| /* |
| * Copyright 2004-2010 Analog Devices Inc. |
| * |
| * Licensed under the GPL-2 or later. |
| */ |
| |
| #include <linux/delay.h> |
| #include <linux/console.h> |
| #include <linux/bootmem.h> |
| #include <linux/seq_file.h> |
| #include <linux/cpu.h> |
| #include <linux/mm.h> |
| #include <linux/module.h> |
| #include <linux/tty.h> |
| #include <linux/pfn.h> |
| |
| #ifdef CONFIG_MTD_UCLINUX |
| #include <linux/mtd/map.h> |
| #include <linux/ext2_fs.h> |
| #include <linux/cramfs_fs.h> |
| #include <linux/romfs_fs.h> |
| #endif |
| |
| #include <asm/cplb.h> |
| #include <asm/cacheflush.h> |
| #include <asm/blackfin.h> |
| #include <asm/cplbinit.h> |
| #include <asm/div64.h> |
| #include <asm/cpu.h> |
| #include <asm/fixed_code.h> |
| #include <asm/early_printk.h> |
| |
| u16 _bfin_swrst; |
| EXPORT_SYMBOL(_bfin_swrst); |
| |
| unsigned long memory_start, memory_end, physical_mem_end; |
| unsigned long _rambase, _ramstart, _ramend; |
| unsigned long reserved_mem_dcache_on; |
| unsigned long reserved_mem_icache_on; |
| EXPORT_SYMBOL(memory_start); |
| EXPORT_SYMBOL(memory_end); |
| EXPORT_SYMBOL(physical_mem_end); |
| EXPORT_SYMBOL(_ramend); |
| EXPORT_SYMBOL(reserved_mem_dcache_on); |
| |
| #ifdef CONFIG_MTD_UCLINUX |
| extern struct map_info uclinux_ram_map; |
| unsigned long memory_mtd_end, memory_mtd_start, mtd_size; |
| unsigned long _ebss; |
| EXPORT_SYMBOL(memory_mtd_end); |
| EXPORT_SYMBOL(memory_mtd_start); |
| EXPORT_SYMBOL(mtd_size); |
| #endif |
| |
| char __initdata command_line[COMMAND_LINE_SIZE]; |
| void __initdata *init_retx, *init_saved_retx, *init_saved_seqstat, |
| *init_saved_icplb_fault_addr, *init_saved_dcplb_fault_addr; |
| |
| /* boot memmap, for parsing "memmap=" */ |
| #define BFIN_MEMMAP_MAX 128 /* number of entries in bfin_memmap */ |
| #define BFIN_MEMMAP_RAM 1 |
| #define BFIN_MEMMAP_RESERVED 2 |
| static struct bfin_memmap { |
| int nr_map; |
| struct bfin_memmap_entry { |
| unsigned long long addr; /* start of memory segment */ |
| unsigned long long size; |
| unsigned long type; |
| } map[BFIN_MEMMAP_MAX]; |
| } bfin_memmap __initdata; |
| |
| /* for memmap sanitization */ |
| struct change_member { |
| struct bfin_memmap_entry *pentry; /* pointer to original entry */ |
| unsigned long long addr; /* address for this change point */ |
| }; |
| static struct change_member change_point_list[2*BFIN_MEMMAP_MAX] __initdata; |
| static struct change_member *change_point[2*BFIN_MEMMAP_MAX] __initdata; |
| static struct bfin_memmap_entry *overlap_list[BFIN_MEMMAP_MAX] __initdata; |
| static struct bfin_memmap_entry new_map[BFIN_MEMMAP_MAX] __initdata; |
| |
| DEFINE_PER_CPU(struct blackfin_cpudata, cpu_data); |
| |
| static int early_init_clkin_hz(char *buf); |
| |
| #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE) |
| void __init generate_cplb_tables(void) |
| { |
| unsigned int cpu; |
| |
| generate_cplb_tables_all(); |
| /* Generate per-CPU I&D CPLB tables */ |
| for (cpu = 0; cpu < num_possible_cpus(); ++cpu) |
| generate_cplb_tables_cpu(cpu); |
| } |
| #endif |
| |
| void __cpuinit bfin_setup_caches(unsigned int cpu) |
| { |
| #ifdef CONFIG_BFIN_ICACHE |
| bfin_icache_init(icplb_tbl[cpu]); |
| #endif |
| |
| #ifdef CONFIG_BFIN_DCACHE |
| bfin_dcache_init(dcplb_tbl[cpu]); |
| #endif |
| |
| /* |
| * In cache coherence emulation mode, we need to have the |
| * D-cache enabled before running any atomic operation which |
| * might involve cache invalidation (i.e. spinlock, rwlock). |
| * So printk's are deferred until then. |
| */ |
| #ifdef CONFIG_BFIN_ICACHE |
| printk(KERN_INFO "Instruction Cache Enabled for CPU%u\n", cpu); |
| printk(KERN_INFO " External memory:" |
| # ifdef CONFIG_BFIN_EXTMEM_ICACHEABLE |
| " cacheable" |
| # else |
| " uncacheable" |
| # endif |
| " in instruction cache\n"); |
| if (L2_LENGTH) |
| printk(KERN_INFO " L2 SRAM :" |
| # ifdef CONFIG_BFIN_L2_ICACHEABLE |
| " cacheable" |
| # else |
| " uncacheable" |
| # endif |
| " in instruction cache\n"); |
| |
| #else |
| printk(KERN_INFO "Instruction Cache Disabled for CPU%u\n", cpu); |
| #endif |
| |
| #ifdef CONFIG_BFIN_DCACHE |
| printk(KERN_INFO "Data Cache Enabled for CPU%u\n", cpu); |
| printk(KERN_INFO " External memory:" |
| # if defined CONFIG_BFIN_EXTMEM_WRITEBACK |
| " cacheable (write-back)" |
| # elif defined CONFIG_BFIN_EXTMEM_WRITETHROUGH |
| " cacheable (write-through)" |
| # else |
| " uncacheable" |
| # endif |
| " in data cache\n"); |
| if (L2_LENGTH) |
| printk(KERN_INFO " L2 SRAM :" |
| # if defined CONFIG_BFIN_L2_WRITEBACK |
| " cacheable (write-back)" |
| # elif defined CONFIG_BFIN_L2_WRITETHROUGH |
| " cacheable (write-through)" |
| # else |
| " uncacheable" |
| # endif |
| " in data cache\n"); |
| #else |
| printk(KERN_INFO "Data Cache Disabled for CPU%u\n", cpu); |
| #endif |
| } |
| |
| void __cpuinit bfin_setup_cpudata(unsigned int cpu) |
| { |
| struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, cpu); |
| |
| cpudata->idle = current; |
| cpudata->imemctl = bfin_read_IMEM_CONTROL(); |
