|  | /* | 
|  | * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR | 
|  | * policies) | 
|  | */ | 
|  |  | 
|  | #include "sched.h" | 
|  |  | 
|  | #include <linux/slab.h> | 
|  | #include <linux/irq_work.h> | 
|  |  | 
|  | int sched_rr_timeslice = RR_TIMESLICE; | 
|  |  | 
|  | static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); | 
|  |  | 
|  | struct rt_bandwidth def_rt_bandwidth; | 
|  |  | 
|  | static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) | 
|  | { | 
|  | struct rt_bandwidth *rt_b = | 
|  | container_of(timer, struct rt_bandwidth, rt_period_timer); | 
|  | int idle = 0; | 
|  | int overrun; | 
|  |  | 
|  | raw_spin_lock(&rt_b->rt_runtime_lock); | 
|  | for (;;) { | 
|  | overrun = hrtimer_forward_now(timer, rt_b->rt_period); | 
|  | if (!overrun) | 
|  | break; | 
|  |  | 
|  | raw_spin_unlock(&rt_b->rt_runtime_lock); | 
|  | idle = do_sched_rt_period_timer(rt_b, overrun); | 
|  | raw_spin_lock(&rt_b->rt_runtime_lock); | 
|  | } | 
|  | if (idle) | 
|  | rt_b->rt_period_active = 0; | 
|  | raw_spin_unlock(&rt_b->rt_runtime_lock); | 
|  |  | 
|  | return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; | 
|  | } | 
|  |  | 
|  | void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) | 
|  | { | 
|  | rt_b->rt_period = ns_to_ktime(period); | 
|  | rt_b->rt_runtime = runtime; | 
|  |  | 
|  | raw_spin_lock_init(&rt_b->rt_runtime_lock); | 
|  |  | 
|  | hrtimer_init(&rt_b->rt_period_timer, | 
|  | CLOCK_MONOTONIC, HRTIMER_MODE_REL); | 
|  | rt_b->rt_period_timer.function = sched_rt_period_timer; | 
|  | } | 
|  |  | 
|  | static void start_rt_bandwidth(struct rt_bandwidth *rt_b) | 
|  | { | 
|  | if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) | 
|  | return; | 
|  |  | 
|  | raw_spin_lock(&rt_b->rt_runtime_lock); | 
|  | if (!rt_b->rt_period_active) { | 
|  | rt_b->rt_period_active = 1; | 
|  | hrtimer_forward_now(&rt_b->rt_period_timer, rt_b->rt_period); | 
|  | hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED); | 
|  | } | 
|  | raw_spin_unlock(&rt_b->rt_runtime_lock); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | static void push_irq_work_func(struct irq_work *work); | 
|  | #endif | 
|  |  | 
|  | void init_rt_rq(struct rt_rq *rt_rq) | 
|  | { | 
|  | struct rt_prio_array *array; | 
|  | int i; | 
|  |  | 
|  | array = &rt_rq->active; | 
|  | for (i = 0; i < MAX_RT_PRIO; i++) { | 
|  | INIT_LIST_HEAD(array->queue + i); | 
|  | __clear_bit(i, array->bitmap); | 
|  | } | 
|  | /* delimiter for bitsearch: */ | 
|  | __set_bit(MAX_RT_PRIO, array->bitmap); | 
|  |  | 
|  | #if defined CONFIG_SMP | 
|  | rt_rq->highest_prio.curr = MAX_RT_PRIO; | 
|  | rt_rq->highest_prio.next = MAX_RT_PRIO; | 
|  | rt_rq->rt_nr_migratory = 0; | 
|  | rt_rq->overloaded = 0; | 
|  | plist_head_init(&rt_rq->pushable_tasks); | 
|  |  | 
|  | #ifdef HAVE_RT_PUSH_IPI | 
|  | rt_rq->push_flags = 0; | 
|  | rt_rq->push_cpu = nr_cpu_ids; | 
|  | raw_spin_lock_init(&rt_rq->push_lock); | 
|  | init_irq_work(&rt_rq->push_work, push_irq_work_func); | 
|  | #endif | 
|  | #endif /* CONFIG_SMP */ | 
|  | /* We start is dequeued state, because no RT tasks are queued */ | 
|  | rt_rq->rt_queued = 0; | 
|  |  | 
|  | rt_rq->rt_time = 0; | 
|  | rt_rq->rt_throttled = 0; | 
|  | rt_rq->rt_runtime = 0; | 
|  | raw_spin_lock_init(&rt_rq->rt_runtime_lock); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_RT_GROUP_SCHED | 
|  | static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) | 
|  | { | 
|  | hrtimer_cancel(&rt_b->rt_period_timer); | 
|  | } | 
|  |  | 
|  | #define rt_entity_is_task(rt_se) (!(rt_se)->my_q) | 
|  |  | 
|  | static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) | 
|  | { | 
|  | #ifdef CONFIG_SCHED_DEBUG | 
|  | WARN_ON_ONCE(!rt_entity_is_task(rt_se)); | 
|  | #endif | 
|  | return container_of(rt_se, struct task_struct, rt); | 
|  | } | 
|  |  | 
|  | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) | 
|  | { | 
|  | return rt_rq->rq; | 
|  | } | 
|  |  | 
|  | static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) | 
|  | { | 
|  | return rt_se->rt_rq; | 
|  | } | 
|  |  | 
|  | static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) | 
|  | { | 
|  | struct rt_rq *rt_rq = rt_se->rt_rq; | 
|  |  | 
|  | return rt_rq->rq; | 
|  | } | 
|  |  | 
|  | void free_rt_sched_group(struct task_group *tg) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (tg->rt_se) | 
|  | destroy_rt_bandwidth(&tg->rt_bandwidth); | 
|  |  | 
|  | for_each_possible_cpu(i) { | 
|  | if (tg->rt_rq) | 
|  | kfree(tg->rt_rq[i]); | 
|  | if (tg->rt_se) | 
|  | kfree(tg->rt_se[i]); | 
|  | } | 
|  |  | 
|  | kfree(tg->rt_rq); | 
|  | kfree(tg->rt_se); | 
|  | } | 
|  |  | 
|  | void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, | 
|  | struct sched_rt_entity *rt_se, int cpu, | 
|  | struct sched_rt_entity *parent) | 
|  | { | 
|  | struct rq *rq = cpu_rq(cpu); | 
|  |  | 
|  | rt_rq->highest_prio.curr = MAX_RT_PRIO; | 
|  | rt_rq->rt_nr_boosted = 0; | 
|  | rt_rq->rq = rq; | 
|  | rt_rq->tg = tg; | 
|  |  | 
|  | tg->rt_rq[cpu] = rt_rq; | 
|  | tg->rt_se[cpu] = rt_se; | 
|  |  | 
|  | if (!rt_se) | 
|  | return; | 
|  |  | 
|  | if (!parent) | 
|  | rt_se->rt_rq = &rq->rt; | 
|  | else | 
|  | rt_se->rt_rq = parent->my_q; | 
|  |  | 
|  | rt_se->my_q = rt_rq; | 
|  | rt_se->parent = parent; | 
|  | INIT_LIST_HEAD(&rt_se->run_list); | 
|  | } | 
|  |  | 
|  | int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) | 
|  | { | 
|  | struct rt_rq *rt_rq; | 
|  | struct sched_rt_entity *rt_se; | 
|  | int i; | 
|  |  | 
|  | tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL); | 
|  | if (!tg->rt_rq) | 
|  | goto err; | 
|  | tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL); | 
|  | if (!tg->rt_se) | 
|  | goto err; | 
|  |  | 
|  | init_rt_bandwidth(&tg->rt_bandwidth, | 
|  | ktime_to_ns(def_rt_bandwidth.rt_period), 0); | 
|  |  | 
|  | for_each_possible_cpu(i) { | 
|  | rt_rq = kzalloc_node(sizeof(struct rt_rq), | 
|  | GFP_KERNEL, cpu_to_node(i)); | 
|  | if (!rt_rq) | 
|  | goto err; | 
|  |  | 
|  | rt_se = kzalloc_node(sizeof(struct sched_rt_entity), | 
|  | GFP_KERNEL, cpu_to_node(i)); | 
|  | if (!rt_se) | 
|  | goto err_free_rq; | 
|  |  | 
|  | init_rt_rq(rt_rq); | 
|  | rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; | 
|  | init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]); | 
|  | } | 
|  |  | 
|  | return 1; | 
|  |  | 
|  | err_free_rq: | 
|  | kfree(rt_rq); | 
|  | err: | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #else /* CONFIG_RT_GROUP_SCHED */ | 
|  |  | 
|  | #define rt_entity_is_task(rt_se) (1) | 
|  |  | 
|  | static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) | 
|  | { | 
|  | return container_of(rt_se, struct task_struct, rt); | 
|  | } | 
|  |  | 
|  | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) | 
|  | { | 
|  | return container_of(rt_rq, struct rq, rt); | 
|  | } | 
|  |  | 
|  | static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) | 
|  | { | 
|  | struct task_struct *p = rt_task_of(rt_se); | 
|  |  | 
|  | return task_rq(p); | 
|  | } | 
|  |  | 
|  | static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) | 
|  | { | 
|  | struct rq *rq = rq_of_rt_se(rt_se); | 
|  |  | 
|  | return &rq->rt; | 
|  | } | 
|  |  | 
|  | void free_rt_sched_group(struct task_group *tg) { } | 
|  |  | 
|  | int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) | 
|  | { | 
|  | return 1; | 
|  | } | 
|  | #endif /* CONFIG_RT_GROUP_SCHED */ | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  |  | 
|  | static void pull_rt_task(struct rq *this_rq); | 
|  |  | 
|  | static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev) | 
|  | { | 
|  | /* Try to pull RT tasks here if we lower this rq's prio */ | 
|  | return rq->rt.highest_prio.curr > prev->prio; | 
|  | } | 
|  |  | 
|  | static inline int rt_overloaded(struct rq *rq) | 
|  | { | 
|  | return atomic_read(&rq->rd->rto_count); | 
|  | } | 
|  |  | 
|  | static inline void rt_set_overload(struct rq *rq) | 
|  | { | 
|  | if (!rq->online) | 
|  | return; | 
|  |  | 
|  | cpumask_set_cpu(rq->cpu, rq->rd->rto_mask); | 
|  | /* | 
|  | * Make sure the mask is visible before we set | 
|  | * the overload count. That is checked to determine | 
|  | * if we should look at the mask. It would be a shame | 
|  | * if we looked at the mask, but the mask was not | 
|  | * updated yet. | 
|  | * | 
|  | * Matched by the barrier in pull_rt_task(). | 
|  | */ | 
