| /*************************************************************************** |
| dpti.c - description |
| ------------------- |
| begin : Thu Sep 7 2000 |
| copyright : (C) 2000 by Adaptec |
| |
| July 30, 2001 First version being submitted |
| for inclusion in the kernel. V2.4 |
| |
| See Documentation/scsi/dpti.txt for history, notes, license info |
| and credits |
| ***************************************************************************/ |
| |
| /*************************************************************************** |
| * * |
| * This program is free software; you can redistribute it and/or modify * |
| * it under the terms of the GNU General Public License as published by * |
| * the Free Software Foundation; either version 2 of the License, or * |
| * (at your option) any later version. * |
| * * |
| ***************************************************************************/ |
| /*************************************************************************** |
| * Sat Dec 20 2003 Go Taniguchi <go@turbolinux.co.jp> |
| - Support 2.6 kernel and DMA-mapping |
| - ioctl fix for raid tools |
| - use schedule_timeout in long long loop |
| **************************************************************************/ |
| |
| /*#define DEBUG 1 */ |
| /*#define UARTDELAY 1 */ |
| |
| #include <linux/module.h> |
| |
| MODULE_AUTHOR("Deanna Bonds, with _lots_ of help from Mark Salyzyn"); |
| MODULE_DESCRIPTION("Adaptec I2O RAID Driver"); |
| |
| //////////////////////////////////////////////////////////////// |
| |
| #include <linux/ioctl.h> /* For SCSI-Passthrough */ |
| #include <linux/uaccess.h> |
| |
| #include <linux/stat.h> |
| #include <linux/slab.h> /* for kmalloc() */ |
| #include <linux/pci.h> /* for PCI support */ |
| #include <linux/proc_fs.h> |
| #include <linux/blkdev.h> |
| #include <linux/delay.h> /* for udelay */ |
| #include <linux/interrupt.h> |
| #include <linux/kernel.h> /* for printk */ |
| #include <linux/sched.h> |
| #include <linux/reboot.h> |
| #include <linux/spinlock.h> |
| #include <linux/dma-mapping.h> |
| |
| #include <linux/timer.h> |
| #include <linux/string.h> |
| #include <linux/ioport.h> |
| #include <linux/mutex.h> |
| |
| #include <asm/processor.h> /* for boot_cpu_data */ |
| #include <asm/pgtable.h> |
| #include <asm/io.h> /* for virt_to_bus, etc. */ |
| |
| #include <scsi/scsi.h> |
| #include <scsi/scsi_cmnd.h> |
| #include <scsi/scsi_device.h> |
| #include <scsi/scsi_host.h> |
| #include <scsi/scsi_tcq.h> |
| |
| #include "dpt/dptsig.h" |
| #include "dpti.h" |
| |
| /*============================================================================ |
| * Create a binary signature - this is read by dptsig |
| * Needed for our management apps |
| *============================================================================ |
| */ |
| static DEFINE_MUTEX(adpt_mutex); |
| static dpt_sig_S DPTI_sig = { |
| {'d', 'P', 't', 'S', 'i', 'G'}, SIG_VERSION, |
| #ifdef __i386__ |
| PROC_INTEL, PROC_386 | PROC_486 | PROC_PENTIUM | PROC_SEXIUM, |
| #elif defined(__ia64__) |
| PROC_INTEL, PROC_IA64, |
| #elif defined(__sparc__) |
| PROC_ULTRASPARC, PROC_ULTRASPARC, |
| #elif defined(__alpha__) |
| PROC_ALPHA, PROC_ALPHA, |
| #else |
| (-1),(-1), |
| #endif |
| FT_HBADRVR, 0, OEM_DPT, OS_LINUX, CAP_OVERLAP, DEV_ALL, |
| ADF_ALL_SC5, 0, 0, DPT_VERSION, DPT_REVISION, DPT_SUBREVISION, |
| DPT_MONTH, DPT_DAY, DPT_YEAR, "Adaptec Linux I2O RAID Driver" |
| }; |
| |
| |
| |
| |
| /*============================================================================ |
| * Globals |
| *============================================================================ |
| */ |
| |
| static DEFINE_MUTEX(adpt_configuration_lock); |
| |
| static struct i2o_sys_tbl *sys_tbl; |
| static dma_addr_t sys_tbl_pa; |
| static int sys_tbl_ind; |
| static int sys_tbl_len; |
| |
| static adpt_hba* hba_chain = NULL; |
| static int hba_count = 0; |
| |
| static struct class *adpt_sysfs_class; |
| |
| static long adpt_unlocked_ioctl(struct file *, unsigned int, unsigned long); |
| #ifdef CONFIG_COMPAT |
| static long compat_adpt_ioctl(struct file *, unsigned int, unsigned long); |
| #endif |
| |
| static const struct file_operations adpt_fops = { |
| .unlocked_ioctl = adpt_unlocked_ioctl, |
| .open = adpt_open, |
| .release = adpt_close, |
| #ifdef CONFIG_COMPAT |
| .compat_ioctl = compat_adpt_ioctl, |
| #endif |
| .llseek = noop_llseek, |
| }; |
| |
| /* Structures and definitions for synchronous message posting. |
| * See adpt_i2o_post_wait() for description |
| * */ |
| struct adpt_i2o_post_wait_data |
| { |
| int status; |
| u32 id; |
| adpt_wait_queue_head_t *wq; |
| struct adpt_i2o_post_wait_data *next; |
| }; |
| |
| static struct adpt_i2o_post_wait_data *adpt_post_wait_queue = NULL; |
| static u32 adpt_post_wait_id = 0; |
| static DEFINE_SPINLOCK(adpt_post_wait_lock); |
| |
| |
| /*============================================================================ |
| * Functions |
| *============================================================================ |
| */ |
| |
| static inline int dpt_dma64(adpt_hba *pHba) |
| { |
| return (sizeof(dma_addr_t) > 4 && (pHba)->dma64); |
| } |
| |
| static inline u32 dma_high(dma_addr_t addr) |
| { |
| return upper_32_bits(addr); |
| } |
| |
| static inline u32 dma_low(dma_addr_t addr) |
| { |
| return (u32)addr; |
| } |
| |
| static u8 adpt_read_blink_led(adpt_hba* host) |
| { |
| if (host->FwDebugBLEDflag_P) { |
| if( readb(host->FwDebugBLEDflag_P) == 0xbc ){ |
| return readb(host->FwDebugBLEDvalue_P); |
| } |
| } |
| return 0; |
| } |
| |
| /*============================================================================ |
| * Scsi host template interface functions |
| *============================================================================ |
| */ |
| |
| #ifdef MODULE |
| static struct pci_device_id dptids[] = { |
| { PCI_DPT_VENDOR_ID, PCI_DPT_DEVICE_ID, PCI_ANY_ID, PCI_ANY_ID,}, |
| { PCI_DPT_VENDOR_ID, PCI_DPT_RAPTOR_DEVICE_ID, PCI_ANY_ID, PCI_ANY_ID,}, |
| { 0, } |
| }; |
| #endif |
| |
| MODULE_DEVICE_TABLE(pci,dptids); |
| |
| static int adpt_detect(struct scsi_host_template* sht) |
| { |
| struct pci_dev *pDev = NULL; |
| adpt_hba *pHba; |
| adpt_hba *next; |
| |
| PINFO("Detecting Adaptec I2O RAID controllers...\n"); |
| |
| /* search for all Adatpec I2O RAID cards */ |
| while ((pDev = pci_get_device( PCI_DPT_VENDOR_ID, PCI_ANY_ID, pDev))) { |
| if(pDev->device == PCI_DPT_DEVICE_ID || |
| pDev->device == PCI_DPT_RAPTOR_DEVICE_ID){ |
| if(adpt_install_hba(sht, pDev) ){ |
| PERROR("Could not Init an I2O RAID device\n"); |
| PERROR("Will not try to detect others.\n"); |
| return hba_count-1; |
| } |
| pci_dev_get(pDev); |
| } |
| } |
| |
| /* In INIT state, Activate IOPs */ |
| for (pHba = hba_chain; pHba; pHba = next) { |
| next = pHba->next; |
| // Activate does get status , init outbound, and get hrt |
| if (adpt_i2o_activate_hba(pHba) < 0) { |
| adpt_i2o_delete_hba(pHba); |
| } |
| } |
| |
| |
| /* Active IOPs in HOLD state */ |
| |
| rebuild_sys_tab: |
| if (hba_chain == NULL) |
| return 0; |
| |
| /* |
| * If build_sys_table fails, we kill everything and bail |
| * as we can't init the IOPs w/o a system table |
| */ |
| if (adpt_i2o_build_sys_table() < 0) { |
| adpt_i2o_sys_shutdown(); |
| return 0; |
| } |
| |
| PDEBUG("HBA's in HOLD state\n"); |
| |
| /* If IOP don't get online, we need to rebuild the System table */ |
| for (pHba = hba_chain; pHba; pHba = pHba->next) { |
| if (adpt_i2o_online_hba(pHba) < 0) { |
| adpt_i2o_delete_hba(pHba); |
| goto rebuild_sys_tab; |
| } |
| } |
| |
| /* Active IOPs now in OPERATIONAL state */ |
| PDEBUG("HBA's in OPERATIONAL state\n"); |
| |
| printk("dpti: If you have a lot of devices this could take a few minutes.\n"); |
| for (pHba = hba_chain; pHba; pHba = next) { |
| next = pHba->next; |
| printk(KERN_INFO"%s: Reading the hardware resource table.\n", pHba->name); |
| if (adpt_i2o_lct_get(pHba) < 0){ |
| adpt_i2o_delete_hba(pHba); |
| continue; |
| } |
| |
| if (adpt_i2o_parse_lct(pHba) < 0){ |
| adpt_i2o_delete_hba(pHba); |
| continue; |
| } |
| adpt_inquiry(pHba); |
| } |
| |
| adpt_sysfs_class = class_create(THIS_MODULE, "dpt_i2o"); |
| if (IS_ERR(adpt_sysfs_class)) { |
| printk(KERN_WARNING"dpti: unable to create dpt_i2o class\n"); |
| adpt_sysfs_class = NULL; |
| } |
| |
| for (pHba = hba_chain; pHba; pHba = next) { |
| next = pHba->next; |
| if (adpt_scsi_host_alloc(pHba, sht) < 0){ |
| adpt_i2o_delete_hba(pHba); |
| continue; |
| } |
| pHba->initialized = TRUE; |
| pHba->state &= ~DPTI_STATE_RESET; |
| if (adpt_sysfs_class) { |
| struct device *dev = device_create(adpt_sysfs_class, |
| NULL, MKDEV(DPTI_I2O_MAJOR, pHba->unit), NULL, |
| "dpti%d", pHba->unit); |
| if (IS_ERR(dev)) { |
| printk(KERN_WARNING"dpti%d: unable to " |
| "create device in dpt_i2o class\n", |
| pHba->unit); |
| } |
| } |
| } |
| |
| // Register our control device node |
| // nodes will need to be created in /dev to access this |
| // the nodes can not be created from within the driver |
| if (hba_count && register_chrdev(DPTI_I2O_MAJOR, DPT_DRIVER, &adpt_fops)) { |
| adpt_i2o_sys_shutdown(); |
| return 0; |
| } |
| return hba_count; |
| } |
| |
| |
| /* |
| * scsi_unregister will be called AFTER we return. |
| */ |
| static int adpt_release(struct Scsi_Host *host) |
| { |
| adpt_hba* pHba = (adpt_hba*) host->hostdata[0]; |
| // adpt_i2o_quiesce_hba(pHba); |
| adpt_i2o_delete_hba(pHba); |
| scsi_unregister(host); |
| return 0; |
| } |
| |
| |
| static void adpt_inquiry(adpt_hba* pHba) |
| { |
| u32 msg[17]; |
| u32 *mptr; |
| u32 *lenptr; |
| int direction; |
| int scsidir; |
| u32 len; |
| u32 reqlen; |
| u8* buf; |
| dma_addr_t addr; |
| u8 scb[16]; |
| s32 rcode; |
| |
| memset(msg, 0, sizeof(msg)); |
| buf = dma_alloc_coherent(&pHba->pDev->dev, 80, &addr, GFP_KERNEL); |
| if(!buf){ |
| printk(KERN_ERR"%s: Could not allocate buffer\n",pHba->name); |
| return; |
| } |
| memset((void*)buf, 0, 36); |
| |
| len = 36; |
| direction = 0x00000000; |
| scsidir =0x40000000; // DATA IN (iop<--dev) |
| |
| if (dpt_dma64(pHba)) |
| reqlen = 17; // SINGLE SGE, 64 bit |
| else |
| reqlen = 14; // SINGLE SGE, 32 bit |
| /* Stick the headers on */ |
| msg[0] = reqlen<<16 | SGL_OFFSET_12; |
| msg[1] = (0xff<<24|HOST_TID<<12|ADAPTER_TID); |
| msg[2] = 0; |
| msg[3] = 0; |
| // Adaptec/DPT Private stuff |
| msg[4] = I2O_CMD_SCSI_EXEC|DPT_ORGANIZATION_ID<<16; |
| msg[5] = ADAPTER_TID | 1<<16 /* Interpret*/; |
| /* Direction, disconnect ok | sense data | simple queue , CDBLen */ |
| // I2O_SCB_FLAG_ENABLE_DISCONNECT | |
| // I2O_SCB_FLAG_SIMPLE_QUEUE_TAG | |
| // I2O_SCB_FLAG_SENSE_DATA_IN_MESSAGE; |
| msg[6] = scsidir|0x20a00000| 6 /* cmd len*/; |
| |
| mptr=msg+7; |
| |
| memset(scb, 0, sizeof(scb)); |
| // Write SCSI command into the message - always 16 byte block |
| scb[0] = INQUIRY; |
| scb[1] = 0; |
| scb[2] = 0; |
| scb[3] = 0; |
| scb[4] = 36; |
| scb[5] = 0; |
| // Don't care about the rest of scb |
| |
| memcpy(mptr, scb, sizeof(scb)); |
| mptr+=4; |
| lenptr=mptr++; /* Remember me - fill in when we know */ |
| |
| /* Now fill in the SGList and command */ |
| *lenptr = len; |
| if (dpt_dma64(pHba)) { |
| *mptr++ = (0x7C<<24)+(2<<16)+0x02; /* Enable 64 bit */ |
| *mptr++ = 1 << PAGE_SHIFT; |
| *mptr++ = 0xD0000000|direction|len; |
| *mptr++ = dma_low(addr); |
| *mptr++ = dma_high(addr); |
| } else { |
| *mptr++ = 0xD0000000|direction|len; |
| *mptr++ = addr; |
| } |
| |
| // Send it on it's way |
| rcode = adpt_i2o_post_wait(pHba, msg, reqlen<<2, 120); |
| if (rcode != 0) { |
| sprintf(pHba->detail, "Adaptec I2O RAID"); |
| printk(KERN_INFO "%s: Inquiry Error (%d)\n",pHba->name,rcode); |
| if (rcode != -ETIME && rcode != -EINTR) |
| dma_free_coherent(&pHba->pDev->dev, 80, buf, addr); |
| } else { |
| memset(pHba->detail, 0, sizeof(pHba->detail)); |
| memcpy(&(pHba->detail), "Vendor: Adaptec ", 16); |
| memcpy(&(pHba->detail[16]), " Model: ", 8); |
| memcpy(&(pHba->detail[24]), (u8*) &buf[16], 16); |
| memcpy(&(pHba->detail[40]), " FW: ", 4); |
| memcpy(&(pHba->detail[44]), (u8*) &buf[32], 4); |
| pHba->detail[48] = '\0'; /* precautionary */ |
| dma_free_coherent(&pHba->pDev->dev, 80, buf, addr); |
| } |
| adpt_i2o_status_get(pHba); |
| return ; |
| } |
| |
| |
| static int adpt_slave_configure(struct scsi_device * device) |
| { |
| struct Scsi_Host *host = device->host; |
| adpt_hba* pHba; |
| |
| pHba = (adpt_hba *) host->hostdata[0]; |
| |
| if (host->can_queue && device->tagged_supported) { |
| scsi_change_queue_depth(device, |
| host->can_queue - 1); |
| } |
| return 0; |
| } |
| |
| static int adpt_queue_lck(struct scsi_cmnd * cmd, void (*done) (struct scsi_cmnd *)) |
| { |
| adpt_hba* pHba = NULL; |
| struct adpt_device* pDev = NULL; /* dpt per device information */ |
| |