| cpudata->dmemctl = bfin_read_DMEM_CONTROL(); |
| } |
| |
| void __init bfin_cache_init(void) |
| { |
| #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE) |
| generate_cplb_tables(); |
| #endif |
| bfin_setup_caches(0); |
| } |
| |
| void __init bfin_relocate_l1_mem(void) |
| { |
| unsigned long text_l1_len = (unsigned long)_text_l1_len; |
| unsigned long data_l1_len = (unsigned long)_data_l1_len; |
| unsigned long data_b_l1_len = (unsigned long)_data_b_l1_len; |
| unsigned long l2_len = (unsigned long)_l2_len; |
| |
| early_shadow_stamp(); |
| |
| /* |
| * due to the ALIGN(4) in the arch/blackfin/kernel/vmlinux.lds.S |
| * we know that everything about l1 text/data is nice and aligned, |
| * so copy by 4 byte chunks, and don't worry about overlapping |
| * src/dest. |
| * |
| * We can't use the dma_memcpy functions, since they can call |
| * scheduler functions which might be in L1 :( and core writes |
| * into L1 instruction cause bad access errors, so we are stuck, |
| * we are required to use DMA, but can't use the common dma |
| * functions. We can't use memcpy either - since that might be |
| * going to be in the relocated L1 |
| */ |
| |
| blackfin_dma_early_init(); |
| |
| /* if necessary, copy L1 text to L1 instruction SRAM */ |
| if (L1_CODE_LENGTH && text_l1_len) |
| early_dma_memcpy(_stext_l1, _text_l1_lma, text_l1_len); |
| |
| /* if necessary, copy L1 data to L1 data bank A SRAM */ |
| if (L1_DATA_A_LENGTH && data_l1_len) |
| early_dma_memcpy(_sdata_l1, _data_l1_lma, data_l1_len); |
| |
| /* if necessary, copy L1 data B to L1 data bank B SRAM */ |
| if (L1_DATA_B_LENGTH && data_b_l1_len) |
| early_dma_memcpy(_sdata_b_l1, _data_b_l1_lma, data_b_l1_len); |
| |
| early_dma_memcpy_done(); |
| |
| /* if necessary, copy L2 text/data to L2 SRAM */ |
| if (L2_LENGTH && l2_len) |
| memcpy(_stext_l2, _l2_lma, l2_len); |
| } |
| |
| #ifdef CONFIG_ROMKERNEL |
| void __init bfin_relocate_xip_data(void) |
| { |
| early_shadow_stamp(); |
| |
| memcpy(_sdata, _data_lma, (unsigned long)_data_len - THREAD_SIZE + sizeof(struct thread_info)); |
| memcpy(_sinitdata, _init_data_lma, (unsigned long)_init_data_len); |
| } |
| #endif |
| |
| /* add_memory_region to memmap */ |
| static void __init add_memory_region(unsigned long long start, |
| unsigned long long size, int type) |
| { |
| int i; |
| |
| i = bfin_memmap.nr_map; |
| |
| if (i == BFIN_MEMMAP_MAX) { |
| printk(KERN_ERR "Ooops! Too many entries in the memory map!\n"); |
| return; |
| } |
| |
| bfin_memmap.map[i].addr = start; |
| bfin_memmap.map[i].size = size; |
| bfin_memmap.map[i].type = type; |
| bfin_memmap.nr_map++; |
| } |
| |
| /* |
| * Sanitize the boot memmap, removing overlaps. |
| */ |
| static int __init sanitize_memmap(struct bfin_memmap_entry *map, int *pnr_map) |
| { |
| struct change_member *change_tmp; |
| unsigned long current_type, last_type; |
| unsigned long long last_addr; |
| int chgidx, still_changing; |
| int overlap_entries; |
| int new_entry; |
| int old_nr, new_nr, chg_nr; |
| int i; |
| |
| /* |
| Visually we're performing the following (1,2,3,4 = memory types) |
| |
| Sample memory map (w/overlaps): |
| ____22__________________ |
| ______________________4_ |
| ____1111________________ |
| _44_____________________ |
| 11111111________________ |
| ____________________33__ |
| ___________44___________ |
| __________33333_________ |
| ______________22________ |
| ___________________2222_ |
| _________111111111______ |
| _____________________11_ |
| _________________4______ |
| |
| Sanitized equivalent (no overlap): |
| 1_______________________ |
| _44_____________________ |
| ___1____________________ |
| ____22__________________ |
| ______11________________ |
| _________1______________ |
| __________3_____________ |
| ___________44___________ |
| _____________33_________ |
| _______________2________ |
| ________________1_______ |
| _________________4______ |
| ___________________2____ |
| ____________________33__ |
| ______________________4_ |
| */ |
| /* if there's only one memory region, don't bother */ |
| if (*pnr_map < 2) |
| return -1; |
| |
| old_nr = *pnr_map; |
| |
| /* bail out if we find any unreasonable addresses in memmap */ |
| for (i = 0; i < old_nr; i++) |
| if (map[i].addr + map[i].size < map[i].addr) |
| return -1; |
| |
| /* create pointers for initial change-point information (for sorting) */ |
| for (i = 0; i < 2*old_nr; i++) |
| change_point[i] = &change_point_list[i]; |
| |
| /* record all known change-points (starting and ending addresses), |
| omitting those that are for empty memory regions */ |
| chgidx = 0; |
| for (i = 0; i < old_nr; i++) { |
| if (map[i].size != 0) { |
| change_point[chgidx]->addr = map[i].addr; |
| change_point[chgidx++]->pentry = &map[i]; |
| change_point[chgidx]->addr = map[i].addr + map[i].size; |
| change_point[chgidx++]->pentry = &map[i]; |
| } |
| } |
| chg_nr = chgidx; /* true number of change-points */ |
| |
| /* sort change-point list by memory addresses (low -> high) */ |