|  | smp_wmb(); | 
|  | atomic_inc(&rq->rd->rto_count); | 
|  | } | 
|  |  | 
|  | static inline void rt_clear_overload(struct rq *rq) | 
|  | { | 
|  | if (!rq->online) | 
|  | return; | 
|  |  | 
|  | /* the order here really doesn't matter */ | 
|  | atomic_dec(&rq->rd->rto_count); | 
|  | cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); | 
|  | } | 
|  |  | 
|  | static void update_rt_migration(struct rt_rq *rt_rq) | 
|  | { | 
|  | if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) { | 
|  | if (!rt_rq->overloaded) { | 
|  | rt_set_overload(rq_of_rt_rq(rt_rq)); | 
|  | rt_rq->overloaded = 1; | 
|  | } | 
|  | } else if (rt_rq->overloaded) { | 
|  | rt_clear_overload(rq_of_rt_rq(rt_rq)); | 
|  | rt_rq->overloaded = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | 
|  | { | 
|  | struct task_struct *p; | 
|  |  | 
|  | if (!rt_entity_is_task(rt_se)) | 
|  | return; | 
|  |  | 
|  | p = rt_task_of(rt_se); | 
|  | rt_rq = &rq_of_rt_rq(rt_rq)->rt; | 
|  |  | 
|  | rt_rq->rt_nr_total++; | 
|  | if (p->nr_cpus_allowed > 1) | 
|  | rt_rq->rt_nr_migratory++; | 
|  |  | 
|  | update_rt_migration(rt_rq); | 
|  | } | 
|  |  | 
|  | static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | 
|  | { | 
|  | struct task_struct *p; | 
|  |  | 
|  | if (!rt_entity_is_task(rt_se)) | 
|  | return; | 
|  |  | 
|  | p = rt_task_of(rt_se); | 
|  | rt_rq = &rq_of_rt_rq(rt_rq)->rt; | 
|  |  | 
|  | rt_rq->rt_nr_total--; | 
|  | if (p->nr_cpus_allowed > 1) | 
|  | rt_rq->rt_nr_migratory--; | 
|  |  | 
|  | update_rt_migration(rt_rq); | 
|  | } | 
|  |  | 
|  | static inline int has_pushable_tasks(struct rq *rq) | 
|  | { | 
|  | return !plist_head_empty(&rq->rt.pushable_tasks); | 
|  | } | 
|  |  | 
|  | static DEFINE_PER_CPU(struct callback_head, rt_push_head); | 
|  | static DEFINE_PER_CPU(struct callback_head, rt_pull_head); | 
|  |  | 
|  | static void push_rt_tasks(struct rq *); | 
|  | static void pull_rt_task(struct rq *); | 
|  |  | 
|  | static inline void queue_push_tasks(struct rq *rq) | 
|  | { | 
|  | if (!has_pushable_tasks(rq)) | 
|  | return; | 
|  |  | 
|  | queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks); | 
|  | } | 
|  |  | 
|  | static inline void queue_pull_task(struct rq *rq) | 
|  | { | 
|  | queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task); | 
|  | } | 
|  |  | 
|  | static void enqueue_pushable_task(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); | 
|  | plist_node_init(&p->pushable_tasks, p->prio); | 
|  | plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks); | 
|  |  | 
|  | /* Update the highest prio pushable task */ | 
|  | if (p->prio < rq->rt.highest_prio.next) | 
|  | rq->rt.highest_prio.next = p->prio; | 
|  | } | 
|  |  | 
|  | static void dequeue_pushable_task(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); | 
|  |  | 
|  | /* Update the new highest prio pushable task */ | 
|  | if (has_pushable_tasks(rq)) { | 
|  | p = plist_first_entry(&rq->rt.pushable_tasks, | 
|  | struct task_struct, pushable_tasks); | 
|  | rq->rt.highest_prio.next = p->prio; | 
|  | } else | 
|  | rq->rt.highest_prio.next = MAX_RT_PRIO; | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline | 
|  | void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline | 
|  | void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev) | 
|  | { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline void pull_rt_task(struct rq *this_rq) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline void queue_push_tasks(struct rq *rq) | 
|  | { | 
|  | } | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | static void enqueue_top_rt_rq(struct rt_rq *rt_rq); | 
|  | static void dequeue_top_rt_rq(struct rt_rq *rt_rq); | 
|  |  | 
|  | static inline int on_rt_rq(struct sched_rt_entity *rt_se) | 
|  | { | 
|  | return !list_empty(&rt_se->run_list); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_RT_GROUP_SCHED | 
|  |  | 
|  | static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) | 
|  | { | 
|  | if (!rt_rq->tg) | 
|  | return RUNTIME_INF; | 
|  |  | 
|  | return rt_rq->rt_runtime; | 
|  | } | 
|  |  | 
|  | static inline u64 sched_rt_period(struct rt_rq *rt_rq) | 
|  | { | 
|  | return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period); | 
|  | } | 
|  |  | 
|  | typedef struct task_group *rt_rq_iter_t; | 
|  |  | 
|  | static inline struct task_group *next_task_group(struct task_group *tg) | 
|  | { | 
|  | do { | 
|  | tg = list_entry_rcu(tg->list.next, | 
|  | typeof(struct task_group), list); | 
|  | } while (&tg->list != &task_groups && task_group_is_autogroup(tg)); | 
|  |  | 
|  | if (&tg->list == &task_groups) | 
|  | tg = NULL; | 
|  |  | 
|  | return tg; | 
|  | } | 
|  |  | 
|  | #define for_each_rt_rq(rt_rq, iter, rq)					\ | 
|  | for (iter = container_of(&task_groups, typeof(*iter), list);	\ | 
|  | (iter = next_task_group(iter)) &&			\ | 
|  | (rt_rq = iter->rt_rq[cpu_of(rq)]);) | 
|  |  | 
|  | #define for_each_sched_rt_entity(rt_se) \ | 
|  | for (; rt_se; rt_se = rt_se->parent) | 
|  |  | 
|  | static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) | 
|  | { | 
|  | return rt_se->my_q; | 
|  | } | 
|  |  | 
|  | static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head); | 
|  | static void dequeue_rt_entity(struct sched_rt_entity *rt_se); | 
|  |  | 
|  | static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) | 
|  | { | 
|  | struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr; | 
|  | struct rq *rq = rq_of_rt_rq(rt_rq); | 
|  | struct sched_rt_entity *rt_se; | 
|  |  | 
|  | int cpu = cpu_of(rq); | 
|  |  | 
|  | rt_se = rt_rq->tg->rt_se[cpu]; | 
|  |  | 
|  | if (rt_rq->rt_nr_running) { | 
|  | if (!rt_se) | 
|  | enqueue_top_rt_rq(rt_rq); | 
|  | else if (!on_rt_rq(rt_se)) | 
|  | enqueue_rt_entity(rt_se, false); | 
|  |  | 
|  | if (rt_rq->highest_prio.curr < curr->prio) | 
|  | resched_curr(rq); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void sched_rt_rq_dequeue(struct rt_rq *rt_rq) | 
|  | { | 
|  | struct sched_rt_entity *rt_se; | 
|  | int cpu = cpu_of(rq_of_rt_rq(rt_rq)); | 
|  |  | 
|  | rt_se = rt_rq->tg->rt_se[cpu]; | 
|  |  | 
|  | if (!rt_se) | 
|  | dequeue_top_rt_rq(rt_rq); | 
|  | else if (on_rt_rq(rt_se)) | 
|  | dequeue_rt_entity(rt_se); | 
|  | } | 
|  |  | 
|  | static inline int rt_rq_throttled(struct rt_rq *rt_rq) | 
|  | { | 
|  | return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted; | 
|  | } | 
|  |  | 
|  | static int rt_se_boosted(struct sched_rt_entity *rt_se) | 
|  | { | 
|  | struct rt_rq *rt_rq = group_rt_rq(rt_se); | 
|  | struct task_struct *p; | 
|  |  | 
|  | if (rt_rq) | 
|  | return !!rt_rq->rt_nr_boosted; | 
|  |  | 
|  | p = rt_task_of(rt_se); | 
|  | return p->prio != p->normal_prio; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | static inline const struct cpumask *sched_rt_period_mask(void) | 
|  | { | 
|  | return this_rq()->rd->span; | 
|  | } | 
|  | #else | 
|  | static inline const struct cpumask *sched_rt_period_mask(void) | 
|  | { | 
|  | return cpu_online_mask; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static inline | 
|  | struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) | 
|  | { | 
|  | return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu]; | 
|  | } | 
|  |  | 
|  | static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) | 
|  | { | 
|  | return &rt_rq->tg->rt_bandwidth; | 
|  | } | 
|  |  | 
|  | #else /* !CONFIG_RT_GROUP_SCHED */ | 
|  |  | 
|  | static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) | 
|  | { | 
|  | return rt_rq->rt_runtime; | 
|  | } | 
|  |  | 
|  | static inline u64 sched_rt_period(struct rt_rq *rt_rq) | 
|  | { | 
|  | return ktime_to_ns(def_rt_bandwidth.rt_period); | 
|  | } | 
|  |  | 
|  | typedef struct rt_rq *rt_rq_iter_t; | 
|  |  | 
|  | #define for_each_rt_rq(rt_rq, iter, rq) \ | 
|  | for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL) | 
|  |  | 
|  | #define for_each_sched_rt_entity(rt_se) \ | 
|  | for (; rt_se; rt_se = NULL) | 
|  |  | 
|  | static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) | 
|  | { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq) | 
|  | { | 
|  | struct rq *rq = rq_of_rt_rq(rt_rq); | 
|  |  | 
|  | if (!rt_rq->rt_nr_running) | 
|  | return; | 
|  |  | 
|  | enqueue_top_rt_rq(rt_rq); | 
|  | resched_curr(rq); | 
|  | } | 
|  |  | 
|  | static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq) | 
|  | { | 
|  | dequeue_top_rt_rq(rt_rq); | 
|  | } | 
