { |
| .pre_probe = efx_channel_dummy_op_int, |
| .post_remove = efx_channel_dummy_op_void, |
| .get_name = efx_get_channel_name, |
| .copy = efx_copy_channel, |
| .keep_eventq = false, |
| }; |
| |
| int efx_channel_dummy_op_int(struct efx_channel *channel) |
| { |
| return 0; |
| } |
| |
| void efx_channel_dummy_op_void(struct efx_channel *channel) |
| { |
| } |
| |
| /************************************************************************** |
| * |
| * Port handling |
| * |
| **************************************************************************/ |
| |
| /* This ensures that the kernel is kept informed (via |
| * netif_carrier_on/off) of the link status, and also maintains the |
| * link status's stop on the port's TX queue. |
| */ |
| void efx_link_status_changed(struct efx_nic *efx) |
| { |
| struct efx_link_state *link_state = &efx->link_state; |
| |
| /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure |
| * that no events are triggered between unregister_netdev() and the |
| * driver unloading. A more general condition is that NETDEV_CHANGE |
| * can only be generated between NETDEV_UP and NETDEV_DOWN */ |
| if (!netif_running(efx->net_dev)) |
| return; |
| |
| if (link_state->up != netif_carrier_ok(efx->net_dev)) { |
| efx->n_link_state_changes++; |
| |
| if (link_state->up) |
| netif_carrier_on(efx->net_dev); |
| else |
| netif_carrier_off(efx->net_dev); |
| } |
| |
| /* Status message for kernel log */ |
| if (link_state->up) |
| netif_info(efx, link, efx->net_dev, |
| "link up at %uMbps %s-duplex (MTU %d)\n", |
| link_state->speed, link_state->fd ? "full" : "half", |
| efx->net_dev->mtu); |
| else |
| netif_info(efx, link, efx->net_dev, "link down\n"); |
| } |
| |
| void efx_link_set_advertising(struct efx_nic *efx, u32 advertising) |
| { |
| efx->link_advertising = advertising; |
| if (advertising) { |
| if (advertising & ADVERTISED_Pause) |
| efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX); |
| else |
| efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX); |
| if (advertising & ADVERTISED_Asym_Pause) |
| efx->wanted_fc ^= EFX_FC_TX; |
| } |
| } |
| |
| void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc) |
| { |
| efx->wanted_fc = wanted_fc; |
| if (efx->link_advertising) { |
| if (wanted_fc & EFX_FC_RX) |
| efx->link_advertising |= (ADVERTISED_Pause | |
| ADVERTISED_Asym_Pause); |
| else |
| efx->link_advertising &= ~(ADVERTISED_Pause | |
| ADVERTISED_Asym_Pause); |
| if (wanted_fc & EFX_FC_TX) |
| efx->link_advertising ^= ADVERTISED_Asym_Pause; |
| } |
| } |
| |
| static void efx_fini_port(struct efx_nic *efx); |
| |
| /* Push loopback/power/transmit disable settings to the PHY, and reconfigure |
| * the MAC appropriately. All other PHY configuration changes are pushed |
| * through phy_op->set_settings(), and pushed asynchronously to the MAC |
| * through efx_monitor(). |
| * |
| * Callers must hold the mac_lock |
| */ |
| int __efx_reconfigure_port(struct efx_nic *efx) |
| { |
| enum efx_phy_mode phy_mode; |
| int rc; |
| |
| WARN_ON(!mutex_is_locked(&efx->mac_lock)); |
| |
| /* Disable PHY transmit in mac level loopbacks */ |
| phy_mode = efx->phy_mode; |
| if (LOOPBACK_INTERNAL(efx)) |
| efx->phy_mode |= PHY_MODE_TX_DISABLED; |
| else |
| efx->phy_mode &= ~PHY_MODE_TX_DISABLED; |
| |
| rc = efx->type->reconfigure_port(efx); |
| |
| if (rc) |
| efx->phy_mode = phy_mode; |
| |
| return rc; |
| } |
| |
| /* Reinitialise the MAC to pick up new PHY settings, even if the port is |
| * disabled. */ |
| int efx_reconfigure_port(struct efx_nic *efx) |
| { |
| int rc; |
| |
| EFX_ASSERT_RESET_SERIALISED(efx); |
| |
| mutex_lock(&efx->mac_lock); |
| rc = __efx_reconfigure_port(efx); |
| mutex_unlock(&efx->mac_lock); |
| |
| return rc; |
| } |
| |
| /* Asynchronous work item for changing MAC promiscuity and multicast |
| * hash. Avoid a drain/rx_ingress enable by reconfiguring the current |
| * MAC directly. */ |
| static void efx_mac_work(struct work_struct *data) |
| { |
| struct efx_nic *efx = container_of(data, struct efx_nic, mac_work); |
| |
| mutex_lock(&efx->mac_lock); |
| if (efx->port_enabled) |
| efx->type->reconfigure_mac(efx); |
| mutex_unlock(&efx->mac_lock); |
| } |
| |
| static int efx_probe_port(struct efx_nic *efx) |
| { |
| int rc; |
| |
| netif_dbg(efx, probe, efx->net_dev, "create port\n"); |
| |
| if (phy_flash_cfg) |
| efx->phy_mode = PHY_MODE_SPECIAL; |
| |
| /* Connect up MAC/PHY operations table */ |
| rc = efx->type->probe_port(efx); |
| if (rc) |
| return rc; |
| |
| /* Initialise MAC address to permanent address */ |
| ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr); |
| |
| return 0; |
| } |
| |
| static int efx_init_port(struct efx_nic *efx) |
| { |
| int rc; |
| |
| netif_dbg(efx, drv, efx->net_dev, "init port\n"); |
| |
| mutex_lock(&efx->mac_lock); |
| |
| rc = efx->phy_op->init(efx); |
| if (rc) |
| goto fail1; |
| |
| efx->port_initialized = true; |
| |
| /* Reconfigure the MAC before creating dma queues (required for |
| * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */ |
| efx->type->reconfigure_mac(efx); |
| |
| /* Ensure the PHY advertises the correct flow control settings */ |
| rc = efx->phy_op->reconfigure(efx); |
| if (rc) |
| goto fail2; |
| |
| mutex_unlock(&efx->mac_lock); |
| return 0; |
| |
| fail2: |
| efx->phy_op->fini(efx); |
| fail1: |
| mutex_unlock(&efx->mac_lock); |
| return rc; |
| } |
| |
| static void efx_start_port(struct efx_nic *efx) |
| { |
| netif_dbg(efx, ifup, efx->net_dev, "start port\n"); |
| BUG_ON(efx->port_enabled); |
| |
| mutex_lock(&efx->mac_lock); |
| efx->port_enabled = true; |
| |
| /* Ensure MAC ingress/egress is enabled */ |
| efx->type->reconfigure_mac(efx); |
| |
| mutex_unlock(&efx->mac_lock); |
| } |
| |
| /* Cancel work for MAC reconfiguration, periodic hardware monitoring |
| * and the async self-test, wait for them to finish and prevent them |
| * being scheduled again. This doesn't cover online resets, which |
| * should only be cancelled when removing the device. |
| */ |
| static void efx_stop_port(struct efx_nic *efx) |
| { |
| netif_dbg(efx, ifdown, efx->net_dev, "stop port\n"); |
| |
| EFX_ASSERT_RESET_SERIALISED(efx); |
| |
| mutex_lock(&efx->mac_lock); |
| efx->port_enabled = false; |
| mutex_unlock(&efx->mac_lock); |
| |
| /* Serialise against efx_set_multicast_list() */ |
| netif_addr_lock_bh(efx->net_dev); |
| netif_addr_unlock_bh(efx->net_dev); |
| |
| cancel_delayed_work_sync(&efx->monitor_work); |
| efx_selftest_async_cancel(efx); |
| cancel_work_sync(&efx->mac_work); |
| } |
| |
| static void efx_fini_port(struct efx_nic *efx) |
| { |
| netif_dbg(efx, drv, efx->net_dev, "shut down port\n"); |
| |
| if (!efx->port_initialized) |
| return; |
| |
| efx->phy_op->fini(efx); |
| efx->port_initialized = false; |
| |
| efx->link_state.up = false; |
| efx_link_status_changed(efx); |
| } |
| |
| static void efx_remove_port(struct efx_nic *efx) |
| { |
| netif_dbg(efx, drv, efx->net_dev, "destroying port\n"); |
| |
| efx->type->remove_port(efx); |
| } |
| |
| /************************************************************************** |
| * |
| * NIC handling |
| * |
| **************************************************************************/ |
| |
| static LIST_HEAD(efx_primary_list); |
| static LIST_HEAD(efx_unassociated_list); |
| |
| static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right) |
| { |
| return left->type == right->type && |
| left->vpd_sn && right->vpd_sn && |
| !strcmp(left->vpd_sn, right->vpd_sn); |
| } |
| |
| static void efx_associate(struct efx_nic *efx) |
| { |
| struct efx_nic *other, *next; |
| |
| if (efx->primary == efx) { |
| /* Adding primary function; look for secondaries */ |
| |
| netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n"); |
| list_add_tail(&efx->node, &efx_primary_list); |
| |
| list_for_each_entry_safe(other, next, &efx_unassociated_list, |
| node) { |
| if (efx_same_controller(efx, other)) { |
| list_del(&other->node); |
| netif_dbg(other, probe, other->net_dev, |
| "moving to secondary list of %s %s\n", |
| pci_name(efx->pci_dev), |
| efx->net_dev->name); |
| list_add_tail(&other->node, |
| &efx->secondary_list); |
| other->primary = efx; |
| } |
| } |
| } else { |
| /* Adding secondary function; look for primary */ |
| |
| list_for_each_entry(other, &efx_primary_list, node) { |
| if (efx_same_controller(efx, other)) { |
| netif_dbg(efx, probe, efx->net_dev, |
| "adding to secondary list of %s %s\n", |
| pci_name(other->pci_dev), |
| other->net_dev->name); |
| list_add_tail(&efx->node, |
| &other->secondary_list); |
| efx->primary = other; |
| return; |
| } |
| } |
| |
