blob: 20fb31579b6942ccbcb4c8ebea350d72a81e860f [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* x86_64 specific EFI support functions
* Based on Extensible Firmware Interface Specification version 1.0
*
* Copyright (C) 2005-2008 Intel Co.
* Fenghua Yu <fenghua.yu@intel.com>
* Bibo Mao <bibo.mao@intel.com>
* Chandramouli Narayanan <mouli@linux.intel.com>
* Huang Ying <ying.huang@intel.com>
*
* Code to convert EFI to E820 map has been implemented in elilo bootloader
* based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table
* is setup appropriately for EFI runtime code.
* - mouli 06/14/2007.
*
*/
#define pr_fmt(fmt) "efi: " fmt
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/types.h>
#include <linux/spinlock.h>
#include <linux/bootmem.h>
#include <linux/ioport.h>
#include <linux/init.h>
#include <linux/mc146818rtc.h>
#include <linux/efi.h>
#include <linux/uaccess.h>
#include <linux/io.h>
#include <linux/reboot.h>
#include <linux/slab.h>
#include <linux/ucs2_string.h>
#include <asm/setup.h>
#include <asm/page.h>
#include <asm/e820/api.h>
#include <asm/pgtable.h>
#include <asm/tlbflush.h>
#include <asm/proto.h>
#include <asm/efi.h>
#include <asm/cacheflush.h>
#include <asm/fixmap.h>
#include <asm/realmode.h>
#include <asm/time.h>
#include <asm/pgalloc.h>
/*
* We allocate runtime services regions top-down, starting from -4G, i.e.
* 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G.
*/
static u64 efi_va = EFI_VA_START;
struct efi_scratch efi_scratch;
static void __init early_code_mapping_set_exec(int executable)
{
efi_memory_desc_t *md;
if (!(__supported_pte_mask & _PAGE_NX))
return;
/* Make EFI service code area executable */
for_each_efi_memory_desc(md) {
if (md->type == EFI_RUNTIME_SERVICES_CODE ||
md->type == EFI_BOOT_SERVICES_CODE)
efi_set_executable(md, executable);
}
}
pgd_t * __init efi_call_phys_prolog(void)
{
unsigned long vaddr, addr_pgd, addr_p4d, addr_pud;
pgd_t *save_pgd, *pgd_k, *pgd_efi;
p4d_t *p4d, *p4d_k, *p4d_efi;
pud_t *pud;
int pgd;
int n_pgds, i, j;
if (!efi_enabled(EFI_OLD_MEMMAP)) {
save_pgd = (pgd_t *)__read_cr3();
write_cr3((unsigned long)efi_scratch.efi_pgt);
goto out;
}
early_code_mapping_set_exec(1);
n_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT), PGDIR_SIZE);
save_pgd = kmalloc_array(n_pgds, sizeof(*save_pgd), GFP_KERNEL);
/*
* Build 1:1 identity mapping for efi=old_map usage. Note that
* PAGE_OFFSET is PGDIR_SIZE aligned when KASLR is disabled, while
* it is PUD_SIZE ALIGNED with KASLR enabled. So for a given physical
* address X, the pud_index(X) != pud_index(__va(X)), we can only copy
* PUD entry of __va(X) to fill in pud entry of X to build 1:1 mapping.
* This means here we can only reuse the PMD tables of the direct mapping.