|  |  | 
|  | static inline int rt_rq_throttled(struct rt_rq *rt_rq) | 
|  | { | 
|  | return rt_rq->rt_throttled; | 
|  | } | 
|  |  | 
|  | static inline const struct cpumask *sched_rt_period_mask(void) | 
|  | { | 
|  | return cpu_online_mask; | 
|  | } | 
|  |  | 
|  | static inline | 
|  | struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) | 
|  | { | 
|  | return &cpu_rq(cpu)->rt; | 
|  | } | 
|  |  | 
|  | static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) | 
|  | { | 
|  | return &def_rt_bandwidth; | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_RT_GROUP_SCHED */ | 
|  |  | 
|  | bool sched_rt_bandwidth_account(struct rt_rq *rt_rq) | 
|  | { | 
|  | struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); | 
|  |  | 
|  | return (hrtimer_active(&rt_b->rt_period_timer) || | 
|  | rt_rq->rt_time < rt_b->rt_runtime); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * We ran out of runtime, see if we can borrow some from our neighbours. | 
|  | */ | 
|  | static void do_balance_runtime(struct rt_rq *rt_rq) | 
|  | { | 
|  | struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); | 
|  | struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd; | 
|  | int i, weight; | 
|  | u64 rt_period; | 
|  |  | 
|  | weight = cpumask_weight(rd->span); | 
|  |  | 
|  | raw_spin_lock(&rt_b->rt_runtime_lock); | 
|  | rt_period = ktime_to_ns(rt_b->rt_period); | 
|  | for_each_cpu(i, rd->span) { | 
|  | struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); | 
|  | s64 diff; | 
|  |  | 
|  | if (iter == rt_rq) | 
|  | continue; | 
|  |  | 
|  | raw_spin_lock(&iter->rt_runtime_lock); | 
|  | /* | 
|  | * Either all rqs have inf runtime and there's nothing to steal | 
|  | * or __disable_runtime() below sets a specific rq to inf to | 
|  | * indicate its been disabled and disalow stealing. | 
|  | */ | 
|  | if (iter->rt_runtime == RUNTIME_INF) | 
|  | goto next; | 
|  |  | 
|  | /* | 
|  | * From runqueues with spare time, take 1/n part of their | 
|  | * spare time, but no more than our period. | 
|  | */ | 
|  | diff = iter->rt_runtime - iter->rt_time; | 
|  | if (diff > 0) { | 
|  | diff = div_u64((u64)diff, weight); | 
|  | if (rt_rq->rt_runtime + diff > rt_period) | 
|  | diff = rt_period - rt_rq->rt_runtime; | 
|  | iter->rt_runtime -= diff; | 
|  | rt_rq->rt_runtime += diff; | 
|  | if (rt_rq->rt_runtime == rt_period) { | 
|  | raw_spin_unlock(&iter->rt_runtime_lock); | 
|  | break; | 
|  | } | 
|  | } | 
|  | next: | 
|  | raw_spin_unlock(&iter->rt_runtime_lock); | 
|  | } | 
|  | raw_spin_unlock(&rt_b->rt_runtime_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Ensure this RQ takes back all the runtime it lend to its neighbours. | 
|  | */ | 
|  | static void __disable_runtime(struct rq *rq) | 
|  | { | 
|  | struct root_domain *rd = rq->rd; | 
|  | rt_rq_iter_t iter; | 
|  | struct rt_rq *rt_rq; | 
|  |  | 
|  | if (unlikely(!scheduler_running)) | 
|  | return; | 
|  |  | 
|  | for_each_rt_rq(rt_rq, iter, rq) { | 
|  | struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); | 
|  | s64 want; | 
|  | int i; | 
|  |  | 
|  | raw_spin_lock(&rt_b->rt_runtime_lock); | 
|  | raw_spin_lock(&rt_rq->rt_runtime_lock); | 
|  | /* | 
|  | * Either we're all inf and nobody needs to borrow, or we're | 
|  | * already disabled and thus have nothing to do, or we have | 
|  | * exactly the right amount of runtime to take out. | 
|  | */ | 
|  | if (rt_rq->rt_runtime == RUNTIME_INF || | 
|  | rt_rq->rt_runtime == rt_b->rt_runtime) | 
|  | goto balanced; | 
|  | raw_spin_unlock(&rt_rq->rt_runtime_lock); | 
|  |  | 
|  | /* | 
|  | * Calculate the difference between what we started out with | 
|  | * and what we current have, that's the amount of runtime | 
|  | * we lend and now have to reclaim. | 
|  | */ | 
|  | want = rt_b->rt_runtime - rt_rq->rt_runtime; | 
|  |  | 
|  | /* | 
|  | * Greedy reclaim, take back as much as we can. | 
|  | */ | 
|  | for_each_cpu(i, rd->span) { | 
|  | struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); | 
|  | s64 diff; | 
|  |  | 
|  | /* | 
|  | * Can't reclaim from ourselves or disabled runqueues. | 
|  | */ | 
|  | if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF) | 
|  | continue; | 
|  |  | 
|  | raw_spin_lock(&iter->rt_runtime_lock); | 
|  | if (want > 0) { | 
|  | diff = min_t(s64, iter->rt_runtime, want); | 
|  | iter->rt_runtime -= diff; | 
|  | want -= diff; | 
|  | } else { | 
|  | iter->rt_runtime -= want; | 
|  | want -= want; | 
|  | } | 
|  | raw_spin_unlock(&iter->rt_runtime_lock); | 
|  |  | 
|  | if (!want) | 
|  | break; | 
|  | } | 
|  |  | 
|  | raw_spin_lock(&rt_rq->rt_runtime_lock); | 
|  | /* | 
|  | * We cannot be left wanting - that would mean some runtime | 
|  | * leaked out of the system. | 
|  | */ | 
|  | BUG_ON(want); | 
|  | balanced: | 
|  | /* | 
|  | * Disable all the borrow logic by pretending we have inf | 
|  | * runtime - in which case borrowing doesn't make sense. | 
|  | */ | 
|  | rt_rq->rt_runtime = RUNTIME_INF; | 
|  | rt_rq->rt_throttled = 0; | 
|  | raw_spin_unlock(&rt_rq->rt_runtime_lock); | 
|  | raw_spin_unlock(&rt_b->rt_runtime_lock); | 
|  |  | 
|  | /* Make rt_rq available for pick_next_task() */ | 
|  | sched_rt_rq_enqueue(rt_rq); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __enable_runtime(struct rq *rq) | 
|  | { | 
|  | rt_rq_iter_t iter; | 
|  | struct rt_rq *rt_rq; | 
|  |  | 
|  | if (unlikely(!scheduler_running)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Reset each runqueue's bandwidth settings | 
|  | */ | 
|  | for_each_rt_rq(rt_rq, iter, rq) { | 
|  | struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); | 
|  |  | 
|  | raw_spin_lock(&rt_b->rt_runtime_lock); | 
|  | raw_spin_lock(&rt_rq->rt_runtime_lock); | 
|  | rt_rq->rt_runtime = rt_b->rt_runtime; | 
|  | rt_rq->rt_time = 0; | 
|  | rt_rq->rt_throttled = 0; | 
|  | raw_spin_unlock(&rt_rq->rt_runtime_lock); | 
|  | raw_spin_unlock(&rt_b->rt_runtime_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void balance_runtime(struct rt_rq *rt_rq) | 
|  | { | 
|  | if (!sched_feat(RT_RUNTIME_SHARE)) | 
|  | return; | 
|  |  | 
|  | if (rt_rq->rt_time > rt_rq->rt_runtime) { | 
|  | raw_spin_unlock(&rt_rq->rt_runtime_lock); | 
|  | do_balance_runtime(rt_rq); | 
|  | raw_spin_lock(&rt_rq->rt_runtime_lock); | 
|  | } | 
|  | } | 
|  | #else /* !CONFIG_SMP */ | 
|  | static inline void balance_runtime(struct rt_rq *rt_rq) {} | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun) | 
|  | { | 
|  | int i, idle = 1, throttled = 0; | 
|  | const struct cpumask *span; | 
|  |  | 
|  | span = sched_rt_period_mask(); | 
|  | #ifdef CONFIG_RT_GROUP_SCHED | 
|  | /* | 
|  | * FIXME: isolated CPUs should really leave the root task group, | 
|  | * whether they are isolcpus or were isolated via cpusets, lest | 
|  | * the timer run on a CPU which does not service all runqueues, | 
|  | * potentially leaving other CPUs indefinitely throttled.  If | 
|  | * isolation is really required, the user will turn the throttle | 
|  | * off to kill the perturbations it causes anyway.  Meanwhile, | 
|  | * this maintains functionality for boot and/or troubleshooting. | 
|  | */ | 
|  | if (rt_b == &root_task_group.rt_bandwidth) | 
|  | span = cpu_online_mask; | 
|  | #endif | 
|  | for_each_cpu(i, span) { | 
|  | int enqueue = 0; | 
|  | struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i); | 
|  | struct rq *rq = rq_of_rt_rq(rt_rq); | 
|  |  | 
|  | raw_spin_lock(&rq->lock); | 
|  | if (rt_rq->rt_time) { | 
|  | u64 runtime; | 
|  |  | 
|  | raw_spin_lock(&rt_rq->rt_runtime_lock); | 
|  | if (rt_rq->rt_throttled) | 
|  | balance_runtime(rt_rq); | 
|  | runtime = rt_rq->rt_runtime; | 
|  | rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime); | 
|  | if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) { | 
|  | rt_rq->rt_throttled = 0; | 
|  | enqueue = 1; | 
|  |  | 
|  | /* | 
|  | * When we're idle and a woken (rt) task is | 
|  | * throttled check_preempt_curr() will set | 
|  | * skip_update and the time between the wakeup | 
|  | * and this unthrottle will get accounted as | 
|  | * 'runtime'. | 
|  | */ | 
|  | if (rt_rq->rt_nr_running && rq->curr == rq->idle) | 
|  | rq_clock_skip_update(rq, false); | 
|  | } | 
|  | if (rt_rq->rt_time || rt_rq->rt_nr_running) | 
|  | idle = 0; | 
|  | raw_spin_unlock(&rt_rq->rt_runtime_lock); | 
|  | } else if (rt_rq->rt_nr_running) { | 
|  | idle = 0; | 
|  | if (!rt_rq_throttled(rt_rq)) | 
|  | enqueue = 1; | 