| still_changing = 1; |
| while (still_changing) { |
| still_changing = 0; |
| for (i = 1; i < chg_nr; i++) { |
| /* if <current_addr> > <last_addr>, swap */ |
| /* or, if current=<start_addr> & last=<end_addr>, swap */ |
| if ((change_point[i]->addr < change_point[i-1]->addr) || |
| ((change_point[i]->addr == change_point[i-1]->addr) && |
| (change_point[i]->addr == change_point[i]->pentry->addr) && |
| (change_point[i-1]->addr != change_point[i-1]->pentry->addr)) |
| ) { |
| change_tmp = change_point[i]; |
| change_point[i] = change_point[i-1]; |
| change_point[i-1] = change_tmp; |
| still_changing = 1; |
| } |
| } |
| } |
| |
| /* create a new memmap, removing overlaps */ |
| overlap_entries = 0; /* number of entries in the overlap table */ |
| new_entry = 0; /* index for creating new memmap entries */ |
| last_type = 0; /* start with undefined memory type */ |
| last_addr = 0; /* start with 0 as last starting address */ |
| /* loop through change-points, determining affect on the new memmap */ |
| for (chgidx = 0; chgidx < chg_nr; chgidx++) { |
| /* keep track of all overlapping memmap entries */ |
| if (change_point[chgidx]->addr == change_point[chgidx]->pentry->addr) { |
| /* add map entry to overlap list (> 1 entry implies an overlap) */ |
| overlap_list[overlap_entries++] = change_point[chgidx]->pentry; |
| } else { |
| /* remove entry from list (order independent, so swap with last) */ |
| for (i = 0; i < overlap_entries; i++) { |
| if (overlap_list[i] == change_point[chgidx]->pentry) |
| overlap_list[i] = overlap_list[overlap_entries-1]; |
| } |
| overlap_entries--; |
| } |
| /* if there are overlapping entries, decide which "type" to use */ |
| /* (larger value takes precedence -- 1=usable, 2,3,4,4+=unusable) */ |
| current_type = 0; |
| for (i = 0; i < overlap_entries; i++) |
| if (overlap_list[i]->type > current_type) |
| current_type = overlap_list[i]->type; |
| /* continue building up new memmap based on this information */ |
| if (current_type != last_type) { |
| if (last_type != 0) { |
| new_map[new_entry].size = |
| change_point[chgidx]->addr - last_addr; |
| /* move forward only if the new size was non-zero */ |
| if (new_map[new_entry].size != 0) |
| if (++new_entry >= BFIN_MEMMAP_MAX) |
| break; /* no more space left for new entries */ |
| } |
| if (current_type != 0) { |
| new_map[new_entry].addr = change_point[chgidx]->addr; |
| new_map[new_entry].type = current_type; |
| last_addr = change_point[chgidx]->addr; |
| } |
| last_type = current_type; |
| } |
| } |
| new_nr = new_entry; /* retain count for new entries */ |
| |
| /* copy new mapping into original location */ |
| memcpy(map, new_map, new_nr*sizeof(struct bfin_memmap_entry)); |
| *pnr_map = new_nr; |
| |
| return 0; |
| } |
| |
| static void __init print_memory_map(char *who) |
| { |
| int i; |
| |
| for (i = 0; i < bfin_memmap.nr_map; i++) { |
| printk(KERN_DEBUG " %s: %016Lx - %016Lx ", who, |
| bfin_memmap.map[i].addr, |
| bfin_memmap.map[i].addr + bfin_memmap.map[i].size); |
| switch (bfin_memmap.map[i].type) { |
| case BFIN_MEMMAP_RAM: |
| printk(KERN_CONT "(usable)\n"); |
| break; |
| case BFIN_MEMMAP_RESERVED: |
| printk(KERN_CONT "(reserved)\n"); |
| break; |
| default: |
| printk(KERN_CONT "type %lu\n", bfin_memmap.map[i].type); |
| break; |
| } |
| } |
| } |
| |
| static __init int parse_memmap(char *arg) |
| { |
| unsigned long long start_at, mem_size; |
| |
| if (!arg) |
| return -EINVAL; |
| |
| mem_size = memparse(arg, &arg); |
| if (*arg == '@') { |
| start_at = memparse(arg+1, &arg); |
| add_memory_region(start_at, mem_size, BFIN_MEMMAP_RAM); |
| } else if (*arg == '$') { |
| start_at = memparse(arg+1, &arg); |
| add_memory_region(start_at, mem_size, BFIN_MEMMAP_RESERVED); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Initial parsing of the command line. Currently, we support: |
| * - Controlling the linux memory size: mem=xxx[KMG] |
| * - Controlling the physical memory size: max_mem=xxx[KMG][$][#] |
| * $ -> reserved memory is dcacheable |
| * # -> reserved memory is icacheable |
| * - "memmap=XXX[KkmM][@][$]XXX[KkmM]" defines a memory region |
| * @ from <start> to <start>+<mem>, type RAM |
| * $ from <start> to <start>+<mem>, type RESERVED |
| */ |
| static __init void parse_cmdline_early(char *cmdline_p) |
| { |
| char c = ' ', *to = cmdline_p; |
| unsigned int memsize; |
| for (;;) { |
| if (c == ' ') { |
| if (!memcmp(to, "mem=", 4)) { |
| to += 4; |
| memsize = memparse(to, &to); |
| if (memsize) |
| _ramend = memsize; |
| |
| } else if (!memcmp(to, "max_mem=", 8)) { |
| to += 8; |
| memsize = memparse(to, &to); |
| if (memsize) { |
| physical_mem_end = memsize; |
| if (*to != ' ') { |
| if (*to == '$' |
| || *(to + 1) == '$') |
| reserved_mem_dcache_on = 1; |
| if (*to == '#' |
| || *(to + 1) == '#') |
| reserved_mem_icache_on = 1; |
| } |
| } |
| } else if (!memcmp(to, "clkin_hz=", 9)) { |
| to += 9; |
| early_init_clkin_hz(to); |
| #ifdef CONFIG_EARLY_PRINTK |
| } else if (!memcmp(to, "earlyprintk=", 12)) { |