*/
for (pgd = 0; pgd < n_pgds; pgd++) {
addr_pgd = (unsigned long)(pgd * PGDIR_SIZE);
vaddr = (unsigned long)__va(pgd * PGDIR_SIZE);
pgd_efi = pgd_offset_k(addr_pgd);
save_pgd[pgd] = *pgd_efi;
p4d = p4d_alloc(&init_mm, pgd_efi, addr_pgd);
if (!p4d) {
pr_err("Failed to allocate p4d table!\n");
goto out;
}
for (i = 0; i < PTRS_PER_P4D; i++) {
addr_p4d = addr_pgd + i * P4D_SIZE;
p4d_efi = p4d + p4d_index(addr_p4d);
pud = pud_alloc(&init_mm, p4d_efi, addr_p4d);
if (!pud) {
pr_err("Failed to allocate pud table!\n");
goto out;
}
for (j = 0; j < PTRS_PER_PUD; j++) {
addr_pud = addr_p4d + j * PUD_SIZE;
if (addr_pud > (max_pfn << PAGE_SHIFT))
break;
vaddr = (unsigned long)__va(addr_pud);
pgd_k = pgd_offset_k(vaddr);
p4d_k = p4d_offset(pgd_k, vaddr);
pud[j] = *pud_offset(p4d_k, vaddr);
}
}
}
out:
__flush_tlb_all();
return save_pgd;
}
void __init efi_call_phys_epilog(pgd_t *save_pgd)
{
/*
* After the lock is released, the original page table is restored.
*/
int pgd_idx, i;
int nr_pgds;
pgd_t *pgd;
p4d_t *p4d;
pud_t *pud;
if (!efi_enabled(EFI_OLD_MEMMAP)) {
write_cr3((unsigned long)save_pgd);
__flush_tlb_all();
return;
}
nr_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT) , PGDIR_SIZE);
for (pgd_idx = 0; pgd_idx < nr_pgds; pgd_idx++) {
pgd = pgd_offset_k(pgd_idx * PGDIR_SIZE);
set_pgd(pgd_offset_k(pgd_idx * PGDIR_SIZE), save_pgd[pgd_idx]);
if (!(pgd_val(*pgd) & _PAGE_PRESENT))
continue;
for (i = 0; i < PTRS_PER_P4D; i++) {
p4d = p4d_offset(pgd,
pgd_idx * PGDIR_SIZE + i * P4D_SIZE);
if (!(p4d_val(*p4d) & _PAGE_PRESENT))
continue;
pud = (pud_t *)p4d_page_vaddr(*p4d);
pud_free(&init_mm, pud);
}
p4d = (p4d_t *)pgd_page_vaddr(*pgd);
p4d_free(&init_mm, p4d);
}
kfree(save_pgd);
__flush_tlb_all();
early_code_mapping_set_exec(0);
}
static pgd_t *efi_pgd;
/*
* We need our own copy of the higher levels of the page tables
* because we want to avoid inserting EFI region mappings (EFI_VA_END
* to EFI_VA_START) into the standard kernel page tables. Everything
* else can be shared, see efi_sync_low_kernel_mappings().
*/
int __init efi_alloc_page_tables(void)
{
pgd_t *pgd;
p4d_t *p4d;
pud_t *pud;
gfp_t gfp_mask;
if (efi_enabled(EFI_OLD_MEMMAP))
return 0;
gfp_mask = GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO;
efi_pgd = (pgd_t *)__get_free_page(gfp_mask);
if (!efi_pgd)
return -ENOMEM;
pgd = efi_pgd + pgd_index(EFI_VA_END);
p4d = p4d_alloc(&init_mm, pgd, EFI_VA_END);
if (!p4d) {
free_page((unsigned long)efi_pgd);
return -ENOMEM;
}
pud = pud_alloc(&init_mm, p4d, EFI_VA_END);
if (!pud) {
if (CONFIG_PGTABLE_LEVELS > 4)
free_page((unsigned long) pgd_page_vaddr(*pgd));
free_page((unsigned long)efi_pgd);
return -ENOMEM;
}
return 0;
}
/*
* Add low kernel mappings for passing arguments to EFI functions.
*/
void efi_sync_low_kernel_mappings(void)
{
unsigned num_entries;
pgd_t *pgd_k, *pgd_efi;
p4d_t *p4d_k, *p4d_efi;
pud_t *pud_k, *pud_efi;
if (efi_enabled(EFI_OLD_MEMMAP))
return;
/*
* We can share all PGD entries apart from the one entry that
* covers the EFI runtime mapping space.
*
* Make sure the EFI runtime region mappings are guaranteed to
* only span a single PGD entry and that the entry also maps
* other important kernel regions.