|  | } | 
|  | if (rt_rq->rt_throttled) | 
|  | throttled = 1; | 
|  |  | 
|  | if (enqueue) | 
|  | sched_rt_rq_enqueue(rt_rq); | 
|  | raw_spin_unlock(&rq->lock); | 
|  | } | 
|  |  | 
|  | if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)) | 
|  | return 1; | 
|  |  | 
|  | return idle; | 
|  | } | 
|  |  | 
|  | static inline int rt_se_prio(struct sched_rt_entity *rt_se) | 
|  | { | 
|  | #ifdef CONFIG_RT_GROUP_SCHED | 
|  | struct rt_rq *rt_rq = group_rt_rq(rt_se); | 
|  |  | 
|  | if (rt_rq) | 
|  | return rt_rq->highest_prio.curr; | 
|  | #endif | 
|  |  | 
|  | return rt_task_of(rt_se)->prio; | 
|  | } | 
|  |  | 
|  | static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq) | 
|  | { | 
|  | u64 runtime = sched_rt_runtime(rt_rq); | 
|  |  | 
|  | if (rt_rq->rt_throttled) | 
|  | return rt_rq_throttled(rt_rq); | 
|  |  | 
|  | if (runtime >= sched_rt_period(rt_rq)) | 
|  | return 0; | 
|  |  | 
|  | balance_runtime(rt_rq); | 
|  | runtime = sched_rt_runtime(rt_rq); | 
|  | if (runtime == RUNTIME_INF) | 
|  | return 0; | 
|  |  | 
|  | if (rt_rq->rt_time > runtime) { | 
|  | struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); | 
|  |  | 
|  | /* | 
|  | * Don't actually throttle groups that have no runtime assigned | 
|  | * but accrue some time due to boosting. | 
|  | */ | 
|  | if (likely(rt_b->rt_runtime)) { | 
|  | rt_rq->rt_throttled = 1; | 
|  | printk_deferred_once("sched: RT throttling activated\n"); | 
|  | } else { | 
|  | /* | 
|  | * In case we did anyway, make it go away, | 
|  | * replenishment is a joke, since it will replenish us | 
|  | * with exactly 0 ns. | 
|  | */ | 
|  | rt_rq->rt_time = 0; | 
|  | } | 
|  |  | 
|  | if (rt_rq_throttled(rt_rq)) { | 
|  | sched_rt_rq_dequeue(rt_rq); | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update the current task's runtime statistics. Skip current tasks that | 
|  | * are not in our scheduling class. | 
|  | */ | 
|  | static void update_curr_rt(struct rq *rq) | 
|  | { | 
|  | struct task_struct *curr = rq->curr; | 
|  | struct sched_rt_entity *rt_se = &curr->rt; | 
|  | u64 delta_exec; | 
|  |  | 
|  | if (curr->sched_class != &rt_sched_class) | 
|  | return; | 
|  |  | 
|  | delta_exec = rq_clock_task(rq) - curr->se.exec_start; | 
|  | if (unlikely((s64)delta_exec <= 0)) | 
|  | return; | 
|  |  | 
|  | schedstat_set(curr->se.statistics.exec_max, | 
|  | max(curr->se.statistics.exec_max, delta_exec)); | 
|  |  | 
|  | curr->se.sum_exec_runtime += delta_exec; | 
|  | account_group_exec_runtime(curr, delta_exec); | 
|  |  | 
|  | curr->se.exec_start = rq_clock_task(rq); | 
|  | cpuacct_charge(curr, delta_exec); | 
|  |  | 
|  | sched_rt_avg_update(rq, delta_exec); | 
|  |  | 
|  | if (!rt_bandwidth_enabled()) | 
|  | return; | 
|  |  | 
|  | for_each_sched_rt_entity(rt_se) { | 
|  | struct rt_rq *rt_rq = rt_rq_of_se(rt_se); | 
|  |  | 
|  | if (sched_rt_runtime(rt_rq) != RUNTIME_INF) { | 
|  | raw_spin_lock(&rt_rq->rt_runtime_lock); | 
|  | rt_rq->rt_time += delta_exec; | 
|  | if (sched_rt_runtime_exceeded(rt_rq)) | 
|  | resched_curr(rq); | 
|  | raw_spin_unlock(&rt_rq->rt_runtime_lock); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | dequeue_top_rt_rq(struct rt_rq *rt_rq) | 
|  | { | 
|  | struct rq *rq = rq_of_rt_rq(rt_rq); | 
|  |  | 
|  | BUG_ON(&rq->rt != rt_rq); | 
|  |  | 
|  | if (!rt_rq->rt_queued) | 
|  | return; | 
|  |  | 
|  | BUG_ON(!rq->nr_running); | 
|  |  | 
|  | sub_nr_running(rq, rt_rq->rt_nr_running); | 
|  | rt_rq->rt_queued = 0; | 
|  | } | 
|  |  | 
|  | static void | 
|  | enqueue_top_rt_rq(struct rt_rq *rt_rq) | 
|  | { | 
|  | struct rq *rq = rq_of_rt_rq(rt_rq); | 
|  |  | 
|  | BUG_ON(&rq->rt != rt_rq); | 
|  |  | 
|  | if (rt_rq->rt_queued) | 
|  | return; | 
|  | if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running) | 
|  | return; | 
|  |  | 
|  | add_nr_running(rq, rt_rq->rt_nr_running); | 
|  | rt_rq->rt_queued = 1; | 
|  | } | 
|  |  | 
|  | #if defined CONFIG_SMP | 
|  |  | 
|  | static void | 
|  | inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) | 
|  | { | 
|  | struct rq *rq = rq_of_rt_rq(rt_rq); | 
|  |  | 
|  | #ifdef CONFIG_RT_GROUP_SCHED | 
|  | /* | 
|  | * Change rq's cpupri only if rt_rq is the top queue. | 
|  | */ | 
|  | if (&rq->rt != rt_rq) | 
|  | return; | 
|  | #endif | 
|  | if (rq->online && prio < prev_prio) | 
|  | cpupri_set(&rq->rd->cpupri, rq->cpu, prio); | 
|  | } | 
|  |  | 
|  | static void | 
|  | dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) | 
|  | { | 
|  | struct rq *rq = rq_of_rt_rq(rt_rq); | 
|  |  | 
|  | #ifdef CONFIG_RT_GROUP_SCHED | 
|  | /* | 
|  | * Change rq's cpupri only if rt_rq is the top queue. | 
|  | */ | 
|  | if (&rq->rt != rt_rq) | 
|  | return; | 
|  | #endif | 
|  | if (rq->online && rt_rq->highest_prio.curr != prev_prio) | 
|  | cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr); | 
|  | } | 
|  |  | 
|  | #else /* CONFIG_SMP */ | 
|  |  | 
|  | static inline | 
|  | void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} | 
|  | static inline | 
|  | void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} | 
|  |  | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED | 
|  | static void | 
|  | inc_rt_prio(struct rt_rq *rt_rq, int prio) | 
|  | { | 
|  | int prev_prio = rt_rq->highest_prio.curr; | 
|  |  | 
|  | if (prio < prev_prio) | 
|  | rt_rq->highest_prio.curr = prio; | 
|  |  | 
|  | inc_rt_prio_smp(rt_rq, prio, prev_prio); | 
|  | } | 
|  |  | 
|  | static void | 
|  | dec_rt_prio(struct rt_rq *rt_rq, int prio) | 
|  | { | 
|  | int prev_prio = rt_rq->highest_prio.curr; | 
|  |  | 
|  | if (rt_rq->rt_nr_running) { | 
|  |  | 
|  | WARN_ON(prio < prev_prio); | 
|  |  | 
|  | /* | 
|  | * This may have been our highest task, and therefore | 
|  | * we may have some recomputation to do | 
|  | */ | 
|  | if (prio == prev_prio) { | 
|  | struct rt_prio_array *array = &rt_rq->active; | 
|  |  | 
|  | rt_rq->highest_prio.curr = | 
|  | sched_find_first_bit(array->bitmap); | 
|  | } | 
|  |  | 
|  | } else | 
|  | rt_rq->highest_prio.curr = MAX_RT_PRIO; | 
|  |  | 
|  | dec_rt_prio_smp(rt_rq, prio, prev_prio); | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {} | 
|  | static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {} | 
|  |  | 
|  | #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */ | 
|  |  | 
|  | #ifdef CONFIG_RT_GROUP_SCHED | 
|  |  | 
|  | static void | 
|  | inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | 
|  | { | 
|  | if (rt_se_boosted(rt_se)) | 
|  | rt_rq->rt_nr_boosted++; | 
|  |  | 
|  | if (rt_rq->tg) | 
|  | start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); | 
|  | } | 
|  |  | 
|  | static void | 
|  | dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | 
|  | { | 
|  | if (rt_se_boosted(rt_se)) | 
|  | rt_rq->rt_nr_boosted--; | 
|  |  | 
|  | WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); | 
|  | } | 
|  |  | 
|  | #else /* CONFIG_RT_GROUP_SCHED */ | 
|  |  | 
|  | static void | 
|  | inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | 
|  | { | 
|  | start_rt_bandwidth(&def_rt_bandwidth); | 
|  | } | 
|  |  | 
|  | static inline | 
|  | void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {} | 
|  |  | 
|  | #endif /* CONFIG_RT_GROUP_SCHED */ | 
|  |  | 
|  | static inline | 
|  | unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se) | 
|  | { | 
|  | struct rt_rq *group_rq = group_rt_rq(rt_se); | 
|  |  | 
|  | if (group_rq) | 
|  | return group_rq->rt_nr_running; | 
|  | else | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static inline | 
|  | void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | 
|  | { | 
|  | int prio = rt_se_prio(rt_se); | 
|  |  | 
|  | WARN_ON(!rt_prio(prio)); | 
|  | rt_rq->rt_nr_running += rt_se_nr_running(rt_se); | 
|  |  | 
|  | inc_rt_prio(rt_rq, prio); | 
|  | inc_rt_migration(rt_se, rt_rq); | 
|  | inc_rt_group(rt_se, rt_rq); | 
|  | } | 
|  |  | 
|  | static inline | 
|  | void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | 
|  | { | 
|  | WARN_ON(!rt_prio(rt_se_prio(rt_se))); | 
|  | WARN_ON(!rt_rq->rt_nr_running); | 
|  | rt_rq->rt_nr_running -= rt_se_nr_running(rt_se); | 
|  |  | 
|  | dec_rt_prio(rt_rq, rt_se_prio(rt_se)); | 
|  | dec_rt_migration(rt_se, rt_rq); | 
|  | dec_rt_group(rt_se, rt_rq); | 
|  | } | 
|  |  | 
|  | static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head) | 
|  | { | 
|  | struct rt_rq *rt_rq = rt_rq_of_se(rt_se); | 
|  | struct rt_prio_array *array = &rt_rq->active; | 