| to += 12; |
| setup_early_printk(to); |
| #endif |
| } else if (!memcmp(to, "memmap=", 7)) { |
| to += 7; |
| parse_memmap(to); |
| } |
| } |
| c = *(to++); |
| if (!c) |
| break; |
| } |
| } |
| |
| /* |
| * Setup memory defaults from user config. |
| * The physical memory layout looks like: |
| * |
| * [_rambase, _ramstart]: kernel image |
| * [memory_start, memory_end]: dynamic memory managed by kernel |
| * [memory_end, _ramend]: reserved memory |
| * [memory_mtd_start(memory_end), |
| * memory_mtd_start + mtd_size]: rootfs (if any) |
| * [_ramend - DMA_UNCACHED_REGION, |
| * _ramend]: uncached DMA region |
| * [_ramend, physical_mem_end]: memory not managed by kernel |
| */ |
| static __init void memory_setup(void) |
| { |
| #ifdef CONFIG_MTD_UCLINUX |
| unsigned long mtd_phys = 0; |
| #endif |
| unsigned long max_mem; |
| |
| _rambase = CONFIG_BOOT_LOAD; |
| _ramstart = (unsigned long)_end; |
| |
| if (DMA_UNCACHED_REGION > (_ramend - _ramstart)) { |
| console_init(); |
| panic("DMA region exceeds memory limit: %lu.", |
| _ramend - _ramstart); |
| } |
| max_mem = memory_end = _ramend - DMA_UNCACHED_REGION; |
| |
| #if (defined(CONFIG_BFIN_EXTMEM_ICACHEABLE) && ANOMALY_05000263) |
| /* Due to a Hardware Anomaly we need to limit the size of usable |
| * instruction memory to max 60MB, 56 if HUNT_FOR_ZERO is on |
| * 05000263 - Hardware loop corrupted when taking an ICPLB exception |
| */ |
| # if (defined(CONFIG_DEBUG_HUNT_FOR_ZERO)) |
| if (max_mem >= 56 * 1024 * 1024) |
| max_mem = 56 * 1024 * 1024; |
| # else |
| if (max_mem >= 60 * 1024 * 1024) |
| max_mem = 60 * 1024 * 1024; |
| # endif /* CONFIG_DEBUG_HUNT_FOR_ZERO */ |
| #endif /* ANOMALY_05000263 */ |
| |
| |
| #ifdef CONFIG_MPU |
| /* Round up to multiple of 4MB */ |
| memory_start = (_ramstart + 0x3fffff) & ~0x3fffff; |
| #else |
| memory_start = PAGE_ALIGN(_ramstart); |
| #endif |
| |
| #if defined(CONFIG_MTD_UCLINUX) |
| /* generic memory mapped MTD driver */ |
| memory_mtd_end = memory_end; |
| |
| mtd_phys = _ramstart; |
| mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 8))); |
| |
| # if defined(CONFIG_EXT2_FS) || defined(CONFIG_EXT3_FS) |
| if (*((unsigned short *)(mtd_phys + 0x438)) == EXT2_SUPER_MAGIC) |
| mtd_size = |
| PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x404)) << 10); |
| # endif |
| |
| # if defined(CONFIG_CRAMFS) |
| if (*((unsigned long *)(mtd_phys)) == CRAMFS_MAGIC) |
| mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x4))); |
| # endif |
| |
| # if defined(CONFIG_ROMFS_FS) |
| if (((unsigned long *)mtd_phys)[0] == ROMSB_WORD0 |
| && ((unsigned long *)mtd_phys)[1] == ROMSB_WORD1) { |
| mtd_size = |
| PAGE_ALIGN(be32_to_cpu(((unsigned long *)mtd_phys)[2])); |
| |
| /* ROM_FS is XIP, so if we found it, we need to limit memory */ |
| if (memory_end > max_mem) { |
| pr_info("Limiting kernel memory to %liMB due to anomaly 05000263\n", max_mem >> 20); |
| memory_end = max_mem; |
| } |
| } |
| # endif /* CONFIG_ROMFS_FS */ |
| |
| /* Since the default MTD_UCLINUX has no magic number, we just blindly |
| * read 8 past the end of the kernel's image, and look at it. |
| * When no image is attached, mtd_size is set to a random number |
| * Do some basic sanity checks before operating on things |
| */ |
| if (mtd_size == 0 || memory_end <= mtd_size) { |
| pr_emerg("Could not find valid ram mtd attached.\n"); |
| } else { |
| memory_end -= mtd_size; |
| |
| /* Relocate MTD image to the top of memory after the uncached memory area */ |
| uclinux_ram_map.phys = memory_mtd_start = memory_end; |
| uclinux_ram_map.size = mtd_size; |
| pr_info("Found mtd parition at 0x%p, (len=0x%lx), moving to 0x%p\n", |
| _end, mtd_size, (void *)memory_mtd_start); |
| dma_memcpy((void *)uclinux_ram_map.phys, _end, uclinux_ram_map.size); |
| } |
| #endif /* CONFIG_MTD_UCLINUX */ |
| |
| /* We need lo limit memory, since everything could have a text section |
| * of userspace in it, and expose anomaly 05000263. If the anomaly |
| * doesn't exist, or we don't need to - then dont. |
| */ |
| if (memory_end > max_mem) { |
| pr_info("Limiting kernel memory to %liMB due to anomaly 05000263\n", max_mem >> 20); |
| memory_end = max_mem; |
| } |
| |
| #ifdef CONFIG_MPU |
| #if defined(CONFIG_ROMFS_ON_MTD) && defined(CONFIG_MTD_ROM) |
| page_mask_nelts = (((_ramend + ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE - |
| ASYNC_BANK0_BASE) >> PAGE_SHIFT) + 31) / 32; |
| #else |
| page_mask_nelts = ((_ramend >> PAGE_SHIFT) + 31) / 32; |
| #endif |
| page_mask_order = get_order(3 * page_mask_nelts * sizeof(long)); |
| #endif |
| |
| init_mm.start_code = (unsigned long)_stext; |
| init_mm.end_code = (unsigned long)_etext; |
| init_mm.end_data = (unsigned long)_edata; |
| init_mm.brk = (unsigned long)0; |
| |
| printk(KERN_INFO "Board Memory: %ldMB\n", physical_mem_end >> 20); |
| printk(KERN_INFO "Kernel Managed Memory: %ldMB\n", _ramend >> 20); |
| |
| printk(KERN_INFO "Memory map:\n" |
| " fixedcode = 0x%p-0x%p\n" |
| " text = 0x%p-0x%p\n" |