| cmd->scsi_done = done; |
| /* |
| * SCSI REQUEST_SENSE commands will be executed automatically by the |
| * Host Adapter for any errors, so they should not be executed |
| * explicitly unless the Sense Data is zero indicating that no error |
| * occurred. |
| */ |
| |
| if ((cmd->cmnd[0] == REQUEST_SENSE) && (cmd->sense_buffer[0] != 0)) { |
| cmd->result = (DID_OK << 16); |
| cmd->scsi_done(cmd); |
| return 0; |
| } |
| |
| pHba = (adpt_hba*)cmd->device->host->hostdata[0]; |
| if (!pHba) { |
| return FAILED; |
| } |
| |
| rmb(); |
| if ((pHba->state) & DPTI_STATE_RESET) |
| return SCSI_MLQUEUE_HOST_BUSY; |
| |
| // TODO if the cmd->device if offline then I may need to issue a bus rescan |
| // followed by a get_lct to see if the device is there anymore |
| if((pDev = (struct adpt_device*) (cmd->device->hostdata)) == NULL) { |
| /* |
| * First command request for this device. Set up a pointer |
| * to the device structure. This should be a TEST_UNIT_READY |
| * command from scan_scsis_single. |
| */ |
| if ((pDev = adpt_find_device(pHba, (u32)cmd->device->channel, (u32)cmd->device->id, cmd->device->lun)) == NULL) { |
| // TODO: if any luns are at this bus, scsi id then fake a TEST_UNIT_READY and INQUIRY response |
| // with type 7F (for all luns less than the max for this bus,id) so the lun scan will continue. |
| cmd->result = (DID_NO_CONNECT << 16); |
| cmd->scsi_done(cmd); |
| return 0; |
| } |
| cmd->device->hostdata = pDev; |
| } |
| pDev->pScsi_dev = cmd->device; |
| |
| /* |
| * If we are being called from when the device is being reset, |
| * delay processing of the command until later. |
| */ |
| if (pDev->state & DPTI_DEV_RESET ) { |
| return FAILED; |
| } |
| return adpt_scsi_to_i2o(pHba, cmd, pDev); |
| } |
| |
| static DEF_SCSI_QCMD(adpt_queue) |
| |
| static int adpt_bios_param(struct scsi_device *sdev, struct block_device *dev, |
| sector_t capacity, int geom[]) |
| { |
| int heads=-1; |
| int sectors=-1; |
| int cylinders=-1; |
| |
| // *** First lets set the default geometry **** |
| |
| // If the capacity is less than ox2000 |
| if (capacity < 0x2000 ) { // floppy |
| heads = 18; |
| sectors = 2; |
| } |
| // else if between 0x2000 and 0x20000 |
| else if (capacity < 0x20000) { |
| heads = 64; |
| sectors = 32; |
| } |
| // else if between 0x20000 and 0x40000 |
| else if (capacity < 0x40000) { |
| heads = 65; |
| sectors = 63; |
| } |
| // else if between 0x4000 and 0x80000 |
| else if (capacity < 0x80000) { |
| heads = 128; |
| sectors = 63; |
| } |
| // else if greater than 0x80000 |
| else { |
| heads = 255; |
| sectors = 63; |
| } |
| cylinders = sector_div(capacity, heads * sectors); |
| |
| // Special case if CDROM |
| if(sdev->type == 5) { // CDROM |
| heads = 252; |
| sectors = 63; |
| cylinders = 1111; |
| } |
| |
| geom[0] = heads; |
| geom[1] = sectors; |
| geom[2] = cylinders; |
| |
| PDEBUG("adpt_bios_param: exit\n"); |
| return 0; |
| } |
| |
| |
| static const char *adpt_info(struct Scsi_Host *host) |
| { |
| adpt_hba* pHba; |
| |
| pHba = (adpt_hba *) host->hostdata[0]; |
| return (char *) (pHba->detail); |
| } |
| |
| static int adpt_show_info(struct seq_file *m, struct Scsi_Host *host) |
| { |
| struct adpt_device* d; |
| int id; |
| int chan; |
| adpt_hba* pHba; |
| int unit; |
| |
| // Find HBA (host bus adapter) we are looking for |
| mutex_lock(&adpt_configuration_lock); |
| for (pHba = hba_chain; pHba; pHba = pHba->next) { |
| if (pHba->host == host) { |
| break; /* found adapter */ |
| } |
| } |
| mutex_unlock(&adpt_configuration_lock); |
| if (pHba == NULL) { |
| return 0; |
| } |
| host = pHba->host; |
| |
| seq_printf(m, "Adaptec I2O RAID Driver Version: %s\n\n", DPT_I2O_VERSION); |
| seq_printf(m, "%s\n", pHba->detail); |
| seq_printf(m, "SCSI Host=scsi%d Control Node=/dev/%s irq=%d\n", |
| pHba->host->host_no, pHba->name, host->irq); |
| seq_printf(m, "\tpost fifo size = %d\n\treply fifo size = %d\n\tsg table size = %d\n\n", |
| host->can_queue, (int) pHba->reply_fifo_size , host->sg_tablesize); |
| |
| seq_puts(m, "Devices:\n"); |
| for(chan = 0; chan < MAX_CHANNEL; chan++) { |
| for(id = 0; id < MAX_ID; id++) { |
| d = pHba->channel[chan].device[id]; |
| while(d) { |
| seq_printf(m,"\t%-24.24s", d->pScsi_dev->vendor); |
| seq_printf(m," Rev: %-8.8s\n", d->pScsi_dev->rev); |
| |
| unit = d->pI2o_dev->lct_data.tid; |
| seq_printf(m, "\tTID=%d, (Channel=%d, Target=%d, Lun=%llu) (%s)\n\n", |
| unit, (int)d->scsi_channel, (int)d->scsi_id, d->scsi_lun, |
| scsi_device_online(d->pScsi_dev)? "online":"offline"); |
| d = d->next_lun; |
| } |
| } |
| } |
| return 0; |
| } |
| |
| /* |
| * Turn a struct scsi_cmnd * into a unique 32 bit 'context'. |
| */ |
| static u32 adpt_cmd_to_context(struct scsi_cmnd *cmd) |
| { |
| return (u32)cmd->serial_number; |
| } |
| |
| /* |
| * Go from a u32 'context' to a struct scsi_cmnd * . |
| * This could probably be made more efficient. |
| */ |
| static struct scsi_cmnd * |
| adpt_cmd_from_context(adpt_hba * pHba, u32 context) |
| { |
| struct scsi_cmnd * cmd; |
| struct scsi_device * d; |
| |
| if (context == 0) |
| return NULL; |
| |
| spin_unlock(pHba->host->host_lock); |
| shost_for_each_device(d, pHba->host) { |
| unsigned long flags; |
| spin_lock_irqsave(&d->list_lock, flags); |
| list_for_each_entry(cmd, &d->cmd_list, list) { |
| if (((u32)cmd->serial_number == context)) { |
| spin_unlock_irqrestore(&d->list_lock, flags); |
| scsi_device_put(d); |
| spin_lock(pHba->host->host_lock); |
| return cmd; |
| } |
| } |
| spin_unlock_irqrestore(&d->list_lock, flags); |
| } |
| spin_lock(pHba->host->host_lock); |
| |
| return NULL; |
| } |
| |
| /* |
| * Turn a pointer to ioctl reply data into an u32 'context' |
| */ |
| static u32 adpt_ioctl_to_context(adpt_hba * pHba, void *reply) |
| { |
| #if BITS_PER_LONG == 32 |
| return (u32)(unsigned long)reply; |
| #else |
| ulong flags = 0; |
| u32 nr, i; |
| |
| spin_lock_irqsave(pHba->host->host_lock, flags); |
| nr = ARRAY_SIZE(pHba->ioctl_reply_context); |
| for (i = 0; i < nr; i++) { |
| if (pHba->ioctl_reply_context[i] == NULL) { |
| pHba->ioctl_reply_context[i] = reply; |
| break; |
| } |
| } |
| spin_unlock_irqrestore(pHba->host->host_lock, flags); |
| if (i >= nr) { |
| printk(KERN_WARNING"%s: Too many outstanding " |
| "ioctl commands\n", pHba->name); |
| return (u32)-1; |
| } |
| |
| return i; |
| #endif |
| } |
| |
| /* |
| * Go from an u32 'context' to a pointer to ioctl reply data. |
| */ |
| static void *adpt_ioctl_from_context(adpt_hba *pHba, u32 context) |
| { |
| #if BITS_PER_LONG == 32 |
| return (void *)(unsigned long)context; |
| #else |
| void *p = pHba->ioctl_reply_context[context]; |
| pHba->ioctl_reply_context[context] = NULL; |
| |
| return p; |
| #endif |
| } |
| |
| /*=========================================================================== |
| * Error Handling routines |
| *=========================================================================== |
| */ |
| |
| static int adpt_abort(struct scsi_cmnd * cmd) |
| { |
| adpt_hba* pHba = NULL; /* host bus adapter structure */ |
| struct adpt_device* dptdevice; /* dpt per device information */ |
| u32 msg[5]; |
| int rcode; |
| |
| if(cmd->serial_number == 0){ |
| return FAILED; |
| } |
| pHba = (adpt_hba*) cmd->device->host->hostdata[0]; |
| printk(KERN_INFO"%s: Trying to Abort\n",pHba->name); |
| if ((dptdevice = (void*) (cmd->device->hostdata)) == NULL) { |
| printk(KERN_ERR "%s: Unable to abort: No device in cmnd\n",pHba->name); |
| return FAILED; |
| } |
| |
| memset(msg, 0, sizeof(msg)); |
| msg[0] = FIVE_WORD_MSG_SIZE|SGL_OFFSET_0; |
| msg[1] = I2O_CMD_SCSI_ABORT<<24|HOST_TID<<12|dptdevice->tid; |
| msg[2] = 0; |
| msg[3]= 0; |
| msg[4] = adpt_cmd_to_context(cmd); |
| if (pHba->host) |
| spin_lock_irq(pHba->host->host_lock); |
| rcode = adpt_i2o_post_wait(pHba, msg, sizeof(msg), FOREVER); |
| if (pHba->host) |
| spin_unlock_irq(pHba->host->host_lock); |
| if (rcode != 0) { |
| if(rcode == -EOPNOTSUPP ){ |
| printk(KERN_INFO"%s: Abort cmd not supported\n",pHba->name); |
| return FAILED; |
| } |
| printk(KERN_INFO"%s: Abort failed.\n",pHba->name); |
| return FAILED; |
| } |
| printk(KERN_INFO"%s: Abort complete.\n",pHba->name); |
| return SUCCESS; |
| } |
| |
| |
| #define I2O_DEVICE_RESET 0x27 |
| // This is the same for BLK and SCSI devices |
| // NOTE this is wrong in the i2o.h definitions |
| // This is not currently supported by our adapter but we issue it anyway |
| static int adpt_device_reset(struct scsi_cmnd* cmd) |
| { |
| adpt_hba* pHba; |
| u32 msg[4]; |
| u32 rcode; |
| int old_state; |
| struct adpt_device* d = cmd->device->hostdata; |
| |
| pHba = (void*) cmd->device->host->hostdata[0]; |
| printk(KERN_INFO"%s: Trying to reset device\n",pHba->name); |
| if (!d) { |
| printk(KERN_INFO"%s: Reset Device: Device Not found\n",pHba->name); |
| return FAILED; |
| } |
| memset(msg, 0, sizeof(msg)); |
| msg[0] = FOUR_WORD_MSG_SIZE|SGL_OFFSET_0; |
| msg[1] = (I2O_DEVICE_RESET<<24|HOST_TID<<12|d->tid); |
| msg[2] = 0; |
| msg[3] = 0; |
| |
| if (pHba->host) |
| spin_lock_irq(pHba->host->host_lock); |
| old_state = d->state; |
| d->state |= DPTI_DEV_RESET; |
| rcode = adpt_i2o_post_wait(pHba, msg,sizeof(msg), FOREVER); |
| d->state = old_state; |
| if (pHba->host) |
| spin_unlock_irq(pHba->host->host_lock); |
| if (rcode != 0) { |
| if(rcode == -EOPNOTSUPP ){ |
| printk(KERN_INFO"%s: Device reset not supported\n",pHba->name); |
| return FAILED; |
| } |
| printk(KERN_INFO"%s: Device reset failed\n",pHba->name); |
| return FAILED; |
| } else { |
| printk(KERN_INFO"%s: Device reset successful\n",pHba->name); |
| return SUCCESS; |
| } |
| } |
| |
| |
| #define I2O_HBA_BUS_RESET 0x87 |
| // This version of bus reset is called by the eh_error handler |
| static int adpt_bus_reset(struct scsi_cmnd* cmd) |
| { |
| adpt_hba* pHba; |
| u32 msg[4]; |
| u32 rcode; |
| |
| pHba = (adpt_hba*)cmd->device->host->hostdata[0]; |
| memset(msg, 0, sizeof(msg)); |
| printk(KERN_WARNING"%s: Bus reset: SCSI Bus %d: tid: %d\n",pHba->name, cmd->device->channel,pHba->channel[cmd->device->channel].tid ); |
| msg[0] = FOUR_WORD_MSG_SIZE|SGL_OFFSET_0; |
| msg[1] = (I2O_HBA_BUS_RESET<<24|HOST_TID<<12|pHba->channel[cmd->device->channel].tid); |
| msg[2] = 0; |
| msg[3] = 0; |
| if (pHba->host) |
| spin_lock_irq(pHba->host->host_lock); |
| rcode = adpt_i2o_post_wait(pHba, msg,sizeof(msg), FOREVER); |
| if (pHba->host) |
| spin_unlock_irq(pHba->host->host_lock); |
| if (rcode != 0) { |
| printk(KERN_WARNING"%s: Bus reset failed.\n",pHba->name); |
| return FAILED; |
| } else { |
| printk(KERN_WARNING"%s: Bus reset success.\n",pHba->name); |
| return SUCCESS; |
| } |
| } |
| |
| // This version of reset is called by the eh_error_handler |
| static int __adpt_reset(struct scsi_cmnd* cmd) |
| { |
| adpt_hba* pHba; |
| int rcode; |
| pHba = (adpt_hba*)cmd->device->host->hostdata[0]; |
| printk(KERN_WARNING"%s: Hba Reset: scsi id %d: tid: %d\n",pHba->name,cmd->device->channel,pHba->channel[cmd->device->channel].tid ); |
| rcode = adpt_hba_reset(pHba); |
| if(rcode == 0){ |
| printk(KERN_WARNING"%s: HBA reset complete\n",pHba->name); |
| return SUCCESS; |
| } else { |
| printk(KERN_WARNING"%s: HBA reset failed (%x)\n",pHba->name, rcode); |
| return FAILED; |
| } |
| } |
| |
| static int adpt_reset(struct scsi_cmnd* cmd) |
| { |
| int rc; |
| |
| spin_lock_irq(cmd->device->host->host_lock); |
| rc = __adpt_reset(cmd); |
| spin_unlock_irq(cmd->device->host->host_lock); |
| |
| return rc; |
| } |
| |
| // This version of reset is called by the ioctls and indirectly from eh_error_handler via adpt_reset |
| static int adpt_hba_reset(adpt_hba* pHba) |
| { |
| int rcode; |
| |
| pHba->state |= DPTI_STATE_RESET; |
| |
| // Activate does get status , init outbound, and get hrt |
| if ((rcode=adpt_i2o_activate_hba(pHba)) < 0) { |
| printk(KERN_ERR "%s: Could not activate\n", pHba->name); |
| adpt_i2o_delete_hba(pHba); |
| return rcode; |
| } |
| |
| if ((rcode=adpt_i2o_build_sys_table()) < 0) { |
| adpt_i2o_delete_hba(pHba); |
| return rcode; |
| } |
| PDEBUG("%s: in HOLD state\n",pHba->name); |
| |
| if ((rcode=adpt_i2o_online_hba(pHba)) < 0) { |
| adpt_i2o_delete_hba(pHba); |
| return rcode; |
| } |
| PDEBUG("%s: in OPERATIONAL state\n",pHba->name); |
| |
| if ((rcode=adpt_i2o_lct_get(pHba)) < 0){ |
| adpt_i2o_delete_hba(pHba); |
| return rcode; |
| } |
| |
| if ((rcode=adpt_i2o_reparse_lct(pHba)) < 0){ |
| adpt_i2o_delete_hba(pHba); |
| return rcode; |
| } |
| pHba->state &= ~DPTI_STATE_RESET; |
| |
| adpt_fail_posted_scbs(pHba); |
| return 0; /* return success */ |
| } |
| |
| /*=========================================================================== |
| * |
| *=========================================================================== |
| */ |
| |
| |