|  | struct rt_rq *group_rq = group_rt_rq(rt_se); | 
|  | struct list_head *queue = array->queue + rt_se_prio(rt_se); | 
|  |  | 
|  | /* | 
|  | * Don't enqueue the group if its throttled, or when empty. | 
|  | * The latter is a consequence of the former when a child group | 
|  | * get throttled and the current group doesn't have any other | 
|  | * active members. | 
|  | */ | 
|  | if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) | 
|  | return; | 
|  |  | 
|  | if (head) | 
|  | list_add(&rt_se->run_list, queue); | 
|  | else | 
|  | list_add_tail(&rt_se->run_list, queue); | 
|  | __set_bit(rt_se_prio(rt_se), array->bitmap); | 
|  |  | 
|  | inc_rt_tasks(rt_se, rt_rq); | 
|  | } | 
|  |  | 
|  | static void __dequeue_rt_entity(struct sched_rt_entity *rt_se) | 
|  | { | 
|  | struct rt_rq *rt_rq = rt_rq_of_se(rt_se); | 
|  | struct rt_prio_array *array = &rt_rq->active; | 
|  |  | 
|  | list_del_init(&rt_se->run_list); | 
|  | if (list_empty(array->queue + rt_se_prio(rt_se))) | 
|  | __clear_bit(rt_se_prio(rt_se), array->bitmap); | 
|  |  | 
|  | dec_rt_tasks(rt_se, rt_rq); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Because the prio of an upper entry depends on the lower | 
|  | * entries, we must remove entries top - down. | 
|  | */ | 
|  | static void dequeue_rt_stack(struct sched_rt_entity *rt_se) | 
|  | { | 
|  | struct sched_rt_entity *back = NULL; | 
|  |  | 
|  | for_each_sched_rt_entity(rt_se) { | 
|  | rt_se->back = back; | 
|  | back = rt_se; | 
|  | } | 
|  |  | 
|  | dequeue_top_rt_rq(rt_rq_of_se(back)); | 
|  |  | 
|  | for (rt_se = back; rt_se; rt_se = rt_se->back) { | 
|  | if (on_rt_rq(rt_se)) | 
|  | __dequeue_rt_entity(rt_se); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head) | 
|  | { | 
|  | struct rq *rq = rq_of_rt_se(rt_se); | 
|  |  | 
|  | dequeue_rt_stack(rt_se); | 
|  | for_each_sched_rt_entity(rt_se) | 
|  | __enqueue_rt_entity(rt_se, head); | 
|  | enqueue_top_rt_rq(&rq->rt); | 
|  | } | 
|  |  | 
|  | static void dequeue_rt_entity(struct sched_rt_entity *rt_se) | 
|  | { | 
|  | struct rq *rq = rq_of_rt_se(rt_se); | 
|  |  | 
|  | dequeue_rt_stack(rt_se); | 
|  |  | 
|  | for_each_sched_rt_entity(rt_se) { | 
|  | struct rt_rq *rt_rq = group_rt_rq(rt_se); | 
|  |  | 
|  | if (rt_rq && rt_rq->rt_nr_running) | 
|  | __enqueue_rt_entity(rt_se, false); | 
|  | } | 
|  | enqueue_top_rt_rq(&rq->rt); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Adding/removing a task to/from a priority array: | 
|  | */ | 
|  | static void | 
|  | enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags) | 
|  | { | 
|  | struct sched_rt_entity *rt_se = &p->rt; | 
|  |  | 
|  | if (flags & ENQUEUE_WAKEUP) | 
|  | rt_se->timeout = 0; | 
|  |  | 
|  | enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD); | 
|  |  | 
|  | if (!task_current(rq, p) && p->nr_cpus_allowed > 1) | 
|  | enqueue_pushable_task(rq, p); | 
|  | } | 
|  |  | 
|  | static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags) | 
|  | { | 
|  | struct sched_rt_entity *rt_se = &p->rt; | 
|  |  | 
|  | update_curr_rt(rq); | 
|  | dequeue_rt_entity(rt_se); | 
|  |  | 
|  | dequeue_pushable_task(rq, p); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Put task to the head or the end of the run list without the overhead of | 
|  | * dequeue followed by enqueue. | 
|  | */ | 
|  | static void | 
|  | requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head) | 
|  | { | 
|  | if (on_rt_rq(rt_se)) { | 
|  | struct rt_prio_array *array = &rt_rq->active; | 
|  | struct list_head *queue = array->queue + rt_se_prio(rt_se); | 
|  |  | 
|  | if (head) | 
|  | list_move(&rt_se->run_list, queue); | 
|  | else | 
|  | list_move_tail(&rt_se->run_list, queue); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head) | 
|  | { | 
|  | struct sched_rt_entity *rt_se = &p->rt; | 
|  | struct rt_rq *rt_rq; | 
|  |  | 
|  | for_each_sched_rt_entity(rt_se) { | 
|  | rt_rq = rt_rq_of_se(rt_se); | 
|  | requeue_rt_entity(rt_rq, rt_se, head); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void yield_task_rt(struct rq *rq) | 
|  | { | 
|  | requeue_task_rt(rq, rq->curr, 0); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | static int find_lowest_rq(struct task_struct *task); | 
|  |  | 
|  | static int | 
|  | select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags) | 
|  | { | 
|  | struct task_struct *curr; | 
|  | struct rq *rq; | 
|  |  | 
|  | /* For anything but wake ups, just return the task_cpu */ | 
|  | if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK) | 
|  | goto out; | 
|  |  | 
|  | rq = cpu_rq(cpu); | 
|  |  | 
|  | rcu_read_lock(); | 
|  | curr = READ_ONCE(rq->curr); /* unlocked access */ | 
|  |  | 
|  | /* | 
|  | * If the current task on @p's runqueue is an RT task, then | 
|  | * try to see if we can wake this RT task up on another | 
|  | * runqueue. Otherwise simply start this RT task | 
|  | * on its current runqueue. | 
|  | * | 
|  | * We want to avoid overloading runqueues. If the woken | 
|  | * task is a higher priority, then it will stay on this CPU | 
|  | * and the lower prio task should be moved to another CPU. | 
|  | * Even though this will probably make the lower prio task | 
|  | * lose its cache, we do not want to bounce a higher task | 
|  | * around just because it gave up its CPU, perhaps for a | 
|  | * lock? | 
|  | * | 
|  | * For equal prio tasks, we just let the scheduler sort it out. | 
|  | * | 
|  | * Otherwise, just let it ride on the affined RQ and the | 
|  | * post-schedule router will push the preempted task away | 
|  | * | 
|  | * This test is optimistic, if we get it wrong the load-balancer | 
|  | * will have to sort it out. | 
|  | */ | 
|  | if (curr && unlikely(rt_task(curr)) && | 
|  | (curr->nr_cpus_allowed < 2 || | 
|  | curr->prio <= p->prio)) { | 
|  | int target = find_lowest_rq(p); | 
|  |  | 
|  | /* | 
|  | * Don't bother moving it if the destination CPU is | 
|  | * not running a lower priority task. | 
|  | */ | 
|  | if (target != -1 && | 
|  | p->prio < cpu_rq(target)->rt.highest_prio.curr) | 
|  | cpu = target; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | out: | 
|  | return cpu; | 
|  | } | 
|  |  | 
|  | static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | /* | 
|  | * Current can't be migrated, useless to reschedule, | 
|  | * let's hope p can move out. | 
|  | */ | 
|  | if (rq->curr->nr_cpus_allowed == 1 || | 
|  | !cpupri_find(&rq->rd->cpupri, rq->curr, NULL)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * p is migratable, so let's not schedule it and | 
|  | * see if it is pushed or pulled somewhere else. | 
|  | */ | 
|  | if (p->nr_cpus_allowed != 1 | 
|  | && cpupri_find(&rq->rd->cpupri, p, NULL)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * There appears to be other cpus that can accept | 
|  | * current and none to run 'p', so lets reschedule | 
|  | * to try and push current away: | 
|  | */ | 
|  | requeue_task_rt(rq, p, 1); | 
|  | resched_curr(rq); | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | /* | 
|  | * Preempt the current task with a newly woken task if needed: | 
|  | */ | 
|  | static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags) | 
|  | { | 
|  | if (p->prio < rq->curr->prio) { | 
|  | resched_curr(rq); | 
|  | return; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * If: | 
|  | * | 
|  | * - the newly woken task is of equal priority to the current task | 
|  | * - the newly woken task is non-migratable while current is migratable | 
|  | * - current will be preempted on the next reschedule | 
|  | * | 
|  | * we should check to see if current can readily move to a different | 
|  | * cpu.  If so, we will reschedule to allow the push logic to try | 
|  | * to move current somewhere else, making room for our non-migratable | 
|  | * task. | 
|  | */ | 
|  | if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr)) | 
|  | check_preempt_equal_prio(rq, p); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq, | 
|  | struct rt_rq *rt_rq) | 
|  | { | 
|  | struct rt_prio_array *array = &rt_rq->active; | 
|  | struct sched_rt_entity *next = NULL; | 
|  | struct list_head *queue; | 
|  | int idx; | 
|  |  | 
|  | idx = sched_find_first_bit(array->bitmap); | 
|  | BUG_ON(idx >= MAX_RT_PRIO); | 
|  |  | 
|  | queue = array->queue + idx; | 
|  | next = list_entry(queue->next, struct sched_rt_entity, run_list); | 
|  |  | 
|  | return next; | 
|  | } | 
|  |  | 