| " rodata = 0x%p-0x%p\n" |
| " bss = 0x%p-0x%p\n" |
| " data = 0x%p-0x%p\n" |
| " stack = 0x%p-0x%p\n" |
| " init = 0x%p-0x%p\n" |
| " available = 0x%p-0x%p\n" |
| #ifdef CONFIG_MTD_UCLINUX |
| " rootfs = 0x%p-0x%p\n" |
| #endif |
| #if DMA_UNCACHED_REGION > 0 |
| " DMA Zone = 0x%p-0x%p\n" |
| #endif |
| , (void *)FIXED_CODE_START, (void *)FIXED_CODE_END, |
| _stext, _etext, |
| __start_rodata, __end_rodata, |
| __bss_start, __bss_stop, |
| _sdata, _edata, |
| (void *)&init_thread_union, |
| (void *)((int)(&init_thread_union) + THREAD_SIZE), |
| __init_begin, __init_end, |
| (void *)_ramstart, (void *)memory_end |
| #ifdef CONFIG_MTD_UCLINUX |
| , (void *)memory_mtd_start, (void *)(memory_mtd_start + mtd_size) |
| #endif |
| #if DMA_UNCACHED_REGION > 0 |
| , (void *)(_ramend - DMA_UNCACHED_REGION), (void *)(_ramend) |
| #endif |
| ); |
| } |
| |
| /* |
| * Find the lowest, highest page frame number we have available |
| */ |
| void __init find_min_max_pfn(void) |
| { |
| int i; |
| |
| max_pfn = 0; |
| min_low_pfn = memory_end; |
| |
| for (i = 0; i < bfin_memmap.nr_map; i++) { |
| unsigned long start, end; |
| /* RAM? */ |
| if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM) |
| continue; |
| start = PFN_UP(bfin_memmap.map[i].addr); |
| end = PFN_DOWN(bfin_memmap.map[i].addr + |
| bfin_memmap.map[i].size); |
| if (start >= end) |
| continue; |
| if (end > max_pfn) |
| max_pfn = end; |
| if (start < min_low_pfn) |
| min_low_pfn = start; |
| } |
| } |
| |
| static __init void setup_bootmem_allocator(void) |
| { |
| int bootmap_size; |
| int i; |
| unsigned long start_pfn, end_pfn; |
| unsigned long curr_pfn, last_pfn, size; |
| |
| /* mark memory between memory_start and memory_end usable */ |
| add_memory_region(memory_start, |
| memory_end - memory_start, BFIN_MEMMAP_RAM); |
| /* sanity check for overlap */ |
| sanitize_memmap(bfin_memmap.map, &bfin_memmap.nr_map); |
| print_memory_map("boot memmap"); |
| |
| /* initialize globals in linux/bootmem.h */ |
| find_min_max_pfn(); |
| /* pfn of the last usable page frame */ |
| if (max_pfn > memory_end >> PAGE_SHIFT) |
| max_pfn = memory_end >> PAGE_SHIFT; |
| /* pfn of last page frame directly mapped by kernel */ |
| max_low_pfn = max_pfn; |
| /* pfn of the first usable page frame after kernel image*/ |
| if (min_low_pfn < memory_start >> PAGE_SHIFT) |
| min_low_pfn = memory_start >> PAGE_SHIFT; |
| |
| start_pfn = PAGE_OFFSET >> PAGE_SHIFT; |
| end_pfn = memory_end >> PAGE_SHIFT; |
| |
| /* |
| * give all the memory to the bootmap allocator, tell it to put the |
| * boot mem_map at the start of memory. |
| */ |
| bootmap_size = init_bootmem_node(NODE_DATA(0), |
| memory_start >> PAGE_SHIFT, /* map goes here */ |
| start_pfn, end_pfn); |
| |
| /* register the memmap regions with the bootmem allocator */ |
| for (i = 0; i < bfin_memmap.nr_map; i++) { |
| /* |
| * Reserve usable memory |
| */ |
| if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM) |
| continue; |
| /* |
| * We are rounding up the start address of usable memory: |
| */ |
| curr_pfn = PFN_UP(bfin_memmap.map[i].addr); |
| if (curr_pfn >= end_pfn) |
| continue; |
| /* |
| * ... and at the end of the usable range downwards: |
| */ |
| last_pfn = PFN_DOWN(bfin_memmap.map[i].addr + |
| bfin_memmap.map[i].size); |
| |
| if (last_pfn > end_pfn) |
| last_pfn = end_pfn; |
| |
| /* |
| * .. finally, did all the rounding and playing |
| * around just make the area go away? |
| */ |
| if (last_pfn <= curr_pfn) |
| continue; |
| |
| size = last_pfn - curr_pfn; |
| free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(size)); |
| } |
| |
| /* reserve memory before memory_start, including bootmap */ |
| reserve_bootmem(PAGE_OFFSET, |
| memory_start + bootmap_size + PAGE_SIZE - 1 - PAGE_OFFSET, |
| BOOTMEM_DEFAULT); |
| } |
| |
| #define EBSZ_TO_MEG(ebsz) \ |
| ({ \ |
| int meg = 0; \ |
| switch (ebsz & 0xf) { \ |
| case 0x1: meg = 16; break; \ |
| case 0x3: meg = 32; break; \ |
| case 0x5: meg = 64; break; \ |
| case 0x7: meg = 128; break; \ |
| case 0x9: meg = 256; break; \ |
| case 0xb: meg = 512; break; \ |
| } \ |
| meg; \ |
| }) |
| static inline int __init get_mem_size(void) |
| { |
| #if defined(EBIU_SDBCTL) |
| # if defined(BF561_FAMILY) |
| int ret = 0; |
| u32 sdbctl = bfin_read_EBIU_SDBCTL(); |
| ret += EBSZ_TO_MEG(sdbctl >> 0); |
| ret += EBSZ_TO_MEG(sdbctl >> 8); |
| ret += EBSZ_TO_MEG(sdbctl >> 16); |
| ret += EBSZ_TO_MEG(sdbctl >> 24); |
| return ret; |
| # else |
| return EBSZ_TO_MEG(bfin_read_EBIU_SDBCTL()); |
| # endif |
| #elif defined(EBIU_DDRCTL1) |
| u32 ddrctl = bfin_read_EBIU_DDRCTL1(); |
| int ret = 0; |
| switch (ddrctl & 0xc0000) { |
| case DEVSZ_64: ret = 64 / 8; |
| case DEVSZ_128: ret = 128 / 8; |
| case DEVSZ_256: ret = 256 / 8; |
| case DEVSZ_512: ret = 512 / 8; |
| } |
| switch (ddrctl & 0x30000) { |
| case DEVWD_4: ret *= 2; |
| case DEVWD_8: ret *= 2; |
| case DEVWD_16: break; |
| } |
| if ((ddrctl & 0xc000) == 0x4000) |
| ret *= 2; |
| return ret; |
| #endif |
| BUG(); |