| static void adpt_i2o_sys_shutdown(void) |
| { |
| adpt_hba *pHba, *pNext; |
| struct adpt_i2o_post_wait_data *p1, *old; |
| |
| printk(KERN_INFO"Shutting down Adaptec I2O controllers.\n"); |
| printk(KERN_INFO" This could take a few minutes if there are many devices attached\n"); |
| /* Delete all IOPs from the controller chain */ |
| /* They should have already been released by the |
| * scsi-core |
| */ |
| for (pHba = hba_chain; pHba; pHba = pNext) { |
| pNext = pHba->next; |
| adpt_i2o_delete_hba(pHba); |
| } |
| |
| /* Remove any timedout entries from the wait queue. */ |
| // spin_lock_irqsave(&adpt_post_wait_lock, flags); |
| /* Nothing should be outstanding at this point so just |
| * free them |
| */ |
| for(p1 = adpt_post_wait_queue; p1;) { |
| old = p1; |
| p1 = p1->next; |
| kfree(old); |
| } |
| // spin_unlock_irqrestore(&adpt_post_wait_lock, flags); |
| adpt_post_wait_queue = NULL; |
| |
| printk(KERN_INFO "Adaptec I2O controllers down.\n"); |
| } |
| |
| static int adpt_install_hba(struct scsi_host_template* sht, struct pci_dev* pDev) |
| { |
| |
| adpt_hba* pHba = NULL; |
| adpt_hba* p = NULL; |
| ulong base_addr0_phys = 0; |
| ulong base_addr1_phys = 0; |
| u32 hba_map0_area_size = 0; |
| u32 hba_map1_area_size = 0; |
| void __iomem *base_addr_virt = NULL; |
| void __iomem *msg_addr_virt = NULL; |
| int dma64 = 0; |
| |
| int raptorFlag = FALSE; |
| |
| if(pci_enable_device(pDev)) { |
| return -EINVAL; |
| } |
| |
| if (pci_request_regions(pDev, "dpt_i2o")) { |
| PERROR("dpti: adpt_config_hba: pci request region failed\n"); |
| return -EINVAL; |
| } |
| |
| pci_set_master(pDev); |
| |
| /* |
| * See if we should enable dma64 mode. |
| */ |
| if (sizeof(dma_addr_t) > 4 && |
| pci_set_dma_mask(pDev, DMA_BIT_MASK(64)) == 0) { |
| if (dma_get_required_mask(&pDev->dev) > DMA_BIT_MASK(32)) |
| dma64 = 1; |
| } |
| if (!dma64 && pci_set_dma_mask(pDev, DMA_BIT_MASK(32)) != 0) |
| return -EINVAL; |
| |
| /* adapter only supports message blocks below 4GB */ |
| pci_set_consistent_dma_mask(pDev, DMA_BIT_MASK(32)); |
| |
| base_addr0_phys = pci_resource_start(pDev,0); |
| hba_map0_area_size = pci_resource_len(pDev,0); |
| |
| // Check if standard PCI card or single BAR Raptor |
| if(pDev->device == PCI_DPT_DEVICE_ID){ |
| if(pDev->subsystem_device >=0xc032 && pDev->subsystem_device <= 0xc03b){ |
| // Raptor card with this device id needs 4M |
| hba_map0_area_size = 0x400000; |
| } else { // Not Raptor - it is a PCI card |
| if(hba_map0_area_size > 0x100000 ){ |
| hba_map0_area_size = 0x100000; |
| } |
| } |
| } else {// Raptor split BAR config |
| // Use BAR1 in this configuration |
| base_addr1_phys = pci_resource_start(pDev,1); |
| hba_map1_area_size = pci_resource_len(pDev,1); |
| raptorFlag = TRUE; |
| } |
| |
| #if BITS_PER_LONG == 64 |
| /* |
| * The original Adaptec 64 bit driver has this comment here: |
| * "x86_64 machines need more optimal mappings" |
| * |
| * I assume some HBAs report ridiculously large mappings |
| * and we need to limit them on platforms with IOMMUs. |
| */ |
| if (raptorFlag == TRUE) { |
| if (hba_map0_area_size > 128) |
| hba_map0_area_size = 128; |
| if (hba_map1_area_size > 524288) |
| hba_map1_area_size = 524288; |
| } else { |
| if (hba_map0_area_size > 524288) |
| hba_map0_area_size = 524288; |
| } |
| #endif |
| |
| base_addr_virt = ioremap(base_addr0_phys,hba_map0_area_size); |
| if (!base_addr_virt) { |
| pci_release_regions(pDev); |
| PERROR("dpti: adpt_config_hba: io remap failed\n"); |
| return -EINVAL; |
| } |
| |
| if(raptorFlag == TRUE) { |
| msg_addr_virt = ioremap(base_addr1_phys, hba_map1_area_size ); |
| if (!msg_addr_virt) { |
| PERROR("dpti: adpt_config_hba: io remap failed on BAR1\n"); |
| iounmap(base_addr_virt); |
| pci_release_regions(pDev); |
| return -EINVAL; |
| } |
| } else { |
| msg_addr_virt = base_addr_virt; |
| } |
| |
| // Allocate and zero the data structure |
| pHba = kzalloc(sizeof(adpt_hba), GFP_KERNEL); |
| if (!pHba) { |
| if (msg_addr_virt != base_addr_virt) |
| iounmap(msg_addr_virt); |
| iounmap(base_addr_virt); |
| pci_release_regions(pDev); |
| return -ENOMEM; |
| } |
| |
| mutex_lock(&adpt_configuration_lock); |
| |
| if(hba_chain != NULL){ |
| for(p = hba_chain; p->next; p = p->next); |
| p->next = pHba; |
| } else { |
| hba_chain = pHba; |
| } |
| pHba->next = NULL; |
| pHba->unit = hba_count; |
| sprintf(pHba->name, "dpti%d", hba_count); |
| hba_count++; |
| |
| mutex_unlock(&adpt_configuration_lock); |
| |
| pHba->pDev = pDev; |
| pHba->base_addr_phys = base_addr0_phys; |
| |
| // Set up the Virtual Base Address of the I2O Device |
| pHba->base_addr_virt = base_addr_virt; |
| pHba->msg_addr_virt = msg_addr_virt; |
| pHba->irq_mask = base_addr_virt+0x30; |
| pHba->post_port = base_addr_virt+0x40; |
| pHba->reply_port = base_addr_virt+0x44; |
| |
| pHba->hrt = NULL; |
| pHba->lct = NULL; |
| pHba->lct_size = 0; |
| pHba->status_block = NULL; |
| pHba->post_count = 0; |
| pHba->state = DPTI_STATE_RESET; |
| pHba->pDev = pDev; |
| pHba->devices = NULL; |
| pHba->dma64 = dma64; |
| |
| // Initializing the spinlocks |
| spin_lock_init(&pHba->state_lock); |
| spin_lock_init(&adpt_post_wait_lock); |
| |
| if(raptorFlag == 0){ |
| printk(KERN_INFO "Adaptec I2O RAID controller" |
| " %d at %p size=%x irq=%d%s\n", |
| hba_count-1, base_addr_virt, |
| hba_map0_area_size, pDev->irq, |
| dma64 ? " (64-bit DMA)" : ""); |
| } else { |
| printk(KERN_INFO"Adaptec I2O RAID controller %d irq=%d%s\n", |
| hba_count-1, pDev->irq, |
| dma64 ? " (64-bit DMA)" : ""); |
| printk(KERN_INFO" BAR0 %p - size= %x\n",base_addr_virt,hba_map0_area_size); |
| printk(KERN_INFO" BAR1 %p - size= %x\n",msg_addr_virt,hba_map1_area_size); |
| } |
| |
| if (request_irq (pDev->irq, adpt_isr, IRQF_SHARED, pHba->name, pHba)) { |
| printk(KERN_ERR"%s: Couldn't register IRQ %d\n", pHba->name, pDev->irq); |
| adpt_i2o_delete_hba(pHba); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| |
| static void adpt_i2o_delete_hba(adpt_hba* pHba) |
| { |
| adpt_hba* p1; |
| adpt_hba* p2; |
| struct i2o_device* d; |
| struct i2o_device* next; |
| int i; |
| int j; |
| struct adpt_device* pDev; |
| struct adpt_device* pNext; |
| |
| |
| mutex_lock(&adpt_configuration_lock); |
| // scsi_unregister calls our adpt_release which |
| // does a quiese |
| if(pHba->host){ |
| free_irq(pHba->host->irq, pHba); |
| } |
| p2 = NULL; |
| for( p1 = hba_chain; p1; p2 = p1,p1=p1->next){ |
| if(p1 == pHba) { |
| if(p2) { |
| p2->next = p1->next; |
| } else { |
| hba_chain = p1->next; |
| } |
| break; |
| } |
| } |
| |
| hba_count--; |
| mutex_unlock(&adpt_configuration_lock); |
| |
| iounmap(pHba->base_addr_virt); |
| pci_release_regions(pHba->pDev); |
| if(pHba->msg_addr_virt != pHba->base_addr_virt){ |
| iounmap(pHba->msg_addr_virt); |
| } |
| if(pHba->FwDebugBuffer_P) |
| iounmap(pHba->FwDebugBuffer_P); |
| if(pHba->hrt) { |
| dma_free_coherent(&pHba->pDev->dev, |
| pHba->hrt->num_entries * pHba->hrt->entry_len << 2, |
| pHba->hrt, pHba->hrt_pa); |
| } |
| if(pHba->lct) { |
| dma_free_coherent(&pHba->pDev->dev, pHba->lct_size, |
| pHba->lct, pHba->lct_pa); |
| } |
| if(pHba->status_block) { |
| dma_free_coherent(&pHba->pDev->dev, sizeof(i2o_status_block), |
| pHba->status_block, pHba->status_block_pa); |
| } |
| if(pHba->reply_pool) { |
| dma_free_coherent(&pHba->pDev->dev, |
| pHba->reply_fifo_size * REPLY_FRAME_SIZE * 4, |
| pHba->reply_pool, pHba->reply_pool_pa); |
| } |
| |
| for(d = pHba->devices; d ; d = next){ |
| next = d->next; |
| kfree(d); |
| } |
| for(i = 0 ; i < pHba->top_scsi_channel ; i++){ |
| for(j = 0; j < MAX_ID; j++){ |
| if(pHba->channel[i].device[j] != NULL){ |
| for(pDev = pHba->channel[i].device[j]; pDev; pDev = pNext){ |
| pNext = pDev->next_lun; |
| kfree(pDev); |
| } |
| } |
| } |
| } |
| pci_dev_put(pHba->pDev); |
| if (adpt_sysfs_class) |
| device_destroy(adpt_sysfs_class, |
| MKDEV(DPTI_I2O_MAJOR, pHba->unit)); |
| kfree(pHba); |
| |
| if(hba_count <= 0){ |
| unregister_chrdev(DPTI_I2O_MAJOR, DPT_DRIVER); |
| if (adpt_sysfs_class) { |
| class_destroy(adpt_sysfs_class); |
| adpt_sysfs_class = NULL; |
| } |
| } |
| } |
| |
| static struct adpt_device* adpt_find_device(adpt_hba* pHba, u32 chan, u32 id, u64 lun) |
| { |
| struct adpt_device* d; |
| |
| if(chan < 0 || chan >= MAX_CHANNEL) |
| return NULL; |
| |
| d = pHba->channel[chan].device[id]; |
| if(!d || d->tid == 0) { |
| return NULL; |
| } |
| |
| /* If it is the only lun at that address then this should match*/ |
| if(d->scsi_lun == lun){ |
| return d; |
| } |
| |
| /* else we need to look through all the luns */ |
| for(d=d->next_lun ; d ; d = d->next_lun){ |
| if(d->scsi_lun == lun){ |
| return d; |
| } |
| } |
| return NULL; |
| } |
| |
| |
| static int adpt_i2o_post_wait(adpt_hba* pHba, u32* msg, int len, int timeout) |
| { |
| // I used my own version of the WAIT_QUEUE_HEAD |
| // to handle some version differences |
| // When embedded in the kernel this could go back to the vanilla one |
| ADPT_DECLARE_WAIT_QUEUE_HEAD(adpt_wq_i2o_post); |
| int status = 0; |
| ulong flags = 0; |
| struct adpt_i2o_post_wait_data *p1, *p2; |
| struct adpt_i2o_post_wait_data *wait_data = |
| kmalloc(sizeof(struct adpt_i2o_post_wait_data), GFP_ATOMIC); |
| DECLARE_WAITQUEUE(wait, current); |
| |
| if (!wait_data) |
| return -ENOMEM; |
| |
| /* |
| * The spin locking is needed to keep anyone from playing |
| * with the queue pointers and id while we do the same |
| */ |
| spin_lock_irqsave(&adpt_post_wait_lock, flags); |
| // TODO we need a MORE unique way of getting ids |
| // to support async LCT get |
| wait_data->next = adpt_post_wait_queue; |
| adpt_post_wait_queue = wait_data; |
| adpt_post_wait_id++; |
| adpt_post_wait_id &= 0x7fff; |
| wait_data->id = adpt_post_wait_id; |
| spin_unlock_irqrestore(&adpt_post_wait_lock, flags); |
| |
| wait_data->wq = &adpt_wq_i2o_post; |
| wait_data->status = -ETIMEDOUT; |
| |
| add_wait_queue(&adpt_wq_i2o_post, &wait); |
| |
| msg[2] |= 0x80000000 | ((u32)wait_data->id); |
| timeout *= HZ; |
| if((status = adpt_i2o_post_this(pHba, msg, len)) == 0){ |
| set_current_state(TASK_INTERRUPTIBLE); |
| if(pHba->host) |
| spin_unlock_irq(pHba->host->host_lock); |
| if (!timeout) |
| schedule(); |
| else{ |
| timeout = schedule_timeout(timeout); |
| if (timeout == 0) { |
| // I/O issued, but cannot get result in |
| // specified time. Freeing resorces is |
| // dangerous. |
| status = -ETIME; |
| } |
| } |
| if(pHba->host) |
| spin_lock_irq(pHba->host->host_lock); |
| } |
| remove_wait_queue(&adpt_wq_i2o_post, &wait); |
| |
| if(status == -ETIMEDOUT){ |
| printk(KERN_INFO"dpti%d: POST WAIT TIMEOUT\n",pHba->unit); |
| // We will have to free the wait_data memory during shutdown |
| return status; |
| } |
| |
| /* Remove the entry from the queue. */ |
| p2 = NULL; |
| spin_lock_irqsave(&adpt_post_wait_lock, flags); |
| for(p1 = adpt_post_wait_queue; p1; p2 = p1, p1 = p1->next) { |
| if(p1 == wait_data) { |
| if(p1->status == I2O_DETAIL_STATUS_UNSUPPORTED_FUNCTION ) { |
| status = -EOPNOTSUPP; |
| } |
| if(p2) { |
| p2->next = p1->next; |
| } else { |
| adpt_post_wait_queue = p1->next; |
| } |
| break; |
| } |
| } |
| spin_unlock_irqrestore(&adpt_post_wait_lock, flags); |
| |
| kfree(wait_data); |
| |
| return status; |
| } |
| |
| |
| static s32 adpt_i2o_post_this(adpt_hba* pHba, u32* data, int len) |
| { |
| |
| u32 m = EMPTY_QUEUE; |
| u32 __iomem *msg; |
| ulong timeout = jiffies + 30*HZ; |
| do { |
| rmb(); |
| m = readl(pHba->post_port); |
| if (m != EMPTY_QUEUE) { |
| break; |
| } |
| if(time_after(jiffies,timeout)){ |
| printk(KERN_WARNING"dpti%d: Timeout waiting for message frame!\n", pHba->unit); |
| return -ETIMEDOUT; |
| } |
| schedule_timeout_uninterruptible(1); |
| } while(m == EMPTY_QUEUE); |
| |
| msg = pHba->msg_addr_virt + m; |
| memcpy_toio(msg, data, len); |
| wmb(); |
| |
| //post message |
| writel(m, pHba->post_port); |
| wmb(); |
| |
| return 0; |
| } |
| |
| |
| static void adpt_i2o_post_wait_complete(u32 context, int status) |
| { |
| struct adpt_i2o_post_wait_data *p1 = NULL; |
| /* |
| * We need to search through the adpt_post_wait |
| * queue to see if the given message is still |
| * outstanding. If not, it means that the IOP |
| * took longer to respond to the message than we |
| * had allowed and timer has already expired. |
| * Not much we can do about that except log |
| * it for debug purposes, increase timeout, and recompile |
| * |
| * Lock needed to keep anyone from moving queue pointers |
| * around while we're looking through them. |
| */ |
| |
| context &= 0x7fff; |
| |
| spin_lock(&adpt_post_wait_lock); |
| for(p1 = adpt_post_wait_queue; p1; p1 = p1->next) { |
| if(p1->id == context) { |
| p1->status = status; |
| spin_unlock(&adpt_post_wait_lock); |
| wake_up_interruptible(p1->wq); |