*/
BUILD_BUG_ON(pgd_index(EFI_VA_END) != pgd_index(MODULES_END));
BUILD_BUG_ON((EFI_VA_START & PGDIR_MASK) !=
(EFI_VA_END & PGDIR_MASK));
pgd_efi = efi_pgd + pgd_index(PAGE_OFFSET);
pgd_k = pgd_offset_k(PAGE_OFFSET);
num_entries = pgd_index(EFI_VA_END) - pgd_index(PAGE_OFFSET);
memcpy(pgd_efi, pgd_k, sizeof(pgd_t) * num_entries);
/*
* As with PGDs, we share all P4D entries apart from the one entry
* that covers the EFI runtime mapping space.
*/
BUILD_BUG_ON(p4d_index(EFI_VA_END) != p4d_index(MODULES_END));
BUILD_BUG_ON((EFI_VA_START & P4D_MASK) != (EFI_VA_END & P4D_MASK));
pgd_efi = efi_pgd + pgd_index(EFI_VA_END);
pgd_k = pgd_offset_k(EFI_VA_END);
p4d_efi = p4d_offset(pgd_efi, 0);
p4d_k = p4d_offset(pgd_k, 0);
num_entries = p4d_index(EFI_VA_END);
memcpy(p4d_efi, p4d_k, sizeof(p4d_t) * num_entries);
/*
* We share all the PUD entries apart from those that map the
* EFI regions. Copy around them.
*/
BUILD_BUG_ON((EFI_VA_START & ~PUD_MASK) != 0);
BUILD_BUG_ON((EFI_VA_END & ~PUD_MASK) != 0);
p4d_efi = p4d_offset(pgd_efi, EFI_VA_END);
p4d_k = p4d_offset(pgd_k, EFI_VA_END);
pud_efi = pud_offset(p4d_efi, 0);
pud_k = pud_offset(p4d_k, 0);
num_entries = pud_index(EFI_VA_END);
memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
pud_efi = pud_offset(p4d_efi, EFI_VA_START);
pud_k = pud_offset(p4d_k, EFI_VA_START);
num_entries = PTRS_PER_PUD - pud_index(EFI_VA_START);
memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
}
/*
* Wrapper for slow_virt_to_phys() that handles NULL addresses.
*/
static inline phys_addr_t
virt_to_phys_or_null_size(void *va, unsigned long size)
{
bool bad_size;
if (!va)
return 0;
if (virt_addr_valid(va))
return virt_to_phys(va);
/*
* A fully aligned variable on the stack is guaranteed not to
* cross a page bounary. Try to catch strings on the stack by
* checking that 'size' is a power of two.
*/
bad_size = size > PAGE_SIZE || !is_power_of_2(size);
WARN_ON(!IS_ALIGNED((unsigned long)va, size) || bad_size);
return slow_virt_to_phys(va);
}
#define virt_to_phys_or_null(addr) \
virt_to_phys_or_null_size((addr), sizeof(*(addr)))
int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages)
{
unsigned long pfn, text, pf;
struct page *page;
unsigned npages;
pgd_t *pgd;
if (efi_enabled(EFI_OLD_MEMMAP))
return 0;
/*
* Since the PGD is encrypted, set the encryption mask so that when
* this value is loaded into cr3 the PGD will be decrypted during
* the pagetable walk.
*/
efi_scratch.efi_pgt = (pgd_t *)__sme_pa(efi_pgd);
pgd = efi_pgd;
/*
* It can happen that the physical address of new_memmap lands in memory
* which is not mapped in the EFI page table. Therefore we need to go
* and ident-map those pages containing the map before calling
* phys_efi_set_virtual_address_map().
*/
pfn = pa_memmap >> PAGE_SHIFT;
pf = _PAGE_NX | _PAGE_RW | _PAGE_ENC;
if (kernel_map_pages_in_pgd(pgd, pfn, pa_memmap, num_pages, pf)) {
pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap);
return 1;
}
efi_scratch.use_pgd = true;
/*
* Certain firmware versions are way too sentimential and still believe
* they are exclusive and unquestionable owners of the first physical page,
* even though they explicitly mark it as EFI_CONVENTIONAL_MEMORY
* (but then write-access it later during SetVirtualAddressMap()).