|  | static struct task_struct *_pick_next_task_rt(struct rq *rq) | 
|  | { | 
|  | struct sched_rt_entity *rt_se; | 
|  | struct task_struct *p; | 
|  | struct rt_rq *rt_rq  = &rq->rt; | 
|  |  | 
|  | do { | 
|  | rt_se = pick_next_rt_entity(rq, rt_rq); | 
|  | BUG_ON(!rt_se); | 
|  | rt_rq = group_rt_rq(rt_se); | 
|  | } while (rt_rq); | 
|  |  | 
|  | p = rt_task_of(rt_se); | 
|  | p->se.exec_start = rq_clock_task(rq); | 
|  |  | 
|  | return p; | 
|  | } | 
|  |  | 
|  | static struct task_struct * | 
|  | pick_next_task_rt(struct rq *rq, struct task_struct *prev) | 
|  | { | 
|  | struct task_struct *p; | 
|  | struct rt_rq *rt_rq = &rq->rt; | 
|  |  | 
|  | if (need_pull_rt_task(rq, prev)) { | 
|  | /* | 
|  | * This is OK, because current is on_cpu, which avoids it being | 
|  | * picked for load-balance and preemption/IRQs are still | 
|  | * disabled avoiding further scheduler activity on it and we're | 
|  | * being very careful to re-start the picking loop. | 
|  | */ | 
|  | lockdep_unpin_lock(&rq->lock); | 
|  | pull_rt_task(rq); | 
|  | lockdep_pin_lock(&rq->lock); | 
|  | /* | 
|  | * pull_rt_task() can drop (and re-acquire) rq->lock; this | 
|  | * means a dl or stop task can slip in, in which case we need | 
|  | * to re-start task selection. | 
|  | */ | 
|  | if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) || | 
|  | rq->dl.dl_nr_running)) | 
|  | return RETRY_TASK; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We may dequeue prev's rt_rq in put_prev_task(). | 
|  | * So, we update time before rt_nr_running check. | 
|  | */ | 
|  | if (prev->sched_class == &rt_sched_class) | 
|  | update_curr_rt(rq); | 
|  |  | 
|  | if (!rt_rq->rt_queued) | 
|  | return NULL; | 
|  |  | 
|  | put_prev_task(rq, prev); | 
|  |  | 
|  | p = _pick_next_task_rt(rq); | 
|  |  | 
|  | /* The running task is never eligible for pushing */ | 
|  | dequeue_pushable_task(rq, p); | 
|  |  | 
|  | queue_push_tasks(rq); | 
|  |  | 
|  | return p; | 
|  | } | 
|  |  | 
|  | static void put_prev_task_rt(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | update_curr_rt(rq); | 
|  |  | 
|  | /* | 
|  | * The previous task needs to be made eligible for pushing | 
|  | * if it is still active | 
|  | */ | 
|  | if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1) | 
|  | enqueue_pushable_task(rq, p); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  |  | 
|  | /* Only try algorithms three times */ | 
|  | #define RT_MAX_TRIES 3 | 
|  |  | 
|  | static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu) | 
|  | { | 
|  | if (!task_running(rq, p) && | 
|  | cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return the highest pushable rq's task, which is suitable to be executed | 
|  | * on the cpu, NULL otherwise | 
|  | */ | 
|  | static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu) | 
|  | { | 
|  | struct plist_head *head = &rq->rt.pushable_tasks; | 
|  | struct task_struct *p; | 
|  |  | 
|  | if (!has_pushable_tasks(rq)) | 
|  | return NULL; | 
|  |  | 
|  | plist_for_each_entry(p, head, pushable_tasks) { | 
|  | if (pick_rt_task(rq, p, cpu)) | 
|  | return p; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask); | 
|  |  | 
|  | static int find_lowest_rq(struct task_struct *task) | 
|  | { | 
|  | struct sched_domain *sd; | 
|  | struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask); | 
|  | int this_cpu = smp_processor_id(); | 
|  | int cpu      = task_cpu(task); | 
|  |  | 
|  | /* Make sure the mask is initialized first */ | 
|  | if (unlikely(!lowest_mask)) | 
|  | return -1; | 
|  |  | 
|  | if (task->nr_cpus_allowed == 1) | 
|  | return -1; /* No other targets possible */ | 
|  |  | 
|  | if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask)) | 
|  | return -1; /* No targets found */ | 
|  |  | 
|  | /* | 
|  | * At this point we have built a mask of cpus representing the | 
|  | * lowest priority tasks in the system.  Now we want to elect | 
|  | * the best one based on our affinity and topology. | 
|  | * | 
|  | * We prioritize the last cpu that the task executed on since | 
|  | * it is most likely cache-hot in that location. | 
|  | */ | 
|  | if (cpumask_test_cpu(cpu, lowest_mask)) | 
|  | return cpu; | 
|  |  | 
|  | /* | 
|  | * Otherwise, we consult the sched_domains span maps to figure | 
|  | * out which cpu is logically closest to our hot cache data. | 
|  | */ | 
|  | if (!cpumask_test_cpu(this_cpu, lowest_mask)) | 
|  | this_cpu = -1; /* Skip this_cpu opt if not among lowest */ | 
|  |  | 
|  | rcu_read_lock(); | 
|  | for_each_domain(cpu, sd) { | 
|  | if (sd->flags & SD_WAKE_AFFINE) { | 
|  | int best_cpu; | 
|  |  | 
|  | /* | 
|  | * "this_cpu" is cheaper to preempt than a | 
|  | * remote processor. | 
|  | */ | 
|  | if (this_cpu != -1 && | 
|  | cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { | 
|  | rcu_read_unlock(); | 
|  | return this_cpu; | 
|  | } | 
|  |  | 
|  | best_cpu = cpumask_first_and(lowest_mask, | 
|  | sched_domain_span(sd)); | 
|  | if (best_cpu < nr_cpu_ids) { | 
|  | rcu_read_unlock(); | 
|  | return best_cpu; | 
|  | } | 
|  | } | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | /* | 
|  | * And finally, if there were no matches within the domains | 
|  | * just give the caller *something* to work with from the compatible | 
|  | * locations. | 
|  | */ | 
|  | if (this_cpu != -1) | 
|  | return this_cpu; | 
|  |  | 
|  | cpu = cpumask_any(lowest_mask); | 
|  | if (cpu < nr_cpu_ids) | 
|  | return cpu; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* Will lock the rq it finds */ | 
|  | static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) | 
|  | { | 
|  | struct rq *lowest_rq = NULL; | 
|  | int tries; | 
|  | int cpu; | 
|  |  | 
|  | for (tries = 0; tries < RT_MAX_TRIES; tries++) { | 
|  | cpu = find_lowest_rq(task); | 
|  |  | 
|  | if ((cpu == -1) || (cpu == rq->cpu)) | 
|  | break; | 
|  |  | 
|  | lowest_rq = cpu_rq(cpu); | 
|  |  | 
|  | if (lowest_rq->rt.highest_prio.curr <= task->prio) { | 
|  | /* | 
|  | * Target rq has tasks of equal or higher priority, | 
|  | * retrying does not release any lock and is unlikely | 
|  | * to yield a different result. | 
|  | */ | 
|  | lowest_rq = NULL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* if the prio of this runqueue changed, try again */ | 
|  | if (double_lock_balance(rq, lowest_rq)) { | 
|  | /* | 
|  | * We had to unlock the run queue. In | 
|  | * the mean time, task could have | 
|  | * migrated already or had its affinity changed. | 
|  | * Also make sure that it wasn't scheduled on its rq. | 
|  | */ | 
|  | if (unlikely(task_rq(task) != rq || | 
|  | !cpumask_test_cpu(lowest_rq->cpu, | 
|  | tsk_cpus_allowed(task)) || | 
|  | task_running(rq, task) || | 
|  | !task_on_rq_queued(task))) { | 
|  |  | 
|  | double_unlock_balance(rq, lowest_rq); | 
|  | lowest_rq = NULL; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If this rq is still suitable use it. */ | 
|  | if (lowest_rq->rt.highest_prio.curr > task->prio) | 
|  | break; | 
|  |  | 
|  | /* try again */ | 
|  | double_unlock_balance(rq, lowest_rq); | 
|  | lowest_rq = NULL; | 
|  | } | 
|  |  | 
|  | return lowest_rq; | 
|  | } | 
|  |  | 
|  | static struct task_struct *pick_next_pushable_task(struct rq *rq) | 
|  | { | 
|  | struct task_struct *p; | 
|  |  | 
|  | if (!has_pushable_tasks(rq)) | 
|  | return NULL; | 
|  |  | 
|  | p = plist_first_entry(&rq->rt.pushable_tasks, | 
|  | struct task_struct, pushable_tasks); | 
|  |  | 
|  | BUG_ON(rq->cpu != task_cpu(p)); | 
|  | BUG_ON(task_current(rq, p)); | 
|  | BUG_ON(p->nr_cpus_allowed <= 1); | 
|  |  | 
|  | BUG_ON(!task_on_rq_queued(p)); | 
|  | BUG_ON(!rt_task(p)); | 
|  |  | 
|  | return p; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the current CPU has more than one RT task, see if the non | 
|  | * running task can migrate over to a CPU that is running a task | 
|  | * of lesser priority. | 
|  | */ | 
|  | static int push_rt_task(struct rq *rq) | 
|  | { | 
|  | struct task_struct *next_task; | 
|  | struct rq *lowest_rq; | 
|  | int ret = 0; | 
|  |  | 
|  | if (!rq->rt.overloaded) | 
|  | return 0; | 
|  |  | 
|  | next_task = pick_next_pushable_task(rq); | 
|  | if (!next_task) | 
|  | return 0; | 
|  |  | 
|  | retry: | 
|  | if (unlikely(next_task == rq->curr)) { | 
|  | WARN_ON(1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * It's possible that the next_task slipped in of | 
|  | * higher priority than current. If that's the case | 