| return; |
| } |
| } |
| spin_unlock(&adpt_post_wait_lock); |
| // If this happens we lose commands that probably really completed |
| printk(KERN_DEBUG"dpti: Could Not find task %d in wait queue\n",context); |
| printk(KERN_DEBUG" Tasks in wait queue:\n"); |
| for(p1 = adpt_post_wait_queue; p1; p1 = p1->next) { |
| printk(KERN_DEBUG" %d\n",p1->id); |
| } |
| return; |
| } |
| |
| static s32 adpt_i2o_reset_hba(adpt_hba* pHba) |
| { |
| u32 msg[8]; |
| u8* status; |
| dma_addr_t addr; |
| u32 m = EMPTY_QUEUE ; |
| ulong timeout = jiffies + (TMOUT_IOPRESET*HZ); |
| |
| if(pHba->initialized == FALSE) { // First time reset should be quick |
| timeout = jiffies + (25*HZ); |
| } else { |
| adpt_i2o_quiesce_hba(pHba); |
| } |
| |
| do { |
| rmb(); |
| m = readl(pHba->post_port); |
| if (m != EMPTY_QUEUE) { |
| break; |
| } |
| if(time_after(jiffies,timeout)){ |
| printk(KERN_WARNING"Timeout waiting for message!\n"); |
| return -ETIMEDOUT; |
| } |
| schedule_timeout_uninterruptible(1); |
| } while (m == EMPTY_QUEUE); |
| |
| status = dma_alloc_coherent(&pHba->pDev->dev, 4, &addr, GFP_KERNEL); |
| if(status == NULL) { |
| adpt_send_nop(pHba, m); |
| printk(KERN_ERR"IOP reset failed - no free memory.\n"); |
| return -ENOMEM; |
| } |
| memset(status,0,4); |
| |
| msg[0]=EIGHT_WORD_MSG_SIZE|SGL_OFFSET_0; |
| msg[1]=I2O_CMD_ADAPTER_RESET<<24|HOST_TID<<12|ADAPTER_TID; |
| msg[2]=0; |
| msg[3]=0; |
| msg[4]=0; |
| msg[5]=0; |
| msg[6]=dma_low(addr); |
| msg[7]=dma_high(addr); |
| |
| memcpy_toio(pHba->msg_addr_virt+m, msg, sizeof(msg)); |
| wmb(); |
| writel(m, pHba->post_port); |
| wmb(); |
| |
| while(*status == 0){ |
| if(time_after(jiffies,timeout)){ |
| printk(KERN_WARNING"%s: IOP Reset Timeout\n",pHba->name); |
| /* We lose 4 bytes of "status" here, but we cannot |
| free these because controller may awake and corrupt |
| those bytes at any time */ |
| /* dma_free_coherent(&pHba->pDev->dev, 4, buf, addr); */ |
| return -ETIMEDOUT; |
| } |
| rmb(); |
| schedule_timeout_uninterruptible(1); |
| } |
| |
| if(*status == 0x01 /*I2O_EXEC_IOP_RESET_IN_PROGRESS*/) { |
| PDEBUG("%s: Reset in progress...\n", pHba->name); |
| // Here we wait for message frame to become available |
| // indicated that reset has finished |
| do { |
| rmb(); |
| m = readl(pHba->post_port); |
| if (m != EMPTY_QUEUE) { |
| break; |
| } |
| if(time_after(jiffies,timeout)){ |
| printk(KERN_ERR "%s:Timeout waiting for IOP Reset.\n",pHba->name); |
| /* We lose 4 bytes of "status" here, but we |
| cannot free these because controller may |
| awake and corrupt those bytes at any time */ |
| /* dma_free_coherent(&pHba->pDev->dev, 4, buf, addr); */ |
| return -ETIMEDOUT; |
| } |
| schedule_timeout_uninterruptible(1); |
| } while (m == EMPTY_QUEUE); |
| // Flush the offset |
| adpt_send_nop(pHba, m); |
| } |
| adpt_i2o_status_get(pHba); |
| if(*status == 0x02 || |
| pHba->status_block->iop_state != ADAPTER_STATE_RESET) { |
| printk(KERN_WARNING"%s: Reset reject, trying to clear\n", |
| pHba->name); |
| } else { |
| PDEBUG("%s: Reset completed.\n", pHba->name); |
| } |
| |
| dma_free_coherent(&pHba->pDev->dev, 4, status, addr); |
| #ifdef UARTDELAY |
| // This delay is to allow someone attached to the card through the debug UART to |
| // set up the dump levels that they want before the rest of the initialization sequence |
| adpt_delay(20000); |
| #endif |
| return 0; |
| } |
| |
| |
| static int adpt_i2o_parse_lct(adpt_hba* pHba) |
| { |
| int i; |
| int max; |
| int tid; |
| struct i2o_device *d; |
| i2o_lct *lct = pHba->lct; |
| u8 bus_no = 0; |
| s16 scsi_id; |
| u64 scsi_lun; |
| u32 buf[10]; // larger than 7, or 8 ... |
| struct adpt_device* pDev; |
| |
| if (lct == NULL) { |
| printk(KERN_ERR "%s: LCT is empty???\n",pHba->name); |
| return -1; |
| } |
| |
| max = lct->table_size; |
| max -= 3; |
| max /= 9; |
| |
| for(i=0;i<max;i++) { |
| if( lct->lct_entry[i].user_tid != 0xfff){ |
| /* |
| * If we have hidden devices, we need to inform the upper layers about |
| * the possible maximum id reference to handle device access when |
| * an array is disassembled. This code has no other purpose but to |
| * allow us future access to devices that are currently hidden |
| * behind arrays, hotspares or have not been configured (JBOD mode). |
| */ |
| if( lct->lct_entry[i].class_id != I2O_CLASS_RANDOM_BLOCK_STORAGE && |
| lct->lct_entry[i].class_id != I2O_CLASS_SCSI_PERIPHERAL && |
| lct->lct_entry[i].class_id != I2O_CLASS_FIBRE_CHANNEL_PERIPHERAL ){ |
| continue; |
| } |
| tid = lct->lct_entry[i].tid; |
| // I2O_DPT_DEVICE_INFO_GROUP_NO; |
| if(adpt_i2o_query_scalar(pHba, tid, 0x8000, -1, buf, 32)<0) { |
| continue; |
| } |
| bus_no = buf[0]>>16; |
| scsi_id = buf[1]; |
| scsi_lun = scsilun_to_int((struct scsi_lun *)&buf[2]); |
| if(bus_no >= MAX_CHANNEL) { // Something wrong skip it |
| printk(KERN_WARNING"%s: Channel number %d out of range \n", pHba->name, bus_no); |
| continue; |
| } |
| if (scsi_id >= MAX_ID){ |
| printk(KERN_WARNING"%s: SCSI ID %d out of range \n", pHba->name, bus_no); |
| continue; |
| } |
| if(bus_no > pHba->top_scsi_channel){ |
| pHba->top_scsi_channel = bus_no; |
| } |
| if(scsi_id > pHba->top_scsi_id){ |
| pHba->top_scsi_id = scsi_id; |
| } |
| if(scsi_lun > pHba->top_scsi_lun){ |
| pHba->top_scsi_lun = scsi_lun; |
| } |
| continue; |
| } |
| d = kmalloc(sizeof(struct i2o_device), GFP_KERNEL); |
| if(d==NULL) |
| { |
| printk(KERN_CRIT"%s: Out of memory for I2O device data.\n",pHba->name); |
| return -ENOMEM; |
| } |
| |
| d->controller = pHba; |
| d->next = NULL; |
| |
| memcpy(&d->lct_data, &lct->lct_entry[i], sizeof(i2o_lct_entry)); |
| |
| d->flags = 0; |
| tid = d->lct_data.tid; |
| adpt_i2o_report_hba_unit(pHba, d); |
| adpt_i2o_install_device(pHba, d); |
| } |
| bus_no = 0; |
| for(d = pHba->devices; d ; d = d->next) { |
| if(d->lct_data.class_id == I2O_CLASS_BUS_ADAPTER_PORT || |
| d->lct_data.class_id == I2O_CLASS_FIBRE_CHANNEL_PORT){ |
| tid = d->lct_data.tid; |
| // TODO get the bus_no from hrt-but for now they are in order |
| //bus_no = |
| if(bus_no > pHba->top_scsi_channel){ |
| pHba->top_scsi_channel = bus_no; |
| } |
| pHba->channel[bus_no].type = d->lct_data.class_id; |
| pHba->channel[bus_no].tid = tid; |
| if(adpt_i2o_query_scalar(pHba, tid, 0x0200, -1, buf, 28)>=0) |
| { |
| pHba->channel[bus_no].scsi_id = buf[1]; |
| PDEBUG("Bus %d - SCSI ID %d.\n", bus_no, buf[1]); |
| } |
| // TODO remove - this is just until we get from hrt |
| bus_no++; |
| if(bus_no >= MAX_CHANNEL) { // Something wrong skip it |
| printk(KERN_WARNING"%s: Channel number %d out of range - LCT\n", pHba->name, bus_no); |
| break; |
| } |
| } |
| } |
| |
| // Setup adpt_device table |
| for(d = pHba->devices; d ; d = d->next) { |
| if(d->lct_data.class_id == I2O_CLASS_RANDOM_BLOCK_STORAGE || |
| d->lct_data.class_id == I2O_CLASS_SCSI_PERIPHERAL || |
| d->lct_data.class_id == I2O_CLASS_FIBRE_CHANNEL_PERIPHERAL ){ |
| |
| tid = d->lct_data.tid; |
| scsi_id = -1; |
| // I2O_DPT_DEVICE_INFO_GROUP_NO; |
| if(adpt_i2o_query_scalar(pHba, tid, 0x8000, -1, buf, 32)>=0) { |
| bus_no = buf[0]>>16; |
| scsi_id = buf[1]; |
| scsi_lun = scsilun_to_int((struct scsi_lun *)&buf[2]); |
| if(bus_no >= MAX_CHANNEL) { // Something wrong skip it |
| continue; |
| } |
| if (scsi_id >= MAX_ID) { |
| continue; |
| } |
| if( pHba->channel[bus_no].device[scsi_id] == NULL){ |
| pDev = kzalloc(sizeof(struct adpt_device),GFP_KERNEL); |
| if(pDev == NULL) { |
| return -ENOMEM; |
| } |
| pHba->channel[bus_no].device[scsi_id] = pDev; |
| } else { |
| for( pDev = pHba->channel[bus_no].device[scsi_id]; |
| pDev->next_lun; pDev = pDev->next_lun){ |
| } |
| pDev->next_lun = kzalloc(sizeof(struct adpt_device),GFP_KERNEL); |
| if(pDev->next_lun == NULL) { |
| return -ENOMEM; |
| } |
| pDev = pDev->next_lun; |
| } |
| pDev->tid = tid; |
| pDev->scsi_channel = bus_no; |
| pDev->scsi_id = scsi_id; |
| pDev->scsi_lun = scsi_lun; |
| pDev->pI2o_dev = d; |
| d->owner = pDev; |
| pDev->type = (buf[0])&0xff; |
| pDev->flags = (buf[0]>>8)&0xff; |
| if(scsi_id > pHba->top_scsi_id){ |
| pHba->top_scsi_id = scsi_id; |
| } |
| if(scsi_lun > pHba->top_scsi_lun){ |
| pHba->top_scsi_lun = scsi_lun; |
| } |
| } |
| if(scsi_id == -1){ |
| printk(KERN_WARNING"Could not find SCSI ID for %s\n", |
| d->lct_data.identity_tag); |
| } |
| } |
| } |
| return 0; |
| } |
| |
| |
| /* |
| * Each I2O controller has a chain of devices on it - these match |
| * the useful parts of the LCT of the board. |
| */ |
| |
| static int adpt_i2o_install_device(adpt_hba* pHba, struct i2o_device *d) |
| { |
| mutex_lock(&adpt_configuration_lock); |
| d->controller=pHba; |
| d->owner=NULL; |
| d->next=pHba->devices; |
| d->prev=NULL; |
| if (pHba->devices != NULL){ |
| pHba->devices->prev=d; |
| } |
| pHba->devices=d; |
| *d->dev_name = 0; |
| |
| mutex_unlock(&adpt_configuration_lock); |
| return 0; |
| } |
| |
| static int adpt_open(struct inode *inode, struct file *file) |
| { |
| int minor; |
| adpt_hba* pHba; |
| |
| mutex_lock(&adpt_mutex); |
| //TODO check for root access |
| // |
| minor = iminor(inode); |
| if (minor >= hba_count) { |
| mutex_unlock(&adpt_mutex); |
| return -ENXIO; |
| } |
| mutex_lock(&adpt_configuration_lock); |
| for (pHba = hba_chain; pHba; pHba = pHba->next) { |
| if (pHba->unit == minor) { |
| break; /* found adapter */ |
| } |
| } |
| if (pHba == NULL) { |
| mutex_unlock(&adpt_configuration_lock); |
| mutex_unlock(&adpt_mutex); |
| return -ENXIO; |
| } |
| |
| // if(pHba->in_use){ |
| // mutex_unlock(&adpt_configuration_lock); |
| // return -EBUSY; |
| // } |
| |
| pHba->in_use = 1; |
| mutex_unlock(&adpt_configuration_lock); |
| mutex_unlock(&adpt_mutex); |
| |
| return 0; |
| } |
| |
| static int adpt_close(struct inode *inode, struct file *file) |
| { |
| int minor; |
| adpt_hba* pHba; |
| |
| minor = iminor(inode); |
| if (minor >= hba_count) { |
| return -ENXIO; |
| } |
| mutex_lock(&adpt_configuration_lock); |
| for (pHba = hba_chain; pHba; pHba = pHba->next) { |
| if (pHba->unit == minor) { |
| break; /* found adapter */ |
| } |
| } |
| mutex_unlock(&adpt_configuration_lock); |
| if (pHba == NULL) { |
| return -ENXIO; |
| } |
| |
| pHba->in_use = 0; |
| |
| return 0; |
| } |
| |
| |
| static int adpt_i2o_passthru(adpt_hba* pHba, u32 __user *arg) |
| { |
| u32 msg[MAX_MESSAGE_SIZE]; |
| u32* reply = NULL; |
| u32 size = 0; |
| u32 reply_size = 0; |
| u32 __user *user_msg = arg; |
| u32 __user * user_reply = NULL; |
| void *sg_list[pHba->sg_tablesize]; |
| u32 sg_offset = 0; |
| u32 sg_count = 0; |
| int sg_index = 0; |
| u32 i = 0; |
| u32 rcode = 0; |
| void *p = NULL; |
| dma_addr_t addr; |
| ulong flags = 0; |
| |
| memset(&msg, 0, MAX_MESSAGE_SIZE*4); |
| // get user msg size in u32s |
| if(get_user(size, &user_msg[0])){ |
| return -EFAULT; |
| } |
| size = size>>16; |
| |
| user_reply = &user_msg[size]; |
| if(size > MAX_MESSAGE_SIZE){ |
| return -EFAULT; |
| } |
| size *= 4; // Convert to bytes |
| |
| /* Copy in the user's I2O command */ |
| if(copy_from_user(msg, user_msg, size)) { |
| return -EFAULT; |
| } |
| get_user(reply_size, &user_reply[0]); |
| reply_size = reply_size>>16; |
| if(reply_size > REPLY_FRAME_SIZE){ |
| reply_size = REPLY_FRAME_SIZE; |
| } |
| reply_size *= 4; |
| reply = kzalloc(REPLY_FRAME_SIZE*4, GFP_KERNEL); |
| if(reply == NULL) { |
| printk(KERN_WARNING"%s: Could not allocate reply buffer\n",pHba->name); |
| return -ENOMEM; |
| } |
| sg_offset = (msg[0]>>4)&0xf; |
| msg[2] = 0x40000000; // IOCTL context |
| msg[3] = adpt_ioctl_to_context(pHba, reply); |
| if (msg[3] == (u32)-1) { |
| kfree(reply); |
| return -EBUSY; |
| } |
| |
| memset(sg_list,0, sizeof(sg_list[0])*pHba->sg_tablesize); |
| if(sg_offset) { |
| // TODO add 64 bit API |
| struct sg_simple_element *sg = (struct sg_simple_element*) (msg+sg_offset); |
| sg_count = (size - sg_offset*4) / sizeof(struct sg_simple_element); |
| if (sg_count > pHba->sg_tablesize){ |
| printk(KERN_DEBUG"%s:IOCTL SG List too large (%u)\n", pHba->name,sg_count); |
| kfree (reply); |
| return -EINVAL; |
| } |
| |
| for(i = 0; i < sg_count; i++) { |
| int sg_size; |
| |
| if (!(sg[i].flag_count & 0x10000000 /*I2O_SGL_FLAGS_SIMPLE_ADDRESS_ELEMENT*/)) { |
| printk(KERN_DEBUG"%s:Bad SG element %d - not simple (%x)\n",pHba->name,i, sg[i].flag_count); |
| rcode = -EINVAL; |
| goto cleanup; |
| } |
| sg_size = sg[i].flag_count & 0xffffff; |
| /* Allocate memory for the transfer */ |
| p = dma_alloc_coherent(&pHba->pDev->dev, sg_size, &addr, GFP_KERNEL); |
| if(!p) { |
| printk(KERN_DEBUG"%s: Could not allocate SG buffer - size = %d buffer number %d of %d\n", |
| pHba->name,sg_size,i,sg_count); |
| rcode = -ENOMEM; |
| goto cleanup; |
| } |
| sg_list[sg_index++] = p; // sglist indexed with input frame, not our internal frame. |
