| /* |
| * include/asm-xtensa/uaccess.h |
| * |
| * User space memory access functions |
| * |
| * These routines provide basic accessing functions to the user memory |
| * space for the kernel. This header file provides functions such as: |
| * |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| * |
| * Copyright (C) 2001 - 2005 Tensilica Inc. |
| */ |
| |
| #ifndef _XTENSA_ASM_UACCESS_H |
| #define _XTENSA_ASM_UACCESS_H |
| |
| #include <linux/errno.h> |
| #include <asm/types.h> |
| |
| #define VERIFY_READ 0 |
| #define VERIFY_WRITE 1 |
| |
| #include <asm/current.h> |
| #include <asm/asm-offsets.h> |
| #include <asm/processor.h> |
| |
| /* |
| * These assembly macros mirror the C macros in asm/uaccess.h. They |
| * should always have identical functionality. See |
| * arch/xtensa/kernel/sys.S for usage. |
| */ |
| |
| #define KERNEL_DS 0 |
| #define USER_DS 1 |
| |
| #define get_ds (KERNEL_DS) |
| |
| /* |
| * get_fs reads current->thread.current_ds into a register. |
| * On Entry: |
| * <ad> anything |
| * <sp> stack |
| * On Exit: |
| * <ad> contains current->thread.current_ds |
| */ |
| .macro get_fs ad, sp |
| GET_CURRENT(\ad,\sp) |
| #if THREAD_CURRENT_DS > 1020 |
| addi \ad, \ad, TASK_THREAD |
| l32i \ad, \ad, THREAD_CURRENT_DS - TASK_THREAD |
| #else |
| l32i \ad, \ad, THREAD_CURRENT_DS |
| #endif |
| .endm |
| |
| /* |
| * set_fs sets current->thread.current_ds to some value. |
| * On Entry: |
| * <at> anything (temp register) |
| * <av> value to write |
| * <sp> stack |
| * On Exit: |
| * <at> destroyed (actually, current) |
| * <av> preserved, value to write |
| */ |
| .macro set_fs at, av, sp |
| GET_CURRENT(\at,\sp) |
| s32i \av, \at, THREAD_CURRENT_DS |
| .endm |
| |
| /* |
| * kernel_ok determines whether we should bypass addr/size checking. |
| * See the equivalent C-macro version below for clarity. |
| * On success, kernel_ok branches to a label indicated by parameter |
| * <success>. This implies that the macro falls through to the next |
| * insruction on an error. |
| * |
| * Note that while this macro can be used independently, we designed |
| * in for optimal use in the access_ok macro below (i.e., we fall |
| * through on error). |
| * |
| * On Entry: |
| * <at> anything (temp register) |
| * <success> label to branch to on success; implies |
| * fall-through macro on error |
| * <sp> stack pointer |
| * On Exit: |
| * <at> destroyed (actually, current->thread.current_ds) |
| */ |
| |
| #if ((KERNEL_DS != 0) || (USER_DS == 0)) |
| # error Assembly macro kernel_ok fails |
| #endif |
| .macro kernel_ok at, sp, success |
| get_fs \at, \sp |
| beqz \at, \success |
| .endm |
| |
| /* |
| * user_ok determines whether the access to user-space memory is allowed. |
| * See the equivalent C-macro version below for clarity. |
| * |
| * On error, user_ok branches to a label indicated by parameter |
| * <error>. This implies that the macro falls through to the next |
| * instruction on success. |
| * |
| * Note that while this macro can be used independently, we designed |
| * in for optimal use in the access_ok macro below (i.e., we fall |
| * through on success). |
| * |
| * On Entry: |
| * <aa> register containing memory address |
| * <as> register containing memory size |
| * <at> temp register |
| * <error> label to branch to on error; implies fall-through |
| * macro on success |
| * On Exit: |
| * <aa> preserved |
| * <as> preserved |
| * <at> destroyed (actually, (TASK_SIZE + 1 - size)) |
| */ |
| .macro user_ok aa, as, at, error |
| movi \at, __XTENSA_UL_CONST(TASK_SIZE) |
| bgeu \as, \at, \error |
| sub \at, \at, \as |
| bgeu \aa, \at, \error |
| .endm |
| |
| /* |
| * access_ok determines whether a memory access is allowed. See the |
| * equivalent C-macro version below for clarity. |
| * |
| * On error, access_ok branches to a label indicated by parameter |
| * <error>. This implies that the macro falls through to the next |
| * instruction on success. |
| * |
| * Note that we assume success is the common case, and we optimize the |
| * branch fall-through case on success. |
| * |
| * On Entry: |
| * <aa> register containing memory address |
| * <as> register containing memory size |
| * <at> temp register |
| * <sp> |
| * <error> label to branch to on error; implies fall-through |
| * macro on success |
| * On Exit: |
| * <aa> preserved |
| * <as> preserved |
| * <at> destroyed |
| */ |
| .macro access_ok aa, as, at, sp, error |
| kernel_ok \at, \sp, .Laccess_ok_\@ |
| user_ok \aa, \as, \at, \error |
| .Laccess_ok_\@: |
| .endm |
| |
| #endif /* _XTENSA_ASM_UACCESS_H */ |