*
* Create a 1:1 mapping for this page, to avoid triple faults during early
* boot with such firmware. We are free to hand this page to the BIOS,
* as trim_bios_range() will reserve the first page and isolate it away
* from memory allocators anyway.
*/
if (kernel_map_pages_in_pgd(pgd, 0x0, 0x0, 1, _PAGE_RW)) {
pr_err("Failed to create 1:1 mapping for the first page!\n");
return 1;
}
/*
* When making calls to the firmware everything needs to be 1:1
* mapped and addressable with 32-bit pointers. Map the kernel
* text and allocate a new stack because we can't rely on the
* stack pointer being < 4GB.
*/
if (!IS_ENABLED(CONFIG_EFI_MIXED) || efi_is_native())
return 0;
page = alloc_page(GFP_KERNEL|__GFP_DMA32);
if (!page)
panic("Unable to allocate EFI runtime stack < 4GB\n");
efi_scratch.phys_stack = virt_to_phys(page_address(page));
efi_scratch.phys_stack += PAGE_SIZE; /* stack grows down */
npages = (_etext - _text) >> PAGE_SHIFT;
text = __pa(_text);
pfn = text >> PAGE_SHIFT;
pf = _PAGE_RW | _PAGE_ENC;
if (kernel_map_pages_in_pgd(pgd, pfn, text, npages, pf)) {
pr_err("Failed to map kernel text 1:1\n");
return 1;
}
return 0;
}
static void __init __map_region(efi_memory_desc_t *md, u64 va)
{
unsigned long flags = _PAGE_RW;
unsigned long pfn;
pgd_t *pgd = efi_pgd;
if (!(md->attribute & EFI_MEMORY_WB))
flags |= _PAGE_PCD;
pfn = md->phys_addr >> PAGE_SHIFT;
if (kernel_map_pages_in_pgd(pgd, pfn, va, md->num_pages, flags))
pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n",
md->phys_addr, va);
}
void __init efi_map_region(efi_memory_desc_t *md)
{
unsigned long size = md->num_pages << PAGE_SHIFT;
u64 pa = md->phys_addr;
if (efi_enabled(EFI_OLD_MEMMAP))
return old_map_region(md);
/*
* Make sure the 1:1 mappings are present as a catch-all for b0rked
* firmware which doesn't update all internal pointers after switching
* to virtual mode and would otherwise crap on us.
*/
__map_region(md, md->phys_addr);
/*
* Enforce the 1:1 mapping as the default virtual address when
* booting in EFI mixed mode, because even though we may be
* running a 64-bit kernel, the firmware may only be 32-bit.
*/
if (!efi_is_native () && IS_ENABLED(CONFIG_EFI_MIXED)) {
md->virt_addr = md->phys_addr;
return;
}
efi_va -= size;
/* Is PA 2M-aligned? */
if (!(pa & (PMD_SIZE - 1))) {
efi_va &= PMD_MASK;
} else {
u64 pa_offset = pa & (PMD_SIZE - 1);
u64 prev_va = efi_va;
/* get us the same offset within this 2M page */
efi_va = (efi_va & PMD_MASK) + pa_offset;
if (efi_va > prev_va)
efi_va -= PMD_SIZE;
}
if (efi_va < EFI_VA_END) {
pr_warn(FW_WARN "VA address range overflow!\n");
return;
}
/* Do the VA map */
__map_region(md, efi_va);
md->virt_addr = efi_va;
}
/*
* kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges.
* md->virt_addr is the original virtual address which had been mapped in kexec
* 1st kernel.