| /* Copy in the user's SG buffer if necessary */ |
| if(sg[i].flag_count & 0x04000000 /*I2O_SGL_FLAGS_DIR*/) { |
| // sg_simple_element API is 32 bit |
| if (copy_from_user(p,(void __user *)(ulong)sg[i].addr_bus, sg_size)) { |
| printk(KERN_DEBUG"%s: Could not copy SG buf %d FROM user\n",pHba->name,i); |
| rcode = -EFAULT; |
| goto cleanup; |
| } |
| } |
| /* sg_simple_element API is 32 bit, but addr < 4GB */ |
| sg[i].addr_bus = addr; |
| } |
| } |
| |
| do { |
| /* |
| * Stop any new commands from enterring the |
| * controller while processing the ioctl |
| */ |
| if (pHba->host) { |
| scsi_block_requests(pHba->host); |
| spin_lock_irqsave(pHba->host->host_lock, flags); |
| } |
| rcode = adpt_i2o_post_wait(pHba, msg, size, FOREVER); |
| if (rcode != 0) |
| printk("adpt_i2o_passthru: post wait failed %d %p\n", |
| rcode, reply); |
| if (pHba->host) { |
| spin_unlock_irqrestore(pHba->host->host_lock, flags); |
| scsi_unblock_requests(pHba->host); |
| } |
| } while (rcode == -ETIMEDOUT); |
| |
| if(rcode){ |
| goto cleanup; |
| } |
| |
| if(sg_offset) { |
| /* Copy back the Scatter Gather buffers back to user space */ |
| u32 j; |
| // TODO add 64 bit API |
| struct sg_simple_element* sg; |
| int sg_size; |
| |
| // re-acquire the original message to handle correctly the sg copy operation |
| memset(&msg, 0, MAX_MESSAGE_SIZE*4); |
| // get user msg size in u32s |
| if(get_user(size, &user_msg[0])){ |
| rcode = -EFAULT; |
| goto cleanup; |
| } |
| size = size>>16; |
| size *= 4; |
| if (size > MAX_MESSAGE_SIZE) { |
| rcode = -EINVAL; |
| goto cleanup; |
| } |
| /* Copy in the user's I2O command */ |
| if (copy_from_user (msg, user_msg, size)) { |
| rcode = -EFAULT; |
| goto cleanup; |
| } |
| sg_count = (size - sg_offset*4) / sizeof(struct sg_simple_element); |
| |
| // TODO add 64 bit API |
| sg = (struct sg_simple_element*)(msg + sg_offset); |
| for (j = 0; j < sg_count; j++) { |
| /* Copy out the SG list to user's buffer if necessary */ |
| if(! (sg[j].flag_count & 0x4000000 /*I2O_SGL_FLAGS_DIR*/)) { |
| sg_size = sg[j].flag_count & 0xffffff; |
| // sg_simple_element API is 32 bit |
| if (copy_to_user((void __user *)(ulong)sg[j].addr_bus,sg_list[j], sg_size)) { |
| printk(KERN_WARNING"%s: Could not copy %p TO user %x\n",pHba->name, sg_list[j], sg[j].addr_bus); |
| rcode = -EFAULT; |
| goto cleanup; |
| } |
| } |
| } |
| } |
| |
| /* Copy back the reply to user space */ |
| if (reply_size) { |
| // we wrote our own values for context - now restore the user supplied ones |
| if(copy_from_user(reply+2, user_msg+2, sizeof(u32)*2)) { |
| printk(KERN_WARNING"%s: Could not copy message context FROM user\n",pHba->name); |
| rcode = -EFAULT; |
| } |
| if(copy_to_user(user_reply, reply, reply_size)) { |
| printk(KERN_WARNING"%s: Could not copy reply TO user\n",pHba->name); |
| rcode = -EFAULT; |
| } |
| } |
| |
| |
| cleanup: |
| if (rcode != -ETIME && rcode != -EINTR) { |
| struct sg_simple_element *sg = |
| (struct sg_simple_element*) (msg +sg_offset); |
| kfree (reply); |
| while(sg_index) { |
| if(sg_list[--sg_index]) { |
| dma_free_coherent(&pHba->pDev->dev, |
| sg[sg_index].flag_count & 0xffffff, |
| sg_list[sg_index], |
| sg[sg_index].addr_bus); |
| } |
| } |
| } |
| return rcode; |
| } |
| |
| #if defined __ia64__ |
| static void adpt_ia64_info(sysInfo_S* si) |
| { |
| // This is all the info we need for now |
| // We will add more info as our new |
| // managmenent utility requires it |
| si->processorType = PROC_IA64; |
| } |
| #endif |
| |
| #if defined __sparc__ |
| static void adpt_sparc_info(sysInfo_S* si) |
| { |
| // This is all the info we need for now |
| // We will add more info as our new |
| // managmenent utility requires it |
| si->processorType = PROC_ULTRASPARC; |
| } |
| #endif |
| #if defined __alpha__ |
| static void adpt_alpha_info(sysInfo_S* si) |
| { |
| // This is all the info we need for now |
| // We will add more info as our new |
| // managmenent utility requires it |
| si->processorType = PROC_ALPHA; |
| } |
| #endif |
| |
| #if defined __i386__ |
| |
| #include <uapi/asm/vm86.h> |
| |
| static void adpt_i386_info(sysInfo_S* si) |
| { |
| // This is all the info we need for now |
| // We will add more info as our new |
| // managmenent utility requires it |
| switch (boot_cpu_data.x86) { |
| case CPU_386: |
| si->processorType = PROC_386; |
| break; |
| case CPU_486: |
| si->processorType = PROC_486; |
| break; |
| case CPU_586: |
| si->processorType = PROC_PENTIUM; |
| break; |
| default: // Just in case |
| si->processorType = PROC_PENTIUM; |
| break; |
| } |
| } |
| #endif |
| |
| /* |
| * This routine returns information about the system. This does not effect |
| * any logic and if the info is wrong - it doesn't matter. |
| */ |
| |
| /* Get all the info we can not get from kernel services */ |
| static int adpt_system_info(void __user *buffer) |
| { |
| sysInfo_S si; |
| |
| memset(&si, 0, sizeof(si)); |
| |
| si.osType = OS_LINUX; |
| si.osMajorVersion = 0; |
| si.osMinorVersion = 0; |
| si.osRevision = 0; |
| si.busType = SI_PCI_BUS; |
| si.processorFamily = DPTI_sig.dsProcessorFamily; |
| |
| #if defined __i386__ |
| adpt_i386_info(&si); |
| #elif defined (__ia64__) |
| adpt_ia64_info(&si); |
| #elif defined(__sparc__) |
| adpt_sparc_info(&si); |
| #elif defined (__alpha__) |
| adpt_alpha_info(&si); |
| #else |
| si.processorType = 0xff ; |
| #endif |
| if (copy_to_user(buffer, &si, sizeof(si))){ |
| printk(KERN_WARNING"dpti: Could not copy buffer TO user\n"); |
| return -EFAULT; |
| } |
| |
| return 0; |
| } |
| |
| static int adpt_ioctl(struct inode *inode, struct file *file, uint cmd, ulong arg) |
| { |
| int minor; |
| int error = 0; |
| adpt_hba* pHba; |
| ulong flags = 0; |
| void __user *argp = (void __user *)arg; |
| |
| minor = iminor(inode); |
| if (minor >= DPTI_MAX_HBA){ |
| return -ENXIO; |
| } |
| mutex_lock(&adpt_configuration_lock); |
| for (pHba = hba_chain; pHba; pHba = pHba->next) { |
| if (pHba->unit == minor) { |
| break; /* found adapter */ |
| } |
| } |
| mutex_unlock(&adpt_configuration_lock); |
| if(pHba == NULL){ |
| return -ENXIO; |
| } |
| |
| while((volatile u32) pHba->state & DPTI_STATE_RESET ) |
| schedule_timeout_uninterruptible(2); |
| |
| switch (cmd) { |
| // TODO: handle 3 cases |
| case DPT_SIGNATURE: |
| if (copy_to_user(argp, &DPTI_sig, sizeof(DPTI_sig))) { |
| return -EFAULT; |
| } |
| break; |
| case I2OUSRCMD: |
| return adpt_i2o_passthru(pHba, argp); |
| |
| case DPT_CTRLINFO:{ |
| drvrHBAinfo_S HbaInfo; |
| |
| #define FLG_OSD_PCI_VALID 0x0001 |
| #define FLG_OSD_DMA 0x0002 |
| #define FLG_OSD_I2O 0x0004 |
| memset(&HbaInfo, 0, sizeof(HbaInfo)); |
| HbaInfo.drvrHBAnum = pHba->unit; |
| HbaInfo.baseAddr = (ulong) pHba->base_addr_phys; |
| HbaInfo.blinkState = adpt_read_blink_led(pHba); |
| HbaInfo.pciBusNum = pHba->pDev->bus->number; |
| HbaInfo.pciDeviceNum=PCI_SLOT(pHba->pDev->devfn); |
| HbaInfo.Interrupt = pHba->pDev->irq; |
| HbaInfo.hbaFlags = FLG_OSD_PCI_VALID | FLG_OSD_DMA | FLG_OSD_I2O; |
| if(copy_to_user(argp, &HbaInfo, sizeof(HbaInfo))){ |
| printk(KERN_WARNING"%s: Could not copy HbaInfo TO user\n",pHba->name); |
| return -EFAULT; |
| } |
| break; |
| } |
| case DPT_SYSINFO: |
| return adpt_system_info(argp); |
| case DPT_BLINKLED:{ |
| u32 value; |
| value = (u32)adpt_read_blink_led(pHba); |
| if (copy_to_user(argp, &value, sizeof(value))) { |
| return -EFAULT; |
| } |
| break; |
| } |
| case I2ORESETCMD: |
| if(pHba->host) |
| spin_lock_irqsave(pHba->host->host_lock, flags); |
| adpt_hba_reset(pHba); |
| if(pHba->host) |
| spin_unlock_irqrestore(pHba->host->host_lock, flags); |
| break; |
| case I2ORESCANCMD: |
| adpt_rescan(pHba); |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| return error; |
| } |
| |
| static long adpt_unlocked_ioctl(struct file *file, uint cmd, ulong arg) |
| { |
| struct inode *inode; |
| long ret; |
| |
| inode = file_inode(file); |
| |
| mutex_lock(&adpt_mutex); |
| ret = adpt_ioctl(inode, file, cmd, arg); |
| mutex_unlock(&adpt_mutex); |
| |
| return ret; |
| } |
| |
| #ifdef CONFIG_COMPAT |
| static long compat_adpt_ioctl(struct file *file, |
| unsigned int cmd, unsigned long arg) |
| { |
| struct inode *inode; |
| long ret; |
| |
| inode = file_inode(file); |
| |
| mutex_lock(&adpt_mutex); |
| |
| switch(cmd) { |
| case DPT_SIGNATURE: |
| case I2OUSRCMD: |
| case DPT_CTRLINFO: |
| case DPT_SYSINFO: |
| case DPT_BLINKLED: |
| case I2ORESETCMD: |
| case I2ORESCANCMD: |
| case (DPT_TARGET_BUSY & 0xFFFF): |
| case DPT_TARGET_BUSY: |
| ret = adpt_ioctl(inode, file, cmd, arg); |
| break; |
| default: |
| ret = -ENOIOCTLCMD; |
| } |
| |
| mutex_unlock(&adpt_mutex); |
| |
| return ret; |
| } |
| #endif |
| |
| static irqreturn_t adpt_isr(int irq, void *dev_id) |
| { |
| struct scsi_cmnd* cmd; |
| adpt_hba* pHba = dev_id; |
| u32 m; |
| void __iomem *reply; |
| u32 status=0; |
| u32 context; |
| ulong flags = 0; |
| int handled = 0; |
| |
| if (pHba == NULL){ |
| printk(KERN_WARNING"adpt_isr: NULL dev_id\n"); |
| return IRQ_NONE; |
| } |
| if(pHba->host) |
| spin_lock_irqsave(pHba->host->host_lock, flags); |
| |
| while( readl(pHba->irq_mask) & I2O_INTERRUPT_PENDING_B) { |
| m = readl(pHba->reply_port); |
| if(m == EMPTY_QUEUE){ |
| // Try twice then give up |
| rmb(); |
| m = readl(pHba->reply_port); |
| if(m == EMPTY_QUEUE){ |
| // This really should not happen |
| printk(KERN_ERR"dpti: Could not get reply frame\n"); |
| goto out; |
| } |
| } |
| if (pHba->reply_pool_pa <= m && |
| m < pHba->reply_pool_pa + |
| (pHba->reply_fifo_size * REPLY_FRAME_SIZE * 4)) { |
| reply = (u8 *)pHba->reply_pool + |
| (m - pHba->reply_pool_pa); |
| } else { |
| /* Ick, we should *never* be here */ |
| printk(KERN_ERR "dpti: reply frame not from pool\n"); |
| reply = (u8 *)bus_to_virt(m); |
| } |
| |
| if (readl(reply) & MSG_FAIL) { |
| u32 old_m = readl(reply+28); |
| void __iomem *msg; |
| u32 old_context; |
| PDEBUG("%s: Failed message\n",pHba->name); |
| if(old_m >= 0x100000){ |
| printk(KERN_ERR"%s: Bad preserved MFA (%x)- dropping frame\n",pHba->name,old_m); |
| writel(m,pHba->reply_port); |
| continue; |
| } |
| // Transaction context is 0 in failed reply frame |
| msg = pHba->msg_addr_virt + old_m; |
| old_context = readl(msg+12); |
| writel(old_context, reply+12); |
| adpt_send_nop(pHba, old_m); |
| } |
| context = readl(reply+8); |
| if(context & 0x40000000){ // IOCTL |
| void *p = adpt_ioctl_from_context(pHba, readl(reply+12)); |
| if( p != NULL) { |
| memcpy_fromio(p, reply, REPLY_FRAME_SIZE * 4); |
| } |
| // All IOCTLs will also be post wait |
| } |
| if(context & 0x80000000){ // Post wait message |
| status = readl(reply+16); |
| if(status >> 24){ |
| status &= 0xffff; /* Get detail status */ |
| } else { |
| status = I2O_POST_WAIT_OK; |
| } |
| if(!(context & 0x40000000)) { |
| cmd = adpt_cmd_from_context(pHba, |
| readl(reply+12)); |
| if(cmd != NULL) { |
| printk(KERN_WARNING"%s: Apparent SCSI cmd in Post Wait Context - cmd=%p context=%x\n", pHba->name, cmd, context); |
| } |
| } |
| adpt_i2o_post_wait_complete(context, status); |
| } else { // SCSI message |
| cmd = adpt_cmd_from_context (pHba, readl(reply+12)); |
| if(cmd != NULL){ |
| scsi_dma_unmap(cmd); |
| if(cmd->serial_number != 0) { // If not timedout |
| adpt_i2o_to_scsi(reply, cmd); |
| } |
| } |
| } |
| writel(m, pHba->reply_port); |
| wmb(); |
| rmb(); |
| } |
| handled = 1; |
| out: if(pHba->host) |
| spin_unlock_irqrestore(pHba->host->host_lock, flags); |
| return IRQ_RETVAL(handled); |
| } |
| |
| static s32 adpt_scsi_to_i2o(adpt_hba* pHba, struct scsi_cmnd* cmd, struct adpt_device* d) |
| { |
| int i; |
| u32 msg[MAX_MESSAGE_SIZE]; |
| u32* mptr; |
| u32* lptr; |
| u32 *lenptr; |
| int direction; |
| int scsidir; |
| int nseg; |
| u32 len; |
| u32 reqlen; |
| s32 rcode; |
| dma_addr_t addr; |
| |
| memset(msg, 0 , sizeof(msg)); |
| len = scsi_bufflen(cmd); |
| direction = 0x00000000; |
| |
| scsidir = 0x00000000; // DATA NO XFER |
| if(len) { |
| /* |
| * Set SCBFlags to indicate if data is being transferred |
| * in or out, or no data transfer |
| * Note: Do not have to verify index is less than 0 since |
| * cmd->cmnd[0] is an unsigned char |
| */ |
| switch(cmd->sc_data_direction){ |
| case DMA_FROM_DEVICE: |
| scsidir =0x40000000; // DATA IN (iop<--dev) |
| break; |
| case DMA_TO_DEVICE: |
| direction=0x04000000; // SGL OUT |
| scsidir =0x80000000; // DATA OUT (iop-->dev) |
| break; |
| case DMA_NONE: |
| break; |
| case DMA_BIDIRECTIONAL: |
| scsidir =0x40000000; // DATA IN (iop<--dev) |
| // Assume In - and continue; |
| break; |
| default: |
| printk(KERN_WARNING"%s: scsi opcode 0x%x not supported.\n", |
| pHba->name, cmd->cmnd[0]); |
| cmd->result = (DID_OK <<16) | (INITIATOR_ERROR << 8); |
| cmd->scsi_done(cmd); |
| return 0; |
| } |
| } |