| netif_dbg(efx, probe, efx->net_dev, |
| "adding to unassociated list\n"); |
| list_add_tail(&efx->node, &efx_unassociated_list); |
| } |
| } |
| |
| static void efx_dissociate(struct efx_nic *efx) |
| { |
| struct efx_nic *other, *next; |
| |
| list_del(&efx->node); |
| efx->primary = NULL; |
| |
| list_for_each_entry_safe(other, next, &efx->secondary_list, node) { |
| list_del(&other->node); |
| netif_dbg(other, probe, other->net_dev, |
| "moving to unassociated list\n"); |
| list_add_tail(&other->node, &efx_unassociated_list); |
| other->primary = NULL; |
| } |
| } |
| |
| /* This configures the PCI device to enable I/O and DMA. */ |
| static int efx_init_io(struct efx_nic *efx) |
| { |
| struct pci_dev *pci_dev = efx->pci_dev; |
| dma_addr_t dma_mask = efx->type->max_dma_mask; |
| unsigned int mem_map_size = efx->type->mem_map_size(efx); |
| int rc; |
| |
| netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n"); |
| |
| rc = pci_enable_device(pci_dev); |
| if (rc) { |
| netif_err(efx, probe, efx->net_dev, |
| "failed to enable PCI device\n"); |
| goto fail1; |
| } |
| |
| pci_set_master(pci_dev); |
| |
| /* Set the PCI DMA mask. Try all possibilities from our |
| * genuine mask down to 32 bits, because some architectures |
| * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit |
| * masks event though they reject 46 bit masks. |
| */ |
| while (dma_mask > 0x7fffffffUL) { |
| if (dma_supported(&pci_dev->dev, dma_mask)) { |
| rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask); |
| if (rc == 0) |
| break; |
| } |
| dma_mask >>= 1; |
| } |
| if (rc) { |
| netif_err(efx, probe, efx->net_dev, |
| "could not find a suitable DMA mask\n"); |
| goto fail2; |
| } |
| netif_dbg(efx, probe, efx->net_dev, |
| "using DMA mask %llx\n", (unsigned long long) dma_mask); |
| |
| efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR); |
| rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc"); |
| if (rc) { |
| netif_err(efx, probe, efx->net_dev, |
| "request for memory BAR failed\n"); |
| rc = -EIO; |
| goto fail3; |
| } |
| efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size); |
| if (!efx->membase) { |
| netif_err(efx, probe, efx->net_dev, |
| "could not map memory BAR at %llx+%x\n", |
| (unsigned long long)efx->membase_phys, mem_map_size); |
| rc = -ENOMEM; |
| goto fail4; |
| } |
| netif_dbg(efx, probe, efx->net_dev, |
| "memory BAR at %llx+%x (virtual %p)\n", |
| (unsigned long long)efx->membase_phys, mem_map_size, |
| efx->membase); |
| |
| return 0; |
| |
| fail4: |
| pci_release_region(efx->pci_dev, EFX_MEM_BAR); |
| fail3: |
| efx->membase_phys = 0; |
| fail2: |
| pci_disable_device(efx->pci_dev); |
| fail1: |
| return rc; |
| } |
| |
| static void efx_fini_io(struct efx_nic *efx) |
| { |
| netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n"); |
| |
| if (efx->membase) { |
| iounmap(efx->membase); |
| efx->membase = NULL; |
| } |
| |
| if (efx->membase_phys) { |
| pci_release_region(efx->pci_dev, EFX_MEM_BAR); |
| efx->membase_phys = 0; |
| } |
| |
| pci_disable_device(efx->pci_dev); |
| } |
| |
| static unsigned int efx_wanted_parallelism(struct efx_nic *efx) |
| { |
| cpumask_var_t thread_mask; |
| unsigned int count; |
| int cpu; |
| |
| if (rss_cpus) { |
| count = rss_cpus; |
| } else { |
| if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) { |
| netif_warn(efx, probe, efx->net_dev, |
| "RSS disabled due to allocation failure\n"); |
| return 1; |
| } |
| |
| count = 0; |
| for_each_online_cpu(cpu) { |
| if (!cpumask_test_cpu(cpu, thread_mask)) { |
| ++count; |
| cpumask_or(thread_mask, thread_mask, |
| topology_thread_cpumask(cpu)); |
| } |
| } |
| |
| free_cpumask_var(thread_mask); |
| } |
| |
| /* If RSS is requested for the PF *and* VFs then we can't write RSS |
| * table entries that are inaccessible to VFs |
| */ |
| if (efx_sriov_wanted(efx) && efx_vf_size(efx) > 1 && |
| count > efx_vf_size(efx)) { |
| netif_warn(efx, probe, efx->net_dev, |
| "Reducing number of RSS channels from %u to %u for " |
| "VF support. Increase vf-msix-limit to use more " |
| "channels on the PF.\n", |
| count, efx_vf_size(efx)); |
| count = efx_vf_size(efx); |
| } |
| |
| return count; |
| } |
| |
| /* Probe the number and type of interrupts we are able to obtain, and |
| * the resulting numbers of channels and RX queues. |
| */ |
| static int efx_probe_interrupts(struct efx_nic *efx) |
| { |
| unsigned int extra_channels = 0; |
| unsigned int i, j; |
| int rc; |
| |
| for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) |
| if (efx->extra_channel_type[i]) |
| ++extra_channels; |
| |
| if (efx->interrupt_mode == EFX_INT_MODE_MSIX) { |
| struct msix_entry xentries[EFX_MAX_CHANNELS]; |
| unsigned int n_channels; |
| |
| n_channels = efx_wanted_parallelism(efx); |
| if (separate_tx_channels) |
| n_channels *= 2; |
| n_channels += extra_channels; |
| n_channels = min(n_channels, efx->max_channels); |
| |
| for (i = 0; i < n_channels; i++) |
| xentries[i].entry = i; |
| rc = pci_enable_msix_range(efx->pci_dev, |
| xentries, 1, n_channels); |
| if (rc < 0) { |
| /* Fall back to single channel MSI */ |
| efx->interrupt_mode = EFX_INT_MODE_MSI; |
| netif_err(efx, drv, efx->net_dev, |
| "could not enable MSI-X\n"); |
| } else if (rc < n_channels) { |
| netif_err(efx, drv, efx->net_dev, |
| "WARNING: Insufficient MSI-X vectors" |
| " available (%d < %u).\n", rc, n_channels); |
| netif_err(efx, drv, efx->net_dev, |
| "WARNING: Performance may be reduced.\n"); |
| n_channels = rc; |
| } |
| |
| if (rc > 0) { |
| efx->n_channels = n_channels; |
| if (n_channels > extra_channels) |
| n_channels -= extra_channels; |
| if (separate_tx_channels) { |
| efx->n_tx_channels = max(n_channels / 2, 1U); |
| efx->n_rx_channels = max(n_channels - |
| efx->n_tx_channels, |
| 1U); |
| } else { |
| efx->n_tx_channels = n_channels; |
| efx->n_rx_channels = n_channels; |
| } |
| for (i = 0; i < efx->n_channels; i++) |
| efx_get_channel(efx, i)->irq = |
| xentries[i].vector; |
| } |
| } |
| |
| /* Try single interrupt MSI */ |
| if (efx->interrupt_mode == EFX_INT_MODE_MSI) { |
| efx->n_channels = 1; |
| efx->n_rx_channels = 1; |
| efx->n_tx_channels = 1; |
| rc = pci_enable_msi(efx->pci_dev); |
| if (rc == 0) { |
| efx_get_channel(efx, 0)->irq = efx->pci_dev->irq; |
| } else { |
| netif_err(efx, drv, efx->net_dev, |
| "could not enable MSI\n"); |
| efx->interrupt_mode = EFX_INT_MODE_LEGACY; |
| } |
| } |
| |
| /* Assume legacy interrupts */ |
| if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) { |
| efx->n_channels = 1 + (separate_tx_channels ? 1 : 0); |
| efx->n_rx_channels = 1; |
| efx->n_tx_channels = 1; |
| efx->legacy_irq = efx->pci_dev->irq; |
| } |
| |
| /* Assign extra channels if possible */ |
| j = efx->n_channels; |
| for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) { |
| if (!efx->extra_channel_type[i]) |
| continue; |
| if (efx->interrupt_mode != EFX_INT_MODE_MSIX || |
| efx->n_channels <= extra_channels) { |
| efx->extra_channel_type[i]->handle_no_channel(efx); |
| } else { |
| --j; |
| efx_get_channel(efx, j)->type = |
| efx->extra_channel_type[i]; |
| } |
| } |
| |
| /* RSS might be usable on VFs even if it is disabled on the PF */ |
| efx->rss_spread = ((efx->n_rx_channels > 1 || !efx_sriov_wanted(efx)) ? |
| efx->n_rx_channels : efx_vf_size(efx)); |
| |
| return 0; |
| } |
| |
| static int efx_soft_enable_interrupts(struct efx_nic *efx) |
| { |
| struct efx_channel *channel, *end_channel; |
| int rc; |
| |
| BUG_ON(efx->state == STATE_DISABLED); |
| |
| efx->irq_soft_enabled = true; |
| smp_wmb(); |
| |
| efx_for_each_channel(channel, efx) { |
| if (!channel->type->keep_eventq) { |
| rc = efx_init_eventq(channel); |
| if (rc) |
| goto fail; |
| } |
| efx_start_eventq(channel); |
| } |
| |
| efx_mcdi_mode_event(efx); |
| |
| return 0; |
| fail: |
| end_channel = channel; |
| efx_for_each_channel(channel, efx) { |
| if (channel == end_channel) |
| break; |
| efx_stop_eventq(channel); |
| if (!channel->type->keep_eventq) |
| efx_fini_eventq(channel); |
| } |
| |
| return rc; |
| } |
| |
| static void efx_soft_disable_interrupts(struct efx_nic *efx) |
| { |
| struct efx_channel *channel; |
| |
| if (efx->state == STATE_DISABLED) |
| return; |
| |
| efx_mcdi_mode_poll(efx); |
| |
| efx->irq_soft_enabled = false; |
| smp_wmb(); |
| |
| if (efx->legacy_irq) |
| synchronize_irq(efx->legacy_irq); |
| |
| efx_for_each_channel(channel, efx) { |
| if (channel->irq) |
| synchronize_irq(channel->irq); |
| |
| efx_stop_eventq(channel); |
| if (!channel->type->keep_eventq) |
| efx_fini_eventq(channel); |
| } |
| |
| /* Flush the asynchronous MCDI request queue */ |