| } |
| |
| __attribute__((weak)) |
| void __init native_machine_early_platform_add_devices(void) |
| { |
| } |
| |
| void __init setup_arch(char **cmdline_p) |
| { |
| unsigned long sclk, cclk; |
| |
| native_machine_early_platform_add_devices(); |
| |
| enable_shadow_console(); |
| |
| /* Check to make sure we are running on the right processor */ |
| if (unlikely(CPUID != bfin_cpuid())) |
| printk(KERN_ERR "ERROR: Not running on ADSP-%s: unknown CPUID 0x%04x Rev 0.%d\n", |
| CPU, bfin_cpuid(), bfin_revid()); |
| |
| #ifdef CONFIG_DUMMY_CONSOLE |
| conswitchp = &dummy_con; |
| #endif |
| |
| #if defined(CONFIG_CMDLINE_BOOL) |
| strncpy(&command_line[0], CONFIG_CMDLINE, sizeof(command_line)); |
| command_line[sizeof(command_line) - 1] = 0; |
| #endif |
| |
| /* Keep a copy of command line */ |
| *cmdline_p = &command_line[0]; |
| memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE); |
| boot_command_line[COMMAND_LINE_SIZE - 1] = '\0'; |
| |
| memset(&bfin_memmap, 0, sizeof(bfin_memmap)); |
| |
| /* If the user does not specify things on the command line, use |
| * what the bootloader set things up as |
| */ |
| physical_mem_end = 0; |
| parse_cmdline_early(&command_line[0]); |
| |
| if (_ramend == 0) |
| _ramend = get_mem_size() * 1024 * 1024; |
| |
| if (physical_mem_end == 0) |
| physical_mem_end = _ramend; |
| |
| memory_setup(); |
| |
| /* Initialize Async memory banks */ |
| bfin_write_EBIU_AMBCTL0(AMBCTL0VAL); |
| bfin_write_EBIU_AMBCTL1(AMBCTL1VAL); |
| bfin_write_EBIU_AMGCTL(AMGCTLVAL); |
| #ifdef CONFIG_EBIU_MBSCTLVAL |
| bfin_write_EBIU_MBSCTL(CONFIG_EBIU_MBSCTLVAL); |
| bfin_write_EBIU_MODE(CONFIG_EBIU_MODEVAL); |
| bfin_write_EBIU_FCTL(CONFIG_EBIU_FCTLVAL); |
| #endif |
| |
| cclk = get_cclk(); |
| sclk = get_sclk(); |
| |
| if ((ANOMALY_05000273 || ANOMALY_05000274) && (cclk >> 1) < sclk) |
| panic("ANOMALY 05000273 or 05000274: CCLK must be >= 2*SCLK"); |
| |
| #ifdef BF561_FAMILY |
| if (ANOMALY_05000266) { |
| bfin_read_IMDMA_D0_IRQ_STATUS(); |
| bfin_read_IMDMA_D1_IRQ_STATUS(); |
| } |
| #endif |
| printk(KERN_INFO "Hardware Trace "); |
| if (bfin_read_TBUFCTL() & 0x1) |
| printk(KERN_CONT "Active "); |
| else |
| printk(KERN_CONT "Off "); |
| if (bfin_read_TBUFCTL() & 0x2) |
| printk(KERN_CONT "and Enabled\n"); |
| else |
| printk(KERN_CONT "and Disabled\n"); |
| |
| printk(KERN_INFO "Boot Mode: %i\n", bfin_read_SYSCR() & 0xF); |
| |
| /* Newer parts mirror SWRST bits in SYSCR */ |
| #if defined(CONFIG_BF53x) || defined(CONFIG_BF561) || \ |
| defined(CONFIG_BF538) || defined(CONFIG_BF539) |
| _bfin_swrst = bfin_read_SWRST(); |
| #else |
| /* Clear boot mode field */ |
| _bfin_swrst = bfin_read_SYSCR() & ~0xf; |
| #endif |
| |
| #ifdef CONFIG_DEBUG_DOUBLEFAULT_PRINT |
| bfin_write_SWRST(_bfin_swrst & ~DOUBLE_FAULT); |
| #endif |
| #ifdef CONFIG_DEBUG_DOUBLEFAULT_RESET |
| bfin_write_SWRST(_bfin_swrst | DOUBLE_FAULT); |
| #endif |
| |
| #ifdef CONFIG_SMP |
| if (_bfin_swrst & SWRST_DBL_FAULT_A) { |
| #else |
| if (_bfin_swrst & RESET_DOUBLE) { |
| #endif |
| printk(KERN_EMERG "Recovering from DOUBLE FAULT event\n"); |
| #ifdef CONFIG_DEBUG_DOUBLEFAULT |
| /* We assume the crashing kernel, and the current symbol table match */ |
| printk(KERN_EMERG " While handling exception (EXCAUSE = 0x%x) at %pF\n", |
| (int)init_saved_seqstat & SEQSTAT_EXCAUSE, init_saved_retx); |
| printk(KERN_NOTICE " DCPLB_FAULT_ADDR: %pF\n", init_saved_dcplb_fault_addr); |
| printk(KERN_NOTICE " ICPLB_FAULT_ADDR: %pF\n", init_saved_icplb_fault_addr); |
| #endif |
| printk(KERN_NOTICE " The instruction at %pF caused a double exception\n", |
| init_retx); |
| } else if (_bfin_swrst & RESET_WDOG) |
| printk(KERN_INFO "Recovering from Watchdog event\n"); |
| else if (_bfin_swrst & RESET_SOFTWARE) |
| printk(KERN_NOTICE "Reset caused by Software reset\n"); |
| |
| printk(KERN_INFO "Blackfin support (C) 2004-2010 Analog Devices, Inc.\n"); |
| if (bfin_compiled_revid() == 0xffff) |
| printk(KERN_INFO "Compiled for ADSP-%s Rev any, running on 0.%d\n", CPU, bfin_revid()); |
| else if (bfin_compiled_revid() == -1) |
| printk(KERN_INFO "Compiled for ADSP-%s Rev none\n", CPU); |
| else |
| printk(KERN_INFO "Compiled for ADSP-%s Rev 0.%d\n", CPU, bfin_compiled_revid()); |
| |
| if (likely(CPUID == bfin_cpuid())) { |
| if (bfin_revid() != bfin_compiled_revid()) { |
| if (bfin_compiled_revid() == -1) |
| printk(KERN_ERR "Warning: Compiled for Rev none, but running on Rev %d\n", |
| bfin_revid()); |
| else if (bfin_compiled_revid() != 0xffff) { |
| printk(KERN_ERR "Warning: Compiled for Rev %d, but running on Rev %d\n", |
| bfin_compiled_revid(), bfin_revid()); |
| if (bfin_compiled_revid() > bfin_revid()) |
| panic("Error: you are missing anomaly workarounds for this rev"); |
| } |
| } |
| if (bfin_revid() < CONFIG_BF_REV_MIN || bfin_revid() > CONFIG_BF_REV_MAX) |
| printk(KERN_ERR "Warning: Unsupported Chip Revision ADSP-%s Rev 0.%d detected\n", |
| CPU, bfin_revid()); |
| } |
| |
| printk(KERN_INFO "Blackfin Linux support by http://blackfin.uclinux.org/\n"); |