*/
void __init efi_map_region_fixed(efi_memory_desc_t *md)
{
__map_region(md, md->phys_addr);
__map_region(md, md->virt_addr);
}
void __iomem *__init efi_ioremap(unsigned long phys_addr, unsigned long size,
u32 type, u64 attribute)
{
unsigned long last_map_pfn;
if (type == EFI_MEMORY_MAPPED_IO)
return ioremap(phys_addr, size);
last_map_pfn = init_memory_mapping(phys_addr, phys_addr + size);
if ((last_map_pfn << PAGE_SHIFT) < phys_addr + size) {
unsigned long top = last_map_pfn << PAGE_SHIFT;
efi_ioremap(top, size - (top - phys_addr), type, attribute);
}
if (!(attribute & EFI_MEMORY_WB))
efi_memory_uc((u64)(unsigned long)__va(phys_addr), size);
return (void __iomem *)__va(phys_addr);
}
void __init parse_efi_setup(u64 phys_addr, u32 data_len)
{
efi_setup = phys_addr + sizeof(struct setup_data);
}
static int __init efi_update_mappings(efi_memory_desc_t *md, unsigned long pf)
{
unsigned long pfn;
pgd_t *pgd = efi_pgd;
int err1, err2;
/* Update the 1:1 mapping */
pfn = md->phys_addr >> PAGE_SHIFT;
err1 = kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, md->num_pages, pf);
if (err1) {
pr_err("Error while updating 1:1 mapping PA 0x%llx -> VA 0x%llx!\n",
md->phys_addr, md->virt_addr);
}
err2 = kernel_map_pages_in_pgd(pgd, pfn, md->virt_addr, md->num_pages, pf);
if (err2) {
pr_err("Error while updating VA mapping PA 0x%llx -> VA 0x%llx!\n",
md->phys_addr, md->virt_addr);
}
return err1 || err2;
}
static int __init efi_update_mem_attr(struct mm_struct *mm, efi_memory_desc_t *md)
{
unsigned long pf = 0;
if (md->attribute & EFI_MEMORY_XP)
pf |= _PAGE_NX;
if (!(md->attribute & EFI_MEMORY_RO))
pf |= _PAGE_RW;
return efi_update_mappings(md, pf);
}
void __init efi_runtime_update_mappings(void)
{
efi_memory_desc_t *md;
if (efi_enabled(EFI_OLD_MEMMAP)) {
if (__supported_pte_mask & _PAGE_NX)
runtime_code_page_mkexec();
return;
}
/*
* Use the EFI Memory Attribute Table for mapping permissions if it
* exists, since it is intended to supersede EFI_PROPERTIES_TABLE.
*/
if (efi_enabled(EFI_MEM_ATTR)) {
efi_memattr_apply_permissions(NULL, efi_update_mem_attr);
return;
}
/*
* EFI_MEMORY_ATTRIBUTES_TABLE is intended to replace
* EFI_PROPERTIES_TABLE. So, use EFI_PROPERTIES_TABLE to update
* permissions only if EFI_MEMORY_ATTRIBUTES_TABLE is not
* published by the firmware. Even if we find a buggy implementation of
* EFI_MEMORY_ATTRIBUTES_TABLE, don't fall back to
* EFI_PROPERTIES_TABLE, because of the same reason.
*/
if (!efi_enabled(EFI_NX_PE_DATA))
return;
for_each_efi_memory_desc(md) {
unsigned long pf = 0;
if (!(md->attribute & EFI_MEMORY_RUNTIME))
continue;
if (!(md->attribute & EFI_MEMORY_WB))
pf |= _PAGE_PCD;
if ((md->attribute & EFI_MEMORY_XP) ||
(md->type == EFI_RUNTIME_SERVICES_DATA))
pf |= _PAGE_NX;
if (!(md->attribute & EFI_MEMORY_RO) &&
(md->type != EFI_RUNTIME_SERVICES_CODE))
pf |= _PAGE_RW;
efi_update_mappings(md, pf);
}
}
void __init efi_dump_pagetable(void)
{
#ifdef CONFIG_EFI_PGT_DUMP
if (efi_enabled(EFI_OLD_MEMMAP))
ptdump_walk_pgd_level(NULL, swapper_pg_dir);
else
ptdump_walk_pgd_level(NULL, efi_pgd);
#endif
}
#ifdef CONFIG_EFI_MIXED
extern efi_status_t efi64_thunk(u32, ...);
#define runtime_service32(func) \
({ \
u32 table = (u32)(unsigned long)efi.systab; \
u32 *rt, *___f; \
\
rt = (u32 *)(table + offsetof(efi_system_table_32_t, runtime)); \
___f = (u32 *)(*rt + offsetof(efi_runtime_services_32_t, func)); \
*___f; \
})
/*
* Switch to the EFI page tables early so that we can access the 1:1
* runtime services mappings which are not mapped in any other page
* tables. This function must be called before runtime_service32().