| efx_mcdi_flush_async(efx); |
| } |
| |
| static int efx_enable_interrupts(struct efx_nic *efx) |
| { |
| struct efx_channel *channel, *end_channel; |
| int rc; |
| |
| BUG_ON(efx->state == STATE_DISABLED); |
| |
| if (efx->eeh_disabled_legacy_irq) { |
| enable_irq(efx->legacy_irq); |
| efx->eeh_disabled_legacy_irq = false; |
| } |
| |
| efx->type->irq_enable_master(efx); |
| |
| efx_for_each_channel(channel, efx) { |
| if (channel->type->keep_eventq) { |
| rc = efx_init_eventq(channel); |
| if (rc) |
| goto fail; |
| } |
| } |
| |
| rc = efx_soft_enable_interrupts(efx); |
| if (rc) |
| goto fail; |
| |
| return 0; |
| |
| fail: |
| end_channel = channel; |
| efx_for_each_channel(channel, efx) { |
| if (channel == end_channel) |
| break; |
| if (channel->type->keep_eventq) |
| efx_fini_eventq(channel); |
| } |
| |
| efx->type->irq_disable_non_ev(efx); |
| |
| return rc; |
| } |
| |
| static void efx_disable_interrupts(struct efx_nic *efx) |
| { |
| struct efx_channel *channel; |
| |
| efx_soft_disable_interrupts(efx); |
| |
| efx_for_each_channel(channel, efx) { |
| if (channel->type->keep_eventq) |
| efx_fini_eventq(channel); |
| } |
| |
| efx->type->irq_disable_non_ev(efx); |
| } |
| |
| static void efx_remove_interrupts(struct efx_nic *efx) |
| { |
| struct efx_channel *channel; |
| |
| /* Remove MSI/MSI-X interrupts */ |
| efx_for_each_channel(channel, efx) |
| channel->irq = 0; |
| pci_disable_msi(efx->pci_dev); |
| pci_disable_msix(efx->pci_dev); |
| |
| /* Remove legacy interrupt */ |
| efx->legacy_irq = 0; |
| } |
| |
| static void efx_set_channels(struct efx_nic *efx) |
| { |
| struct efx_channel *channel; |
| struct efx_tx_queue *tx_queue; |
| |
| efx->tx_channel_offset = |
| separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0; |
| |
| /* We need to mark which channels really have RX and TX |
| * queues, and adjust the TX queue numbers if we have separate |
| * RX-only and TX-only channels. |
| */ |
| efx_for_each_channel(channel, efx) { |
| if (channel->channel < efx->n_rx_channels) |
| channel->rx_queue.core_index = channel->channel; |
| else |
| channel->rx_queue.core_index = -1; |
| |
| efx_for_each_channel_tx_queue(tx_queue, channel) |
| tx_queue->queue -= (efx->tx_channel_offset * |
| EFX_TXQ_TYPES); |
| } |
| } |
| |
| static int efx_probe_nic(struct efx_nic *efx) |
| { |
| size_t i; |
| int rc; |
| |
| netif_dbg(efx, probe, efx->net_dev, "creating NIC\n"); |
| |
| /* Carry out hardware-type specific initialisation */ |
| rc = efx->type->probe(efx); |
| if (rc) |
| return rc; |
| |
| /* Determine the number of channels and queues by trying to hook |
| * in MSI-X interrupts. */ |
| rc = efx_probe_interrupts(efx); |
| if (rc) |
| goto fail1; |
| |
| efx_set_channels(efx); |
| |
| rc = efx->type->dimension_resources(efx); |
| if (rc) |
| goto fail2; |
| |
| if (efx->n_channels > 1) |
| get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key)); |
| for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++) |
| efx->rx_indir_table[i] = |
| ethtool_rxfh_indir_default(i, efx->rss_spread); |
| |
| netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels); |
| netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels); |
| |
| /* Initialise the interrupt moderation settings */ |
| efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true, |
| true); |
| |
| return 0; |
| |
| fail2: |
| efx_remove_interrupts(efx); |
| fail1: |
| efx->type->remove(efx); |
| return rc; |
| } |
| |
| static void efx_remove_nic(struct efx_nic *efx) |
| { |
| netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n"); |
| |
| efx_remove_interrupts(efx); |
| efx->type->remove(efx); |
| } |
| |
| static int efx_probe_filters(struct efx_nic *efx) |
| { |
| int rc; |
| |
| spin_lock_init(&efx->filter_lock); |
| |
| rc = efx->type->filter_table_probe(efx); |
| if (rc) |
| return rc; |
| |
| #ifdef CONFIG_RFS_ACCEL |
| if (efx->type->offload_features & NETIF_F_NTUPLE) { |
| efx->rps_flow_id = kcalloc(efx->type->max_rx_ip_filters, |
| sizeof(*efx->rps_flow_id), |
| GFP_KERNEL); |
| if (!efx->rps_flow_id) { |
| efx->type->filter_table_remove(efx); |
| return -ENOMEM; |
| } |
| } |
| #endif |
| |
| return 0; |
| } |
| |
| static void efx_remove_filters(struct efx_nic *efx) |
| { |
| #ifdef CONFIG_RFS_ACCEL |
| kfree(efx->rps_flow_id); |
| #endif |
| efx->type->filter_table_remove(efx); |
| } |
| |
| static void efx_restore_filters(struct efx_nic *efx) |
| { |
| efx->type->filter_table_restore(efx); |
| } |
| |
| /************************************************************************** |
| * |
| * NIC startup/shutdown |
| * |
| *************************************************************************/ |
| |
| static int efx_probe_all(struct efx_nic *efx) |
| { |
| int rc; |
| |
| rc = efx_probe_nic(efx); |
| if (rc) { |
| netif_err(efx, probe, efx->net_dev, "failed to create NIC\n"); |
| goto fail1; |
| } |
| |
| rc = efx_probe_port(efx); |
| if (rc) { |
| netif_err(efx, probe, efx->net_dev, "failed to create port\n"); |
| goto fail2; |
| } |
| |
| BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT); |
| if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) { |
| rc = -EINVAL; |
| goto fail3; |
| } |
| efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE; |
| |
| rc = efx_probe_filters(efx); |
| if (rc) { |
| netif_err(efx, probe, efx->net_dev, |
| "failed to create filter tables\n"); |
| goto fail3; |
| } |
| |
| rc = efx_probe_channels(efx); |
| if (rc) |
| goto fail4; |
| |
| return 0; |
| |
| fail4: |
| efx_remove_filters(efx); |
| fail3: |
| efx_remove_port(efx); |
| fail2: |
| efx_remove_nic(efx); |
| fail1: |
| return rc; |
| } |
| |
| /* If the interface is supposed to be running but is not, start |
| * the hardware and software data path, regular activity for the port |
| * (MAC statistics, link polling, etc.) and schedule the port to be |
| * reconfigured. Interrupts must already be enabled. This function |
| * is safe to call multiple times, so long as the NIC is not disabled. |
| * Requires the RTNL lock. |
| */ |
| static void efx_start_all(struct efx_nic *efx) |
| { |
| EFX_ASSERT_RESET_SERIALISED(efx); |
| BUG_ON(efx->state == STATE_DISABLED); |
| |
| /* Check that it is appropriate to restart the interface. All |
| * of these flags are safe to read under just the rtnl lock */ |
| if (efx->port_enabled || !netif_running(efx->net_dev) || |
| efx->reset_pending) |
| return; |
| |
| efx_start_port(efx); |
| efx_start_datapath(efx); |
| |
| /* Start the hardware monitor if there is one */ |
| if (efx->type->monitor != NULL) |
| queue_delayed_work(efx->workqueue, &efx->monitor_work, |
| efx_monitor_interval); |
| |
| /* If link state detection is normally event-driven, we have |
| * to poll now because we could have missed a change |
| */ |
| if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) { |
| mutex_lock(&efx->mac_lock); |
| if (efx->phy_op->poll(efx)) |
| efx_link_status_changed(efx); |
| mutex_unlock(&efx->mac_lock); |
| } |
| |
| efx->type->start_stats(efx); |
| efx->type->pull_stats(efx); |
| spin_lock_bh(&efx->stats_lock); |
| efx->type->update_stats(efx, NULL, NULL); |
| spin_unlock_bh(&efx->stats_lock); |
| } |
| |
| /* Quiesce the hardware and software data path, and regular activity |
| * for the port without bringing the link down. Safe to call multiple |
| * times with the NIC in almost any state, but interrupts should be |
| * enabled. Requires the RTNL lock. |
| */ |
| static void efx_stop_all(struct efx_nic *efx) |
| { |
| EFX_ASSERT_RESET_SERIALISED(efx); |
| |
| /* port_enabled can be read safely under the rtnl lock */ |
| if (!efx->port_enabled) |
| return; |
| |
| /* update stats before we go down so we can accurately count |
| * rx_nodesc_drops |
| */ |
| efx->type->pull_stats(efx); |
| spin_lock_bh(&efx->stats_lock); |
| efx->type->update_stats(efx, NULL, NULL); |
| spin_unlock_bh(&efx->stats_lock); |
| efx->type->stop_stats(efx); |
| efx_stop_port(efx); |
| |
| /* Stop the kernel transmit interface. This is only valid if |
| * the device is stopped or detached; otherwise the watchdog |
| * may fire immediately. |
| */ |
| WARN_ON(netif_running(efx->net_dev) && |
| netif_device_present(efx->net_dev)); |
| netif_tx_disable(efx->net_dev); |
| |
| efx_stop_datapath(efx); |
| } |
| |
| static void efx_remove_all(struct efx_nic *efx) |
| { |
| efx_remove_channels(efx); |
| efx_remove_filters(efx); |
| efx_remove_port(efx); |
| efx_remove_nic(efx); |
| } |
| |
| /************************************************************************** |
| * |
| * Interrupt moderation |
| * |
| **************************************************************************/ |