| |
| printk(KERN_INFO "Processor Speed: %lu MHz core clock and %lu MHz System Clock\n", |
| cclk / 1000000, sclk / 1000000); |
| |
| setup_bootmem_allocator(); |
| |
| paging_init(); |
| |
| /* Copy atomic sequences to their fixed location, and sanity check that |
| these locations are the ones that we advertise to userspace. */ |
| memcpy((void *)FIXED_CODE_START, &fixed_code_start, |
| FIXED_CODE_END - FIXED_CODE_START); |
| BUG_ON((char *)&sigreturn_stub - (char *)&fixed_code_start |
| != SIGRETURN_STUB - FIXED_CODE_START); |
| BUG_ON((char *)&atomic_xchg32 - (char *)&fixed_code_start |
| != ATOMIC_XCHG32 - FIXED_CODE_START); |
| BUG_ON((char *)&atomic_cas32 - (char *)&fixed_code_start |
| != ATOMIC_CAS32 - FIXED_CODE_START); |
| BUG_ON((char *)&atomic_add32 - (char *)&fixed_code_start |
| != ATOMIC_ADD32 - FIXED_CODE_START); |
| BUG_ON((char *)&atomic_sub32 - (char *)&fixed_code_start |
| != ATOMIC_SUB32 - FIXED_CODE_START); |
| BUG_ON((char *)&atomic_ior32 - (char *)&fixed_code_start |
| != ATOMIC_IOR32 - FIXED_CODE_START); |
| BUG_ON((char *)&atomic_and32 - (char *)&fixed_code_start |
| != ATOMIC_AND32 - FIXED_CODE_START); |
| BUG_ON((char *)&atomic_xor32 - (char *)&fixed_code_start |
| != ATOMIC_XOR32 - FIXED_CODE_START); |
| BUG_ON((char *)&safe_user_instruction - (char *)&fixed_code_start |
| != SAFE_USER_INSTRUCTION - FIXED_CODE_START); |
| |
| #ifdef CONFIG_SMP |
| platform_init_cpus(); |
| #endif |
| init_exception_vectors(); |
| bfin_cache_init(); /* Initialize caches for the boot CPU */ |
| } |
| |
| static int __init topology_init(void) |
| { |
| unsigned int cpu; |
| /* Record CPU-private information for the boot processor. */ |
| bfin_setup_cpudata(0); |
| |
| for_each_possible_cpu(cpu) { |
| register_cpu(&per_cpu(cpu_data, cpu).cpu, cpu); |
| } |
| |
| return 0; |
| } |
| |
| subsys_initcall(topology_init); |
| |
| /* Get the input clock frequency */ |
| static u_long cached_clkin_hz = CONFIG_CLKIN_HZ; |
| static u_long get_clkin_hz(void) |
| { |
| return cached_clkin_hz; |
| } |
| static int __init early_init_clkin_hz(char *buf) |
| { |
| cached_clkin_hz = simple_strtoul(buf, NULL, 0); |
| #ifdef BFIN_KERNEL_CLOCK |
| if (cached_clkin_hz != CONFIG_CLKIN_HZ) |
| panic("cannot change clkin_hz when reprogramming clocks"); |
| #endif |
| return 1; |
| } |
| early_param("clkin_hz=", early_init_clkin_hz); |
| |
| /* Get the voltage input multiplier */ |
| static u_long get_vco(void) |
| { |
| static u_long cached_vco; |
| u_long msel, pll_ctl; |
| |
| /* The assumption here is that VCO never changes at runtime. |
| * If, someday, we support that, then we'll have to change this. |
| */ |
| if (cached_vco) |
| return cached_vco; |
| |
| pll_ctl = bfin_read_PLL_CTL(); |
| msel = (pll_ctl >> 9) & 0x3F; |
| if (0 == msel) |
| msel = 64; |
| |
| cached_vco = get_clkin_hz(); |
| cached_vco >>= (1 & pll_ctl); /* DF bit */ |
| cached_vco *= msel; |
| return cached_vco; |
| } |
| |
| /* Get the Core clock */ |
| u_long get_cclk(void) |
| { |
| static u_long cached_cclk_pll_div, cached_cclk; |
| u_long csel, ssel; |
| |
| if (bfin_read_PLL_STAT() & 0x1) |
| return get_clkin_hz(); |
| |
| ssel = bfin_read_PLL_DIV(); |
| if (ssel == cached_cclk_pll_div) |
| return cached_cclk; |
| else |
| cached_cclk_pll_div = ssel; |
| |
| csel = ((ssel >> 4) & 0x03); |
| ssel &= 0xf; |
| if (ssel && ssel < (1 << csel)) /* SCLK > CCLK */ |
| cached_cclk = get_vco() / ssel; |
| else |
| cached_cclk = get_vco() >> csel; |
| return cached_cclk; |
| } |
| EXPORT_SYMBOL(get_cclk); |
| |
| /* Get the System clock */ |
| u_long get_sclk(void) |
| { |
| static u_long cached_sclk; |
| u_long ssel; |
| |
| /* The assumption here is that SCLK never changes at runtime. |
| * If, someday, we support that, then we'll have to change this. |
| */ |
| if (cached_sclk) |
| return cached_sclk; |
| |
| if (bfin_read_PLL_STAT() & 0x1) |
| return get_clkin_hz(); |
| |
| ssel = bfin_read_PLL_DIV() & 0xf; |
| if (0 == ssel) { |
| printk(KERN_WARNING "Invalid System Clock\n"); |
| ssel = 1; |
| } |
| |
| cached_sclk = get_vco() / ssel; |
| return cached_sclk; |
| } |
| EXPORT_SYMBOL(get_sclk); |
| |
| unsigned long sclk_to_usecs(unsigned long sclk) |
| { |
| u64 tmp = USEC_PER_SEC * (u64)sclk; |
| do_div(tmp, get_sclk()); |
| return tmp; |
| } |
| EXPORT_SYMBOL(sclk_to_usecs); |
| |
| unsigned long usecs_to_sclk(unsigned long usecs) |
| { |
| u64 tmp = get_sclk() * (u64)usecs; |
| do_div(tmp, USEC_PER_SEC); |
| return tmp; |
| } |
| EXPORT_SYMBOL(usecs_to_sclk); |
| |
| /* |
| * Get CPU information for use by the procfs. |
| */ |
| static int show_cpuinfo(struct seq_file *m, void *v) |
| { |
| char *cpu, *mmu, *fpu, *vendor, *cache; |
| uint32_t revid; |
| int cpu_num = *(unsigned int *)v; |
| u_long sclk, cclk; |
| u_int icache_size = BFIN_ICACHESIZE / 1024, dcache_size = 0, dsup_banks = 0; |
| struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, cpu_num); |
| |
| cpu = CPU; |
| mmu = "none"; |
| fpu = "none"; |