| // msg[0] is set later |
| // I2O_CMD_SCSI_EXEC |
| msg[1] = ((0xff<<24)|(HOST_TID<<12)|d->tid); |
| msg[2] = 0; |
| msg[3] = adpt_cmd_to_context(cmd); /* Want SCSI control block back */ |
| // Our cards use the transaction context as the tag for queueing |
| // Adaptec/DPT Private stuff |
| msg[4] = I2O_CMD_SCSI_EXEC|(DPT_ORGANIZATION_ID<<16); |
| msg[5] = d->tid; |
| /* Direction, disconnect ok | sense data | simple queue , CDBLen */ |
| // I2O_SCB_FLAG_ENABLE_DISCONNECT | |
| // I2O_SCB_FLAG_SIMPLE_QUEUE_TAG | |
| // I2O_SCB_FLAG_SENSE_DATA_IN_MESSAGE; |
| msg[6] = scsidir|0x20a00000|cmd->cmd_len; |
| |
| mptr=msg+7; |
| |
| // Write SCSI command into the message - always 16 byte block |
| memset(mptr, 0, 16); |
| memcpy(mptr, cmd->cmnd, cmd->cmd_len); |
| mptr+=4; |
| lenptr=mptr++; /* Remember me - fill in when we know */ |
| if (dpt_dma64(pHba)) { |
| reqlen = 16; // SINGLE SGE |
| *mptr++ = (0x7C<<24)+(2<<16)+0x02; /* Enable 64 bit */ |
| *mptr++ = 1 << PAGE_SHIFT; |
| } else { |
| reqlen = 14; // SINGLE SGE |
| } |
| /* Now fill in the SGList and command */ |
| |
| nseg = scsi_dma_map(cmd); |
| BUG_ON(nseg < 0); |
| if (nseg) { |
| struct scatterlist *sg; |
| |
| len = 0; |
| scsi_for_each_sg(cmd, sg, nseg, i) { |
| lptr = mptr; |
| *mptr++ = direction|0x10000000|sg_dma_len(sg); |
| len+=sg_dma_len(sg); |
| addr = sg_dma_address(sg); |
| *mptr++ = dma_low(addr); |
| if (dpt_dma64(pHba)) |
| *mptr++ = dma_high(addr); |
| /* Make this an end of list */ |
| if (i == nseg - 1) |
| *lptr = direction|0xD0000000|sg_dma_len(sg); |
| } |
| reqlen = mptr - msg; |
| *lenptr = len; |
| |
| if(cmd->underflow && len != cmd->underflow){ |
| printk(KERN_WARNING"Cmd len %08X Cmd underflow %08X\n", |
| len, cmd->underflow); |
| } |
| } else { |
| *lenptr = len = 0; |
| reqlen = 12; |
| } |
| |
| /* Stick the headers on */ |
| msg[0] = reqlen<<16 | ((reqlen > 12) ? SGL_OFFSET_12 : SGL_OFFSET_0); |
| |
| // Send it on it's way |
| rcode = adpt_i2o_post_this(pHba, msg, reqlen<<2); |
| if (rcode == 0) { |
| return 0; |
| } |
| return rcode; |
| } |
| |
| |
| static s32 adpt_scsi_host_alloc(adpt_hba* pHba, struct scsi_host_template *sht) |
| { |
| struct Scsi_Host *host; |
| |
| host = scsi_host_alloc(sht, sizeof(adpt_hba*)); |
| if (host == NULL) { |
| printk("%s: scsi_host_alloc returned NULL\n", pHba->name); |
| return -1; |
| } |
| host->hostdata[0] = (unsigned long)pHba; |
| pHba->host = host; |
| |
| host->irq = pHba->pDev->irq; |
| /* no IO ports, so don't have to set host->io_port and |
| * host->n_io_port |
| */ |
| host->io_port = 0; |
| host->n_io_port = 0; |
| /* see comments in scsi_host.h */ |
| host->max_id = 16; |
| host->max_lun = 256; |
| host->max_channel = pHba->top_scsi_channel + 1; |
| host->cmd_per_lun = 1; |
| host->unique_id = (u32)sys_tbl_pa + pHba->unit; |
| host->sg_tablesize = pHba->sg_tablesize; |
| host->can_queue = pHba->post_fifo_size; |
| host->use_cmd_list = 1; |
| |
| return 0; |
| } |
| |
| |
| static s32 adpt_i2o_to_scsi(void __iomem *reply, struct scsi_cmnd* cmd) |
| { |
| adpt_hba* pHba; |
| u32 hba_status; |
| u32 dev_status; |
| u32 reply_flags = readl(reply) & 0xff00; // Leave it shifted up 8 bits |
| // I know this would look cleaner if I just read bytes |
| // but the model I have been using for all the rest of the |
| // io is in 4 byte words - so I keep that model |
| u16 detailed_status = readl(reply+16) &0xffff; |
| dev_status = (detailed_status & 0xff); |
| hba_status = detailed_status >> 8; |
| |
| // calculate resid for sg |
| scsi_set_resid(cmd, scsi_bufflen(cmd) - readl(reply+20)); |
| |
| pHba = (adpt_hba*) cmd->device->host->hostdata[0]; |
| |
| cmd->sense_buffer[0] = '\0'; // initialize sense valid flag to false |
| |
| if(!(reply_flags & MSG_FAIL)) { |
| switch(detailed_status & I2O_SCSI_DSC_MASK) { |
| case I2O_SCSI_DSC_SUCCESS: |
| cmd->result = (DID_OK << 16); |
| // handle underflow |
| if (readl(reply+20) < cmd->underflow) { |
| cmd->result = (DID_ERROR <<16); |
| printk(KERN_WARNING"%s: SCSI CMD underflow\n",pHba->name); |
| } |
| break; |
| case I2O_SCSI_DSC_REQUEST_ABORTED: |
| cmd->result = (DID_ABORT << 16); |
| break; |
| case I2O_SCSI_DSC_PATH_INVALID: |
| case I2O_SCSI_DSC_DEVICE_NOT_PRESENT: |
| case I2O_SCSI_DSC_SELECTION_TIMEOUT: |
| case I2O_SCSI_DSC_COMMAND_TIMEOUT: |
| case I2O_SCSI_DSC_NO_ADAPTER: |
| case I2O_SCSI_DSC_RESOURCE_UNAVAILABLE: |
| printk(KERN_WARNING"%s: SCSI Timeout-Device (%d,%d,%llu) hba status=0x%x, dev status=0x%x, cmd=0x%x\n", |
| pHba->name, (u32)cmd->device->channel, (u32)cmd->device->id, cmd->device->lun, hba_status, dev_status, cmd->cmnd[0]); |
| cmd->result = (DID_TIME_OUT << 16); |
| break; |
| case I2O_SCSI_DSC_ADAPTER_BUSY: |
| case I2O_SCSI_DSC_BUS_BUSY: |
| cmd->result = (DID_BUS_BUSY << 16); |
| break; |
| case I2O_SCSI_DSC_SCSI_BUS_RESET: |
| case I2O_SCSI_DSC_BDR_MESSAGE_SENT: |
| cmd->result = (DID_RESET << 16); |
| break; |
| case I2O_SCSI_DSC_PARITY_ERROR_FAILURE: |
| printk(KERN_WARNING"%s: SCSI CMD parity error\n",pHba->name); |
| cmd->result = (DID_PARITY << 16); |
| break; |
| case I2O_SCSI_DSC_UNABLE_TO_ABORT: |
| case I2O_SCSI_DSC_COMPLETE_WITH_ERROR: |
| case I2O_SCSI_DSC_UNABLE_TO_TERMINATE: |
| case I2O_SCSI_DSC_MR_MESSAGE_RECEIVED: |
| case I2O_SCSI_DSC_AUTOSENSE_FAILED: |
| case I2O_SCSI_DSC_DATA_OVERRUN: |
| case I2O_SCSI_DSC_UNEXPECTED_BUS_FREE: |
| case I2O_SCSI_DSC_SEQUENCE_FAILURE: |
| case I2O_SCSI_DSC_REQUEST_LENGTH_ERROR: |
| case I2O_SCSI_DSC_PROVIDE_FAILURE: |
| case I2O_SCSI_DSC_REQUEST_TERMINATED: |
| case I2O_SCSI_DSC_IDE_MESSAGE_SENT: |
| case I2O_SCSI_DSC_UNACKNOWLEDGED_EVENT: |
| case I2O_SCSI_DSC_MESSAGE_RECEIVED: |
| case I2O_SCSI_DSC_INVALID_CDB: |
| case I2O_SCSI_DSC_LUN_INVALID: |
| case I2O_SCSI_DSC_SCSI_TID_INVALID: |
| case I2O_SCSI_DSC_FUNCTION_UNAVAILABLE: |
| case I2O_SCSI_DSC_NO_NEXUS: |
| case I2O_SCSI_DSC_CDB_RECEIVED: |
| case I2O_SCSI_DSC_LUN_ALREADY_ENABLED: |
| case I2O_SCSI_DSC_QUEUE_FROZEN: |
| case I2O_SCSI_DSC_REQUEST_INVALID: |
| default: |
| printk(KERN_WARNING"%s: SCSI error %0x-Device(%d,%d,%llu) hba_status=0x%x, dev_status=0x%x, cmd=0x%x\n", |
| pHba->name, detailed_status & I2O_SCSI_DSC_MASK, (u32)cmd->device->channel, (u32)cmd->device->id, cmd->device->lun, |
| hba_status, dev_status, cmd->cmnd[0]); |
| cmd->result = (DID_ERROR << 16); |
| break; |
| } |
| |
| // copy over the request sense data if it was a check |
| // condition status |
| if (dev_status == SAM_STAT_CHECK_CONDITION) { |
| u32 len = min(SCSI_SENSE_BUFFERSIZE, 40); |
| // Copy over the sense data |
| memcpy_fromio(cmd->sense_buffer, (reply+28) , len); |
| if(cmd->sense_buffer[0] == 0x70 /* class 7 */ && |
| cmd->sense_buffer[2] == DATA_PROTECT ){ |
| /* This is to handle an array failed */ |
| cmd->result = (DID_TIME_OUT << 16); |
| printk(KERN_WARNING"%s: SCSI Data Protect-Device (%d,%d,%llu) hba_status=0x%x, dev_status=0x%x, cmd=0x%x\n", |
| pHba->name, (u32)cmd->device->channel, (u32)cmd->device->id, cmd->device->lun, |
| hba_status, dev_status, cmd->cmnd[0]); |
| |
| } |
| } |
| } else { |
| /* In this condtion we could not talk to the tid |
| * the card rejected it. We should signal a retry |
| * for a limitted number of retries. |
| */ |
| cmd->result = (DID_TIME_OUT << 16); |
| printk(KERN_WARNING"%s: I2O MSG_FAIL - Device (%d,%d,%llu) tid=%d, cmd=0x%x\n", |
| pHba->name, (u32)cmd->device->channel, (u32)cmd->device->id, cmd->device->lun, |
| ((struct adpt_device*)(cmd->device->hostdata))->tid, cmd->cmnd[0]); |
| } |
| |
| cmd->result |= (dev_status); |
| |
| if(cmd->scsi_done != NULL){ |
| cmd->scsi_done(cmd); |
| } |
| return cmd->result; |
| } |
| |
| |
| static s32 adpt_rescan(adpt_hba* pHba) |
| { |
| s32 rcode; |
| ulong flags = 0; |
| |
| if(pHba->host) |
| spin_lock_irqsave(pHba->host->host_lock, flags); |
| if ((rcode=adpt_i2o_lct_get(pHba)) < 0) |
| goto out; |
| if ((rcode=adpt_i2o_reparse_lct(pHba)) < 0) |
| goto out; |
| rcode = 0; |
| out: if(pHba->host) |
| spin_unlock_irqrestore(pHba->host->host_lock, flags); |
| return rcode; |
| } |
| |
| |
| static s32 adpt_i2o_reparse_lct(adpt_hba* pHba) |
| { |
| int i; |
| int max; |
| int tid; |
| struct i2o_device *d; |
| i2o_lct *lct = pHba->lct; |
| u8 bus_no = 0; |
| s16 scsi_id; |
| u64 scsi_lun; |
| u32 buf[10]; // at least 8 u32's |
| struct adpt_device* pDev = NULL; |
| struct i2o_device* pI2o_dev = NULL; |
| |
| if (lct == NULL) { |
| printk(KERN_ERR "%s: LCT is empty???\n",pHba->name); |
| return -1; |
| } |
| |
| max = lct->table_size; |
| max -= 3; |
| max /= 9; |
| |
| // Mark each drive as unscanned |
| for (d = pHba->devices; d; d = d->next) { |
| pDev =(struct adpt_device*) d->owner; |
| if(!pDev){ |
| continue; |
| } |
| pDev->state |= DPTI_DEV_UNSCANNED; |
| } |
| |
| printk(KERN_INFO "%s: LCT has %d entries.\n", pHba->name,max); |
| |
| for(i=0;i<max;i++) { |
| if( lct->lct_entry[i].user_tid != 0xfff){ |
| continue; |
| } |
| |
| if( lct->lct_entry[i].class_id == I2O_CLASS_RANDOM_BLOCK_STORAGE || |
| lct->lct_entry[i].class_id == I2O_CLASS_SCSI_PERIPHERAL || |
| lct->lct_entry[i].class_id == I2O_CLASS_FIBRE_CHANNEL_PERIPHERAL ){ |
| tid = lct->lct_entry[i].tid; |
| if(adpt_i2o_query_scalar(pHba, tid, 0x8000, -1, buf, 32)<0) { |
| printk(KERN_ERR"%s: Could not query device\n",pHba->name); |
| continue; |
| } |
| bus_no = buf[0]>>16; |
| if (bus_no >= MAX_CHANNEL) { /* Something wrong skip it */ |
| printk(KERN_WARNING |
| "%s: Channel number %d out of range\n", |
| pHba->name, bus_no); |
| continue; |
| } |
| |
| scsi_id = buf[1]; |
| scsi_lun = scsilun_to_int((struct scsi_lun *)&buf[2]); |
| pDev = pHba->channel[bus_no].device[scsi_id]; |
| /* da lun */ |
| while(pDev) { |
| if(pDev->scsi_lun == scsi_lun) { |
| break; |
| } |
| pDev = pDev->next_lun; |
| } |
| if(!pDev ) { // Something new add it |
| d = kmalloc(sizeof(struct i2o_device), |
| GFP_ATOMIC); |
| if(d==NULL) |
| { |
| printk(KERN_CRIT "Out of memory for I2O device data.\n"); |
| return -ENOMEM; |
| } |
| |
| d->controller = pHba; |
| d->next = NULL; |
| |
| memcpy(&d->lct_data, &lct->lct_entry[i], sizeof(i2o_lct_entry)); |
| |
| d->flags = 0; |
| adpt_i2o_report_hba_unit(pHba, d); |
| adpt_i2o_install_device(pHba, d); |
| |
| pDev = pHba->channel[bus_no].device[scsi_id]; |
| if( pDev == NULL){ |
| pDev = |
| kzalloc(sizeof(struct adpt_device), |
| GFP_ATOMIC); |
| if(pDev == NULL) { |
| return -ENOMEM; |
| } |
| pHba->channel[bus_no].device[scsi_id] = pDev; |
| } else { |
| while (pDev->next_lun) { |
| pDev = pDev->next_lun; |
| } |
| pDev = pDev->next_lun = |
| kzalloc(sizeof(struct adpt_device), |
| GFP_ATOMIC); |
| if(pDev == NULL) { |
| return -ENOMEM; |
| } |
| } |
| pDev->tid = d->lct_data.tid; |
| pDev->scsi_channel = bus_no; |
| pDev->scsi_id = scsi_id; |
| pDev->scsi_lun = scsi_lun; |
| pDev->pI2o_dev = d; |
| d->owner = pDev; |
| pDev->type = (buf[0])&0xff; |
| pDev->flags = (buf[0]>>8)&0xff; |
| // Too late, SCSI system has made up it's mind, but what the hey ... |
| if(scsi_id > pHba->top_scsi_id){ |
| pHba->top_scsi_id = scsi_id; |
| } |
| if(scsi_lun > pHba->top_scsi_lun){ |
| pHba->top_scsi_lun = scsi_lun; |
| } |
| continue; |
| } // end of new i2o device |
| |
| // We found an old device - check it |
| while(pDev) { |
| if(pDev->scsi_lun == scsi_lun) { |
| if(!scsi_device_online(pDev->pScsi_dev)) { |
| printk(KERN_WARNING"%s: Setting device (%d,%d,%llu) back online\n", |
| pHba->name,bus_no,scsi_id,scsi_lun); |
| if (pDev->pScsi_dev) { |
| scsi_device_set_state(pDev->pScsi_dev, SDEV_RUNNING); |
| } |
| } |
| d = pDev->pI2o_dev; |
| if(d->lct_data.tid != tid) { // something changed |
| pDev->tid = tid; |
| memcpy(&d->lct_data, &lct->lct_entry[i], sizeof(i2o_lct_entry)); |
| if (pDev->pScsi_dev) { |
| pDev->pScsi_dev->changed = TRUE; |
| pDev->pScsi_dev->removable = TRUE; |
| } |
| } |
| // Found it - mark it scanned |
| pDev->state = DPTI_DEV_ONLINE; |
| break; |
| } |
| pDev = pDev->next_lun; |
| } |
| } |
| } |
| for (pI2o_dev = pHba->devices; pI2o_dev; pI2o_dev = pI2o_dev->next) { |
| pDev =(struct adpt_device*) pI2o_dev->owner; |
| if(!pDev){ |
| continue; |
| } |
| // Drive offline drives that previously existed but could not be found |
| // in the LCT table |
| if (pDev->state & DPTI_DEV_UNSCANNED){ |
| pDev->state = DPTI_DEV_OFFLINE; |
| printk(KERN_WARNING"%s: Device (%d,%d,%llu) offline\n",pHba->name,pDev->scsi_channel,pDev->scsi_id,pDev->scsi_lun); |
| if (pDev->pScsi_dev) { |
| scsi_device_set_state(pDev->pScsi_dev, SDEV_OFFLINE); |
| } |
| } |
| } |
| return 0; |
| } |
| |
| static void adpt_fail_posted_scbs(adpt_hba* pHba) |
| { |
| struct scsi_cmnd* cmd = NULL; |
| struct scsi_device* d = NULL; |
| |
| shost_for_each_device(d, pHba->host) { |
| unsigned long flags; |
| spin_lock_irqsave(&d->list_lock, flags); |
| list_for_each_entry(cmd, &d->cmd_list, list) { |