| |
| static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns) |
| { |
| if (usecs == 0) |
| return 0; |
| if (usecs * 1000 < quantum_ns) |
| return 1; /* never round down to 0 */ |
| return usecs * 1000 / quantum_ns; |
| } |
| |
| /* Set interrupt moderation parameters */ |
| int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs, |
| unsigned int rx_usecs, bool rx_adaptive, |
| bool rx_may_override_tx) |
| { |
| struct efx_channel *channel; |
| unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max * |
| efx->timer_quantum_ns, |
| 1000); |
| unsigned int tx_ticks; |
| unsigned int rx_ticks; |
| |
| EFX_ASSERT_RESET_SERIALISED(efx); |
| |
| if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max) |
| return -EINVAL; |
| |
| tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns); |
| rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns); |
| |
| if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 && |
| !rx_may_override_tx) { |
| netif_err(efx, drv, efx->net_dev, "Channels are shared. " |
| "RX and TX IRQ moderation must be equal\n"); |
| return -EINVAL; |
| } |
| |
| efx->irq_rx_adaptive = rx_adaptive; |
| efx->irq_rx_moderation = rx_ticks; |
| efx_for_each_channel(channel, efx) { |
| if (efx_channel_has_rx_queue(channel)) |
| channel->irq_moderation = rx_ticks; |
| else if (efx_channel_has_tx_queues(channel)) |
| channel->irq_moderation = tx_ticks; |
| } |
| |
| return 0; |
| } |
| |
| void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs, |
| unsigned int *rx_usecs, bool *rx_adaptive) |
| { |
| /* We must round up when converting ticks to microseconds |
| * because we round down when converting the other way. |
| */ |
| |
| *rx_adaptive = efx->irq_rx_adaptive; |
| *rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation * |
| efx->timer_quantum_ns, |
| 1000); |
| |
| /* If channels are shared between RX and TX, so is IRQ |
| * moderation. Otherwise, IRQ moderation is the same for all |
| * TX channels and is not adaptive. |
| */ |
| if (efx->tx_channel_offset == 0) |
| *tx_usecs = *rx_usecs; |
| else |
| *tx_usecs = DIV_ROUND_UP( |
| efx->channel[efx->tx_channel_offset]->irq_moderation * |
| efx->timer_quantum_ns, |
| 1000); |
| } |
| |
| /************************************************************************** |
| * |
| * Hardware monitor |
| * |
| **************************************************************************/ |
| |
| /* Run periodically off the general workqueue */ |
| static void efx_monitor(struct work_struct *data) |
| { |
| struct efx_nic *efx = container_of(data, struct efx_nic, |
| monitor_work.work); |
| |
| netif_vdbg(efx, timer, efx->net_dev, |
| "hardware monitor executing on CPU %d\n", |
| raw_smp_processor_id()); |
| BUG_ON(efx->type->monitor == NULL); |
| |
| /* If the mac_lock is already held then it is likely a port |
| * reconfiguration is already in place, which will likely do |
| * most of the work of monitor() anyway. */ |
| if (mutex_trylock(&efx->mac_lock)) { |
| if (efx->port_enabled) |
| efx->type->monitor(efx); |
| mutex_unlock(&efx->mac_lock); |
| } |
| |
| queue_delayed_work(efx->workqueue, &efx->monitor_work, |
| efx_monitor_interval); |
| } |
| |
| /************************************************************************** |
| * |
| * ioctls |
| * |
| *************************************************************************/ |
| |
| /* Net device ioctl |
| * Context: process, rtnl_lock() held. |
| */ |
| static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd) |
| { |
| struct efx_nic *efx = netdev_priv(net_dev); |
| struct mii_ioctl_data *data = if_mii(ifr); |
| |
| if (cmd == SIOCSHWTSTAMP) |
| return efx_ptp_set_ts_config(efx, ifr); |
| if (cmd == SIOCGHWTSTAMP) |
| return efx_ptp_get_ts_config(efx, ifr); |
| |
| /* Convert phy_id from older PRTAD/DEVAD format */ |
| if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) && |
| (data->phy_id & 0xfc00) == 0x0400) |
| data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400; |
| |
| return mdio_mii_ioctl(&efx->mdio, data, cmd); |
| } |
| |
| /************************************************************************** |
| * |
| * NAPI interface |
| * |
| **************************************************************************/ |
| |
| static void efx_init_napi_channel(struct efx_channel *channel) |
| { |
| struct efx_nic *efx = channel->efx; |
| |
| channel->napi_dev = efx->net_dev; |
| netif_napi_add(channel->napi_dev, &channel->napi_str, |
| efx_poll, napi_weight); |
| napi_hash_add(&channel->napi_str); |
| efx_channel_init_lock(channel); |
| } |
| |
| static void efx_init_napi(struct efx_nic *efx) |
| { |
| struct efx_channel *channel; |
| |
| efx_for_each_channel(channel, efx) |
| efx_init_napi_channel(channel); |
| } |
| |
| static void efx_fini_napi_channel(struct efx_channel *channel) |
| { |
| if (channel->napi_dev) { |
| netif_napi_del(&channel->napi_str); |
| napi_hash_del(&channel->napi_str); |
| } |
| channel->napi_dev = NULL; |
| } |
| |
| static void efx_fini_napi(struct efx_nic *efx) |
| { |
| struct efx_channel *channel; |
| |
| efx_for_each_channel(channel, efx) |
| efx_fini_napi_channel(channel); |
| } |
| |
| /************************************************************************** |
| * |
| * Kernel netpoll interface |
| * |
| *************************************************************************/ |
| |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| |
| /* Although in the common case interrupts will be disabled, this is not |
| * guaranteed. However, all our work happens inside the NAPI callback, |
| * so no locking is required. |
| */ |
| static void efx_netpoll(struct net_device *net_dev) |
| { |
| struct efx_nic *efx = netdev_priv(net_dev); |
| struct efx_channel *channel; |
| |
| efx_for_each_channel(channel, efx) |
| efx_schedule_channel(channel); |
| } |
| |
| #endif |
| |
| #ifdef CONFIG_NET_RX_BUSY_POLL |
| static int efx_busy_poll(struct napi_struct *napi) |
| { |
| struct efx_channel *channel = |
| container_of(napi, struct efx_channel, napi_str); |
| struct efx_nic *efx = channel->efx; |
| int budget = 4; |
| int old_rx_packets, rx_packets; |
| |
| if (!netif_running(efx->net_dev)) |
| return LL_FLUSH_FAILED; |
| |
| if (!efx_channel_lock_poll(channel)) |
| return LL_FLUSH_BUSY; |
| |
| old_rx_packets = channel->rx_queue.rx_packets; |
| efx_process_channel(channel, budget); |
| |
| rx_packets = channel->rx_queue.rx_packets - old_rx_packets; |
| |
| /* There is no race condition with NAPI here. |
| * NAPI will automatically be rescheduled if it yielded during busy |
| * polling, because it was not able to take the lock and thus returned |
| * the full budget. |
| */ |
| efx_channel_unlock_poll(channel); |
| |
| return rx_packets; |
| } |
| #endif |
| |
| /************************************************************************** |
| * |
| * Kernel net device interface |
| * |
| *************************************************************************/ |
| |
| /* Context: process, rtnl_lock() held. */ |
| static int efx_net_open(struct net_device *net_dev) |
| { |
| struct efx_nic *efx = netdev_priv(net_dev); |
| int rc; |
| |
| netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n", |
| raw_smp_processor_id()); |
| |
| rc = efx_check_disabled(efx); |
| if (rc) |
| return rc; |
| if (efx->phy_mode & PHY_MODE_SPECIAL) |
| return -EBUSY; |
| if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL)) |
| return -EIO; |
| |
| /* Notify the kernel of the link state polled during driver load, |
| * before the monitor starts running */ |
| efx_link_status_changed(efx); |
| |
| efx_start_all(efx); |
| efx_selftest_async_start(efx); |
| return 0; |
| } |
| |
| /* Context: process, rtnl_lock() held. |
| * Note that the kernel will ignore our return code; this method |
| * should really be a void. |
| */ |
| static int efx_net_stop(struct net_device *net_dev) |
| { |
| struct efx_nic *efx = netdev_priv(net_dev); |
| |
| netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n", |
| raw_smp_processor_id()); |
| |
| /* Stop the device and flush all the channels */ |
| efx_stop_all(efx); |
| |
| return 0; |
| } |
| |
| /* Context: process, dev_base_lock or RTNL held, non-blocking. */ |
| static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev, |
| struct rtnl_link_stats64 *stats) |
| { |
| struct efx_nic *efx = netdev_priv(net_dev); |
| |
| spin_lock_bh(&efx->stats_lock); |
| efx->type->update_stats(efx, NULL, stats); |
| spin_unlock_bh(&efx->stats_lock); |
| |
| return stats; |
| } |
| |
| /* Context: netif_tx_lock held, BHs disabled. */ |