| revid = bfin_revid(); |
| |
| sclk = get_sclk(); |
| cclk = get_cclk(); |
| |
| switch (bfin_read_CHIPID() & CHIPID_MANUFACTURE) { |
| case 0xca: |
| vendor = "Analog Devices"; |
| break; |
| default: |
| vendor = "unknown"; |
| break; |
| } |
| |
| seq_printf(m, "processor\t: %d\n" "vendor_id\t: %s\n", cpu_num, vendor); |
| |
| if (CPUID == bfin_cpuid()) |
| seq_printf(m, "cpu family\t: 0x%04x\n", CPUID); |
| else |
| seq_printf(m, "cpu family\t: Compiled for:0x%04x, running on:0x%04x\n", |
| CPUID, bfin_cpuid()); |
| |
| seq_printf(m, "model name\t: ADSP-%s %lu(MHz CCLK) %lu(MHz SCLK) (%s)\n" |
| "stepping\t: %d ", |
| cpu, cclk/1000000, sclk/1000000, |
| #ifdef CONFIG_MPU |
| "mpu on", |
| #else |
| "mpu off", |
| #endif |
| revid); |
| |
| if (bfin_revid() != bfin_compiled_revid()) { |
| if (bfin_compiled_revid() == -1) |
| seq_printf(m, "(Compiled for Rev none)"); |
| else if (bfin_compiled_revid() == 0xffff) |
| seq_printf(m, "(Compiled for Rev any)"); |
| else |
| seq_printf(m, "(Compiled for Rev %d)", bfin_compiled_revid()); |
| } |
| |
| seq_printf(m, "\ncpu MHz\t\t: %lu.%03lu/%lu.%03lu\n", |
| cclk/1000000, cclk%1000000, |
| sclk/1000000, sclk%1000000); |
| seq_printf(m, "bogomips\t: %lu.%02lu\n" |
| "Calibration\t: %lu loops\n", |
| (loops_per_jiffy * HZ) / 500000, |
| ((loops_per_jiffy * HZ) / 5000) % 100, |
| (loops_per_jiffy * HZ)); |
| |
| /* Check Cache configutation */ |
| switch (cpudata->dmemctl & (1 << DMC0_P | 1 << DMC1_P)) { |
| case ACACHE_BSRAM: |
| cache = "dbank-A/B\t: cache/sram"; |
| dcache_size = 16; |
| dsup_banks = 1; |
| break; |
| case ACACHE_BCACHE: |
| cache = "dbank-A/B\t: cache/cache"; |
| dcache_size = 32; |
| dsup_banks = 2; |
| break; |
| case ASRAM_BSRAM: |
| cache = "dbank-A/B\t: sram/sram"; |
| dcache_size = 0; |
| dsup_banks = 0; |
| break; |
| default: |
| cache = "unknown"; |
| dcache_size = 0; |
| dsup_banks = 0; |
| break; |
| } |
| |
| /* Is it turned on? */ |
| if ((cpudata->dmemctl & (ENDCPLB | DMC_ENABLE)) != (ENDCPLB | DMC_ENABLE)) |
| dcache_size = 0; |
| |
| if ((cpudata->imemctl & (IMC | ENICPLB)) != (IMC | ENICPLB)) |
| icache_size = 0; |
| |
| seq_printf(m, "cache size\t: %d KB(L1 icache) " |
| "%d KB(L1 dcache) %d KB(L2 cache)\n", |
| icache_size, dcache_size, 0); |
| seq_printf(m, "%s\n", cache); |
| seq_printf(m, "external memory\t: " |
| #if defined(CONFIG_BFIN_EXTMEM_ICACHEABLE) |
| "cacheable" |
| #else |
| "uncacheable" |
| #endif |
| " in instruction cache\n"); |
| seq_printf(m, "external memory\t: " |
| #if defined(CONFIG_BFIN_EXTMEM_WRITEBACK) |
| "cacheable (write-back)" |
| #elif defined(CONFIG_BFIN_EXTMEM_WRITETHROUGH) |
| "cacheable (write-through)" |
| #else |
| "uncacheable" |
| #endif |
| " in data cache\n"); |
| |
| if (icache_size) |
| seq_printf(m, "icache setup\t: %d Sub-banks/%d Ways, %d Lines/Way\n", |
| BFIN_ISUBBANKS, BFIN_IWAYS, BFIN_ILINES); |
| else |
| seq_printf(m, "icache setup\t: off\n"); |
| |
| seq_printf(m, |
| "dcache setup\t: %d Super-banks/%d Sub-banks/%d Ways, %d Lines/Way\n", |
| dsup_banks, BFIN_DSUBBANKS, BFIN_DWAYS, |
| BFIN_DLINES); |
| #ifdef __ARCH_SYNC_CORE_DCACHE |
| seq_printf(m, "SMP Dcache Flushes\t: %lu\n\n", dcache_invld_count[cpu_num]); |
| #endif |
| #ifdef __ARCH_SYNC_CORE_ICACHE |
| seq_printf(m, "SMP Icache Flushes\t: %lu\n\n", icache_invld_count[cpu_num]); |
| #endif |
| |
| if (cpu_num != num_possible_cpus() - 1) |
| return 0; |
| |
| if (L2_LENGTH) { |
| seq_printf(m, "L2 SRAM\t\t: %dKB\n", L2_LENGTH/0x400); |
| seq_printf(m, "L2 SRAM\t\t: " |
| #if defined(CONFIG_BFIN_L2_ICACHEABLE) |
| "cacheable" |
| #else |
| "uncacheable" |
| #endif |
| " in instruction cache\n"); |
| seq_printf(m, "L2 SRAM\t\t: " |
| #if defined(CONFIG_BFIN_L2_WRITEBACK) |
| "cacheable (write-back)" |
| #elif defined(CONFIG_BFIN_L2_WRITETHROUGH) |
| "cacheable (write-through)" |
| #else |
| "uncacheable" |
| #endif |
| " in data cache\n"); |
| } |
| seq_printf(m, "board name\t: %s\n", bfin_board_name); |
| seq_printf(m, "board memory\t: %ld kB (0x%p -> 0x%p)\n", |
| physical_mem_end >> 10, (void *)0, (void *)physical_mem_end); |
| seq_printf(m, "kernel memory\t: %d kB (0x%p -> 0x%p)\n", |
| ((int)memory_end - (int)_rambase) >> 10, |
| (void *)_rambase, |
| (void *)memory_end); |
| seq_printf(m, "\n"); |
| |
| return 0; |
| } |
| |
| static void *c_start(struct seq_file *m, loff_t *pos) |
| { |
| if (*pos == 0) |
| *pos = first_cpu(cpu_online_map); |
| if (*pos >= num_online_cpus()) |
| return NULL; |
| |
| return pos; |
| } |
| |
| static void *c_next(struct seq_file *m, void *v, loff_t *pos) |
| { |
| *pos = next_cpu(*pos, cpu_online_map); |
| |
| return c_start(m, pos); |
| } |
| |
| static void c_stop(struct seq_file *m, void *v) |
| { |
| } |
| |
| const struct seq_operations cpuinfo_op = { |
| .start = c_start, |
| .next = c_next, |
| .stop = c_stop, |
| .show = show_cpuinfo, |
| }; |
| |
| void __init cmdline_init(const char *r0) |
| { |
| early_shadow_stamp(); |
| if (r0) |
| strncpy(command_line, r0, COMMAND_LINE_SIZE); |
| } |