| if(cmd->serial_number == 0){ |
| continue; |
| } |
| cmd->result = (DID_OK << 16) | (QUEUE_FULL <<1); |
| cmd->scsi_done(cmd); |
| } |
| spin_unlock_irqrestore(&d->list_lock, flags); |
| } |
| } |
| |
| |
| /*============================================================================ |
| * Routines from i2o subsystem |
| *============================================================================ |
| */ |
| |
| |
| |
| /* |
| * Bring an I2O controller into HOLD state. See the spec. |
| */ |
| static int adpt_i2o_activate_hba(adpt_hba* pHba) |
| { |
| int rcode; |
| |
| if(pHba->initialized ) { |
| if (adpt_i2o_status_get(pHba) < 0) { |
| if((rcode = adpt_i2o_reset_hba(pHba)) != 0){ |
| printk(KERN_WARNING"%s: Could NOT reset.\n", pHba->name); |
| return rcode; |
| } |
| if (adpt_i2o_status_get(pHba) < 0) { |
| printk(KERN_INFO "HBA not responding.\n"); |
| return -1; |
| } |
| } |
| |
| if(pHba->status_block->iop_state == ADAPTER_STATE_FAULTED) { |
| printk(KERN_CRIT "%s: hardware fault\n", pHba->name); |
| return -1; |
| } |
| |
| if (pHba->status_block->iop_state == ADAPTER_STATE_READY || |
| pHba->status_block->iop_state == ADAPTER_STATE_OPERATIONAL || |
| pHba->status_block->iop_state == ADAPTER_STATE_HOLD || |
| pHba->status_block->iop_state == ADAPTER_STATE_FAILED) { |
| adpt_i2o_reset_hba(pHba); |
| if (adpt_i2o_status_get(pHba) < 0 || pHba->status_block->iop_state != ADAPTER_STATE_RESET) { |
| printk(KERN_ERR "%s: Failed to initialize.\n", pHba->name); |
| return -1; |
| } |
| } |
| } else { |
| if((rcode = adpt_i2o_reset_hba(pHba)) != 0){ |
| printk(KERN_WARNING"%s: Could NOT reset.\n", pHba->name); |
| return rcode; |
| } |
| |
| } |
| |
| if (adpt_i2o_init_outbound_q(pHba) < 0) { |
| return -1; |
| } |
| |
| /* In HOLD state */ |
| |
| if (adpt_i2o_hrt_get(pHba) < 0) { |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Bring a controller online into OPERATIONAL state. |
| */ |
| |
| static int adpt_i2o_online_hba(adpt_hba* pHba) |
| { |
| if (adpt_i2o_systab_send(pHba) < 0) |
| return -1; |
| /* In READY state */ |
| |
| if (adpt_i2o_enable_hba(pHba) < 0) |
| return -1; |
| |
| /* In OPERATIONAL state */ |
| return 0; |
| } |
| |
| static s32 adpt_send_nop(adpt_hba*pHba,u32 m) |
| { |
| u32 __iomem *msg; |
| ulong timeout = jiffies + 5*HZ; |
| |
| while(m == EMPTY_QUEUE){ |
| rmb(); |
| m = readl(pHba->post_port); |
| if(m != EMPTY_QUEUE){ |
| break; |
| } |
| if(time_after(jiffies,timeout)){ |
| printk(KERN_ERR "%s: Timeout waiting for message frame!\n",pHba->name); |
| return 2; |
| } |
| schedule_timeout_uninterruptible(1); |
| } |
| msg = (u32 __iomem *)(pHba->msg_addr_virt + m); |
| writel( THREE_WORD_MSG_SIZE | SGL_OFFSET_0,&msg[0]); |
| writel( I2O_CMD_UTIL_NOP << 24 | HOST_TID << 12 | 0,&msg[1]); |
| writel( 0,&msg[2]); |
| wmb(); |
| |
| writel(m, pHba->post_port); |
| wmb(); |
| return 0; |
| } |
| |
| static s32 adpt_i2o_init_outbound_q(adpt_hba* pHba) |
| { |
| u8 *status; |
| dma_addr_t addr; |
| u32 __iomem *msg = NULL; |
| int i; |
| ulong timeout = jiffies + TMOUT_INITOUTBOUND*HZ; |
| u32 m; |
| |
| do { |
| rmb(); |
| m = readl(pHba->post_port); |
| if (m != EMPTY_QUEUE) { |
| break; |
| } |
| |
| if(time_after(jiffies,timeout)){ |
| printk(KERN_WARNING"%s: Timeout waiting for message frame\n",pHba->name); |
| return -ETIMEDOUT; |
| } |
| schedule_timeout_uninterruptible(1); |
| } while(m == EMPTY_QUEUE); |
| |
| msg=(u32 __iomem *)(pHba->msg_addr_virt+m); |
| |
| status = dma_alloc_coherent(&pHba->pDev->dev, 4, &addr, GFP_KERNEL); |
| if (!status) { |
| adpt_send_nop(pHba, m); |
| printk(KERN_WARNING"%s: IOP reset failed - no free memory.\n", |
| pHba->name); |
| return -ENOMEM; |
| } |
| memset(status, 0, 4); |
| |
| writel(EIGHT_WORD_MSG_SIZE| SGL_OFFSET_6, &msg[0]); |
| writel(I2O_CMD_OUTBOUND_INIT<<24 | HOST_TID<<12 | ADAPTER_TID, &msg[1]); |
| writel(0, &msg[2]); |
| writel(0x0106, &msg[3]); /* Transaction context */ |
| writel(4096, &msg[4]); /* Host page frame size */ |
| writel((REPLY_FRAME_SIZE)<<16|0x80, &msg[5]); /* Outbound msg frame size and Initcode */ |
| writel(0xD0000004, &msg[6]); /* Simple SG LE, EOB */ |
| writel((u32)addr, &msg[7]); |
| |
| writel(m, pHba->post_port); |
| wmb(); |
| |
| // Wait for the reply status to come back |
| do { |
| if (*status) { |
| if (*status != 0x01 /*I2O_EXEC_OUTBOUND_INIT_IN_PROGRESS*/) { |
| break; |
| } |
| } |
| rmb(); |
| if(time_after(jiffies,timeout)){ |
| printk(KERN_WARNING"%s: Timeout Initializing\n",pHba->name); |
| /* We lose 4 bytes of "status" here, but we |
| cannot free these because controller may |
| awake and corrupt those bytes at any time */ |
| /* dma_free_coherent(&pHba->pDev->dev, 4, status, addr); */ |
| return -ETIMEDOUT; |
| } |
| schedule_timeout_uninterruptible(1); |
| } while (1); |
| |
| // If the command was successful, fill the fifo with our reply |
| // message packets |
| if(*status != 0x04 /*I2O_EXEC_OUTBOUND_INIT_COMPLETE*/) { |
| dma_free_coherent(&pHba->pDev->dev, 4, status, addr); |
| return -2; |
| } |
| dma_free_coherent(&pHba->pDev->dev, 4, status, addr); |
| |
| if(pHba->reply_pool != NULL) { |
| dma_free_coherent(&pHba->pDev->dev, |
| pHba->reply_fifo_size * REPLY_FRAME_SIZE * 4, |
| pHba->reply_pool, pHba->reply_pool_pa); |
| } |
| |
| pHba->reply_pool = dma_alloc_coherent(&pHba->pDev->dev, |
| pHba->reply_fifo_size * REPLY_FRAME_SIZE * 4, |
| &pHba->reply_pool_pa, GFP_KERNEL); |
| if (!pHba->reply_pool) { |
| printk(KERN_ERR "%s: Could not allocate reply pool\n", pHba->name); |
| return -ENOMEM; |
| } |
| memset(pHba->reply_pool, 0 , pHba->reply_fifo_size * REPLY_FRAME_SIZE * 4); |
| |
| for(i = 0; i < pHba->reply_fifo_size; i++) { |
| writel(pHba->reply_pool_pa + (i * REPLY_FRAME_SIZE * 4), |
| pHba->reply_port); |
| wmb(); |
| } |
| adpt_i2o_status_get(pHba); |
| return 0; |
| } |
| |
| |
| /* |
| * I2O System Table. Contains information about |
| * all the IOPs in the system. Used to inform IOPs |
| * about each other's existence. |
| * |
| * sys_tbl_ver is the CurrentChangeIndicator that is |
| * used by IOPs to track changes. |
| */ |
| |
| |
| |
| static s32 adpt_i2o_status_get(adpt_hba* pHba) |
| { |
| ulong timeout; |
| u32 m; |
| u32 __iomem *msg; |
| u8 *status_block=NULL; |
| |
| if(pHba->status_block == NULL) { |
| pHba->status_block = dma_alloc_coherent(&pHba->pDev->dev, |
| sizeof(i2o_status_block), |
| &pHba->status_block_pa, GFP_KERNEL); |
| if(pHba->status_block == NULL) { |
| printk(KERN_ERR |
| "dpti%d: Get Status Block failed; Out of memory. \n", |
| pHba->unit); |
| return -ENOMEM; |
| } |
| } |
| memset(pHba->status_block, 0, sizeof(i2o_status_block)); |
| status_block = (u8*)(pHba->status_block); |
| timeout = jiffies+TMOUT_GETSTATUS*HZ; |
| do { |
| rmb(); |
| m = readl(pHba->post_port); |
| if (m != EMPTY_QUEUE) { |
| break; |
| } |
| if(time_after(jiffies,timeout)){ |
| printk(KERN_ERR "%s: Timeout waiting for message !\n", |
| pHba->name); |
| return -ETIMEDOUT; |
| } |
| schedule_timeout_uninterruptible(1); |
| } while(m==EMPTY_QUEUE); |
| |
| |
| msg=(u32 __iomem *)(pHba->msg_addr_virt+m); |
| |
| writel(NINE_WORD_MSG_SIZE|SGL_OFFSET_0, &msg[0]); |
| writel(I2O_CMD_STATUS_GET<<24|HOST_TID<<12|ADAPTER_TID, &msg[1]); |
| writel(1, &msg[2]); |
| writel(0, &msg[3]); |
| writel(0, &msg[4]); |
| writel(0, &msg[5]); |
| writel( dma_low(pHba->status_block_pa), &msg[6]); |
| writel( dma_high(pHba->status_block_pa), &msg[7]); |
| writel(sizeof(i2o_status_block), &msg[8]); // 88 bytes |
| |
| //post message |
| writel(m, pHba->post_port); |
| wmb(); |
| |
| while(status_block[87]!=0xff){ |
| if(time_after(jiffies,timeout)){ |
| printk(KERN_ERR"dpti%d: Get status timeout.\n", |
| pHba->unit); |
| return -ETIMEDOUT; |
| } |
| rmb(); |
| schedule_timeout_uninterruptible(1); |
| } |
| |
| // Set up our number of outbound and inbound messages |
| pHba->post_fifo_size = pHba->status_block->max_inbound_frames; |
| if (pHba->post_fifo_size > MAX_TO_IOP_MESSAGES) { |
| pHba->post_fifo_size = MAX_TO_IOP_MESSAGES; |
| } |
| |
| pHba->reply_fifo_size = pHba->status_block->max_outbound_frames; |
| if (pHba->reply_fifo_size > MAX_FROM_IOP_MESSAGES) { |
| pHba->reply_fifo_size = MAX_FROM_IOP_MESSAGES; |
| } |
| |
| // Calculate the Scatter Gather list size |
| if (dpt_dma64(pHba)) { |
| pHba->sg_tablesize |
| = ((pHba->status_block->inbound_frame_size * 4 |
| - 14 * sizeof(u32)) |
| / (sizeof(struct sg_simple_element) + sizeof(u32))); |
| } else { |
| pHba->sg_tablesize |
| = ((pHba->status_block->inbound_frame_size * 4 |
| - 12 * sizeof(u32)) |
| / sizeof(struct sg_simple_element)); |
| } |
| if (pHba->sg_tablesize > SG_LIST_ELEMENTS) { |
| pHba->sg_tablesize = SG_LIST_ELEMENTS; |
| } |
| |
| |
| #ifdef DEBUG |
| printk("dpti%d: State = ",pHba->unit); |
| switch(pHba->status_block->iop_state) { |
| case 0x01: |
| printk("INIT\n"); |
| break; |
| case 0x02: |
| printk("RESET\n"); |
| break; |
| case 0x04: |
| printk("HOLD\n"); |
| break; |
| case 0x05: |
| printk("READY\n"); |
| break; |
| case 0x08: |
| printk("OPERATIONAL\n"); |
| break; |
| case 0x10: |
| printk("FAILED\n"); |
| break; |
| case 0x11: |
| printk("FAULTED\n"); |
| break; |
| default: |
| printk("%x (unknown!!)\n",pHba->status_block->iop_state); |
| } |
| #endif |
| return 0; |
| } |
| |
| /* |
| * Get the IOP's Logical Configuration Table |
| */ |
| static int adpt_i2o_lct_get(adpt_hba* pHba) |
| { |
| u32 msg[8]; |
| int ret; |
| u32 buf[16]; |
| |
| if ((pHba->lct_size == 0) || (pHba->lct == NULL)){ |
| pHba->lct_size = pHba->status_block->expected_lct_size; |
| } |
| do { |
| if (pHba->lct == NULL) { |
| pHba->lct = dma_alloc_coherent(&pHba->pDev->dev, |
| pHba->lct_size, &pHba->lct_pa, |
| GFP_ATOMIC); |
| if(pHba->lct == NULL) { |
| printk(KERN_CRIT "%s: Lct Get failed. Out of memory.\n", |
| pHba->name); |
| return -ENOMEM; |
| } |
| } |
| memset(pHba->lct, 0, pHba->lct_size); |
| |
| msg[0] = EIGHT_WORD_MSG_SIZE|SGL_OFFSET_6; |
| msg[1] = I2O_CMD_LCT_NOTIFY<<24 | HOST_TID<<12 | ADAPTER_TID; |
| msg[2] = 0; |
| msg[3] = 0; |
| msg[4] = 0xFFFFFFFF; /* All devices */ |
| msg[5] = 0x00000000; /* Report now */ |
| msg[6] = 0xD0000000|pHba->lct_size; |
| msg[7] = (u32)pHba->lct_pa; |
| |
| if ((ret=adpt_i2o_post_wait(pHba, msg, sizeof(msg), 360))) { |
| printk(KERN_ERR "%s: LCT Get failed (status=%#10x.\n", |
| pHba->name, ret); |
| printk(KERN_ERR"Adaptec: Error Reading Hardware.\n"); |
| return ret; |
| } |
| |
| if ((pHba->lct->table_size << 2) > pHba->lct_size) { |
| pHba->lct_size = pHba->lct->table_size << 2; |
| dma_free_coherent(&pHba->pDev->dev, pHba->lct_size, |
| pHba->lct, pHba->lct_pa); |
| pHba->lct = NULL; |
| } |
| } while (pHba->lct == NULL); |
| |
| PDEBUG("%s: Hardware resource table read.\n", pHba->name); |
| |
| |
| // I2O_DPT_EXEC_IOP_BUFFERS_GROUP_NO; |
| if(adpt_i2o_query_scalar(pHba, 0 , 0x8000, -1, buf, sizeof(buf))>=0) { |
| pHba->FwDebugBufferSize = buf[1]; |
| pHba->FwDebugBuffer_P = ioremap(pHba->base_addr_phys + buf[0], |
| pHba->FwDebugBufferSize); |
| if (pHba->FwDebugBuffer_P) { |
| pHba->FwDebugFlags_P = pHba->FwDebugBuffer_P + |
| FW_DEBUG_FLAGS_OFFSET; |
| pHba->FwDebugBLEDvalue_P = pHba->FwDebugBuffer_P + |
| FW_DEBUG_BLED_OFFSET; |
| pHba->FwDebugBLEDflag_P = pHba->FwDebugBLEDvalue_P + 1; |
| pHba->FwDebugStrLength_P = pHba->FwDebugBuffer_P + |
| FW_DEBUG_STR_LENGTH_OFFSET; |
| pHba->FwDebugBuffer_P += buf[2]; |
| pHba->FwDebugFlags = 0; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int adpt_i2o_build_sys_table(void) |
| { |
| adpt_hba* pHba = hba_chain; |
| int count = 0; |
| |
| if (sys_tbl) |
| dma_free_coherent(&pHba->pDev->dev, sys_tbl_len, |
| sys_tbl, sys_tbl_pa); |
| |
| sys_tbl_len = sizeof(struct i2o_sys_tbl) + // Header + IOPs |
| (hba_count) * sizeof(struct i2o_sys_tbl_entry); |
| |
| sys_tbl = dma_alloc_coherent(&pHba->pDev->dev, |
| sys_tbl_len, &sys_tbl_pa, GFP_KERNEL); |
| if (!sys_tbl) { |
| printk(KERN_WARNING "SysTab Set failed. Out of memory.\n"); |
| return -ENOMEM; |
| } |
| memset(sys_tbl, 0, sys_tbl_len); |
| |
| sys_tbl->num_entries = hba_count; |
| sys_tbl->version = I2OVERSION; |
| sys_tbl->change_ind = sys_tbl_ind++; |
| |
| for(pHba = hba_chain; pHba; pHba = pHba->next) { |
| u64 addr; |
| // Get updated Status Block so we have the latest information |
| if (adpt_i2o_status_get(pHba)) { |
| sys_tbl->num_entries--; |
| continue; // try next one |
| } |
| |
| sys_tbl->iops[count].org_id = pHba->status_block->org_id; |
| sys_tbl->iops[count].iop_id = pHba->unit + 2; |
| sys_tbl->iops[count].seg_num = 0; |
| sys_tbl->iops[count].i2o_version = pHba->status_block->i2o_version; |
| sys_tbl->iops[count].iop_state = pHba->status_block->iop_state; |
| sys_tbl->iops[count].msg_type = pHba->status_block->msg_type; |