| static void efx_watchdog(struct net_device *net_dev) |
| { |
| struct efx_nic *efx = netdev_priv(net_dev); |
| |
| netif_err(efx, tx_err, efx->net_dev, |
| "TX stuck with port_enabled=%d: resetting channels\n", |
| efx->port_enabled); |
| |
| efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG); |
| } |
| |
| |
| /* Context: process, rtnl_lock() held. */ |
| static int efx_change_mtu(struct net_device *net_dev, int new_mtu) |
| { |
| struct efx_nic *efx = netdev_priv(net_dev); |
| int rc; |
| |
| rc = efx_check_disabled(efx); |
| if (rc) |
| return rc; |
| if (new_mtu > EFX_MAX_MTU) |
| return -EINVAL; |
| |
| netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu); |
| |
| efx_device_detach_sync(efx); |
| efx_stop_all(efx); |
| |
| mutex_lock(&efx->mac_lock); |
| net_dev->mtu = new_mtu; |
| efx->type->reconfigure_mac(efx); |
| mutex_unlock(&efx->mac_lock); |
| |
| efx_start_all(efx); |
| netif_device_attach(efx->net_dev); |
| return 0; |
| } |
| |
| static int efx_set_mac_address(struct net_device *net_dev, void *data) |
| { |
| struct efx_nic *efx = netdev_priv(net_dev); |
| struct sockaddr *addr = data; |
| u8 *new_addr = addr->sa_data; |
| |
| if (!is_valid_ether_addr(new_addr)) { |
| netif_err(efx, drv, efx->net_dev, |
| "invalid ethernet MAC address requested: %pM\n", |
| new_addr); |
| return -EADDRNOTAVAIL; |
| } |
| |
| ether_addr_copy(net_dev->dev_addr, new_addr); |
| efx_sriov_mac_address_changed(efx); |
| |
| /* Reconfigure the MAC */ |
| mutex_lock(&efx->mac_lock); |
| efx->type->reconfigure_mac(efx); |
| mutex_unlock(&efx->mac_lock); |
| |
| return 0; |
| } |
| |
| /* Context: netif_addr_lock held, BHs disabled. */ |
| static void efx_set_rx_mode(struct net_device *net_dev) |
| { |
| struct efx_nic *efx = netdev_priv(net_dev); |
| |
| if (efx->port_enabled) |
| queue_work(efx->workqueue, &efx->mac_work); |
| /* Otherwise efx_start_port() will do this */ |
| } |
| |
| static int efx_set_features(struct net_device *net_dev, netdev_features_t data) |
| { |
| struct efx_nic *efx = netdev_priv(net_dev); |
| |
| /* If disabling RX n-tuple filtering, clear existing filters */ |
| if (net_dev->features & ~data & NETIF_F_NTUPLE) |
| return efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL); |
| |
| return 0; |
| } |
| |
| static const struct net_device_ops efx_farch_netdev_ops = { |
| .ndo_open = efx_net_open, |
| .ndo_stop = efx_net_stop, |
| .ndo_get_stats64 = efx_net_stats, |
| .ndo_tx_timeout = efx_watchdog, |
| .ndo_start_xmit = efx_hard_start_xmit, |
| .ndo_validate_addr = eth_validate_addr, |
| .ndo_do_ioctl = efx_ioctl, |
| .ndo_change_mtu = efx_change_mtu, |
| .ndo_set_mac_address = efx_set_mac_address, |
| .ndo_set_rx_mode = efx_set_rx_mode, |
| .ndo_set_features = efx_set_features, |
| #ifdef CONFIG_SFC_SRIOV |
| .ndo_set_vf_mac = efx_sriov_set_vf_mac, |
| .ndo_set_vf_vlan = efx_sriov_set_vf_vlan, |
| .ndo_set_vf_spoofchk = efx_sriov_set_vf_spoofchk, |
| .ndo_get_vf_config = efx_sriov_get_vf_config, |
| #endif |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| .ndo_poll_controller = efx_netpoll, |
| #endif |
| .ndo_setup_tc = efx_setup_tc, |
| #ifdef CONFIG_NET_RX_BUSY_POLL |
| .ndo_busy_poll = efx_busy_poll, |
| #endif |
| #ifdef CONFIG_RFS_ACCEL |
| .ndo_rx_flow_steer = efx_filter_rfs, |
| #endif |
| }; |
| |
| static const struct net_device_ops efx_ef10_netdev_ops = { |
| .ndo_open = efx_net_open, |
| .ndo_stop = efx_net_stop, |
| .ndo_get_stats64 = efx_net_stats, |
| .ndo_tx_timeout = efx_watchdog, |
| .ndo_start_xmit = efx_hard_start_xmit, |
| .ndo_validate_addr = eth_validate_addr, |
| .ndo_do_ioctl = efx_ioctl, |
| .ndo_change_mtu = efx_change_mtu, |
| .ndo_set_mac_address = efx_set_mac_address, |
| .ndo_set_rx_mode = efx_set_rx_mode, |
| .ndo_set_features = efx_set_features, |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| .ndo_poll_controller = efx_netpoll, |
| #endif |
| #ifdef CONFIG_NET_RX_BUSY_POLL |
| .ndo_busy_poll = efx_busy_poll, |
| #endif |
| #ifdef CONFIG_RFS_ACCEL |
| .ndo_rx_flow_steer = efx_filter_rfs, |
| #endif |
| }; |
| |
| static void efx_update_name(struct efx_nic *efx) |
| { |
| strcpy(efx->name, efx->net_dev->name); |
| efx_mtd_rename(efx); |
| efx_set_channel_names(efx); |
| } |
| |
| static int efx_netdev_event(struct notifier_block *this, |
| unsigned long event, void *ptr) |
| { |
| struct net_device *net_dev = netdev_notifier_info_to_dev(ptr); |
| |
| if ((net_dev->netdev_ops == &efx_farch_netdev_ops || |
| net_dev->netdev_ops == &efx_ef10_netdev_ops) && |
| event == NETDEV_CHANGENAME) |
| efx_update_name(netdev_priv(net_dev)); |
| |
| return NOTIFY_DONE; |
| } |
| |
| static struct notifier_block efx_netdev_notifier = { |
| .notifier_call = efx_netdev_event, |
| }; |
| |
| static ssize_t |
| show_phy_type(struct device *dev, struct device_attribute *attr, char *buf) |
| { |
| struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev)); |
| return sprintf(buf, "%d\n", efx->phy_type); |
| } |
| static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL); |
| |
| static int efx_register_netdev(struct efx_nic *efx) |
| { |
| struct net_device *net_dev = efx->net_dev; |
| struct efx_channel *channel; |
| int rc; |
| |
| net_dev->watchdog_timeo = 5 * HZ; |
| net_dev->irq = efx->pci_dev->irq; |
| if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) { |
| net_dev->netdev_ops = &efx_ef10_netdev_ops; |
| net_dev->priv_flags |= IFF_UNICAST_FLT; |
| } else { |
| net_dev->netdev_ops = &efx_farch_netdev_ops; |
| } |
| net_dev->ethtool_ops = &efx_ethtool_ops; |
| net_dev->gso_max_segs = EFX_TSO_MAX_SEGS; |
| |
| rtnl_lock(); |
| |
| /* Enable resets to be scheduled and check whether any were |
| * already requested. If so, the NIC is probably hosed so we |
| * abort. |
| */ |
| efx->state = STATE_READY; |
| smp_mb(); /* ensure we change state before checking reset_pending */ |
| if (efx->reset_pending) { |
| netif_err(efx, probe, efx->net_dev, |
| "aborting probe due to scheduled reset\n"); |
| rc = -EIO; |
| goto fail_locked; |
| } |
| |
| rc = dev_alloc_name(net_dev, net_dev->name); |
| if (rc < 0) |
| goto fail_locked; |
| efx_update_name(efx); |
| |
| /* Always start with carrier off; PHY events will detect the link */ |
| netif_carrier_off(net_dev); |
| |
| rc = register_netdevice(net_dev); |
| if (rc) |
| goto fail_locked; |
| |
| efx_for_each_channel(channel, efx) { |
| struct efx_tx_queue *tx_queue; |
| efx_for_each_channel_tx_queue(tx_queue, channel) |
| efx_init_tx_queue_core_txq(tx_queue); |
| } |
| |
| efx_associate(efx); |
| |
| rtnl_unlock(); |
| |
| rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type); |
| if (rc) { |
| netif_err(efx, drv, efx->net_dev, |
| "failed to init net dev attributes\n"); |
| goto fail_registered; |
| } |
| |
| return 0; |
| |
| fail_registered: |
| rtnl_lock(); |
| efx_dissociate(efx); |
| unregister_netdevice(net_dev); |
| fail_locked: |
| efx->state = STATE_UNINIT; |
| rtnl_unlock(); |
| netif_err(efx, drv, efx->net_dev, "could not register net dev\n"); |
| return rc; |
| } |
| |
| static void efx_unregister_netdev(struct efx_nic *efx) |
| { |
| if (!efx->net_dev) |
| return; |
| |
| BUG_ON(netdev_priv(efx->net_dev) != efx); |
| |
| strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name)); |
| device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type); |
| |
| rtnl_lock(); |
| unregister_netdevice(efx->net_dev); |
| efx->state = STATE_UNINIT; |
| rtnl_unlock(); |
| } |
| |
| /************************************************************************** |
| * |
| * Device reset and suspend |
| * |
| **************************************************************************/ |
| |
| /* Tears down the entire software state and most of the hardware state |
| * before reset. */ |
| void efx_reset_down(struct efx_nic *efx, enum reset_type method) |
| { |
| EFX_ASSERT_RESET_SERIALISED(efx); |
| |
| if (method == RESET_TYPE_MCDI_TIMEOUT) |
| efx->type->prepare_flr(efx); |
| |
| efx_stop_all(efx); |
| efx_disable_interrupts(efx); |
| |
| mutex_lock(&efx->mac_lock); |
| if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) |
| efx->phy_op->fini(efx); |
| efx->type->fini(efx); |
| } |
| |
| /* This function will always ensure that the locks acquired in |
| * efx_reset_down() are released. A failure return code indicates |
| * that we were unable to reinitialise the hardware, and the |
| * driver should be disabled. If ok is false, then the rx and tx |
| * engines are not restarted, pending a RESET_DISABLE. */ |
| int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok) |
| { |
| int rc; |
| |
| EFX_ASSERT_RESET_SERIALISED(efx); |
| |
| if (method == RESET_TYPE_MCDI_TIMEOUT) |