*
* Also, disable interrupts because the IDT points to 64-bit handlers,
* which aren't going to function correctly when we switch to 32-bit.
*/
#define efi_thunk(f, ...) \
({ \
efi_status_t __s; \
unsigned long __flags; \
u32 __func; \
\
local_irq_save(__flags); \
arch_efi_call_virt_setup(); \
\
__func = runtime_service32(f); \
__s = efi64_thunk(__func, __VA_ARGS__); \
\
arch_efi_call_virt_teardown(); \
local_irq_restore(__flags); \
\
__s; \
})
efi_status_t efi_thunk_set_virtual_address_map(
void *phys_set_virtual_address_map,
unsigned long memory_map_size,
unsigned long descriptor_size,
u32 descriptor_version,
efi_memory_desc_t *virtual_map)
{
efi_status_t status;
unsigned long flags;
u32 func;
efi_sync_low_kernel_mappings();
local_irq_save(flags);
efi_scratch.prev_cr3 = __read_cr3();
write_cr3((unsigned long)efi_scratch.efi_pgt);
__flush_tlb_all();
func = (u32)(unsigned long)phys_set_virtual_address_map;
status = efi64_thunk(func, memory_map_size, descriptor_size,
descriptor_version, virtual_map);
write_cr3(efi_scratch.prev_cr3);
__flush_tlb_all();
local_irq_restore(flags);
return status;
}
static efi_status_t efi_thunk_get_time(efi_time_t *tm, efi_time_cap_t *tc)
{
efi_status_t status;
u32 phys_tm, phys_tc;
spin_lock(&rtc_lock);
phys_tm = virt_to_phys_or_null(tm);
phys_tc = virt_to_phys_or_null(tc);
status = efi_thunk(get_time, phys_tm, phys_tc);
spin_unlock(&rtc_lock);
return status;
}
static efi_status_t efi_thunk_set_time(efi_time_t *tm)
{
efi_status_t status;
u32 phys_tm;
spin_lock(&rtc_lock);
phys_tm = virt_to_phys_or_null(tm);
status = efi_thunk(set_time, phys_tm);
spin_unlock(&rtc_lock);
return status;
}
static efi_status_t
efi_thunk_get_wakeup_time(efi_bool_t *enabled, efi_bool_t *pending,
efi_time_t *tm)
{
efi_status_t status;
u32 phys_enabled, phys_pending, phys_tm;
spin_lock(&rtc_lock);
phys_enabled = virt_to_phys_or_null(enabled);
phys_pending = virt_to_phys_or_null(pending);
phys_tm = virt_to_phys_or_null(tm);
status = efi_thunk(get_wakeup_time, phys_enabled,
phys_pending, phys_tm);
spin_unlock(&rtc_lock);
return status;
}
static efi_status_t
efi_thunk_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
{
efi_status_t status;
u32 phys_tm;
spin_lock(&rtc_lock);
phys_tm = virt_to_phys_or_null(tm);
status = efi_thunk(set_wakeup_time, enabled, phys_tm);
spin_unlock(&rtc_lock);
return status;
}
static unsigned long efi_name_size(efi_char16_t *name)
{
return ucs2_strsize(name, EFI_VAR_NAME_LEN) + 1;
}
static efi_status_t
efi_thunk_get_variable(efi_char16_t *name, efi_guid_t *vendor,
u32 *attr, unsigned long *data_size, void *data)
{
efi_status_t status;
u32 phys_name, phys_vendor, phys_attr;
u32 phys_data_size, phys_data;
phys_data_size = virt_to_phys_or_null(data_size);
phys_vendor = virt_to_phys_or_null(vendor);
phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
phys_attr = virt_to_phys_or_null(attr);
phys_data = virt_to_phys_or_null_size(data, *data_size);
status = efi_thunk(get_variable, phys_name, phys_vendor,
phys_attr, phys_data_size, phys_data);
return status;
}
static efi_status_t
efi_thunk_set_variable(efi_char16_t *name, efi_guid_t *vendor,