|  | * just reschedule current. | 
|  | */ | 
|  | if (unlikely(next_task->prio < rq->curr->prio)) { | 
|  | resched_curr(rq); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* We might release rq lock */ | 
|  | get_task_struct(next_task); | 
|  |  | 
|  | /* find_lock_lowest_rq locks the rq if found */ | 
|  | lowest_rq = find_lock_lowest_rq(next_task, rq); | 
|  | if (!lowest_rq) { | 
|  | struct task_struct *task; | 
|  | /* | 
|  | * find_lock_lowest_rq releases rq->lock | 
|  | * so it is possible that next_task has migrated. | 
|  | * | 
|  | * We need to make sure that the task is still on the same | 
|  | * run-queue and is also still the next task eligible for | 
|  | * pushing. | 
|  | */ | 
|  | task = pick_next_pushable_task(rq); | 
|  | if (task_cpu(next_task) == rq->cpu && task == next_task) { | 
|  | /* | 
|  | * The task hasn't migrated, and is still the next | 
|  | * eligible task, but we failed to find a run-queue | 
|  | * to push it to.  Do not retry in this case, since | 
|  | * other cpus will pull from us when ready. | 
|  | */ | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (!task) | 
|  | /* No more tasks, just exit */ | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Something has shifted, try again. | 
|  | */ | 
|  | put_task_struct(next_task); | 
|  | next_task = task; | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | deactivate_task(rq, next_task, 0); | 
|  | set_task_cpu(next_task, lowest_rq->cpu); | 
|  | activate_task(lowest_rq, next_task, 0); | 
|  | ret = 1; | 
|  |  | 
|  | resched_curr(lowest_rq); | 
|  |  | 
|  | double_unlock_balance(rq, lowest_rq); | 
|  |  | 
|  | out: | 
|  | put_task_struct(next_task); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void push_rt_tasks(struct rq *rq) | 
|  | { | 
|  | /* push_rt_task will return true if it moved an RT */ | 
|  | while (push_rt_task(rq)) | 
|  | ; | 
|  | } | 
|  |  | 
|  | #ifdef HAVE_RT_PUSH_IPI | 
|  | /* | 
|  | * The search for the next cpu always starts at rq->cpu and ends | 
|  | * when we reach rq->cpu again. It will never return rq->cpu. | 
|  | * This returns the next cpu to check, or nr_cpu_ids if the loop | 
|  | * is complete. | 
|  | * | 
|  | * rq->rt.push_cpu holds the last cpu returned by this function, | 
|  | * or if this is the first instance, it must hold rq->cpu. | 
|  | */ | 
|  | static int rto_next_cpu(struct rq *rq) | 
|  | { | 
|  | int prev_cpu = rq->rt.push_cpu; | 
|  | int cpu; | 
|  |  | 
|  | cpu = cpumask_next(prev_cpu, rq->rd->rto_mask); | 
|  |  | 
|  | /* | 
|  | * If the previous cpu is less than the rq's CPU, then it already | 
|  | * passed the end of the mask, and has started from the beginning. | 
|  | * We end if the next CPU is greater or equal to rq's CPU. | 
|  | */ | 
|  | if (prev_cpu < rq->cpu) { | 
|  | if (cpu >= rq->cpu) | 
|  | return nr_cpu_ids; | 
|  |  | 
|  | } else if (cpu >= nr_cpu_ids) { | 
|  | /* | 
|  | * We passed the end of the mask, start at the beginning. | 
|  | * If the result is greater or equal to the rq's CPU, then | 
|  | * the loop is finished. | 
|  | */ | 
|  | cpu = cpumask_first(rq->rd->rto_mask); | 
|  | if (cpu >= rq->cpu) | 
|  | return nr_cpu_ids; | 
|  | } | 
|  | rq->rt.push_cpu = cpu; | 
|  |  | 
|  | /* Return cpu to let the caller know if the loop is finished or not */ | 
|  | return cpu; | 
|  | } | 
|  |  | 
|  | static int find_next_push_cpu(struct rq *rq) | 
|  | { | 
|  | struct rq *next_rq; | 
|  | int cpu; | 
|  |  | 
|  | while (1) { | 
|  | cpu = rto_next_cpu(rq); | 
|  | if (cpu >= nr_cpu_ids) | 
|  | break; | 
|  | next_rq = cpu_rq(cpu); | 
|  |  | 
|  | /* Make sure the next rq can push to this rq */ | 
|  | if (next_rq->rt.highest_prio.next < rq->rt.highest_prio.curr) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return cpu; | 
|  | } | 
|  |  | 
|  | #define RT_PUSH_IPI_EXECUTING		1 | 
|  | #define RT_PUSH_IPI_RESTART		2 | 
|  |  | 
|  | static void tell_cpu_to_push(struct rq *rq) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) { | 
|  | raw_spin_lock(&rq->rt.push_lock); | 
|  | /* Make sure it's still executing */ | 
|  | if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) { | 
|  | /* | 
|  | * Tell the IPI to restart the loop as things have | 
|  | * changed since it started. | 
|  | */ | 
|  | rq->rt.push_flags |= RT_PUSH_IPI_RESTART; | 
|  | raw_spin_unlock(&rq->rt.push_lock); | 
|  | return; | 
|  | } | 
|  | raw_spin_unlock(&rq->rt.push_lock); | 
|  | } | 
|  |  | 
|  | /* When here, there's no IPI going around */ | 
|  |  | 
|  | rq->rt.push_cpu = rq->cpu; | 
|  | cpu = find_next_push_cpu(rq); | 
|  | if (cpu >= nr_cpu_ids) | 
|  | return; | 
|  |  | 
|  | rq->rt.push_flags = RT_PUSH_IPI_EXECUTING; | 
|  |  | 
|  | irq_work_queue_on(&rq->rt.push_work, cpu); | 
|  | } | 
|  |  | 
|  | /* Called from hardirq context */ | 
|  | static void try_to_push_tasks(void *arg) | 
|  | { | 
|  | struct rt_rq *rt_rq = arg; | 
|  | struct rq *rq, *src_rq; | 
|  | int this_cpu; | 
|  | int cpu; | 
|  |  | 
|  | this_cpu = rt_rq->push_cpu; | 
|  |  | 
|  | /* Paranoid check */ | 
|  | BUG_ON(this_cpu != smp_processor_id()); | 
|  |  | 
|  | rq = cpu_rq(this_cpu); | 
|  | src_rq = rq_of_rt_rq(rt_rq); | 
|  |  | 
|  | again: | 
|  | if (has_pushable_tasks(rq)) { | 
|  | raw_spin_lock(&rq->lock); | 
|  | push_rt_task(rq); | 
|  | raw_spin_unlock(&rq->lock); | 
|  | } | 
|  |  | 
|  | /* Pass the IPI to the next rt overloaded queue */ | 
|  | raw_spin_lock(&rt_rq->push_lock); | 
|  | /* | 
|  | * If the source queue changed since the IPI went out, | 
|  | * we need to restart the search from that CPU again. | 
|  | */ | 
|  | if (rt_rq->push_flags & RT_PUSH_IPI_RESTART) { | 
|  | rt_rq->push_flags &= ~RT_PUSH_IPI_RESTART; | 
|  | rt_rq->push_cpu = src_rq->cpu; | 
|  | } | 
|  |  | 
|  | cpu = find_next_push_cpu(src_rq); | 
|  |  | 
|  | if (cpu >= nr_cpu_ids) | 
|  | rt_rq->push_flags &= ~RT_PUSH_IPI_EXECUTING; | 
|  | raw_spin_unlock(&rt_rq->push_lock); | 
|  |  | 
|  | if (cpu >= nr_cpu_ids) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * It is possible that a restart caused this CPU to be | 
|  | * chosen again. Don't bother with an IPI, just see if we | 
|  | * have more to push. | 
|  | */ | 
|  | if (unlikely(cpu == rq->cpu)) | 
|  | goto again; | 
|  |  | 
|  | /* Try the next RT overloaded CPU */ | 
|  | irq_work_queue_on(&rt_rq->push_work, cpu); | 
|  | } | 
|  |  | 
|  | static void push_irq_work_func(struct irq_work *work) | 
|  | { | 
|  | struct rt_rq *rt_rq = container_of(work, struct rt_rq, push_work); | 
|  |  | 
|  | try_to_push_tasks(rt_rq); | 
|  | } | 
|  | #endif /* HAVE_RT_PUSH_IPI */ | 
|  |  | 
|  | static void pull_rt_task(struct rq *this_rq) | 
|  | { | 
|  | int this_cpu = this_rq->cpu, cpu; | 
|  | bool resched = false; | 
|  | struct task_struct *p; | 
|  | struct rq *src_rq; | 
|  |  | 
|  | if (likely(!rt_overloaded(this_rq))) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Match the barrier from rt_set_overloaded; this guarantees that if we | 
|  | * see overloaded we must also see the rto_mask bit. | 
|  | */ | 
|  | smp_rmb(); | 
|  |  | 
|  | #ifdef HAVE_RT_PUSH_IPI | 
|  | if (sched_feat(RT_PUSH_IPI)) { | 
|  | tell_cpu_to_push(this_rq); | 
|  | return; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | for_each_cpu(cpu, this_rq->rd->rto_mask) { | 
|  | if (this_cpu == cpu) | 
|  | continue; | 
|  |  | 
|  | src_rq = cpu_rq(cpu); | 
|  |  | 
|  | /* | 
|  | * Don't bother taking the src_rq->lock if the next highest | 
|  | * task is known to be lower-priority than our current task. | 
|  | * This may look racy, but if this value is about to go | 
|  | * logically higher, the src_rq will push this task away. | 
|  | * And if its going logically lower, we do not care | 
|  | */ | 
|  | if (src_rq->rt.highest_prio.next >= | 
|  | this_rq->rt.highest_prio.curr) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * We can potentially drop this_rq's lock in | 
|  | * double_lock_balance, and another CPU could | 
|  | * alter this_rq | 
|  | */ | 
|  | double_lock_balance(this_rq, src_rq); | 
|  |  | 
|  | /* | 
|  | * We can pull only a task, which is pushable | 
|  | * on its rq, and no others. | 
|  | */ | 
|  | p = pick_highest_pushable_task(src_rq, this_cpu); | 
|  |  | 
|  | /* | 
|  | * Do we have an RT task that preempts | 
|  | * the to-be-scheduled task? | 
|  | */ | 
|  | if (p && (p->prio < this_rq->rt.highest_prio.curr)) { | 
|  | WARN_ON(p == src_rq->curr); | 
|  | WARN_ON(!task_on_rq_queued(p)); | 