| efx->type->finish_flr(efx); |
| |
| /* Ensure that SRAM is initialised even if we're disabling the device */ |
| rc = efx->type->init(efx); |
| if (rc) { |
| netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n"); |
| goto fail; |
| } |
| |
| if (!ok) |
| goto fail; |
| |
| if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) { |
| rc = efx->phy_op->init(efx); |
| if (rc) |
| goto fail; |
| if (efx->phy_op->reconfigure(efx)) |
| netif_err(efx, drv, efx->net_dev, |
| "could not restore PHY settings\n"); |
| } |
| |
| rc = efx_enable_interrupts(efx); |
| if (rc) |
| goto fail; |
| efx_restore_filters(efx); |
| efx_sriov_reset(efx); |
| |
| mutex_unlock(&efx->mac_lock); |
| |
| efx_start_all(efx); |
| |
| return 0; |
| |
| fail: |
| efx->port_initialized = false; |
| |
| mutex_unlock(&efx->mac_lock); |
| |
| return rc; |
| } |
| |
| /* Reset the NIC using the specified method. Note that the reset may |
| * fail, in which case the card will be left in an unusable state. |
| * |
| * Caller must hold the rtnl_lock. |
| */ |
| int efx_reset(struct efx_nic *efx, enum reset_type method) |
| { |
| int rc, rc2; |
| bool disabled; |
| |
| netif_info(efx, drv, efx->net_dev, "resetting (%s)\n", |
| RESET_TYPE(method)); |
| |
| efx_device_detach_sync(efx); |
| efx_reset_down(efx, method); |
| |
| rc = efx->type->reset(efx, method); |
| if (rc) { |
| netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n"); |
| goto out; |
| } |
| |
| /* Clear flags for the scopes we covered. We assume the NIC and |
| * driver are now quiescent so that there is no race here. |
| */ |
| if (method < RESET_TYPE_MAX_METHOD) |
| efx->reset_pending &= -(1 << (method + 1)); |
| else /* it doesn't fit into the well-ordered scope hierarchy */ |
| __clear_bit(method, &efx->reset_pending); |
| |
| /* Reinitialise bus-mastering, which may have been turned off before |
| * the reset was scheduled. This is still appropriate, even in the |
| * RESET_TYPE_DISABLE since this driver generally assumes the hardware |
| * can respond to requests. */ |
| pci_set_master(efx->pci_dev); |
| |
| out: |
| /* Leave device stopped if necessary */ |
| disabled = rc || |
| method == RESET_TYPE_DISABLE || |
| method == RESET_TYPE_RECOVER_OR_DISABLE; |
| rc2 = efx_reset_up(efx, method, !disabled); |
| if (rc2) { |
| disabled = true; |
| if (!rc) |
| rc = rc2; |
| } |
| |
| if (disabled) { |
| dev_close(efx->net_dev); |
| netif_err(efx, drv, efx->net_dev, "has been disabled\n"); |
| efx->state = STATE_DISABLED; |
| } else { |
| netif_dbg(efx, drv, efx->net_dev, "reset complete\n"); |
| netif_device_attach(efx->net_dev); |
| } |
| return rc; |
| } |
| |
| /* Try recovery mechanisms. |
| * For now only EEH is supported. |
| * Returns 0 if the recovery mechanisms are unsuccessful. |
| * Returns a non-zero value otherwise. |
| */ |
| int efx_try_recovery(struct efx_nic *efx) |
| { |
| #ifdef CONFIG_EEH |
| /* A PCI error can occur and not be seen by EEH because nothing |
| * happens on the PCI bus. In this case the driver may fail and |
| * schedule a 'recover or reset', leading to this recovery handler. |
| * Manually call the eeh failure check function. |
| */ |
| struct eeh_dev *eehdev = |
| of_node_to_eeh_dev(pci_device_to_OF_node(efx->pci_dev)); |
| |
| if (eeh_dev_check_failure(eehdev)) { |
| /* The EEH mechanisms will handle the error and reset the |
| * device if necessary. |
| */ |
| return 1; |
| } |
| #endif |
| return 0; |
| } |
| |
| static void efx_wait_for_bist_end(struct efx_nic *efx) |
| { |
| int i; |
| |
| for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) { |
| if (efx_mcdi_poll_reboot(efx)) |
| goto out; |
| msleep(BIST_WAIT_DELAY_MS); |
| } |
| |
| netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n"); |
| out: |
| /* Either way unset the BIST flag. If we found no reboot we probably |
| * won't recover, but we should try. |
| */ |
| efx->mc_bist_for_other_fn = false; |
| } |
| |
| /* The worker thread exists so that code that cannot sleep can |
| * schedule a reset for later. |
| */ |
| static void efx_reset_work(struct work_struct *data) |
| { |
| struct efx_nic *efx = container_of(data, struct efx_nic, reset_work); |
| unsigned long pending; |
| enum reset_type method; |
| |
| pending = ACCESS_ONCE(efx->reset_pending); |
| method = fls(pending) - 1; |
| |
| if (method == RESET_TYPE_MC_BIST) |
| efx_wait_for_bist_end(efx); |
| |
| if ((method == RESET_TYPE_RECOVER_OR_DISABLE || |
| method == RESET_TYPE_RECOVER_OR_ALL) && |
| efx_try_recovery(efx)) |
| return; |
| |
| if (!pending) |
| return; |
| |
| rtnl_lock(); |
| |
| /* We checked the state in efx_schedule_reset() but it may |
| * have changed by now. Now that we have the RTNL lock, |
| * it cannot change again. |
| */ |
| if (efx->state == STATE_READY) |
| (void)efx_reset(efx, method); |
| |
| rtnl_unlock(); |
| } |
| |
| void efx_schedule_reset(struct efx_nic *efx, enum reset_type type) |
| { |
| enum reset_type method; |
| |
| if (efx->state == STATE_RECOVERY) { |
| netif_dbg(efx, drv, efx->net_dev, |
| "recovering: skip scheduling %s reset\n", |
| RESET_TYPE(type)); |
| return; |
| } |
| |
| switch (type) { |
| case RESET_TYPE_INVISIBLE: |
| case RESET_TYPE_ALL: |
| case RESET_TYPE_RECOVER_OR_ALL: |
| case RESET_TYPE_WORLD: |
| case RESET_TYPE_DISABLE: |
| case RESET_TYPE_RECOVER_OR_DISABLE: |
| case RESET_TYPE_MC_BIST: |
| case RESET_TYPE_MCDI_TIMEOUT: |
| method = type; |
| netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n", |
| RESET_TYPE(method)); |
| break; |
| default: |
| method = efx->type->map_reset_reason(type); |
| netif_dbg(efx, drv, efx->net_dev, |
| "scheduling %s reset for %s\n", |
| RESET_TYPE(method), RESET_TYPE(type)); |
| break; |
| } |
| |
| set_bit(method, &efx->reset_pending); |
| smp_mb(); /* ensure we change reset_pending before checking state */ |
| |
| /* If we're not READY then just leave the flags set as the cue |
| * to abort probing or reschedule the reset later. |
| */ |
| if (ACCESS_ONCE(efx->state) != STATE_READY) |
| return; |
| |
| /* efx_process_channel() will no longer read events once a |
| * reset is scheduled. So switch back to poll'd MCDI completions. */ |
| efx_mcdi_mode_poll(efx); |
| |
| queue_work(reset_workqueue, &efx->reset_work); |
| } |
| |
| /************************************************************************** |
| * |
| * List of NICs we support |
| * |
| **************************************************************************/ |
| |
| /* PCI device ID table */ |
| static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = { |
| {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, |
| PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0), |
| .driver_data = (unsigned long) &falcon_a1_nic_type}, |
| {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, |
| PCI_DEVICE_ID_SOLARFLARE_SFC4000B), |
| .driver_data = (unsigned long) &falcon_b0_nic_type}, |
| {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803), /* SFC9020 */ |
| .driver_data = (unsigned long) &siena_a0_nic_type}, |
| {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813), /* SFL9021 */ |
| .driver_data = (unsigned long) &siena_a0_nic_type}, |
| {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903), /* SFC9120 PF */ |
| .driver_data = (unsigned long) &efx_hunt_a0_nic_type}, |
| {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923), /* SFC9140 PF */ |
| .driver_data = (unsigned long) &efx_hunt_a0_nic_type}, |
| {0} /* end of list */ |
| }; |
| |
| /************************************************************************** |
| * |
| * Dummy PHY/MAC operations |
| * |
| * Can be used for some unimplemented operations |
| * Needed so all function pointers are valid and do not have to be tested |
| * before use |
| * |
| **************************************************************************/ |
| int efx_port_dummy_op_int(struct efx_nic *efx) |
| { |
| return 0; |
| } |
| void efx_port_dummy_op_void(struct efx_nic *efx) {} |
| |
| static bool efx_port_dummy_op_poll(struct efx_nic *efx) |
| { |
| return false; |
| } |
| |
| static const struct efx_phy_operations efx_dummy_phy_operations = { |
| .init = efx_port_dummy_op_int, |
| .reconfigure = efx_port_dummy_op_int, |
| .poll = efx_port_dummy_op_poll, |
| .fini = efx_port_dummy_op_void, |
| }; |
| |
| /************************************************************************** |
| * |
| * Data housekeeping |
| * |
| **************************************************************************/ |
| |
| /* This zeroes out and then fills in the invariants in a struct |
| * efx_nic (including all sub-structures). |
| */ |