u32 attr, unsigned long data_size, void *data)
{
u32 phys_name, phys_vendor, phys_data;
efi_status_t status;
phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
phys_vendor = virt_to_phys_or_null(vendor);
phys_data = virt_to_phys_or_null_size(data, data_size);
/* If data_size is > sizeof(u32) we've got problems */
status = efi_thunk(set_variable, phys_name, phys_vendor,
attr, data_size, phys_data);
return status;
}
static efi_status_t
efi_thunk_get_next_variable(unsigned long *name_size,
efi_char16_t *name,
efi_guid_t *vendor)
{
efi_status_t status;
u32 phys_name_size, phys_name, phys_vendor;
phys_name_size = virt_to_phys_or_null(name_size);
phys_vendor = virt_to_phys_or_null(vendor);
phys_name = virt_to_phys_or_null_size(name, *name_size);
status = efi_thunk(get_next_variable, phys_name_size,
phys_name, phys_vendor);
return status;
}
static efi_status_t
efi_thunk_get_next_high_mono_count(u32 *count)
{
efi_status_t status;
u32 phys_count;
phys_count = virt_to_phys_or_null(count);
status = efi_thunk(get_next_high_mono_count, phys_count);
return status;
}
static void
efi_thunk_reset_system(int reset_type, efi_status_t status,
unsigned long data_size, efi_char16_t *data)
{
u32 phys_data;
phys_data = virt_to_phys_or_null_size(data, data_size);
efi_thunk(reset_system, reset_type, status, data_size, phys_data);
}
static efi_status_t
efi_thunk_update_capsule(efi_capsule_header_t **capsules,
unsigned long count, unsigned long sg_list)
{
/*
* To properly support this function we would need to repackage
* 'capsules' because the firmware doesn't understand 64-bit
* pointers.
*/
return EFI_UNSUPPORTED;
}
static efi_status_t
efi_thunk_query_variable_info(u32 attr, u64 *storage_space,
u64 *remaining_space,
u64 *max_variable_size)
{
efi_status_t status;
u32 phys_storage, phys_remaining, phys_max;
if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
return EFI_UNSUPPORTED;
phys_storage = virt_to_phys_or_null(storage_space);
phys_remaining = virt_to_phys_or_null(remaining_space);
phys_max = virt_to_phys_or_null(max_variable_size);
status = efi_thunk(query_variable_info, attr, phys_storage,
phys_remaining, phys_max);
return status;
}
static efi_status_t
efi_thunk_query_capsule_caps(efi_capsule_header_t **capsules,
unsigned long count, u64 *max_size,
int *reset_type)
{
/*
* To properly support this function we would need to repackage
* 'capsules' because the firmware doesn't understand 64-bit
* pointers.
*/
return EFI_UNSUPPORTED;
}
void efi_thunk_runtime_setup(void)
{
efi.get_time = efi_thunk_get_time;
efi.set_time = efi_thunk_set_time;
efi.get_wakeup_time = efi_thunk_get_wakeup_time;
efi.set_wakeup_time = efi_thunk_set_wakeup_time;
efi.get_variable = efi_thunk_get_variable;
efi.get_next_variable = efi_thunk_get_next_variable;
efi.set_variable = efi_thunk_set_variable;
efi.get_next_high_mono_count = efi_thunk_get_next_high_mono_count;
efi.reset_system = efi_thunk_reset_system;
efi.query_variable_info = efi_thunk_query_variable_info;
efi.update_capsule = efi_thunk_update_capsule;
efi.query_capsule_caps = efi_thunk_query_capsule_caps;
}
#endif /* CONFIG_EFI_MIXED */