|  |  | 
|  | /* | 
|  | * There's a chance that p is higher in priority | 
|  | * than what's currently running on its cpu. | 
|  | * This is just that p is wakeing up and hasn't | 
|  | * had a chance to schedule. We only pull | 
|  | * p if it is lower in priority than the | 
|  | * current task on the run queue | 
|  | */ | 
|  | if (p->prio < src_rq->curr->prio) | 
|  | goto skip; | 
|  |  | 
|  | resched = true; | 
|  |  | 
|  | deactivate_task(src_rq, p, 0); | 
|  | set_task_cpu(p, this_cpu); | 
|  | activate_task(this_rq, p, 0); | 
|  | /* | 
|  | * We continue with the search, just in | 
|  | * case there's an even higher prio task | 
|  | * in another runqueue. (low likelihood | 
|  | * but possible) | 
|  | */ | 
|  | } | 
|  | skip: | 
|  | double_unlock_balance(this_rq, src_rq); | 
|  | } | 
|  |  | 
|  | if (resched) | 
|  | resched_curr(this_rq); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we are not running and we are not going to reschedule soon, we should | 
|  | * try to push tasks away now | 
|  | */ | 
|  | static void task_woken_rt(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | if (!task_running(rq, p) && | 
|  | !test_tsk_need_resched(rq->curr) && | 
|  | p->nr_cpus_allowed > 1 && | 
|  | (dl_task(rq->curr) || rt_task(rq->curr)) && | 
|  | (rq->curr->nr_cpus_allowed < 2 || | 
|  | rq->curr->prio <= p->prio)) | 
|  | push_rt_tasks(rq); | 
|  | } | 
|  |  | 
|  | /* Assumes rq->lock is held */ | 
|  | static void rq_online_rt(struct rq *rq) | 
|  | { | 
|  | if (rq->rt.overloaded) | 
|  | rt_set_overload(rq); | 
|  |  | 
|  | __enable_runtime(rq); | 
|  |  | 
|  | cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); | 
|  | } | 
|  |  | 
|  | /* Assumes rq->lock is held */ | 
|  | static void rq_offline_rt(struct rq *rq) | 
|  | { | 
|  | if (rq->rt.overloaded) | 
|  | rt_clear_overload(rq); | 
|  |  | 
|  | __disable_runtime(rq); | 
|  |  | 
|  | cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When switch from the rt queue, we bring ourselves to a position | 
|  | * that we might want to pull RT tasks from other runqueues. | 
|  | */ | 
|  | static void switched_from_rt(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | /* | 
|  | * If there are other RT tasks then we will reschedule | 
|  | * and the scheduling of the other RT tasks will handle | 
|  | * the balancing. But if we are the last RT task | 
|  | * we may need to handle the pulling of RT tasks | 
|  | * now. | 
|  | */ | 
|  | if (!task_on_rq_queued(p) || rq->rt.rt_nr_running) | 
|  | return; | 
|  |  | 
|  | queue_pull_task(rq); | 
|  | } | 
|  |  | 
|  | void __init init_sched_rt_class(void) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | for_each_possible_cpu(i) { | 
|  | zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i), | 
|  | GFP_KERNEL, cpu_to_node(i)); | 
|  | } | 
|  | } | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | /* | 
|  | * When switching a task to RT, we may overload the runqueue | 
|  | * with RT tasks. In this case we try to push them off to | 
|  | * other runqueues. | 
|  | */ | 
|  | static void switched_to_rt(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | /* | 
|  | * If we are already running, then there's nothing | 
|  | * that needs to be done. But if we are not running | 
|  | * we may need to preempt the current running task. | 
|  | * If that current running task is also an RT task | 
|  | * then see if we can move to another run queue. | 
|  | */ | 
|  | if (task_on_rq_queued(p) && rq->curr != p) { | 
|  | #ifdef CONFIG_SMP | 
|  | if (p->nr_cpus_allowed > 1 && rq->rt.overloaded) | 
|  | queue_push_tasks(rq); | 
|  | #else | 
|  | if (p->prio < rq->curr->prio) | 
|  | resched_curr(rq); | 
|  | #endif /* CONFIG_SMP */ | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Priority of the task has changed. This may cause | 
|  | * us to initiate a push or pull. | 
|  | */ | 
|  | static void | 
|  | prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio) | 
|  | { | 
|  | if (!task_on_rq_queued(p)) | 
|  | return; | 
|  |  | 
|  | if (rq->curr == p) { | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * If our priority decreases while running, we | 
|  | * may need to pull tasks to this runqueue. | 
|  | */ | 
|  | if (oldprio < p->prio) | 
|  | queue_pull_task(rq); | 
|  |  | 
|  | /* | 
|  | * If there's a higher priority task waiting to run | 
|  | * then reschedule. | 
|  | */ | 
|  | if (p->prio > rq->rt.highest_prio.curr) | 
|  | resched_curr(rq); | 
|  | #else | 
|  | /* For UP simply resched on drop of prio */ | 
|  | if (oldprio < p->prio) | 
|  | resched_curr(rq); | 
|  | #endif /* CONFIG_SMP */ | 
|  | } else { | 
|  | /* | 
|  | * This task is not running, but if it is | 
|  | * greater than the current running task | 
|  | * then reschedule. | 
|  | */ | 
|  | if (p->prio < rq->curr->prio) | 
|  | resched_curr(rq); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void watchdog(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | unsigned long soft, hard; | 
|  |  | 
|  | /* max may change after cur was read, this will be fixed next tick */ | 
|  | soft = task_rlimit(p, RLIMIT_RTTIME); | 
|  | hard = task_rlimit_max(p, RLIMIT_RTTIME); | 
|  |  | 
|  | if (soft != RLIM_INFINITY) { | 
|  | unsigned long next; | 
|  |  | 
|  | if (p->rt.watchdog_stamp != jiffies) { | 
|  | p->rt.timeout++; | 
|  | p->rt.watchdog_stamp = jiffies; | 
|  | } | 
|  |  | 
|  | next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ); | 
|  | if (p->rt.timeout > next) | 
|  | p->cputime_expires.sched_exp = p->se.sum_exec_runtime; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued) | 
|  | { | 
|  | struct sched_rt_entity *rt_se = &p->rt; | 
|  |  | 
|  | update_curr_rt(rq); | 
|  |  | 
|  | watchdog(rq, p); | 
|  |  | 
|  | /* | 
|  | * RR tasks need a special form of timeslice management. | 
|  | * FIFO tasks have no timeslices. | 
|  | */ | 
|  | if (p->policy != SCHED_RR) | 
|  | return; | 
|  |  | 
|  | if (--p->rt.time_slice) | 
|  | return; | 
|  |  | 
|  | p->rt.time_slice = sched_rr_timeslice; | 
|  |  | 
|  | /* | 
|  | * Requeue to the end of queue if we (and all of our ancestors) are not | 
|  | * the only element on the queue | 
|  | */ | 
|  | for_each_sched_rt_entity(rt_se) { | 
|  | if (rt_se->run_list.prev != rt_se->run_list.next) { | 
|  | requeue_task_rt(rq, p, 0); | 
|  | resched_curr(rq); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void set_curr_task_rt(struct rq *rq) | 
|  | { | 
|  | struct task_struct *p = rq->curr; | 
|  |  | 
|  | p->se.exec_start = rq_clock_task(rq); | 
|  |  | 
|  | /* The running task is never eligible for pushing */ | 
|  | dequeue_pushable_task(rq, p); | 
|  | } | 
|  |  | 
|  | static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task) | 
|  | { | 
|  | /* | 
|  | * Time slice is 0 for SCHED_FIFO tasks | 
|  | */ | 
|  | if (task->policy == SCHED_RR) | 
|  | return sched_rr_timeslice; | 
|  | else | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | const struct sched_class rt_sched_class = { | 
|  | .next			= &fair_sched_class, | 
|  | .enqueue_task		= enqueue_task_rt, | 
|  | .dequeue_task		= dequeue_task_rt, | 
|  | .yield_task		= yield_task_rt, | 
|  |  | 
|  | .check_preempt_curr	= check_preempt_curr_rt, | 
|  |  | 
|  | .pick_next_task		= pick_next_task_rt, | 
|  | .put_prev_task		= put_prev_task_rt, | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | .select_task_rq		= select_task_rq_rt, | 
|  |  | 
|  | .set_cpus_allowed       = set_cpus_allowed_common, | 
|  | .rq_online              = rq_online_rt, | 
|  | .rq_offline             = rq_offline_rt, | 
|  | .task_woken		= task_woken_rt, | 
|  | .switched_from		= switched_from_rt, | 
|  | #endif | 
|  |  | 
|  | .set_curr_task          = set_curr_task_rt, | 
|  | .task_tick		= task_tick_rt, | 
|  |  | 
|  | .get_rr_interval	= get_rr_interval_rt, | 
|  |  | 
|  | .prio_changed		= prio_changed_rt, | 
|  | .switched_to		= switched_to_rt, | 
|  |  | 
|  | .update_curr		= update_curr_rt, | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_SCHED_DEBUG | 
|  | extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); | 
|  |  | 
|  | void print_rt_stats(struct seq_file *m, int cpu) | 
|  | { | 
|  | rt_rq_iter_t iter; | 
|  | struct rt_rq *rt_rq; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | for_each_rt_rq(rt_rq, iter, cpu_rq(cpu)) | 
|  | print_rt_rq(m, cpu, rt_rq); | 
|  | rcu_read_unlock(); | 
|  | } | 
|  | #endif /* CONFIG_SCHED_DEBUG */ |