| static int efx_init_struct(struct efx_nic *efx, |
| struct pci_dev *pci_dev, struct net_device *net_dev) |
| { |
| int i; |
| |
| /* Initialise common structures */ |
| INIT_LIST_HEAD(&efx->node); |
| INIT_LIST_HEAD(&efx->secondary_list); |
| spin_lock_init(&efx->biu_lock); |
| #ifdef CONFIG_SFC_MTD |
| INIT_LIST_HEAD(&efx->mtd_list); |
| #endif |
| INIT_WORK(&efx->reset_work, efx_reset_work); |
| INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor); |
| INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work); |
| efx->pci_dev = pci_dev; |
| efx->msg_enable = debug; |
| efx->state = STATE_UNINIT; |
| strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name)); |
| |
| efx->net_dev = net_dev; |
| efx->rx_prefix_size = efx->type->rx_prefix_size; |
| efx->rx_ip_align = |
| NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0; |
| efx->rx_packet_hash_offset = |
| efx->type->rx_hash_offset - efx->type->rx_prefix_size; |
| efx->rx_packet_ts_offset = |
| efx->type->rx_ts_offset - efx->type->rx_prefix_size; |
| spin_lock_init(&efx->stats_lock); |
| mutex_init(&efx->mac_lock); |
| efx->phy_op = &efx_dummy_phy_operations; |
| efx->mdio.dev = net_dev; |
| INIT_WORK(&efx->mac_work, efx_mac_work); |
| init_waitqueue_head(&efx->flush_wq); |
| |
| for (i = 0; i < EFX_MAX_CHANNELS; i++) { |
| efx->channel[i] = efx_alloc_channel(efx, i, NULL); |
| if (!efx->channel[i]) |
| goto fail; |
| efx->msi_context[i].efx = efx; |
| efx->msi_context[i].index = i; |
| } |
| |
| /* Higher numbered interrupt modes are less capable! */ |
| efx->interrupt_mode = max(efx->type->max_interrupt_mode, |
| interrupt_mode); |
| |
| /* Would be good to use the net_dev name, but we're too early */ |
| snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s", |
| pci_name(pci_dev)); |
| efx->workqueue = create_singlethread_workqueue(efx->workqueue_name); |
| if (!efx->workqueue) |
| goto fail; |
| |
| return 0; |
| |
| fail: |
| efx_fini_struct(efx); |
| return -ENOMEM; |
| } |
| |
| static void efx_fini_struct(struct efx_nic *efx) |
| { |
| int i; |
| |
| for (i = 0; i < EFX_MAX_CHANNELS; i++) |
| kfree(efx->channel[i]); |
| |
| kfree(efx->vpd_sn); |
| |
| if (efx->workqueue) { |
| destroy_workqueue(efx->workqueue); |
| efx->workqueue = NULL; |
| } |
| } |
| |
| void efx_update_sw_stats(struct efx_nic *efx, u64 *stats) |
| { |
| u64 n_rx_nodesc_trunc = 0; |
| struct efx_channel *channel; |
| |
| efx_for_each_channel(channel, efx) |
| n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc; |
| stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc; |
| stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops); |
| } |
| |
| /************************************************************************** |
| * |
| * PCI interface |
| * |
| **************************************************************************/ |
| |
| /* Main body of final NIC shutdown code |
| * This is called only at module unload (or hotplug removal). |
| */ |
| static void efx_pci_remove_main(struct efx_nic *efx) |
| { |
| /* Flush reset_work. It can no longer be scheduled since we |
| * are not READY. |
| */ |
| BUG_ON(efx->state == STATE_READY); |
| cancel_work_sync(&efx->reset_work); |
| |
| efx_disable_interrupts(efx); |
| efx_nic_fini_interrupt(efx); |
| efx_fini_port(efx); |
| efx->type->fini(efx); |
| efx_fini_napi(efx); |
| efx_remove_all(efx); |
| } |
| |
| /* Final NIC shutdown |
| * This is called only at module unload (or hotplug removal). |
| */ |
| static void efx_pci_remove(struct pci_dev *pci_dev) |
| { |
| struct efx_nic *efx; |
| |
| efx = pci_get_drvdata(pci_dev); |
| if (!efx) |
| return; |
| |
| /* Mark the NIC as fini, then stop the interface */ |
| rtnl_lock(); |
| efx_dissociate(efx); |
| dev_close(efx->net_dev); |
| efx_disable_interrupts(efx); |
| rtnl_unlock(); |
| |
| efx_sriov_fini(efx); |
| efx_unregister_netdev(efx); |
| |
| efx_mtd_remove(efx); |
| |
| efx_pci_remove_main(efx); |
| |
| efx_fini_io(efx); |
| netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n"); |
| |
| efx_fini_struct(efx); |
| free_netdev(efx->net_dev); |
| |
| pci_disable_pcie_error_reporting(pci_dev); |
| }; |
| |
| /* NIC VPD information |
| * Called during probe to display the part number of the |
| * installed NIC. VPD is potentially very large but this should |
| * always appear within the first 512 bytes. |
| */ |
| #define SFC_VPD_LEN 512 |
| static void efx_probe_vpd_strings(struct efx_nic *efx) |
| { |
| struct pci_dev *dev = efx->pci_dev; |
| char vpd_data[SFC_VPD_LEN]; |
| ssize_t vpd_size; |
| int ro_start, ro_size, i, j; |
| |
| /* Get the vpd data from the device */ |
| vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data); |
| if (vpd_size <= 0) { |
| netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n"); |
| return; |
| } |
| |
| /* Get the Read only section */ |
| ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA); |
| if (ro_start < 0) { |
| netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n"); |
| return; |
| } |
| |
| ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]); |
| j = ro_size; |
| i = ro_start + PCI_VPD_LRDT_TAG_SIZE; |
| if (i + j > vpd_size) |
| j = vpd_size - i; |
| |
| /* Get the Part number */ |
| i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN"); |
| if (i < 0) { |
| netif_err(efx, drv, efx->net_dev, "Part number not found\n"); |
| return; |
| } |
| |
| j = pci_vpd_info_field_size(&vpd_data[i]); |
| i += PCI_VPD_INFO_FLD_HDR_SIZE; |
| if (i + j > vpd_size) { |
| netif_err(efx, drv, efx->net_dev, "Incomplete part number\n"); |
| return; |
| } |
| |
| netif_info(efx, drv, efx->net_dev, |
| "Part Number : %.*s\n", j, &vpd_data[i]); |
| |
| i = ro_start + PCI_VPD_LRDT_TAG_SIZE; |
| j = ro_size; |
| i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN"); |
| if (i < 0) { |
| netif_err(efx, drv, efx->net_dev, "Serial number not found\n"); |
| return; |
| } |
| |
| j = pci_vpd_info_field_size(&vpd_data[i]); |
| i += PCI_VPD_INFO_FLD_HDR_SIZE; |
| if (i + j > vpd_size) { |
| netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n"); |
| return; |
| } |
| |
| efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL); |
| if (!efx->vpd_sn) |
| return; |
| |
| snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]); |
| } |
| |
| |
| /* Main body of NIC initialisation |
| * This is called at module load (or hotplug insertion, theoretically). |
| */ |
| static int efx_pci_probe_main(struct efx_nic *efx) |
| { |
| int rc; |
| |
| /* Do start-of-day initialisation */ |
| rc = efx_probe_all(efx); |
| if (rc) |
| goto fail1; |
| |
| efx_init_napi(efx); |
| |
| rc = efx->type->init(efx); |
| if (rc) { |
| netif_err(efx, probe, efx->net_dev, |
| "failed to initialise NIC\n"); |
| goto fail3; |
| } |
| |
| rc = efx_init_port(efx); |
| if (rc) { |
| netif_err(efx, probe, efx->net_dev, |
| "failed to initialise port\n"); |
| goto fail4; |
| } |
| |
| rc = efx_nic_init_interrupt(efx); |
| if (rc) |
| goto fail5; |
| rc = efx_enable_interrupts(efx); |
| if (rc) |
| goto fail6; |
| |
| return 0; |
| |
| fail6: |
| efx_nic_fini_interrupt(efx); |
| fail5: |
| efx_fini_port(efx); |
| fail4: |
| efx->type->fini(efx); |
| fail3: |
| efx_fini_napi(efx); |
| efx_remove_all(efx); |
| fail1: |
| return rc; |
| } |
| |
| /* NIC initialisation |
| * |
| * This is called at module load (or hotplug insertion, |
| * theoretically). It sets up PCI mappings, resets the NIC, |
| * sets up and registers the network devices with the kernel and hooks |
| * the interrupt service routine. It does not prepare the device for |
| * transmission; this is left to the first time one of the network |
| * interfaces is brought up (i.e. efx_net_open). |
| */ |
| static int efx_pci_probe(struct pci_dev *pci_dev, |
| const struct pci_device_id *entry) |
| { |
| struct net_device *net_dev; |
| struct efx_nic *efx; |
| int rc; |
| |
| /* Allocate and initialise a struct net_device and struct efx_nic */ |
| net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES, |
| EFX_MAX_RX_QUEUES); |
| if (!net_dev) |
| return -ENOMEM; |
| efx = netdev_priv(net_dev); |
| efx->type = (const struct efx_nic_type *) entry->driver_data; |
| net_dev->features |= (efx->type->offload_features | NETIF_F_SG | |
| NETIF_F_HIGHDMA | NETIF_F_TSO | |
| NETIF_F_RXCSUM); |
| if (efx->type->offload_features & NETIF_F_V6_CSUM) |
| net_dev->features |= NETIF_F_TSO6; |
| /* Mask for features that also apply to VLAN devices */ |
| net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG | |
| NETIF_F_HIGHDMA | NETIF_F_ALL_TSO | |
| NETIF_F_RXCSUM); |
| /* All offloads can be toggled */ |
| net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA; |