| sys_tbl->iops[count].frame_size = pHba->status_block->inbound_frame_size; |
| sys_tbl->iops[count].last_changed = sys_tbl_ind - 1; // ?? |
| sys_tbl->iops[count].iop_capabilities = pHba->status_block->iop_capabilities; |
| addr = pHba->base_addr_phys + 0x40; |
| sys_tbl->iops[count].inbound_low = dma_low(addr); |
| sys_tbl->iops[count].inbound_high = dma_high(addr); |
| |
| count++; |
| } |
| |
| #ifdef DEBUG |
| { |
| u32 *table = (u32*)sys_tbl; |
| printk(KERN_DEBUG"sys_tbl_len=%d in 32bit words\n",(sys_tbl_len >>2)); |
| for(count = 0; count < (sys_tbl_len >>2); count++) { |
| printk(KERN_INFO "sys_tbl[%d] = %0#10x\n", |
| count, table[count]); |
| } |
| } |
| #endif |
| |
| return 0; |
| } |
| |
| |
| /* |
| * Dump the information block associated with a given unit (TID) |
| */ |
| |
| static void adpt_i2o_report_hba_unit(adpt_hba* pHba, struct i2o_device *d) |
| { |
| char buf[64]; |
| int unit = d->lct_data.tid; |
| |
| printk(KERN_INFO "TID %3.3d ", unit); |
| |
| if(adpt_i2o_query_scalar(pHba, unit, 0xF100, 3, buf, 16)>=0) |
| { |
| buf[16]=0; |
| printk(" Vendor: %-12.12s", buf); |
| } |
| if(adpt_i2o_query_scalar(pHba, unit, 0xF100, 4, buf, 16)>=0) |
| { |
| buf[16]=0; |
| printk(" Device: %-12.12s", buf); |
| } |
| if(adpt_i2o_query_scalar(pHba, unit, 0xF100, 6, buf, 8)>=0) |
| { |
| buf[8]=0; |
| printk(" Rev: %-12.12s\n", buf); |
| } |
| #ifdef DEBUG |
| printk(KERN_INFO "\tClass: %.21s\n", adpt_i2o_get_class_name(d->lct_data.class_id)); |
| printk(KERN_INFO "\tSubclass: 0x%04X\n", d->lct_data.sub_class); |
| printk(KERN_INFO "\tFlags: "); |
| |
| if(d->lct_data.device_flags&(1<<0)) |
| printk("C"); // ConfigDialog requested |
| if(d->lct_data.device_flags&(1<<1)) |
| printk("U"); // Multi-user capable |
| if(!(d->lct_data.device_flags&(1<<4))) |
| printk("P"); // Peer service enabled! |
| if(!(d->lct_data.device_flags&(1<<5))) |
| printk("M"); // Mgmt service enabled! |
| printk("\n"); |
| #endif |
| } |
| |
| #ifdef DEBUG |
| /* |
| * Do i2o class name lookup |
| */ |
| static const char *adpt_i2o_get_class_name(int class) |
| { |
| int idx = 16; |
| static char *i2o_class_name[] = { |
| "Executive", |
| "Device Driver Module", |
| "Block Device", |
| "Tape Device", |
| "LAN Interface", |
| "WAN Interface", |
| "Fibre Channel Port", |
| "Fibre Channel Device", |
| "SCSI Device", |
| "ATE Port", |
| "ATE Device", |
| "Floppy Controller", |
| "Floppy Device", |
| "Secondary Bus Port", |
| "Peer Transport Agent", |
| "Peer Transport", |
| "Unknown" |
| }; |
| |
| switch(class&0xFFF) { |
| case I2O_CLASS_EXECUTIVE: |
| idx = 0; break; |
| case I2O_CLASS_DDM: |
| idx = 1; break; |
| case I2O_CLASS_RANDOM_BLOCK_STORAGE: |
| idx = 2; break; |
| case I2O_CLASS_SEQUENTIAL_STORAGE: |
| idx = 3; break; |
| case I2O_CLASS_LAN: |
| idx = 4; break; |
| case I2O_CLASS_WAN: |
| idx = 5; break; |
| case I2O_CLASS_FIBRE_CHANNEL_PORT: |
| idx = 6; break; |
| case I2O_CLASS_FIBRE_CHANNEL_PERIPHERAL: |
| idx = 7; break; |
| case I2O_CLASS_SCSI_PERIPHERAL: |
| idx = 8; break; |
| case I2O_CLASS_ATE_PORT: |
| idx = 9; break; |
| case I2O_CLASS_ATE_PERIPHERAL: |
| idx = 10; break; |
| case I2O_CLASS_FLOPPY_CONTROLLER: |
| idx = 11; break; |
| case I2O_CLASS_FLOPPY_DEVICE: |
| idx = 12; break; |
| case I2O_CLASS_BUS_ADAPTER_PORT: |
| idx = 13; break; |
| case I2O_CLASS_PEER_TRANSPORT_AGENT: |
| idx = 14; break; |
| case I2O_CLASS_PEER_TRANSPORT: |
| idx = 15; break; |
| } |
| return i2o_class_name[idx]; |
| } |
| #endif |
| |
| |
| static s32 adpt_i2o_hrt_get(adpt_hba* pHba) |
| { |
| u32 msg[6]; |
| int ret, size = sizeof(i2o_hrt); |
| |
| do { |
| if (pHba->hrt == NULL) { |
| pHba->hrt = dma_alloc_coherent(&pHba->pDev->dev, |
| size, &pHba->hrt_pa, GFP_KERNEL); |
| if (pHba->hrt == NULL) { |
| printk(KERN_CRIT "%s: Hrt Get failed; Out of memory.\n", pHba->name); |
| return -ENOMEM; |
| } |
| } |
| |
| msg[0]= SIX_WORD_MSG_SIZE| SGL_OFFSET_4; |
| msg[1]= I2O_CMD_HRT_GET<<24 | HOST_TID<<12 | ADAPTER_TID; |
| msg[2]= 0; |
| msg[3]= 0; |
| msg[4]= (0xD0000000 | size); /* Simple transaction */ |
| msg[5]= (u32)pHba->hrt_pa; /* Dump it here */ |
| |
| if ((ret = adpt_i2o_post_wait(pHba, msg, sizeof(msg),20))) { |
| printk(KERN_ERR "%s: Unable to get HRT (status=%#10x)\n", pHba->name, ret); |
| return ret; |
| } |
| |
| if (pHba->hrt->num_entries * pHba->hrt->entry_len << 2 > size) { |
| int newsize = pHba->hrt->num_entries * pHba->hrt->entry_len << 2; |
| dma_free_coherent(&pHba->pDev->dev, size, |
| pHba->hrt, pHba->hrt_pa); |
| size = newsize; |
| pHba->hrt = NULL; |
| } |
| } while(pHba->hrt == NULL); |
| return 0; |
| } |
| |
| /* |
| * Query one scalar group value or a whole scalar group. |
| */ |
| static int adpt_i2o_query_scalar(adpt_hba* pHba, int tid, |
| int group, int field, void *buf, int buflen) |
| { |
| u16 opblk[] = { 1, 0, I2O_PARAMS_FIELD_GET, group, 1, field }; |
| u8 *opblk_va; |
| dma_addr_t opblk_pa; |
| u8 *resblk_va; |
| dma_addr_t resblk_pa; |
| |
| int size; |
| |
| /* 8 bytes for header */ |
| resblk_va = dma_alloc_coherent(&pHba->pDev->dev, |
| sizeof(u8) * (8 + buflen), &resblk_pa, GFP_KERNEL); |
| if (resblk_va == NULL) { |
| printk(KERN_CRIT "%s: query scalar failed; Out of memory.\n", pHba->name); |
| return -ENOMEM; |
| } |
| |
| opblk_va = dma_alloc_coherent(&pHba->pDev->dev, |
| sizeof(opblk), &opblk_pa, GFP_KERNEL); |
| if (opblk_va == NULL) { |
| dma_free_coherent(&pHba->pDev->dev, sizeof(u8) * (8+buflen), |
| resblk_va, resblk_pa); |
| printk(KERN_CRIT "%s: query operation failed; Out of memory.\n", |
| pHba->name); |
| return -ENOMEM; |
| } |
| if (field == -1) /* whole group */ |
| opblk[4] = -1; |
| |
| memcpy(opblk_va, opblk, sizeof(opblk)); |
| size = adpt_i2o_issue_params(I2O_CMD_UTIL_PARAMS_GET, pHba, tid, |
| opblk_va, opblk_pa, sizeof(opblk), |
| resblk_va, resblk_pa, sizeof(u8)*(8+buflen)); |
| dma_free_coherent(&pHba->pDev->dev, sizeof(opblk), opblk_va, opblk_pa); |
| if (size == -ETIME) { |
| dma_free_coherent(&pHba->pDev->dev, sizeof(u8) * (8+buflen), |
| resblk_va, resblk_pa); |
| printk(KERN_WARNING "%s: issue params failed; Timed out.\n", pHba->name); |
| return -ETIME; |
| } else if (size == -EINTR) { |
| dma_free_coherent(&pHba->pDev->dev, sizeof(u8) * (8+buflen), |
| resblk_va, resblk_pa); |
| printk(KERN_WARNING "%s: issue params failed; Interrupted.\n", pHba->name); |
| return -EINTR; |
| } |
| |
| memcpy(buf, resblk_va+8, buflen); /* cut off header */ |
| |
| dma_free_coherent(&pHba->pDev->dev, sizeof(u8) * (8+buflen), |
| resblk_va, resblk_pa); |
| if (size < 0) |
| return size; |
| |
| return buflen; |
| } |
| |
| |
| /* Issue UTIL_PARAMS_GET or UTIL_PARAMS_SET |
| * |
| * This function can be used for all UtilParamsGet/Set operations. |
| * The OperationBlock is given in opblk-buffer, |
| * and results are returned in resblk-buffer. |
| * Note that the minimum sized resblk is 8 bytes and contains |
| * ResultCount, ErrorInfoSize, BlockStatus and BlockSize. |
| */ |
| static int adpt_i2o_issue_params(int cmd, adpt_hba* pHba, int tid, |
| void *opblk_va, dma_addr_t opblk_pa, int oplen, |
| void *resblk_va, dma_addr_t resblk_pa, int reslen) |
| { |
| u32 msg[9]; |
| u32 *res = (u32 *)resblk_va; |
| int wait_status; |
| |
| msg[0] = NINE_WORD_MSG_SIZE | SGL_OFFSET_5; |
| msg[1] = cmd << 24 | HOST_TID << 12 | tid; |
| msg[2] = 0; |
| msg[3] = 0; |
| msg[4] = 0; |
| msg[5] = 0x54000000 | oplen; /* OperationBlock */ |
| msg[6] = (u32)opblk_pa; |
| msg[7] = 0xD0000000 | reslen; /* ResultBlock */ |
| msg[8] = (u32)resblk_pa; |
| |
| if ((wait_status = adpt_i2o_post_wait(pHba, msg, sizeof(msg), 20))) { |
| printk("adpt_i2o_issue_params: post_wait failed (%p)\n", resblk_va); |
| return wait_status; /* -DetailedStatus */ |
| } |
| |
| if (res[1]&0x00FF0000) { /* BlockStatus != SUCCESS */ |
| printk(KERN_WARNING "%s: %s - Error:\n ErrorInfoSize = 0x%02x, " |
| "BlockStatus = 0x%02x, BlockSize = 0x%04x\n", |
| pHba->name, |
| (cmd == I2O_CMD_UTIL_PARAMS_SET) ? "PARAMS_SET" |
| : "PARAMS_GET", |
| res[1]>>24, (res[1]>>16)&0xFF, res[1]&0xFFFF); |
| return -((res[1] >> 16) & 0xFF); /* -BlockStatus */ |
| } |
| |
| return 4 + ((res[1] & 0x0000FFFF) << 2); /* bytes used in resblk */ |
| } |
| |
| |
| static s32 adpt_i2o_quiesce_hba(adpt_hba* pHba) |
| { |
| u32 msg[4]; |
| int ret; |
| |
| adpt_i2o_status_get(pHba); |
| |
| /* SysQuiesce discarded if IOP not in READY or OPERATIONAL state */ |
| |
| if((pHba->status_block->iop_state != ADAPTER_STATE_READY) && |
| (pHba->status_block->iop_state != ADAPTER_STATE_OPERATIONAL)){ |
| return 0; |
| } |
| |
| msg[0] = FOUR_WORD_MSG_SIZE|SGL_OFFSET_0; |
| msg[1] = I2O_CMD_SYS_QUIESCE<<24|HOST_TID<<12|ADAPTER_TID; |
| msg[2] = 0; |
| msg[3] = 0; |
| |
| if((ret = adpt_i2o_post_wait(pHba, msg, sizeof(msg), 240))) { |
| printk(KERN_INFO"dpti%d: Unable to quiesce (status=%#x).\n", |
| pHba->unit, -ret); |
| } else { |
| printk(KERN_INFO"dpti%d: Quiesced.\n",pHba->unit); |
| } |
| |
| adpt_i2o_status_get(pHba); |
| return ret; |
| } |
| |
| |
| /* |
| * Enable IOP. Allows the IOP to resume external operations. |
| */ |
| static int adpt_i2o_enable_hba(adpt_hba* pHba) |
| { |
| u32 msg[4]; |
| int ret; |
| |
| adpt_i2o_status_get(pHba); |
| if(!pHba->status_block){ |
| return -ENOMEM; |
| } |
| /* Enable only allowed on READY state */ |
| if(pHba->status_block->iop_state == ADAPTER_STATE_OPERATIONAL) |
| return 0; |
| |
| if(pHba->status_block->iop_state != ADAPTER_STATE_READY) |
| return -EINVAL; |
| |
| msg[0]=FOUR_WORD_MSG_SIZE|SGL_OFFSET_0; |
| msg[1]=I2O_CMD_SYS_ENABLE<<24|HOST_TID<<12|ADAPTER_TID; |
| msg[2]= 0; |
| msg[3]= 0; |
| |
| if ((ret = adpt_i2o_post_wait(pHba, msg, sizeof(msg), 240))) { |
| printk(KERN_WARNING"%s: Could not enable (status=%#10x).\n", |
| pHba->name, ret); |
| } else { |
| PDEBUG("%s: Enabled.\n", pHba->name); |
| } |
| |
| adpt_i2o_status_get(pHba); |
| return ret; |
| } |
| |
| |
| static int adpt_i2o_systab_send(adpt_hba* pHba) |
| { |
| u32 msg[12]; |
| int ret; |
| |
| msg[0] = I2O_MESSAGE_SIZE(12) | SGL_OFFSET_6; |
| msg[1] = I2O_CMD_SYS_TAB_SET<<24 | HOST_TID<<12 | ADAPTER_TID; |
| msg[2] = 0; |
| msg[3] = 0; |
| msg[4] = (0<<16) | ((pHba->unit+2) << 12); /* Host 0 IOP ID (unit + 2) */ |
| msg[5] = 0; /* Segment 0 */ |
| |
| /* |
| * Provide three SGL-elements: |
| * System table (SysTab), Private memory space declaration and |
| * Private i/o space declaration |
| */ |
| msg[6] = 0x54000000 | sys_tbl_len; |
| msg[7] = (u32)sys_tbl_pa; |
| msg[8] = 0x54000000 | 0; |
| msg[9] = 0; |
| msg[10] = 0xD4000000 | 0; |
| msg[11] = 0; |
| |
| if ((ret=adpt_i2o_post_wait(pHba, msg, sizeof(msg), 120))) { |
| printk(KERN_INFO "%s: Unable to set SysTab (status=%#10x).\n", |
| pHba->name, ret); |
| } |
| #ifdef DEBUG |
| else { |
| PINFO("%s: SysTab set.\n", pHba->name); |
| } |
| #endif |
| |
| return ret; |
| } |
| |
| |
| /*============================================================================ |
| * |
| *============================================================================ |
| */ |
| |
| |
| #ifdef UARTDELAY |
| |
| static static void adpt_delay(int millisec) |
| { |
| int i; |
| for (i = 0; i < millisec; i++) { |
| udelay(1000); /* delay for one millisecond */ |
| } |
| } |
| |
| #endif |
| |
| static struct scsi_host_template driver_template = { |
| .module = THIS_MODULE, |
| .name = "dpt_i2o", |
| .proc_name = "dpt_i2o", |
| .show_info = adpt_show_info, |
| .info = adpt_info, |
| .queuecommand = adpt_queue, |
| .eh_abort_handler = adpt_abort, |
| .eh_device_reset_handler = adpt_device_reset, |
| .eh_bus_reset_handler = adpt_bus_reset, |
| .eh_host_reset_handler = adpt_reset, |
| .bios_param = adpt_bios_param, |
| .slave_configure = adpt_slave_configure, |
| .can_queue = MAX_TO_IOP_MESSAGES, |
| .this_id = 7, |
| .use_clustering = ENABLE_CLUSTERING, |
| }; |
| |
| static int __init adpt_init(void) |
| { |
| int error; |
| adpt_hba *pHba, *next; |
| |
| printk("Loading Adaptec I2O RAID: Version " DPT_I2O_VERSION "\n"); |
| |
| error = adpt_detect(&driver_template); |
| if (error < 0) |
| return error; |
| if (hba_chain == NULL) |
| return -ENODEV; |
| |
| for (pHba = hba_chain; pHba; pHba = pHba->next) { |
| error = scsi_add_host(pHba->host, &pHba->pDev->dev); |
| if (error) |
| goto fail; |
| scsi_scan_host(pHba->host); |
| } |
| return 0; |
| fail: |
| for (pHba = hba_chain; pHba; pHba = next) { |
| next = pHba->next; |
| scsi_remove_host(pHba->host); |
| } |
| return error; |
| } |
| |
| static void __exit adpt_exit(void) |
| { |
| adpt_hba *pHba, *next; |
| |
| for (pHba = hba_chain; pHba; pHba = pHba->next) |
| scsi_remove_host(pHba->host); |
| for (pHba = hba_chain; pHba; pHba = next) { |
| next = pHba->next; |
| adpt_release(pHba->host); |
| } |
| } |
| |
| module_init(adpt_init); |
| module_exit(adpt_exit); |
| |
| MODULE_LICENSE("GPL"); |