| pci_set_drvdata(pci_dev, efx); |
| SET_NETDEV_DEV(net_dev, &pci_dev->dev); |
| rc = efx_init_struct(efx, pci_dev, net_dev); |
| if (rc) |
| goto fail1; |
| |
| netif_info(efx, probe, efx->net_dev, |
| "Solarflare NIC detected\n"); |
| |
| efx_probe_vpd_strings(efx); |
| |
| /* Set up basic I/O (BAR mappings etc) */ |
| rc = efx_init_io(efx); |
| if (rc) |
| goto fail2; |
| |
| rc = efx_pci_probe_main(efx); |
| if (rc) |
| goto fail3; |
| |
| rc = efx_register_netdev(efx); |
| if (rc) |
| goto fail4; |
| |
| rc = efx_sriov_init(efx); |
| if (rc) |
| netif_err(efx, probe, efx->net_dev, |
| "SR-IOV can't be enabled rc %d\n", rc); |
| |
| netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n"); |
| |
| /* Try to create MTDs, but allow this to fail */ |
| rtnl_lock(); |
| rc = efx_mtd_probe(efx); |
| rtnl_unlock(); |
| if (rc) |
| netif_warn(efx, probe, efx->net_dev, |
| "failed to create MTDs (%d)\n", rc); |
| |
| rc = pci_enable_pcie_error_reporting(pci_dev); |
| if (rc && rc != -EINVAL) |
| netif_warn(efx, probe, efx->net_dev, |
| "pci_enable_pcie_error_reporting failed (%d)\n", rc); |
| |
| return 0; |
| |
| fail4: |
| efx_pci_remove_main(efx); |
| fail3: |
| efx_fini_io(efx); |
| fail2: |
| efx_fini_struct(efx); |
| fail1: |
| WARN_ON(rc > 0); |
| netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc); |
| free_netdev(net_dev); |
| return rc; |
| } |
| |
| static int efx_pm_freeze(struct device *dev) |
| { |
| struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev)); |
| |
| rtnl_lock(); |
| |
| if (efx->state != STATE_DISABLED) { |
| efx->state = STATE_UNINIT; |
| |
| efx_device_detach_sync(efx); |
| |
| efx_stop_all(efx); |
| efx_disable_interrupts(efx); |
| } |
| |
| rtnl_unlock(); |
| |
| return 0; |
| } |
| |
| static int efx_pm_thaw(struct device *dev) |
| { |
| int rc; |
| struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev)); |
| |
| rtnl_lock(); |
| |
| if (efx->state != STATE_DISABLED) { |
| rc = efx_enable_interrupts(efx); |
| if (rc) |
| goto fail; |
| |
| mutex_lock(&efx->mac_lock); |
| efx->phy_op->reconfigure(efx); |
| mutex_unlock(&efx->mac_lock); |
| |
| efx_start_all(efx); |
| |
| netif_device_attach(efx->net_dev); |
| |
| efx->state = STATE_READY; |
| |
| efx->type->resume_wol(efx); |
| } |
| |
| rtnl_unlock(); |
| |
| /* Reschedule any quenched resets scheduled during efx_pm_freeze() */ |
| queue_work(reset_workqueue, &efx->reset_work); |
| |
| return 0; |
| |
| fail: |
| rtnl_unlock(); |
| |
| return rc; |
| } |
| |
| static int efx_pm_poweroff(struct device *dev) |
| { |
| struct pci_dev *pci_dev = to_pci_dev(dev); |
| struct efx_nic *efx = pci_get_drvdata(pci_dev); |
| |
| efx->type->fini(efx); |
| |
| efx->reset_pending = 0; |
| |
| pci_save_state(pci_dev); |
| return pci_set_power_state(pci_dev, PCI_D3hot); |
| } |
| |
| /* Used for both resume and restore */ |
| static int efx_pm_resume(struct device *dev) |
| { |
| struct pci_dev *pci_dev = to_pci_dev(dev); |
| struct efx_nic *efx = pci_get_drvdata(pci_dev); |
| int rc; |
| |
| rc = pci_set_power_state(pci_dev, PCI_D0); |
| if (rc) |
| return rc; |
| pci_restore_state(pci_dev); |
| rc = pci_enable_device(pci_dev); |
| if (rc) |
| return rc; |
| pci_set_master(efx->pci_dev); |
| rc = efx->type->reset(efx, RESET_TYPE_ALL); |
| if (rc) |
| return rc; |
| rc = efx->type->init(efx); |
| if (rc) |
| return rc; |
| rc = efx_pm_thaw(dev); |
| return rc; |
| } |
| |
| static int efx_pm_suspend(struct device *dev) |
| { |
| int rc; |
| |
| efx_pm_freeze(dev); |
| rc = efx_pm_poweroff(dev); |
| if (rc) |
| efx_pm_resume(dev); |
| return rc; |
| } |
| |
| static const struct dev_pm_ops efx_pm_ops = { |
| .suspend = efx_pm_suspend, |
| .resume = efx_pm_resume, |
| .freeze = efx_pm_freeze, |
| .thaw = efx_pm_thaw, |
| .poweroff = efx_pm_poweroff, |
| .restore = efx_pm_resume, |
| }; |
| |
| /* A PCI error affecting this device was detected. |
| * At this point MMIO and DMA may be disabled. |
| * Stop the software path and request a slot reset. |
| */ |
| static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev, |
| enum pci_channel_state state) |
| { |
| pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED; |
| struct efx_nic *efx = pci_get_drvdata(pdev); |
| |
| if (state == pci_channel_io_perm_failure) |
| return PCI_ERS_RESULT_DISCONNECT; |
| |
| rtnl_lock(); |
| |
| if (efx->state != STATE_DISABLED) { |
| efx->state = STATE_RECOVERY; |
| efx->reset_pending = 0; |
| |
| efx_device_detach_sync(efx); |
| |
| efx_stop_all(efx); |
| efx_disable_interrupts(efx); |
| |
| status = PCI_ERS_RESULT_NEED_RESET; |
| } else { |
| /* If the interface is disabled we don't want to do anything |
| * with it. |
| */ |
| status = PCI_ERS_RESULT_RECOVERED; |
| } |
| |
| rtnl_unlock(); |
| |
| pci_disable_device(pdev); |
| |
| return status; |
| } |
| |
| /* Fake a successfull reset, which will be performed later in efx_io_resume. */ |
| static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev) |
| { |
| struct efx_nic *efx = pci_get_drvdata(pdev); |
| pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED; |
| int rc; |
| |
| if (pci_enable_device(pdev)) { |
| netif_err(efx, hw, efx->net_dev, |
| "Cannot re-enable PCI device after reset.\n"); |
| status = PCI_ERS_RESULT_DISCONNECT; |
| } |
| |
| rc = pci_cleanup_aer_uncorrect_error_status(pdev); |
| if (rc) { |
| netif_err(efx, hw, efx->net_dev, |
| "pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc); |
| /* Non-fatal error. Continue. */ |
| } |
| |
| return status; |
| } |
| |
| /* Perform the actual reset and resume I/O operations. */ |
| static void efx_io_resume(struct pci_dev *pdev) |
| { |
| struct efx_nic *efx = pci_get_drvdata(pdev); |
| int rc; |
| |
| rtnl_lock(); |
| |
| if (efx->state == STATE_DISABLED) |
| goto out; |
| |
| rc = efx_reset(efx, RESET_TYPE_ALL); |
| if (rc) { |
| netif_err(efx, hw, efx->net_dev, |
| "efx_reset failed after PCI error (%d)\n", rc); |
| } else { |
| efx->state = STATE_READY; |
| netif_dbg(efx, hw, efx->net_dev, |
| "Done resetting and resuming IO after PCI error.\n"); |
| } |
| |
| out: |
| rtnl_unlock(); |
| } |
| |
| /* For simplicity and reliability, we always require a slot reset and try to |
| * reset the hardware when a pci error affecting the device is detected. |
| * We leave both the link_reset and mmio_enabled callback unimplemented: |
| * with our request for slot reset the mmio_enabled callback will never be |
| * called, and the link_reset callback is not used by AER or EEH mechanisms. |
| */ |
| static struct pci_error_handlers efx_err_handlers = { |
| .error_detected = efx_io_error_detected, |
| .slot_reset = efx_io_slot_reset, |
| .resume = efx_io_resume, |
| }; |
| |
| static struct pci_driver efx_pci_driver = { |
| .name = KBUILD_MODNAME, |
| .id_table = efx_pci_table, |
| .probe = efx_pci_probe, |
| .remove = efx_pci_remove, |
| .driver.pm = &efx_pm_ops, |
| .err_handler = &efx_err_handlers, |
| }; |
| |
| /************************************************************************** |
| * |
| * Kernel module interface |
| * |
| *************************************************************************/ |
| |
| module_param(interrupt_mode, uint, 0444); |
| MODULE_PARM_DESC(interrupt_mode, |
| "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)"); |
| |
| static int __init efx_init_module(void) |
| { |
| int rc; |
| |
| printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n"); |
| |
| rc = register_netdevice_notifier(&efx_netdev_notifier); |
| if (rc) |
| goto err_notifier; |
| |
| rc = efx_init_sriov(); |
| if (rc) |
| goto err_sriov; |
| |
| reset_workqueue = create_singlethread_workqueue("sfc_reset"); |
| if (!reset_workqueue) { |
| rc = -ENOMEM; |
| goto err_reset; |
| } |
| |
| rc = pci_register_driver(&efx_pci_driver); |
| if (rc < 0) |
| goto err_pci; |
| |
| return 0; |
| |
| err_pci: |
| destroy_workqueue(reset_workqueue); |
| err_reset: |
| efx_fini_sriov(); |
| err_sriov: |
| unregister_netdevice_notifier(&efx_netdev_notifier); |
| err_notifier: |
| return rc; |
| } |
| |
| static void __exit efx_exit_module(void) |
| { |
| printk(KERN_INFO "Solarflare NET driver unloading\n"); |
| |
| pci_unregister_driver(&efx_pci_driver); |
| destroy_workqueue(reset_workqueue); |
| efx_fini_sriov(); |
| unregister_netdevice_notifier(&efx_netdev_notifier); |
| |
| } |
| |
| module_init(efx_init_module); |
| module_exit(efx_exit_module); |
| |
| MODULE_AUTHOR("Solarflare Communications and " |
| "Michael Brown <mbrown@fensystems.co.uk>"); |
| MODULE_DESCRIPTION("Solarflare network driver"); |
| MODULE_LICENSE("GPL"); |
| MODULE_DEVICE_TABLE(pci, efx_pci_table); |